WO2020037685A1 - 触控面板及触控显示装置 - Google Patents

触控面板及触控显示装置 Download PDF

Info

Publication number
WO2020037685A1
WO2020037685A1 PCT/CN2018/102347 CN2018102347W WO2020037685A1 WO 2020037685 A1 WO2020037685 A1 WO 2020037685A1 CN 2018102347 W CN2018102347 W CN 2018102347W WO 2020037685 A1 WO2020037685 A1 WO 2020037685A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
conductive
pattern
units
touch panel
Prior art date
Application number
PCT/CN2018/102347
Other languages
English (en)
French (fr)
Inventor
张亚楠
李东霖
林源城
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to CN201880094175.XA priority Critical patent/CN112639699A/zh
Priority to PCT/CN2018/102347 priority patent/WO2020037685A1/zh
Publication of WO2020037685A1 publication Critical patent/WO2020037685A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to the field of touch technology, and in particular, to a touch panel and a touch display device.
  • capacitive touch panels include touch electrodes, and the point where the capacitance is changed according to the contact of a human finger or an object, thereby determining the contact position.
  • Existing touch panels usually use materials such as indium tin oxide (ITO) and zinc oxide (IZO) as touch electrode patterns, which results in a large load on the touch sensing circuit (IC) and affects the touch. ⁇ ⁇ Control performance.
  • embodiments of the present invention disclose a touch panel and a touch display device with improved touch performance.
  • a touch panel includes a touch electrode and a conductive structure, the touch electrode is connected in parallel with the conductive structure, and the conductive structure cooperates with the touch electrode to jointly sense external touch signals.
  • a touch display device includes the touch panel described above.
  • the touch panel and the touch display device provided by the present invention can reduce the resistance of the touch panel by connecting the conductive structure and the touch electrodes in parallel, thereby reducing the load of the touch sensing circuit and improving the touch performance. .
  • FIG. 1 is a schematic diagram of a touch panel according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a touch electrode of a touch panel according to a first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a conductive structure of a touch panel according to a first embodiment of the present invention.
  • FIG. 4 is an enlarged schematic view of a conductive unit of the conductive structure shown in FIG. 3.
  • FIG. 5 is a schematic diagram of a laminated structure of a touch panel according to a first embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a touch panel according to a second embodiment of the present invention.
  • FIG. 7 is a pattern diagram of touch electrodes of a touch panel provided by a second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a conductive structure of a touch panel according to a second embodiment of the present invention.
  • FIG. 9 is an enlarged schematic view of a region IX of the conductive structure shown in FIG. 8.
  • FIG. 10 is a schematic diagram of a laminated structure of a touch panel according to a second embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a touch panel according to a third embodiment of the present invention.
  • FIG. 12 is a schematic plan view of a first stack of a touch panel according to a third embodiment of the present invention.
  • FIG. 13 is a schematic plan view of a second stack of a touch panel according to a third embodiment of the present invention.
  • FIG. 14 is a schematic diagram of a laminated structure of a touch panel according to a third embodiment of the present invention.
  • FIG. 15 is a schematic perspective view of a touch display device according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a touch panel provided by the first embodiment of the present invention
  • FIG. 2 is a schematic diagram of touch electrodes of the touch panel provided by the first embodiment of the present invention.
  • It is a schematic diagram of a conductive structure of a touch panel provided by the first embodiment of the present invention.
  • the touch panel 10 includes a touch electrode 11 and a conductive structure 13.
  • the touch electrode 11 is used for sensing a contact of a finger or an object of a person to determine a contact position.
  • the touch electrodes 11 are electrically connected to a touch sensing circuit (not shown).
  • the conductive structure 13 and the touch electrode 11 are connected in parallel.
  • the conductive structure 13 and the touch electrode 11 cooperate to jointly sense external touch signals.
  • the conductive structure 13 and the touch electrodes 11 connected in parallel can reduce the resistance of the touch panel 10, thereby reducing the load of the touch sensing circuit (not shown), and improving touch performance.
  • the touch signals include a direct touch signal and a floating touch signal.
  • the touch electrode 11 includes a plurality of touch units 113.
  • the plurality of touch units 113 are arranged in an array so as to correspond to a plurality of position points.
  • the number and size of the touch units 113 can be determined by the touch resolution of the touch panel 10.
  • the touch electrodes 11 are made of materials such as indium oxide (ITO) and zinc oxide (IZO).
  • the touch electrodes 11 are arranged in a single layer, and multiple touch units 113 are located on the same layer.
  • Each touch unit 11 is connected to the touch sensing circuit through an independent lead 115.
  • the touch electrode 11 can be formed by patterning a cathode provided on the entire surface of the display layer.
  • the addition of structure 13 is beneficial to reducing the attenuation of the cathode drop (IR drop).
  • the touch electrodes 11 can be made of other materials, such as nano-silver wires.
  • a sensing area of the conductive structure 13 is smaller than a sensing area of the touch electrode 11.
  • the conductive structure 13 includes a plurality of conductive units 133.
  • the plurality of conductive units 133 are arranged in an array, and each conductive unit 133 is disposed corresponding to one touch unit 113 and is connected in parallel.
  • FIG. 4 is an enlarged schematic view of the conductive unit 133 of the conductive structure shown in FIG. 3.
  • the conductive unit 133 is in a grid shape.
  • Each conductive unit 133 is connected in parallel with a corresponding touch unit 113 through a connection trace 135.
  • the material of the conductive structure 13 is different from that of the touch electrode 11, and the conductive unit 133 is a metal mesh.
  • the conductive unit 133 may be made of a non-metal conductive material. production.
  • the resistance of the conductive unit 133 is lower than the resistance of the touch unit 113, and the resistance of the conductive structure 13 is less than the resistance of the touch electrode 11.
  • the touch electrode 11 with a larger sensing area can effectively ensure the touch sensing amount of the touch panel 10.
  • the conductive structure 13 made of a metal grid and the touch electrode 11 in parallel it can effectively The in-plane resistance value of the touch panel 10 is reduced. In this way, while ensuring the touch sensing amount of the touch panel 10, the load of the touch sensing circuit can be reduced.
  • the material of the conductive structure 13 is not limited to the material of the touch electrode 11.
  • the conductive unit 133 includes a plurality of first metal traces 1331 and a plurality of second metal traces 1333.
  • the first metal trace 1331 extends in a first direction.
  • the plurality of first metal traces 1331 are disposed at intervals along the second direction.
  • the second metal trace 1333 extends in a second direction.
  • a plurality of second metal traces 1333 are arranged at intervals along the first direction, and the plurality of first metal traces 1331 and the plurality of second metal traces 1333 are electrically connected, and the first direction is different from the first direction. Mentioned second direction.
  • the first direction and the second direction are perpendicular to each other.
  • the number of the first metal traces 1331 is multiple, and the first metal traces 1331 are in two groups, and the first metal traces 1331 of the same group are spaced at a first pitch along the second direction.
  • the two sets of adjacent first metal traces 1331 are arranged at a second interval along the second direction.
  • the number of second metal traces 1333 is multiple, and the number of second metal traces 1333 is two.
  • Second metal traces 1333 of the same group are arranged at a third pitch interval along the first direction, and adjacent two sets of second metal traces 1333 are arranged at a fourth pitch interval along the first direction, and four groups of first metal traces
  • the traces 1331 and the four sets of second metal traces 1333 intersect to form a substantially square grid structure. It can be understood that the interval between the first metal traces 1331 and the interval between the second metal traces 1333 can be set as required.
  • the first direction may be an extending direction of a long side of the touch panel 10, and the second direction may be an extending direction of a short side of the touch panel 10.
  • the first direction may also be an extension direction of a short side of the touch panel 10, and the second direction may be an extension direction of a long side of the touch panel 10.
  • different directions are distinguished only by a first direction and a second direction, and the first direction and the second direction are not limited to the specific directions described above.
  • FIG. 5 is a stacked schematic diagram of a touch panel according to a first embodiment of the present invention.
  • the touch panel 10 further includes a first insulating layer 15, a second insulating layer 17, and a packaging layer 19.
  • the touch electrode 11, the first insulating layer 15, the conductive structure 13, the second insulating layer 17, and the encapsulation layer 19 are sequentially stacked and arranged.
  • the first insulating layer 15 is located between the touch electrode 11 and the conductive structure 13, so that the touch electrode 11 and the conductive structure 13 are electrically isolated.
  • the first insulating layer 15 is provided with a plurality of through holes 151.
  • the touch electrodes 11 and the conductive structure 13 are connected in parallel through the through holes 151.
  • a connection trace 135 is formed in the through hole 151, and the touch electrode 11 and the conductive structure 13 are electrically connected through the connection trace 135 in the through hole 151 to achieve parallel connection.
  • the through hole 135 may also be a conductive through hole, that is, the inner wall of the through hole 151 is coated with a conductive material, and the touch electrode 11 and the conductive structure 13 are electrically connected through the conductive through hole.
  • the second insulating layer 17 is located between the encapsulation layer 19 and the conductive structure 13, so that the encapsulation layer 19 and the conductive structure 13 are electrically isolated.
  • the position of the through hole 151 is set corresponding to the corner position of the conductive unit 133.
  • a connecting trace 135 is provided at each of the four corner positions of each conductive unit 133, so that a connecting trace 135 can be connected to the first metal trace 1331 and the second metal trace 1333 at the same time.
  • the position of the connection trace 135 may also be changed according to actual needs.
  • the touch panel may be a built-in touch panel or an external touch panel.
  • the touch panel 10 omits the encapsulation layer 19 and the second insulating layer 17.
  • the encapsulation layer 19 is an insulation layer
  • the touch panel 10 omits the second insulation layer 17
  • the conductive structure 13 is located between the touch electrode 11 and the encapsulation layer 19.
  • the pattern of the touch electrode 11 is not limited to the example shown in the embodiment of the present invention, and it can also be other patterns, such as a pentagram frame, etc .; Other patterns can also be used, such as a pentagram frame.
  • FIG. 6, is a schematic diagram of a touch panel according to a second embodiment of the present invention.
  • the touch panel 30 provided in the second embodiment is similar in structure to the touch panel 10 provided in the first embodiment.
  • the touch panel 30 includes a touch electrode 31 and a conductive structure 33 connected in parallel.
  • FIG. 7, which is a schematic diagram of touch electrodes of a touch panel according to a second embodiment of the present invention.
  • the difference between the touch panel 30 is that the touch electrode 31 includes a plurality of first touch units 311 and a plurality of second touch units.
  • the touch unit 313, the plurality of first touch units 311 and the plurality of second touch units 313 are disposed in different layers.
  • the plurality of first touch units 311 are arranged in a plurality of rows along a first direction and in a plurality of columns along a second direction perpendicular to the first direction to form an array-type distribution structure including a plurality of rows and columns.
  • a touch unit 311 is electrically connected to each other.
  • the plurality of second touch units 313 are arranged in multiple columns along the second direction and in multiple rows along the first direction to form an array-type distribution structure including multiple rows and multiple columns. Electrical connection.
  • the plurality of first touch units 311 constitute a first touch pattern 301
  • the plurality of second touch units 313 constitute a second touch pattern 303.
  • the touch electrode 31 includes a first touch pattern 301 and a second touch pattern 303 that are insulated from each other and disposed in different layers.
  • the first touch pattern 301 is a sensing electrode
  • the second touch pattern 303 is a driving electrode.
  • FIG. 8 is a schematic diagram of a conductive structure of a touch panel according to a second embodiment of the present invention.
  • the conductive structure 33 is configured to be connected in parallel with the first touch pattern 301 and the second touch pattern 303.
  • the conductive structure 33 includes a plurality of conductive units 333 disposed in the same layer and insulated from each other. The plurality of conductive units 333 are arranged in an array.
  • the conductive unit 333 is a metal grid. Please refer to FIG. 9 in combination, which is an enlarged schematic view of a region IX of the conductive structure shown in FIG. 8.
  • the conductive unit 333 includes a first metal trace 3331, a second metal trace 3332, and a plurality of third metal traces 3333.
  • the first metal trace 3331 extends along the first direction.
  • the number of the first metal traces 3331 is multiple, and the plurality of first metal traces 3331 are disposed at intervals along the second direction.
  • the second metal traces 3332 extend along the second direction; the number of the second metal traces 3333 is plural, and the plurality of second metal traces 3332 are arranged at intervals along the second direction; the plurality of third metal traces 3333 are opposite to each other.
  • the first direction or the second direction is inclined.
  • two first metal traces 3331 are a group, two sets of first metal traces 3331 are spaced apart along the second direction, two second metal traces 3332 are a group, and two sets of second metal traces 3332 are spaced along the first direction, and two third metal traces 3333 are a group, two sets of first metal traces 3331, two sets of second metal traces 3332, and two sets of third metal traces 3333 are intersected.
  • a first grid structure 3334 having a substantially triangular shape is formed.
  • Each conductive unit 333 is composed of two first-shaped grid structures and a second rhombic structure with a substantially rhombic shape. The first direction is different from the second direction.
  • connection trace 335 is disposed at the intersection of the metal traces to achieve good electrical contact.
  • connection trace 335 can be disposed at the intersection of the first metal trace 3331, the second metal trace 3332, and the third metal trace 3333.
  • Position the vertex position of the first grid structure 3334
  • the intersection position of the first metal trace 3331 and the third metal trace 3333 the bottom position of the first grid structure 3334
  • the first metal The intersection position of the trace 3331 and the second metal trace 3332 (the middle position of the first grid structure 3334) and so on.
  • the plurality of conductive units 333 include a plurality of first conductive units 3335 and a plurality of second conductive units 3337.
  • the plurality of first conductive units 3335 are arranged in an array in a plurality of rows and columns. Each first conductive unit 3335 is disposed corresponding to one first touch unit 311 and connected in parallel.
  • the plurality of second conductive units 3337 are arranged in an array in a plurality of rows and columns.
  • the second conductive unit 3337 is disposed corresponding to the second touch unit 311 and is connected in parallel.
  • the plurality of first conductive units 3335 constitute a first conductive pattern 305 corresponding to the first touch pattern 301
  • the plurality of second conductive units 3337 constitute a second conductive pattern 307 corresponding to the second touch pattern 303.
  • FIG. 10 is a schematic diagram of a laminated structure of a touch panel according to a second embodiment of the present invention.
  • the touch panel 30 further includes a first insulating layer 35 and a second insulating layer 37.
  • the first insulating layer 35 is located between the first touch pattern 301 and the conductive structure 33
  • the second insulating layer 37 is located between the conductive structure 33 and the second touch pattern 303.
  • the first insulation layer 35 and the second insulation layer 37 are provided with through holes.
  • the first touch unit 311 and the first conductive unit 3335 are connected in parallel through the through holes of the first insulation layer 35.
  • the second touch unit 313 and the first touch unit The two conductive units 3337 are connected in parallel through the through holes of the second insulating layer 37.
  • the position of the through hole is set corresponding to the intersection position of the metal traces, so as to achieve a good relationship between the first touch unit 311 and the first conductive unit 3335, and the second touch unit 313 and the second conductive unit 3337.
  • the position of the through hole corresponds to the intersection position of the first metal trace 3331, the second metal trace 3332, and the third metal trace 3333 (the vertex position of the first grid structure 3334), or Yes, corresponding to the intersection of the first metal trace 3331 and the third metal trace 3333 (the bottom position of the first grid structure 3334), or corresponding to the first metal trace 3331 and the second metal trace 3332
  • the intersection position (the middle position of the first grid structure 3334) is set. It can be understood that, in other embodiments, the positions of the through holes can also be set at other positions, which can implement the first touch unit 311 and the first conductive unit 3335, and the second touch unit 313 and the second conductive unit 3337. Good electrical contact between them is sufficient.
  • the conductive structure 33, the first touch pattern 301, and the second touch pattern 303 are arranged in different layers to avoid mutual influence, ensure the performance of the touch panel 30, and facilitate the touch panel. 30 making.
  • FIG. 11 is a schematic diagram of a touch panel according to a third embodiment of the present invention.
  • the touch panel 50 provided in the third embodiment is similar in structure to the touch panel 30 provided in the second embodiment.
  • the touch panel 50 includes a touch electrode 51 and a conductive structure 53 connected in parallel.
  • the difference is that
  • the first conductive pattern 505 and the second conductive pattern 507 are disposed in different layers, the first conductive pattern 505 is disposed in the same layer as the second touch pattern 503, and the second conductive pattern 507 is disposed in the same layer as the first touch pattern 501.
  • FIG. 12 is a schematic plan view of a first stack of a touch panel according to a third embodiment of the present invention. Schematic plan view of two stacks.
  • the second conductive pattern 507 is disposed on the same layer as the first touch pattern 501 to form a first stack 508, and the first conductive pattern 505 is disposed on the same layer as the second touch pattern 503 to form a second stack 509.
  • the touch electrode 51 includes a plurality of first touch units 511 (as shown in FIG. 12) and a plurality of second touch units 513 (as shown in FIG. 13).
  • the plurality of first touch units 511 are arranged in an array in a plurality of rows and columns, and the first touch units 511 in the same row are electrically connected to each other.
  • the plurality of second touch units 513 are arranged in an array in a plurality of rows and columns, and the second touch units 513 located in the same column are electrically connected to each other.
  • the plurality of first touch units 511 constitute a first touch pattern 501
  • the plurality of second touch units 513 constitute a second touch pattern 503.
  • the conductive structure 53 includes a plurality of conductive units 533.
  • the plurality of conductive units 533 includes a plurality of first conductive units 5331 (as shown in FIG. 13) and a plurality of second conductive units 5333 (as shown in FIG. 12).
  • the plurality of first conductive units 5331 are arranged in an array in a plurality of rows and columns. Each first conductive unit 5331 is disposed corresponding to one first touch unit 511 and is connected in parallel.
  • the plurality of second conductive units 5333 are arranged in an array in a plurality of rows and columns.
  • the second conductive unit 5333 is disposed corresponding to the second touch unit 513 and connected in parallel.
  • the first conductive pattern 505 and the second conductive pattern 507 are disposed in different layers and insulated from each other.
  • the first conductive pattern 505 is connected in parallel with the first touch pattern 501, and the second conductive pattern 507 and the second touch The patterns 503 are connected in parallel.
  • the first conductive pattern 505 is embedded in the second touch pattern 503, and the adjacent first conductive units 5331 and the second touch unit 513 are spaced apart from each other and are insulated.
  • the second conductive pattern 507 is embedded in the first touch pattern 501, and the adjacent second conductive units 5333 and the first touch unit 511 are spaced apart from each other and are insulated.
  • the wiring of the second conductive pattern 507 and the wiring of the first touch pattern 501 avoid each other, and the second conductive pattern 507 and the first touch pattern 501 are insulated from each other.
  • the wiring of the first conductive pattern 505 and the wiring of the second touch pattern 503 avoid each other, and the first conductive pattern 505 and the second touch pattern 503 are insulated from each other.
  • FIG. 14 is a schematic diagram of a laminated structure of a touch panel according to a third embodiment of the present invention.
  • the touch panel 50 further includes a first insulating layer 55.
  • the first insulating layer 55 is located between the first stack 508 and the second stack 509.
  • the touch panel 50 provided in the third embodiment can effectively reduce the touch panel
  • the thickness of 50 is conducive to the thin and light development of the touch panel 50.
  • An embodiment of the present invention further provides a touch display device 100.
  • the touch display device 100 includes a touch panel 101 and a display layer 103 that are stacked.
  • the touch panel 101 is one of the touch panels described in the above embodiments.
  • the touch electrodes in the touch panel 101 extend in the first direction and the second direction
  • the display layer 103 extends in the first direction and the second direction
  • the touch electrodes are disposed on the entire surface in all directions.
  • the distribution area of the touch electrodes along the first direction and the second direction is roughly the same as that of the display layer along the first direction and the second direction. The distribution areas are equal.
  • the touch display device 100 may be a liquid crystal display device (Liquid Crystal Display, LCD), or an organic light emitting diode (Organic Light-Emitting Diode, OLED) display device.
  • the touch electrode is formed by patterning the cathode of the display layer 103. The addition of a conductive structure is beneficial to reduce the attenuation of the cathode drop.
  • the touch panel and the touch display device provided by the embodiments of the present invention, since the touch pattern is connected in parallel with the conductive structure, especially the self-capacitive touch screen, the resistance value in the touch surface can be reduced, so that the touch can be reduced. Controlling the load of the sensing circuit improves touch efficiency and touch effect, and is conducive to the development of large-size self-capacitive touch panels.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控面板(10),包括触控电极(11)与导电结构(13),所述导电结构(13)与所述触控电极(11)并联相接,所述导电结构(13)与所述触控电极(11)配合用于共同感测外界的触控信号。由于导电结构(13)与所述触控电极(11)并联相接,能够减小触控面板(10)的阻值,从而减小触控感测电路的负载,提升触控性能。还提供一种具有触控面板(10)的触控显示装置(100)。

Description

触控面板及触控显示装置 技术领域
本发明涉及触控技术领域,尤其涉及一种触控面板及触控显示装置。
背景技术
随着触控显示技术的飞速发展,触摸屏已经逐渐遍及人们的生活中。目前广泛使用的电容式触控面板包括触控电极,根据人的手指或物体的接触而电容被改变所处的点,从而确定接触的位置。现有的触控面板通常采用阻值较大的氧化铟锡(ITO)、氧化锌(IZO)等材料作为触控电极图案,导致触控感测电路(sensor IC)的负载较大,影响触控性能。
发明内容
为解决上述问题,本发明实施例公开一种提高触控性能的触控面板及触控显示装置。
一种触控面板,包括触控电极与导电结构,所述触控电极与所述导电结构并联相接,所述导电结构与所述触控电极配合用于共同感测外界的触控信号。
一种触控显示装置,所述触控显示装置包括如上所述的触控面板。
本发明提供的触控面板及触控显示装置,通过将导电结构与触控电极并联相接,能够减小触控面板的阻值,从而减小触控感测电路的负载,提升触控性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一实施方式提供的一种触控面板的图案示意图。
图2为本发明第一实施方式提供的触控面板的触控电极的图案示意图。
图3为本发明第一实施方式提供的触控面板的导电结构的图案示意图。
图4为图3所示的导电结构的导电单元的放大示意图。
图5为本发明第一实施方式提供的触控面板的叠层结构示意图。
图6为本发明第二实施方式提供的一种触控面板的图案示意图。
图7为本发明第二实施方式提供的触控面板的触控电极的图案示意图。
图8为本发明第二实施方式提供的触控面板的导电结构的图案示意图。
图9为图8所示的导电结构的IX区域的放大示意图。
图10为本发明第二实施方式提供的触控面板的叠层结构示意图。
图11为本发明第三实施方式提供的一种触控面板的图案示意图。
图12为本发明第三实施方式提供的触控面板的第一叠层的平面示意图。
图13为本发明第三实施方式提供的触控面板的第二叠层的平面示意图。
图14为本发明第三实施方式提供的触控面板的叠层结构示意图。
图15为本发明实施方式提供的触控显示装置立体示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1至图3,图1为本发明第一实施方式提供的一种触控面板的示意图,图2为本发明第一实施方式提供的触控面板的触控电极的示意图,图3为本发明第一实施方式提供的触控面板的导电结构的示意图。触控面板10包括触控电极11与导电结构13。触控电极11用于感测人的手指或物体的接触,以确定接触的位置。触控电极11与触控感测电路(图未示)电性相接。导电结构13与触控电极11并联相接,导电结构13与触控电极11配合用于共同感测外界的触控信号。导电结构13与触控电极11并联相接能够减小触控面板 10的阻值,从而减小触控感测电路(图未示)的负载,提升触控性能。所述触控信号包括直接触控信号及悬浮触控信号。
触控电极11包括多个触控单元113。多个触控单元113呈阵列排列,从而对应多个位置点。其中,触控单元113的数量及尺寸可由触控面板10的触控分辨率决定。本实施方式中,触控电极11由氧化铟(Indium Tin Oxide,ITO)、氧化锌(IZO)等材料制成,触控电极11为单层设置,多个触控单元113位于同一层;每个触控单元11通过独立的引线115与所述触控感测电路连接;在触控显示装置中,触控电极11可通过对显示层中整面设置的阴极进行图形化处理形成,由于导电结构13的加入,有利于减小阴极压降(IR drop)的衰减。可以理解,触控电极11可以由其它材料制成,例如纳米银线等。
本实施方式中,导电结构13的感应面积小于所述触控电极11的感应面积。导电结构13包括多个导电单元133。多个导电单元133呈阵列排列,每个导电单元133对应一个触控单元113设置且并联相接。请结合参阅图4,为图3所示的导电结构的导电单元133的放大示意图。导电单元133呈网格状。每个导电单元133通过连接走线135与对应的触控单元113并联相接。本实施方式中,导电结构13的制成材料不同于触控电极11的材料,导电单元133为金属网格(metal mesh),在其它实施方式中,所述导电单元133可以由非金属导电材料制成。优选地,导电单元133的电阻低于触控单元113的电阻,导电结构13的电阻小于触控电极11的电阻。
本申请实施方式中,感应面积更大的触控电极11能够有效保证触控面板10的触控感应量,通过将金属网格制成的导电结构13与触控电极11并联相接,能够有效减小触控面板10的面内阻值,如此,在确保触控面板10的触控感应量的同时,能够减小触控感测电路的负载。在其他实施方式中,不限定导电结构13的制成材料不同于触控电极11的制成材料。
导电单元133包括多个第一金属走线1331及多个第二金属走线1333。第一金属走线1331沿第一方向延伸。多个第一金属走线1331沿第二方向间隔设置。第二金属走线1333沿第二方向延伸。多个第二金属走线1333沿所述第一方向间隔设置,所述多个第一金属走线1331与所述多个第二金属走线1333电性连接,所述第一方向不同于所述第二方向。本实施方式中,所述第一方向 与所述第二方向相互垂直。
更为具体的,第一金属走线1331的数量为多个,第一金属走线1331以两个为一组,同组的第一金属走线1331沿所述第二方向以第一间距间隔设置,相邻两组第一金属走线1331沿所述第二方向以第二间距间隔设置;第二金属走线1333的数量为多个,第二金属走线1333以两个为一组,同组的第二金属走线1333沿所述第一方向以第三间距间隔设置,相邻两组第二金属走线1333沿所述第一方向以第四间距间隔设置,四组第一金属走线1331与四组第二金属走线1333交叉设置形成大致呈方形的网格结构。可以理解,第一金属走线1331之间的间距、第二金属走线1333之间的间距可以依据需要进行设置。
在一些实施例中,所述第一方向可为触控面板10的长边的延伸方向,所述第二方向可为触控面板10的短边的延伸方向。在其它实施例中,所述第一方向也可为触控面板10的短边的延伸方向,所述第二方向可为触控面板10的长边的延伸方向。本申请中,仅以第一方向和第二方向来区分不同的方向,第一方向和第二方向并不限于上述具体的方向。
请参阅图5,为本发明第一实施方式提供的触控面板的叠层示意图。触控面板10还包括第一绝缘层15、第二绝缘层17及封装层19。触控电极11、第一绝缘层15、导电结构13、第二绝缘层17及封装层19依次层叠设置。其中,第一绝缘层15位于触控电极11与导电结构13之间,使得触控电极11与导电结构13之间电气隔离。第一绝缘层15上设有若干通孔151,触控电极11与导电结构13通过通孔151实现并联相接。在一些实施例中,所述通孔151中穿设有连接走线135,触控电极11与导电结构13通过通孔151中的连接走线135电连接而实现并联相接。在另一些实施例中,所述通孔135还可为导电通孔,即,通孔151的内壁上涂布有导电材料,触控电极11与导电结构13通过所述导电通孔电连接而实现并联相接。第二绝缘层17位于封装层19与导电结构13之间,使得封装层19与导电结构13之间电气隔离。
通孔151的位置对应导电单元133的角落位置设置。每一导电单元133的四角位置处均设有一连接走线135,使得一连接走线135可同时连接第一金属走线1331及第二金属走线1333。当然,在其他实施方式当中,连接走线135的位置也可根据实际需求变化。
可以理解,所述触控面板可以为内置式触控面板,也可以为外挂式触控面板。
在一实施方式中,触控面板10省略封装层19及第二绝缘层17。
在一实施方式中,封装层19为绝缘层,触控面板10省略第二绝缘层17,导电结构13位于触控电极11与封装层19之间。
可以理解,对触控电极11的图案不限于本发明实施例所示例,其也可以为其它图案,例如,五角星框体等;对导电结构13的图案不限于本发明实施例所示例,其也可以为其它图案,例如,五角星框体等。
请参阅图6,为本发明第二实施方式提供的一种触控面板的示意图。第二实施方式提供的触控面板30与第一实施方式提供的触控面板10结构相似。触控面板30包括并联相接的触控电极31与导电结构33。请参阅图7,为本发明第二实施方式提供的触控面板的触控电极的示意图,触控面板30的不同在于,触控电极31包括多个第一触控单元311及多个第二触控单元313,所述多个第一触控单元311与所述多个第二触控单元313异层设置。
多个第一触控单元311沿第一方向排成多行以及沿垂直所述第一方向的第二方向排成多列而形成包括多行多列的阵列式分布结构,位于同一行的第一触控单元311相互之间电连接。多个第二触控单元313沿第二方向排成多列以及沿第一方向排成多行而形成包括多行多列的阵列式分布结构,位于同一列的第二触控单元313相互之间电连接。
多个第一触控单元311构成第一触控图案301,所述多个第二触控单元313构成第二触控图案303。换而言之,触控电极31包括相互绝缘且异层设置的第一触控图案301及第二触控图案303。本实施方式中,第一触控图案301为感应电极,第二触控图案303为驱动电极。
请参阅图8,为本发明第二实施方式提供的触控面板的导电结构的示意图。导电结构33用于与第一触控图案301及第二触控图案303并联相接。导电结构33包括同层设置并相互绝缘的多个导电单元333。多个导电单元333呈阵列排列。
导电单元333为金属网格。请结合参阅图9,为图8所示的导电结构的IX区域的放大示意图。导电单元333包括第一金属走线3331、第二金属走线3332 及多个第三金属走线3333。第一金属走线3331沿第一方向延伸设置。第一金属走线3331的数量为多个,多个第一金属走线3331沿第二方向间隔设置。第二金属走线3332沿第二方向延伸设置;第二金属走线3333的数量为多个,多个第二金属走线3332沿第二方向间隔设置;多个第三金属走线3333相对所述第一方向或所述第二方向倾斜设置。其中,两个第一金属走线3331为一组,两组第一金属走线3331沿所述第二方向间隔设置,两个第二金属走线3332为一组,两组第二金属走线3332沿所述第一方向间隔设置,两个第三金属走线3333为一组,两组第一金属走线3331、两组第二金属走线3332及两组第三金属走线3333交叉设置形成大致呈三角形状的第一网格结构3334。每个导电单元333由两个第一形网格结构组成一个大致呈菱形的第二网格结构。所述第一方向不同于所述第二方向。
每个导电单元333通过连接走线335与对应的第一触控单元311或第二触控单元313并联相接。优选地,连接走线335设置于金属走线的交叉位置以实现良好的电性接触,例如,可设置于第一金属走线3331、第二金属走线3332及第三金属走线3333的交叉位置(第一网格结构3334的顶点位置),或是,第一金属走线3331与第三金属走线3333的交叉位置(第一网格结构3334的底部位置),又或是第一金属走线3331与第二金属走线3332的交叉位置(第一网格结构3334的中部位置)等等。
多个导电单元333包括多个第一导电单元3335及多个第二导电单元3337。多个第一导电单元3335呈阵列式排布成多行多列。每个第一导电单元3335对应一个第一触控单元311设置且并联相接。多个第二导电单元3337呈阵列式排布成多行多列。第二导电单元3337对应第二触控单元311设置且并联相接。
所述多个第一导电单元3335构成与第一触控图案301对应的第一导电图案305,所述多个第二导电单元3337构成与第二触控图案303对应的第二导电图案307。
请参阅图10,为本发明第二实施方式提供的触控面板的叠层结构示意图。触控面板30还包括第一绝缘层35及第二绝缘层37。第一绝缘层35位于第一触控图案301与导电结构33之间,第二绝缘层37位于导电结构33与第二触 控图案303之间。
第一绝缘层35及第二绝缘层37上均设通孔,第一触控单元311与第一导电单元3335通过第一绝缘层35的通孔并联相接,第二触控单元313与第二导电单元3337通过第二绝缘层37的通孔并联相接。优选地,所述通孔的位置对应金属走线的交叉位置设置,以实现第一触控单元311与第一导电单元3335,及第二触控单元313与第二导电单元3337之间良好地电性接触,例如,所述通孔的位置对应第一金属走线3331、第二金属走线3332及第三金属走线3333的交叉位置(第一网格结构3334的顶点位置)设置,或是,对应第一金属走线3331与第三金属走线3333的交叉位置(第一网格结构3334的底部位置)设置,又或是对应第一金属走线3331与第二金属走线3332的交叉位置(第一网格结构3334的中部位置)设置。可以理解的是,在其他实施例中,通孔的位置也可以设置在其他位置,能够实现第一触控单元311与第一导电单元3335,及第二触控单元313与第二导电单元3337之间良好地电性接触即可。
第二实施方式提供的触控面板30,由于导电结构33、第一触控图案301、第二触控图案303异层设置,避免相互影响,确保触控面板30的性能,方便了触控面板30的制作。
请参阅图11,为本发明第三实施方式提供的一种触控面板的示意图。第三实施方式提供的触控面板50与第二实施方式提供的触控面板30结构相似,触控面板50包括并联相接的触控电极51与导电结构53,不同在于,导电结构53中的第一导电图案505与第二导电图案507异层设置,第一导电图案505与第二触控图案503同层设置,第二导电图案507与第一触控图案501同层设置。
具体的,请参阅图12及图13,图12为本发明第三实施方式提供的触控面板的第一叠层的平面示意图,图13为本发明第三实施方式提供的触控面板的第二叠层的平面示意图。第二导电图案507与第一触控图案501同层设置形成第一叠层508,第一导电图案505与第二触控图案503同层设置形成第二叠层509。触控电极51包括多个第一触控单元511(如图12所示)及多个第二触控单元513(如图13所示)。
多个第一触控单元511呈阵列式排布成多行多列,位于同一行的第一触控 单元511相互之间电连接。多个第二触控单元513呈阵列式排布成多行多列,位于同一列的第二触控单元513相互之间电连接。
多个第一触控单元511构成第一触控图案501,所述多个第二触控单元513构成第二触控图案503。
导电结构53包括多个导电单元533。所述多个导电单元533包括多个第一导电单元5331(如图13所示)及多个第二导电单元5333(如图12所示)。多个第一导电单元5331呈阵列式排布成多行多列。每个第一导电单元5331对应一个第一触控单元511设置且并联相接。多个第二导电单元5333呈阵列式排布成多行多列。第二导电单元5333对应第二触控单元513设置且并联相接。
第一导电图案505与所述第二导电图案507异层设置且相互绝缘,所述第一导电图案505与所述第一触控图案501并联相接,第二导电图案507与第二触控图案503图案并联相接。第一导电图案505嵌设于所述第二触控图案503,相邻的第一导电单元5331与第二触控单元513相互间隔且绝缘设置。第二导电图案507嵌设于所述第一触控图案501,相邻的第二导电单元5333与第一触控单元511相互间隔且绝缘设置。第二导电图案507的布线与第一触控图案501的布线相互避开,第二导电图案507与第一触控图案501相互之间绝缘设置。第一导电图案505的布线与第二触控图案503的布线相互避开,第一导电图案505与第二触控图案503相互之间绝缘设置。
请参阅图14,为本发明第三实施方式提供的触控面板的叠层结构示意图。触控面板50还包括第一绝缘层55,第一绝缘层55位于第一叠层508及第二叠层509之间。
第三实施方式提供的触控面板50,由于第二导电图案507与第一触控图案501同层设置,第一导电图案505与第二触控图案503同层设置,能够有效减少触控面板50的厚度,有利于触控面板50的轻薄化发展。
本发明实施例还提供了一种触控显示装置100,触控显示装置100包括层叠设置的触控面板101及显示层103。所述触控面板101为上述实施方式中所述的其中一种触控面板。进一步的,触控面板101中的触控电极沿第一方向及第二方向延伸,显示层103沿所述第一方向及所述第二方向延伸,所述触控电 极呈整面设置于所述显示层103上,换而言之,所述触控电极沿所述第一方向及所述第二方向的分布面积大致与所述显示层沿所述第一方向及所述第二方向的分布面积相等。所述触控显示装置100可以为液晶显示装置(Liquid CrystalDisplay,LCD),也可以为有机电致发光二极管(Organic Light-Emitting Diode,OLED)显示装置。在一实施方式中,所述触控电极由所述显示层103的阴极进行图形化处理形成,由于导电结构的加入,有利于减小所述阴极压降(IR drop)的衰减。
本发明实施方式提供的触控面板及触控显示装置,由于触控图案与导电结构并联相接,尤其是自容式触控屏,能够减小触控面内的阻值,从而能够降低触控感测电路的负载,提高触控效率及触控效果,并有利于大尺寸式的自容触控面板的发展。
以上所述是本发明的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (20)

  1. 一种触控面板,其特征在于,包括触控电极与导电结构,所述触控电极与所述导电结构并联相接,所述导电结构与所述触控电极配合用于共同感测外界的触控信号。
  2. 如权利要求1所述的触控面板,其特征在于,所述导电结构与所述触控电极异层设置。
  3. 如权利要求1所述的触控面板,其特征在于,所述导电结构的感应面积小于所述触控电极的感应面积。
  4. 如权利要求1所述的触控面板,其特征在于,所述导电结构的电阻小于所述触控电极的电阻。
  5. 如权利要求1所述的触控面板,其特征在于,所述触控面板还包括第一绝缘层,所述第一绝缘层设于所述触控电极与所述导电结构之间,所述第一绝缘层上设有通孔,所述触控电极与所述导电结构通过所述通孔实现并联相接。
  6. 如权利要求1所述的触控面板,其特征在于,所述触控电极包括多个触控单元,所述导电结构包括多个导电单元,每个所述导电单元对应一个所述触控单元设置且并联相接。
  7. 如权利要求6所述的触控面板,其特征在于,所述导电单元为金属网格,所述导电单元包括第一金属走线及第二金属走线,所述第一金属走线沿第一方向延伸设置,所述第二金属走线沿第二方向延伸设置,所述第一金属走线与所述第二金属走线电性连接,所述第一方向不同于所述第二方向。
  8. 如权利要求7所述的触控面板,其特征在于,所述导电单元还包括第三金属走线,所述第三金属走线与所述第一金属走线与所述第二金属走线电性连接,所述第三金属走线相对所述第一方向及所述第二方向倾斜设置。
  9. 如权利要求6所述的触控面板,其特征在于,所述触控单元包括多个第一触控单元及多个第二触控单元,所述多个第一触控单元与所述多个第二触控单元异层设置,所述导电单元包括多个第一导电单元及多个第二导电单元,每个第一导电单元对应一个第一触控单元设置且并联相接,每个第二导电单元对应一个第二触控单元设置且并联相接,
    所述多个第一触控单元构成第一触控图案,所述多个第二触控单元构成第二触控图案,所述多个第一导电单元构成第一导电图案,所述多个第二导电单元构成第二导电图案。
  10. 如权利要求9所述的触控面板,其特征在于,所述多个第一触控单元呈阵列式排布成多行多列,位于同一行的第一触控单元相互之间电连接,所述多个第一导电单元也呈阵列式排布成多行多列。
  11. 如权利要求10所述的触控面板,其特征在于,所述多个第二触控单元呈阵列式排布成多行多列,位于同一列的第二触控单元相互之间电连接,所述多个第二导电单元也呈阵列式排布成多行多列。
  12. 如权利要求9所述的触控面板,其特征在于,所述导电结构的第一导电图案与所述第二导电图案同层设置,所述导电结构与所述第一触控图案及所述第二触控图案异层设置。
  13. 如权利要求12所述的触控面板,其特征在于,所述导电结构位于所述第一触控图案与所述第二触控图案之间。
  14. 如权利要求13所述的触控面板,其特征在于,所述触控面板还包括第一绝缘层及第二绝缘层,所述第一绝缘层位于所述第一触控图案与所述导电结构之间,所述第二绝缘层位于所述第二触控图案与所述导电结构之间,所述第一绝缘层及所述第二绝缘层上均设通孔,所述第一触控图案与所述第一导电图案通过所述第一绝缘层的通孔并联相接,所述第二触控图案与所述第二导电图案通过所述第二绝缘层的通孔并联相接。
  15. 如权利要求9所述的触控面板,其特征在于,所述第二导电图案与所述第一触控图案同层设置形成第一叠层,所述第一导电图案与所述第二触控图案同层设置形成第二叠层,所述触控面板还包括第一绝缘层,所述第一绝缘层位于所述第一叠层及所述第二叠层之间。
  16. 如权利要求15项所述的触控面板,其特征在于,所述第一导电图案嵌设于所述第二触控图案,相邻的所述第一导电单元与所述第二触控单元相互间隔且绝缘设置,所述第二导电图案嵌设于所述第一触控图案,相邻的所述第二导电单元与所述第一触控单元相互间隔且绝缘设置。
  17. 如权利要求1所述的触控面板,其特征在于,所述触控面板还包括封装 层,所述导电结构位于所述触控电极与所述封装层之间。
  18. 如权利要求17所述的触控面板,其特征在于,所述触控面板还包括第二绝缘层,所述第二绝缘层位于所述封装层与所述导电结构之间。
  19. 一种触控显示装置,其特征在于,所述触控显示装置还包括如权利要求1至18项任意一项所述的触控面板,所述触控显示装置还包括显示层,所述触控面板与所述显示层呈层叠设置。
  20. 如权利要求19所述的触控显示装置,其特征在于,所述触控电极通过对所述显示层的阴极进行图形化处理形成。
PCT/CN2018/102347 2018-08-24 2018-08-24 触控面板及触控显示装置 WO2020037685A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880094175.XA CN112639699A (zh) 2018-08-24 2018-08-24 触控面板及触控显示装置
PCT/CN2018/102347 WO2020037685A1 (zh) 2018-08-24 2018-08-24 触控面板及触控显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/102347 WO2020037685A1 (zh) 2018-08-24 2018-08-24 触控面板及触控显示装置

Publications (1)

Publication Number Publication Date
WO2020037685A1 true WO2020037685A1 (zh) 2020-02-27

Family

ID=69592221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102347 WO2020037685A1 (zh) 2018-08-24 2018-08-24 触控面板及触控显示装置

Country Status (2)

Country Link
CN (1) CN112639699A (zh)
WO (1) WO2020037685A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103207721A (zh) * 2013-04-03 2013-07-17 友达光电(苏州)有限公司 触控单元阵列及包含其的触控面板
CN103472951A (zh) * 2013-09-13 2013-12-25 京东方科技集团股份有限公司 一种触摸屏及其制作方法、显示装置
US20150103027A1 (en) * 2009-12-10 2015-04-16 Au Optronics Corporation Touch-sensing display panel and touch-sensing substrate
CN106095167A (zh) * 2016-06-01 2016-11-09 北京京东方光电科技有限公司 触控基板及其制作方法、显示器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150103027A1 (en) * 2009-12-10 2015-04-16 Au Optronics Corporation Touch-sensing display panel and touch-sensing substrate
CN103207721A (zh) * 2013-04-03 2013-07-17 友达光电(苏州)有限公司 触控单元阵列及包含其的触控面板
CN103472951A (zh) * 2013-09-13 2013-12-25 京东方科技集团股份有限公司 一种触摸屏及其制作方法、显示装置
CN106095167A (zh) * 2016-06-01 2016-11-09 北京京东方光电科技有限公司 触控基板及其制作方法、显示器件

Also Published As

Publication number Publication date
CN112639699A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
KR102262952B1 (ko) 터치 컨트롤 패널 및 그 제조 방법, 터치 컨트롤 디스플레이 스크린
TWI679570B (zh) 導電性薄膜及具備該導電性薄膜之觸控面板感測器
CN206774549U (zh) 触控显示面板和触控显示装置
TWI522867B (zh) 內嵌式有源矩陣有機發光二極體觸控面板
US20200333918A1 (en) Flexible touch display panel
CN106919290B (zh) 一种触控显示面板及触控显示装置
WO2019114082A1 (zh) 柔性触控面板、触控显示屏及触控显示装置
JP3174557U (ja) 感度調節構造をもった投影型静電容量方式タッチパネル
WO2020029371A1 (zh) 一种触摸屏及oled显示面板
WO2020029372A1 (zh) 一种触摸屏及oled显示面板
KR101119293B1 (ko) 터치 스크린 패널 및 그 제조 방법
US9671638B2 (en) High-accuracy in-cell touch panel structure of narrow border
WO2022000618A1 (zh) 触控电极层及触控显示装置
WO2019029226A1 (zh) 触控面板及其制作方法、触控显示装置
CN106814906A (zh) 触摸面板
US11294519B2 (en) Touch panel
TW201519031A (zh) 觸控面板與觸控顯示面板
WO2016106849A1 (zh) 一种触控式液晶面板及其制作方法
US11921963B2 (en) Touch structure, touch display structure, and touch display device
CN102314271A (zh) 一种电容式触控图形结构及其制法、触控面板及触控显示装置
WO2022000263A1 (zh) 触控结构及触控显示面板
WO2020037685A1 (zh) 触控面板及触控显示装置
US10444885B2 (en) Touch screen and display panel
CN201716712U (zh) 一种电容式触控图形结构、触控面板及触控显示装置
WO2023236275A1 (zh) 触控基板及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930852

Country of ref document: EP

Kind code of ref document: A1