WO2020035929A1 - 内視鏡装置、内視鏡装置の作動方法及び画像処理プログラム - Google Patents

内視鏡装置、内視鏡装置の作動方法及び画像処理プログラム Download PDF

Info

Publication number
WO2020035929A1
WO2020035929A1 PCT/JP2018/030434 JP2018030434W WO2020035929A1 WO 2020035929 A1 WO2020035929 A1 WO 2020035929A1 JP 2018030434 W JP2018030434 W JP 2018030434W WO 2020035929 A1 WO2020035929 A1 WO 2020035929A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
green
illumination light
light group
Prior art date
Application number
PCT/JP2018/030434
Other languages
English (en)
French (fr)
Inventor
成剛 温
恵仁 森田
昌士 弘田
順平 高橋
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2020537335A priority Critical patent/JPWO2020035929A1/ja
Priority to PCT/JP2018/030434 priority patent/WO2020035929A1/ja
Publication of WO2020035929A1 publication Critical patent/WO2020035929A1/ja
Priority to US17/133,793 priority patent/US12023007B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/044Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for absorption imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/174Segmentation; Edge detection involving the use of two or more images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10068Endoscopic image

Definitions

  • the present invention relates to an endoscope apparatus, an operation method of the endoscope apparatus, an image processing program, and the like.
  • Patent Document 1 discloses a technique of capturing a white light image and a narrow band image and adding information obtained from the narrow band image to the white light image.
  • Patent Document 1 described above, no consideration is given to the fact that the order of illumination light emission affects image quality. Further, Patent Document 1 does not consider a case where an image is captured by a color image sensor such as a Bayer image sensor or a complementary color filter image sensor. That is, Patent Document 1 does not disclose an appropriate emission order of illumination light when a color image sensor is used.
  • a color image sensor such as a Bayer image sensor or a complementary color filter image sensor. That is, Patent Document 1 does not disclose an appropriate emission order of illumination light when a color image sensor is used.
  • One embodiment of the present invention is a light source device that alternately emits a first illumination light group including green light having a green wavelength band and a second illumination light group that does not include the green light;
  • An image sensor having a filter, an image captured by the image sensor when the first illumination light group is irradiated, and an image captured by the image sensor when the second illumination light group is irradiated.
  • a first illumination light group further includes, together with the green light, a blue narrow band light belonging to a blue wavelength band, wherein the processing circuit comprises:
  • the present invention relates to an endoscope apparatus that generates an image of a green channel in the display image based on a green image obtained by light and a blue narrow band image obtained by the blue narrow band light.
  • a light source device that alternately emits a first illumination light group including green light having a green wavelength band and a second illumination light group not including the green light;
  • An image pickup device having a color filter, an image taken by the image pickup device when the first illumination light group is irradiated, and an image taken by the image pickup device when the second illumination light group is irradiated.
  • a processing circuit that generates a display image based on the image and the first illumination light group further includes, along with the green light, a red narrow-band light of a narrow band belonging to a red wavelength band.
  • the circuit relates to an endoscope apparatus that generates an image of a green channel in the display image based on a green image obtained by the green light and a red narrow band image obtained by the red narrow band light.
  • Still another aspect of the present invention is a light source that alternately emits a first illumination light group including a first color light having a wavelength band of a first color and a second illumination light group not including the first color light.
  • a device an image sensor having a plurality of color filters, an image captured by the image sensor when the first illumination group is illuminated, and an image captured when the second illumination group is illuminated.
  • a processing circuit for generating a display image based on the image captured by the element, wherein the first illumination light group together with the first color light has a narrow band second wavelength belonging to a second color wavelength band.
  • the display circuit further includes a color narrow band light, and the processing circuit includes a first color image obtained by the first color light, and a second color narrow band image obtained by the second color narrow band light.
  • an endoscope device that generates an image of the green channel .
  • Still another aspect of the present invention is a method of operating an endoscope apparatus including an image sensor having a plurality of color filters, wherein the green light has a green wavelength band, and the narrow band belongs to a blue wavelength band.
  • a first illuminating light group including the blue narrow band light and a second illuminating light group not including the green light are alternately emitted, and an image is captured by the imaging device when the first illuminating light group is irradiated.
  • a display image is generated based on the captured image and an image captured by the imaging device when the second illumination light group is irradiated, and the display image is generated by the green light when the display image is generated.
  • the present invention relates to an operation method of an endoscope apparatus that generates an image of a green channel in the display image based on the obtained green image and the blue narrow band image obtained by the blue narrow band light.
  • Still another aspect of the present invention is an image processing program for processing an image captured by an image sensor having a plurality of color filters, wherein the first illumination light group has a green wavelength band having a green wavelength band.
  • the second illumination light group does not include the green light
  • the image sensor includes the first illumination light group when the second illumination light group does not include the green light.
  • a display image is generated based on an image captured by the imaging device and an image captured by the imaging device when the second illumination light group is irradiated, and the green light is generated when the display image is generated.
  • Image processing for causing a computer to execute a step of generating an image of a green channel in the display image based on the green image obtained by the above and the blue narrow band image obtained by the blue narrow band light Related to the program.
  • FIG. 3 illustrates a configuration example of an endoscope apparatus. 4 illustrates a detailed configuration example of a processing circuit.
  • FIG. 2 is a diagram illustrating plane-sequential imaging performed by the endoscope apparatus according to the embodiment.
  • 3 is a spectrum of illumination light according to the first embodiment.
  • 3 is a spectrum of illumination light according to the first embodiment.
  • 5 is a flowchart illustrating processing performed by a feature amount extraction unit in the first embodiment.
  • 9 is a spectrum of illumination light according to the second embodiment. 9 is a spectrum of illumination light according to the second embodiment.
  • 9 is a flowchart illustrating a process performed by a feature amount extraction unit according to the second embodiment.
  • 9 is a flowchart illustrating a detailed process performed by a feature amount extraction unit.
  • FIG. 1 is a configuration example of an endoscope device.
  • the endoscope device includes an insertion unit 200, a control device 300, a display unit 400, an external I / F unit 500, and a light source device 100.
  • the endoscope device for example, a flexible endoscope used for a gastrointestinal tract and the like and a rigid endoscope used for a laparoscope and the like can be assumed, but are not limited thereto.
  • the insertion section 200 is also called a scope.
  • Control device 300 is also called a main unit or a processing device.
  • the display unit 400 is also called a display device.
  • the external I / F unit 500 is also called an operation unit or an operation device.
  • the light source device 100 is also called an illumination unit or an illumination device.
  • the light source device 100 is a device that generates illumination light.
  • the light source device 100 includes light sources LDV, LDB, LDG, LDA, LDR, and a multiplexing unit 120. In the first embodiment described later, the light source device 100 may not include the light source LDA.
  • Each of the light sources LDV, LDB, LDG, LDA, and LDR is an LED (Light Emitting Diode) or a laser light source.
  • LED Light Emitting Diode
  • LDR Light Emitting Diode
  • V light V light
  • B light G light
  • a light A light
  • R light R light
  • V light is narrow-band light having a peak wavelength of 410 nm.
  • the half width of the V light is several nm to several tens nm.
  • the band of V light belongs to the blue wavelength band of white light, and is narrower than the blue wavelength band.
  • B light is light having a blue wavelength band in white light.
  • G light is light having a green wavelength band in white light.
  • the A light is a narrow band light having a peak wavelength of 600 nm.
  • the half width of the A light is several nm to several tens nm.
  • the band of the A light belongs to the red wavelength band of the white light, and is narrower than the red wavelength band.
  • the R light is light having a red wavelength band in white light.
  • the above wavelength is an example.
  • the peak wavelength of each light may be shifted by about 10%.
  • the B light, the G light, and the R light may be narrow band light having a half width of several nm to several tens nm.
  • the light source LDA may generate infrared light instead of A light.
  • the multiplexing unit 120 multiplexes the light emitted from the LDV, LDB, LDG, LDA, and LDR, and makes the multiplexed light enter the light guide 210.
  • the multiplexing unit 120 includes, for example, a dichroic mirror and a lens.
  • the light source device 100 emits one or more wavelengths of V light, B light, G light, A light, and R light at one light emission timing.
  • light of one wavelength or a plurality of wavelengths emitted at this one light emission timing is referred to as an illumination light group. Details of the illumination will be described later.
  • the insertion part 200 is a part to be inserted into the body.
  • the insertion section 200 includes a light guide 210, an illumination lens 220, an objective lens 230, an image sensor 240, and an A / D conversion circuit 250. Further, the insertion section 200 can include a memory 260.
  • the image sensor 240 is also called an image sensor.
  • the insertion section 200 has a connector (not shown), and is attached to and detached from the control device 300 by the connector.
  • Light guide 210 guides the illumination light from light source device 100 to the tip of insertion section 200.
  • the illumination lens 220 irradiates the subject with the illumination light guided by the light guide 210.
  • the subject is a living body.
  • Light reflected from the subject enters the objective lens 230.
  • a subject image is formed by the objective lens 230, and the imaging element 240 captures the subject image.
  • the image sensor 240 includes a plurality of pixels for subjecting a subject image to photoelectric conversion, and acquires a pixel signal from the plurality of pixels.
  • the imaging element 240 is a color image sensor that can obtain pixel signals of a plurality of colors by one imaging.
  • the imaging element 240 is, for example, a Bayer-type image sensor having a Bayer array color filter or a complementary color image sensor having a complementary color filter.
  • the A / D conversion circuit 250 A / D converts an analog pixel signal from the image sensor 240 into a digital pixel signal.
  • the A / D conversion circuit 250 may be built in the image sensor 240.
  • the control device 300 performs signal processing including image processing.
  • the control device 300 controls each part of the endoscope device.
  • the control device 300 includes a processing circuit 310 and a control circuit 320.
  • the control circuit 320 controls each section of the endoscope device. For example, the user operates the external I / F unit 500 to set the presence / absence of the emphasis processing. For example, when an instruction to perform the emphasis processing is input, the control circuit 320 outputs an instruction to perform the emphasis processing to the processing circuit 310.
  • the processing circuit 310 enhances the blood vessel structure in the white light image based on, for example, an image obtained from the V light.
  • control circuit 320 outputs an instruction to not perform emphasis processing to processing circuit 310.
  • the processing circuit 310 outputs the white light image to the display unit 400 without emphasizing.
  • the memory 260 of the insertion unit 200 stores information on the insertion unit 200.
  • the control circuit 320 controls each unit of the endoscope apparatus based on the information read from the memory 260.
  • the memory 260 stores information about the image sensor 240.
  • the information on the image sensor 240 is, for example, information on the type of the image sensor 240.
  • the control circuit 320 causes the processing circuit 310 to perform corresponding image processing based on the information on the image sensor 240 read from the memory 260.
  • the processing circuit 310 generates a display image by performing image processing based on the pixel signal from the A / D conversion circuit 250, and outputs the display image to the display unit 400.
  • the display unit 400 is, for example, a liquid crystal display device or the like, and displays a display image from the processing circuit 310.
  • FIG. 2 is a detailed configuration example of the processing circuit 310.
  • the processing circuit 310 includes an interpolation processing unit 311, a feature amount extraction unit 312, and a display image generation unit 313.
  • the image signal is input from the A / D conversion circuit 250 to the interpolation processing unit 311.
  • the interpolation processing unit 311 acquires an image corresponding to each of the V light, the B light, the G light, the A light, and the R light based on the image signal.
  • the images corresponding to the V light, the B light, the G light, the A light, and the R light are referred to as a V image, a B image, a G image, an A image, and an R image, respectively.
  • the image sensor 240 is a Bayer image sensor
  • the V light is imaged by blue pixels.
  • the interpolation processing unit 311 generates a V image by performing an interpolation process on the pixel signal of the blue pixel.
  • the interpolation processing unit 311 generates a B image, a G image, an A image, and an R image by performing an interpolation process on the pixel signals.
  • the interpolation processing unit 311 obtains a YCrCb signal by the following equations (1) to (3).
  • the interpolation processing unit 311 converts the YCrCb signal into an RGB signal. For example, when V light is applied, the B channel of the RGB signal becomes a V image. Similarly, the interpolation processing unit 311 obtains a B image, a G image, an A image, and an R image.
  • MgIn the above equations (1) to (3) Mg, Cy, G, and Ye mean pixel values of magenta, cyan, green, and yellow, respectively. Further, (Mg + Cy) means that the pixel value of magenta and the pixel value of cyan are added and read.
  • the Cb signal of the above equation (2) is obtained in one of the two fields in the interlaced shooting, and the Cr signal of the above equation (3) is obtained in the other of the two fields.
  • the display image generation unit 313 generates a white light image by combining the B image, the G image, and the R image. Further, the display image generation unit 313 enhances the white light image. Specifically, the feature amount extraction unit 312 extracts a feature amount from the V image or the A image. The display image generation unit 313 enhances the white light image based on the feature amount. The feature amount extraction unit 312 extracts a feature amount indicating the structure of a surface blood vessel by extracting a high frequency component from the V image. Alternatively, the feature amount extraction unit 312 extracts a feature amount indicating a structure of a deep blood vessel by extracting a high frequency component from the A image. The display image generation unit 313 emphasizes the white light image by adding the high frequency component extracted by the feature amount extraction unit 312 to the G channel of the white light image. The display image generation unit 313 outputs the white light image after the enhancement processing to the display unit 400.
  • the external I / F unit 500 is an interface for performing input from the user to the endoscope apparatus and the like. That is, it is an interface for operating the endoscope apparatus, an interface for setting operation of the endoscope apparatus, or the like. For example, a button, a dial, a lever, and the like for operating the endoscope apparatus are included.
  • FIG. 3 is a view for explaining the frame sequential imaging performed by the endoscope apparatus of the present embodiment.
  • the light source device 100 emits the first illumination light group GR1 in the first frame F1, emits the second illumination light group GR2 in the second frame F2, and emits the first illumination light in the third frame F3.
  • the light group GR1 is emitted, and the second illumination light group GR2 is emitted in the fourth frame F4.
  • the frame is a period during which the image sensor 240 performs imaging, and corresponds to a frame in moving image shooting. In interlaced shooting using a complementary color image sensor, two fields correspond to one frame.
  • the image sensor 240 captures an image of the subject irradiated with the first illumination light group GR1 in the first frame F1 and the third frame F3, and emits the light of the second illumination light group GR2 in the second frame F2 and the fourth frame F4. The subject is imaged.
  • the processing circuit 310 generates the first display image IM1 based on the images captured in the first frame F1 and the second frame F2. Further, the processing circuit 310 generates a second display image IM2 based on the images captured in the second frame F2 and the third frame F3, and generates the second display image IM2 based on the images captured in the third frame F3 and the fourth frame F4. , And generates the third display image IM3.
  • the display images IM1 to IM3 are frame images in a moving image. Thereafter, by performing the same operation, a moving image is captured, and the moving image is displayed on the display unit 400.
  • the endoscope device of the present embodiment includes the light source device 100, the image sensor 240, and the processing circuit 310.
  • the light source device 100 causes the first illumination light group GR1 and the second illumination light group GR2 to emit light alternately.
  • the first illumination light group GR1 includes G light having a green wavelength band, and the second illumination light group GR2 does not include G light.
  • the image sensor 240 has a plurality of color filters.
  • the processing circuit 310 includes an image captured by the image sensor 240 when the first illumination light group GR1 is irradiated and an image sensor 240 when the second illumination light group GR2 is irradiated.
  • the processing circuit 310 generates a G channel image in the display image based on the G image obtained by the G light and the V image obtained by the V light.
  • the image sensor 240 has a plurality of color filters, and the light source device 100 causes the first illumination light group GR1 and the second illumination light group GR2 to emit light alternately.
  • the number of times of the frame sequence becomes two, so that the color shift can be reduced.
  • the light source device 100 simultaneously emits the G light and the V light, and the processing circuit 310 emphasizes the G channel of the display image using the V image. Since the enhancement processing is performed using the images captured at the same timing, a high-quality enhanced image can be obtained.
  • the light source device 100 alternately emits the first illumination light group GR1 including G light having a green wavelength band and the second illumination light group GR2 including no G light.
  • the structure that can be photographed by the G light is imaged only when the first illumination light group GR1 is emitted, and is not imaged when the second illumination light group GR2 is emitted. That is, when the second illumination light group GR2 emits light, no color mixture occurs due to the G light. As a result, a flicker phenomenon in which the subject appears to flicker is less likely to occur.
  • G light is also called green light, and V light is also called blue narrow band light.
  • the G image is also called a green image, and the V image is also called a blue narrow band image.
  • the G channel is also called a green channel.
  • the first illumination light group GR1 includes R light having a red wavelength band.
  • the second illumination light group GR2 includes B light having a blue wavelength band.
  • the V image, the G image, and the R image can be captured when the first illumination light group GR1 is irradiated. Further, when the second illumination light group GR2 is irradiated, a B image can be captured. Thereby, a display image can be generated based on the V image, the B image, the G image, and the R image. At this time, the G channel of the display image is generated based on the V image and the G image as described above.
  • the processing circuit 310 generates a white light image as a display image based on the R image obtained by the R light, the G image, and the B image obtained by the B light.
  • the processing circuit 310 performs a structure enhancement process on the G channel image based on the V image.
  • the V image and the image of the G channel are images of the subject at the same timing. Therefore, when performing the structure enhancement process on the G channel image based on the V image, a high quality enhanced image is obtained. That is, it is possible to suppress the edge displacement or the like in the structure enhancement.
  • the light source device 100 causes the first illumination light group GR1 to emit light in the first frame F1, emits the second illumination light group GR2 in the second frame F2, and emits the light in the third frame F3.
  • One illumination light group GR1 is made to emit light
  • the second illumination light group GR2 is made to emit light in the fourth frame F4.
  • the processing circuit 310 generates a first display image IM1 based on an image captured by the image sensor 240 in the first frame F1 and an image captured by the image sensor 240 in the second frame F2.
  • the processing circuit 310 generates the second display image IM2 based on the image captured by the image sensor 240 in the second frame F2 and the image captured by the image sensor 240 in the third frame F3.
  • the processing circuit 310 generates the third display image IM3 based on the image captured by the image sensor 240 in the third frame F3 and the image captured by the image sensor 240 in the fourth frame F4.
  • two-sided sequential shooting using a color image sensor is realized. Since the first illumination light group GR1 including the G light emits light once every two frames, the G image is updated once every two frames. Specifically, the second display image IM2 and the third display image IM3 share a G image. At this time, the B image combined with the G image in the second display image IM2 and the B image combined with the G image in the third display image IM3 are images captured at different timings. However, since the G light is not emitted when capturing the B image, color mixing does not occur. Thereby, flicker is reduced.
  • the second illumination light group GR2 includes the A light.
  • the processing circuit 310 generates a G channel image in a display image based on the G image, the V image, and the A image obtained from the A light.
  • the A light is also referred to as a red narrow band light
  • the A image is also referred to as a red narrow band image.
  • the A light Since the A light has a longer wavelength than the V light, it reaches deeper into the mucous membrane than the V light. Therefore, deep blood vessels can be imaged by using the A light. According to the present embodiment, it is possible to emphasize the blood vessels in the surface layer of the mucous membrane by emphasizing the display image based on the V image, and to emphasize the blood vessels in the deep mucosa by emphasizing the display image based on the A image.
  • the peak wavelength of the V light is within a range of 415 ⁇ 20 nm.
  • V light having a peak wavelength in the range of 415 ⁇ 20 nm is light that is easily absorbed by hemoglobin.
  • V light it is possible to photograph an area having a high hemoglobin concentration, such as a blood vessel in a mucous membrane. Since the V light is scattered at a relatively shallow position in the mucous membrane, the V light can image a blood vessel on the surface layer of the mucous membrane.
  • the peak wavelength of the A light is within the range of 600 ⁇ 20 nm.
  • the absorption coefficient of hemoglobin decreases as the wavelength increases.
  • the absorption coefficient of hemoglobin at 600 ⁇ 20 nm has a certain magnitude. Therefore, by using the A light, it is possible to photograph an area having a high hemoglobin concentration, such as a blood vessel in a mucous membrane. Since the A light has a longer wavelength than the V light, it can reach a relatively deep place in the mucous membrane. That is, blood vessels in the deep mucosa can be photographed by the A light.
  • the processing circuit 310 extracts a feature amount related to the structure of the subject based on the G image and the V image.
  • the feature amount is an amount whose value increases at a position where the structure of interest exists.
  • the feature amount is an edge component or the like.
  • the processing circuit 310 extracts an edge component by applying a high-pass filter to the V image.
  • the processing circuit 310 extracts a structure that appears in the V image instead of the G image by calculating the difference between the G image and the V image. That is, the processing circuit 310 extracts a structure that appears in the V image instead of the G image based on the correlation between the G image and the V image.
  • the processing circuit 310 enhances the display image based on the correlation.
  • the processing circuit 310 emphasizes the structure of the subject in the display image by synthesizing the above feature amount with the G image.
  • the V image includes a blood vessel on the mucosal surface.
  • the feature value extracted from the V image is a feature value relating to blood vessels on the surface layer of the mucous membrane.
  • the processing circuit 310 may extract a feature amount related to the structure of the subject based on the G image and the A image.
  • the feature amount is an amount whose value increases at a position where the structure of interest exists.
  • the feature amount is an edge component or the like.
  • the processing circuit 310 may extract an edge component by applying a high-pass filter to the A image.
  • the processing circuit 310 may extract a structure that is not shown in the G image but in the A image by calculating a difference between the G image and the A image. That is, the processing circuit 310 extracts a structure that is not captured in the G image but is captured in the A image based on the correlation between the G image and the A image.
  • the processing circuit 310 may enhance the display image based on the correlation.
  • the processing circuit 310 may emphasize the structure of the subject in the display image by synthesizing the above feature amount with the G image.
  • the A image includes a blood vessel deep in the mucous membrane. Therefore, the feature value extracted from the A image is a feature value related to a blood vessel deep in the mucous membrane. By synthesizing this feature amount with the G image, the blood vessel structure in the display image can be enhanced.
  • the first illumination light group GR1 may include narrow-band A light belonging to the red wavelength band.
  • the processing circuit 310 may generate a G channel image in the display image based on the G image and the A image obtained from the A light.
  • the first illumination light group GR1 may include G light and A light
  • the second illumination light group GR2 may include B light and R light.
  • the first illumination light group GR1 may further include V light.
  • the G image and the A image are captured at the same time. Thereby, the same effect as in the case where the G image and the V image are simultaneously captured can be obtained. That is, since the number of times of the frame sequence becomes two, the color shift can be reduced. In addition, since the enhancement processing is performed using the images captured at the same timing, a high-quality enhanced image can be obtained. Further, since the first illumination light group GR1 including the G light having the green wavelength band and the second illumination light group GR2 not including the G light are alternately emitted, the flicker phenomenon hardly occurs.
  • the G image is input to the G channel of the display image
  • the present invention is not limited to this, and an image captured by illumination light other than the G light may be input to the G channel.
  • NBI Near @ Band @ Imaging
  • a B image is input to a G channel of a display image.
  • the present invention can be applied to such a case.
  • the light source device 100 alternately emits the first illumination light group including the first color light having the first color wavelength band and the second illumination light group not including the first color light.
  • the image sensor 240 has a plurality of color filters.
  • the processing circuit 310 displays a display image based on an image captured by the image sensor when the first illumination light group is irradiated and an image captured by the image sensor when the second illumination light group is irradiated. Generate The first illumination light group includes a narrow band second color narrow band light belonging to the second color wavelength band.
  • the processing circuit 310 generates a G channel image in the display image based on the first color image obtained by the first color light and the second color narrow band image obtained by the second color narrow band light.
  • the processing circuit 310 inputs the first color image to the G channel of the display image, and performs a structure enhancement process on the G channel of the display image based on the second color narrow band image.
  • each of the processing circuit 310 and the control circuit 320 is configured by the following hardware. Further, the processing circuit 310 and the control circuit 320 may be integrally configured by the following hardware.
  • the hardware can include at least one of a circuit that processes digital signals and a circuit that processes analog signals.
  • the hardware can be configured by one or a plurality of circuit devices mounted on a circuit board or one or a plurality of circuit elements.
  • the one or more circuit devices are, for example, ICs.
  • the one or more circuit elements are, for example, resistors, capacitors, and the like.
  • Each of the processing circuit 310 and the control circuit 320 may be realized by the following processor. Further, the processing circuit 310 and the control circuit 320 may be realized by one processor. That is, the control device 300 of the present embodiment includes a memory that stores information, and a processor that operates based on the information stored in the memory. The information is, for example, a program and various data.
  • the processor includes hardware.
  • the processor controls the light source device 100 to emit the first illumination light group GR1 and the second illumination light group GR2 alternately.
  • the processor based on an image captured by the imaging element 240 when the first illumination light group GR1 is irradiated and an image captured by the imaging element 240 when the second illumination light group GR2 is irradiated, Generate a display image. At this time, the processor generates a G channel image in the display image based on the G image and the V image.
  • the processor may be, for example, a CPU (Central Processing Unit). However, the processor is not limited to the CPU, and various processors such as a GPU (Graphics Processing Unit) or a DSP (Digital Signal Processor) can be used.
  • the memory may be a semiconductor memory such as an SRAM or a DRAM, a register, a magnetic storage device such as a hard disk device, or an optical storage device such as an optical disk device. You may.
  • the memory stores a computer-readable instruction, and when the instruction is executed by the processor, the function of each unit of the control device 300 is realized as a process.
  • the instruction here may be an instruction of an instruction set constituting a program or an instruction for instructing a hardware circuit of a processor to operate.
  • the processor realizes the function of the processing circuit 310 in FIG.
  • the processor realizes the functions of the processing circuit 310 and the control circuit 320 in FIG.
  • Each part of the endoscope apparatus may be realized as a module of a program that operates on a processor.
  • the program controls the light source device 100 to cause the first illumination light group GR1 and the second illumination light group GR2 to emit light alternately.
  • a processing module that generates a display image based on the image captured by the imaging element 240 and the image captured by the imaging element 240 when the second illumination light group GR2 is irradiated.
  • the processing module generates a G channel image in the display image based on the G image and the V image.
  • the program that implements the processing performed by each unit of the control device 300 of the present embodiment can be stored in, for example, an information storage medium that is a computer-readable medium.
  • the information storage medium can be realized by, for example, an optical disk, a memory card, an HDD, or a semiconductor memory.
  • the semiconductor memory is, for example, a ROM.
  • the processing circuit 310 and the control circuit 320 perform various processes of the present embodiment based on programs and data stored in the information storage medium. That is, the information storage medium stores a program for causing a computer to function as each unit of the endoscope apparatus according to the present embodiment.
  • the computer is a device including an input device, a processing unit, a storage unit, and an output unit.
  • the program is a program for causing a computer to execute the processing of each unit.
  • the program is recorded on an information storage medium.
  • various recording media readable by an optical detection system such as an optical disk such as a DVD and a CD, a magneto-optical disk, a hard disk, and a memory such as a nonvolatile memory and a RAM, can be assumed.
  • FIGS. 4 and 5 show spectra of illumination light in the first embodiment.
  • FIG. 4 shows a spectrum of light included in the first illumination light group
  • FIG. 5 shows a spectrum of light included in the second illumination light group.
  • the light source device 100 emits V light, G light, and R light as the first illumination light group GR1 in FIG. 3, and emits B light as the second illumination light group GR2 in FIG.
  • the interpolation processing unit 311 In the frames F1 and F3 from which the first illumination light group GR1 is emitted, the interpolation processing unit 311 generates an RGB image by interpolation, outputs the B channel of the RGB image as a V image, and outputs the G channel of the RGB image as G An image is output, and the R channel of the RGB image is output as an R image.
  • the interpolation processing unit 311 In the frames F2 and F4 from which the second illumination light group GR2 is emitted, the interpolation processing unit 311 generates a B channel of an RGB image by interpolation processing, and outputs the B channel as a B image. The interpolation processing unit 311 does not generate the G channel and the R channel, or does not output even if they are generated.
  • FIG. 6 is a flowchart illustrating a process performed by the feature amount extraction unit 312 in the first embodiment.
  • step S1 the feature amount extraction unit 312 extracts a high-frequency component of the V image by applying a high-pass filter to the V image.
  • the feature amount extraction unit 312 obtains the average intensity of the V image.
  • the average intensity is, for example, an average value of pixel values.
  • the average intensity may be an average value of the entire image or an average value of each local region of the image.
  • the feature amount extraction unit 312 corrects the average intensity of the G image based on the average intensity of the V image.
  • the feature amount extraction unit 312 corrects, for example, the average intensity of the V image and the G image so that the average intensity of the V image and the G image becomes a predetermined ratio.
  • step S3 the feature amount extraction unit 312 obtains a difference between the V image and the G image after the average intensity has been corrected.
  • step S4 the feature amount extraction unit 312 adds the high frequency component obtained in step S1 and the difference obtained in step S3.
  • the display image generation unit 313 generates a white light image by combining the R image, the G image, and the B image output from the interpolation processing unit 311.
  • the display image generation unit 313 performs the enhancement process by adding the addition value obtained by the feature amount extraction unit 312 in step S4 to the G channel of the white light image.
  • the absorption coefficient of hemoglobin is high, and the scattering coefficient in the mucous membrane is relatively high in visible light. For this reason, in the V image, the blood vessels of the mucosal surface layer are imaged with high contrast. Therefore, the blood vessel structure of the mucosal surface layer in the white light image is emphasized by the emphasis processing.
  • the image sensor 240 is a color image sensor, and the light source device 100 divides four light sources into two groups and causes the two groups to emit light alternately.
  • the number of times of the frame sequential becomes two times, and the number of times of the frame sequential can be reduced as compared with the case of performing the four-frame sequential using the monochrome image sensor.
  • the difference in shooting timing between colors increases, so that color misregistration is likely to occur.
  • the present embodiment since the number of times of the frame sequence becomes two, the color shift can be reduced.
  • the light source device 100 simultaneously emits the G light and the V light in the frames F1 and F3, and the processing circuit 310 inputs the G image to the G channel of the display image and uses the V image.
  • the G channel of the display image is emphasized.
  • the imaging timings of the V image and the G image are different from each other, there is a possibility that the image quality may be deteriorated such that the edge is doubled in the emphasized G channel.
  • green has a large contribution to luminance, so that the effect of image quality deterioration is great.
  • the imaging timing of the V image and the G image is the same, a high-quality emphasized image can be obtained.
  • the light source device 100 emits G light in the frames F1 and F3 and does not emit G light in the frames F2 and F4. That is, the G light is emitted only in one of the two alternately repeated light emission timings. As a result, it is possible to reduce image quality deterioration due to color mixture or flicker. Assume that G light is also emitted in frames F2 and F4. At this time, the B image has sensitivity to G light due to the sensitivity characteristics of the color filter of the image sensor 240. That is, the subject image due to the G light is mixed with the B image. The image quality of the displayed image may be degraded due to such color mixture.
  • the subject image due to the G light mixed with the B image is captured at a different timing from the G image. This timing difference may cause flicker.
  • the G light is not emitted in the frames F2 and F4, it is possible to reduce image quality deterioration due to color mixture or flicker.
  • FIGS. 7 and 8 show spectra of illumination light in the second embodiment.
  • FIG. 7 shows a spectrum of light included in the first illumination light group
  • FIG. 8 shows a spectrum of light included in the second illumination light group.
  • the light source device 100 emits V light, G light, and R light as the first illumination light group GR1 in FIG. 3, and emits B light and A light as the second illumination light group GR2 in FIG. I do.
  • the interpolation processing unit 311 In the frames F1 and F3 from which the first illumination light group GR1 is emitted, the interpolation processing unit 311 generates an RGB image by interpolation, outputs the B channel of the RGB image as a V image, and outputs the G channel of the RGB image as G The image is output as an image, and the R channel of the RGB image is output as an R image.
  • the interpolation processing unit 311 In the frames F2 and F4 from which the second illumination light group GR2 is emitted, the interpolation processing unit 311 generates the B channel and the R channel of the RGB image by the interpolation processing, outputs the B channel as the B image, and outputs the R channel A image. Output as The interpolation processing unit 311 does not generate the G channel, or does not output the G channel even if it is generated.
  • FIG. 9 is a flowchart showing a process performed by the feature amount extraction unit 312 in the second embodiment. Note that, also in the second embodiment, the feature amount extraction unit 312 executes the flow shown in FIG. The order in which the flows of FIGS. 6 and 9 are executed is arbitrary.
  • step S11 the feature amount extraction unit 312 extracts a high frequency component of the A image by applying a high-pass filter to the A image.
  • the cutoff frequency of the high-pass filter in step S11 may be different from the cutoff frequency of the high-pass filter in step S1 of FIG.
  • the feature amount extraction unit 312 obtains the average intensity of the A image.
  • the average intensity is, for example, an average value of pixel values.
  • the average intensity may be an average value of the entire image or an average value of each local region of the image.
  • the feature amount extraction unit 312 corrects the average intensity of the G image based on the average intensity of the A image.
  • the feature amount extraction unit 312 corrects the average intensity of the A image and the G image to be the same, or corrects the average intensity of the A image and the G image to a predetermined ratio.
  • step S13 the feature amount extraction unit 312 obtains a difference between the A image and the G image after the average intensity has been corrected.
  • step S14 the feature quantity extraction unit 312 adds the high frequency component obtained in step S11 and the difference obtained in step S13.
  • the display image generation unit 313 generates a white light image by combining the R image, the G image, and the B image output from the interpolation processing unit 311.
  • the display image generation unit 313 performs the enhancement process by adding the addition value obtained by the feature amount extraction unit 312 in step S4 in FIG. 6 and step S14 in FIG. 9 to the G channel of the white light image.
  • the V image blood vessels on the mucosal surface layer are captured with high contrast. Further, at the wavelength of the A light, the absorption coefficient of hemoglobin exists to some extent as compared with the wavelength of the R light, and the scattering coefficient in the mucous membrane is relatively low in the visible light. For this reason, in the A image, blood vessels deep in the mucous membrane are captured with high contrast. Therefore, the blood vessel structure in the mucosal surface layer and the deep mucosal layer in the white light image is emphasized by the emphasis processing.
  • the number of times of frame sequential becomes two as in the first embodiment, so that the color shift can be reduced.
  • the G channel of the display image is emphasized using the A image. At this time, since the imaging timings of the A image and the G image are the same, a high-quality emphasized image is obtained. Further, according to the second embodiment, the G light is not emitted in the frames F2 and F4 as in the first embodiment, so that it is possible to reduce the image quality deterioration due to the color mixture or the flicker.
  • FIG. 10 is a flowchart showing a detailed process performed by the feature amount extraction unit 312. The flow of FIG. 10 is applicable to both the first embodiment and the second embodiment.
  • step S31 the feature amount extraction unit 312 obtains the average intensity of the V image, and corrects the average intensity of the G image based on the average intensity of the V image. By performing this correction, the feature amount extraction unit 312 adjusts the average brightness of the G image to the average brightness of the V image.
  • step S32 the feature amount extraction unit 312 applies a high-pass filter to the G image whose average intensity has been corrected.
  • the feature extraction unit 312 outputs the output of the high-pass filter as a high-frequency component of the G image.
  • step S33 the feature amount extraction unit 312 applies a high-pass filter to the V image.
  • the feature amount extraction unit 312 outputs the output of the high-pass filter as a high-frequency component of the V image.
  • step S34 the feature amount extraction unit 312 calculates a difference between the high frequency component of the V image calculated in step S33 and the high frequency component of the G image calculated in step S32.
  • step S35 the feature amount extracting unit 312 calculates a difference between the V image and the G image whose average intensity has been corrected in step S31.
  • This difference is called an intensity difference.
  • the intensity is a pixel value in each image.
  • the intensity difference is used for enhancing the white light image. However, if the intensity difference is used as it is for the enhancement process, the blood vessel structure may be overemphasized. Therefore, the difference in intensity is suppressed in steps S36 to S38.
  • step S36 the feature amount extraction unit 312 corrects the average intensity of the R image based on the average intensity of the V image. By performing this correction, the feature amount extraction unit 312 adjusts the average brightness of the R image to the average brightness of the V image.
  • step S37 the feature amount extraction unit 312 calculates a ratio between the V image and the R image whose average intensity has been corrected.
  • the ratio is a ratio of intensity, for example, a ratio is calculated for each pixel.
  • step S38 the feature amount extraction unit 312 suppresses the intensity difference calculated in step S35 using the ratio calculated in step S37. For example, when the ratio of the intensity of the V image to the intensity of the R image is calculated in step S37, the feature amount extraction unit 312 divides the intensity difference by the ratio. This calculation is performed for each pixel, for example.
  • step S39 the feature amount extraction unit 312 combines the difference between the high frequency components calculated in step S34 and the intensity difference suppressed in step S38.
  • the combination is, for example, addition. This calculation is performed for each pixel, for example.
  • the display image generation unit 313 adds the composite value obtained by the feature amount extraction unit 312 in step S39 to the G channel of the white light image. This calculation is performed for each pixel, for example. In this way, the blood vessel structure in the white light image is emphasized based on the V image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Endoscopes (AREA)

Abstract

内視鏡装置は、緑色光を含む第1照明光群と、緑色光を含まない第2照明光群とを、交互に発光させる光源装置100と、複数色のカラーフィルタを有する撮像素子240と、処理回路310と、を含む。処理回路310は、第1照明光群による画像と第2照明光群による画像とに基づいて、表示画像を生成する。第1照明光群は、前記緑色光と共に、青色狭帯域光を更に含む。処理回路310は、緑色画像及び青色狭帯域画像に基づいて、表示画像における緑色チャンネルの画像を生成する。

Description

内視鏡装置、内視鏡装置の作動方法及び画像処理プログラム
 本発明は、内視鏡装置、内視鏡装置の作動方法及び画像処理プログラム等に関する。
 内視鏡装置において、互いに波長が異なる複数の照明光を順次に発光させる面順次の手法が知られている。この手法では、各照明光が発光されたときの画像を、モノクロ撮像素子を用いて撮像し、それら複数の波長における画像を合成することで表示画像を生成する。また、特許文献1には、白色光画像と狭帯域画像とを撮像し、狭帯域画像から得られる情報を白色光画像に付与する手法が開示されている。
特開2012-125461号公報
 ある波長の画像から得られる情報を、例えば白色光画像等の他の画像に付与する場合、照明光の発光順が画質に影響するという課題がある。即ち、照明光の発光順が不適切である場合、発光タイミングの違いによる色ずれ、或いは異なる波長の照明光が同時に発光することによる混色、或いはフリッカ等が、発生するおそれがある。
 上述した特許文献1では、照明光の発光順が画質に影響する点について考慮されていない。また、特許文献1では、例えばベイヤ型イメージセンサ又は補色フィルタ型イメージセンサ等のカラーイメージセンサにより撮像する場合について考慮されていない。即ち、特許文献1には、カラーイメージセンサを用いた場合において、照明光の適切な発光順について開示されていない。
 本発明の一態様は、緑色の波長帯域を有する緑色光を含む第1照明光群と、前記緑色光を含まない第2照明光群とを、交互に発光させる光源装置と、複数色のカラーフィルタを有する撮像素子と、前記第1照明光群が照射されたときに前記撮像素子により撮像された画像と、前記第2照明光群が照射されたときに前記撮像素子により撮像された画像とに基づいて、表示画像を生成する処理回路と、を含み、前記第1照明光群は、前記緑色光と共に、青色の波長帯域に属する青色狭帯域光を更に含み、前記処理回路は、前記緑色光により得られる緑色画像、及び前記青色狭帯域光により得られる青色狭帯域画像に基づいて、前記表示画像における緑色チャンネルの画像を生成する内視鏡装置に関係する。
 また本発明の他の態様は、緑色の波長帯域を有する緑色光を含む第1照明光群と、前記緑色光を含まない第2照明光群とを、交互に発光させる光源装置と、複数色のカラーフィルタを有する撮像素子と、前記第1照明光群が照射されたときに前記撮像素子により撮像された画像と、前記第2照明光群が照射されたときに前記撮像素子により撮像された画像とに基づいて、表示画像を生成する処理回路と、を含み、前記第1照明光群は、前記緑色光と共に、赤色の波長帯域に属する狭帯域の赤色狭帯域光を更に含み、前記処理回路は、前記緑色光により得られる緑色画像、及び前記赤色狭帯域光により得られる赤色狭帯域画像に基づいて、前記表示画像における緑色チャンネルの画像を生成する内視鏡装置に関係する。
 また本発明の更に他の態様は、第1色の波長帯域を有する第1色光を含む第1照明光群と、前記第1色光を含まない第2照明光群とを、交互に発光させる光源装置と、複数色のカラーフィルタを有する撮像素子と、前記第1照明光群が照射されたときに前記撮像素子により撮像された画像と、前記第2照明光群が照射されたときに前記撮像素子により撮像された画像とに基づいて、表示画像を生成する処理回路と、を含み、前記第1照明光群は、前記第1色光と共に、第2色の波長帯域に属する狭帯域の第2色狭帯域光を更に含み、前記処理回路は、前記第1色光により得られる第1色画像、及び前記第2色狭帯域光により得られる第2色狭帯域画像に基づいて、前記表示画像における緑色チャンネルの画像を生成する内視鏡装置に関係する。
 また本発明の更に他の態様は、複数色のカラーフィルタを有する撮像素子を含む内視鏡装置の作動方法であって、緑色の波長帯域を有する緑色光、及び青色の波長帯域に属する狭帯域の青色狭帯域光を含む第1照明光群と、前記緑色光を含まない第2照明光群とを、交互に発光させ、前記第1照明光群が照射されたときに前記撮像素子により撮像された画像と、前記第2照明光群が照射されたときに前記撮像素子により撮像された画像とに基づいて、表示画像を生成し、前記表示画像を生成する際に、前記緑色光により得られる緑色画像、及び前記青色狭帯域光により得られる青色狭帯域画像に基づいて、前記表示画像における緑色チャンネルの画像を生成する内視鏡装置の作動方法に関係する。
 また本発明の更に他の態様は、複数色のカラーフィルタを有する撮像素子により撮像された画像を処理するための画像処理プログラムであって、第1照明光群が、緑色の波長帯域を有する緑色光、及び青色の波長帯域に属する狭帯域の青色狭帯域光を含み、第2照明光群が、前記緑色光を含まない場合において、前記第1照明光群が照射されたときに前記撮像素子により撮像された画像と、前記第2照明光群が照射されたときに前記撮像素子により撮像された画像とに基づいて、表示画像を生成し、前記表示画像を生成する際に、前記緑色光により得られる緑色画像、及び前記青色狭帯域光により得られる青色狭帯域画像に基づいて、前記表示画像における緑色チャンネルの画像を生成するステップを、コンピュータに実行させる画像処理プログラムに関係する。
内視鏡装置の構成例。 処理回路の詳細な構成例。 本実施形態の内視鏡装置が行う面順次撮像を説明する図。 第1実施形態における照明光のスペクトル。 第1実施形態における照明光のスペクトル。 第1実施形態において特徴量抽出部が行う処理を示すフローチャート。 第2実施形態における照明光のスペクトル。 第2実施形態における照明光のスペクトル。 第2実施形態において特徴量抽出部が行う処理を示すフローチャート。 特徴量抽出部が行う詳細な処理を示すフローチャート。
 以下、本実施形態について説明する。なお、以下に説明する本実施形態は、請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。
 1.内視鏡装置
 図1は、内視鏡装置の構成例である。内視鏡装置は、挿入部200と制御装置300と表示部400と外部I/F部500と光源装置100とを含む。内視鏡装置としては、例えば消化管等に用いられる軟性鏡や、腹腔鏡等に用いられる硬性鏡を想定できるが、これらに限定されない。なお、挿入部200をスコープとも呼ぶ。また制御装置300を本体部又は処理装置とも呼ぶ。表示部400を表示装置とも呼ぶ。外部I/F部500を操作部又は操作装置とも呼ぶ。光源装置100を照明部又は照明装置とも呼ぶ。
 光源装置100は、照明光を発生する装置である。光源装置100は、光源LDV、LDB、LDG、LDA、LDRと、合波部120と、を含む。なお、後述する第1実施形態において光源装置100が光源LDAを含まなくてもよい。
 光源LDV、LDB、LDG、LDA、LDRの各々は、LED(Light Emitting Diode)又はレーザー光源である。以下、光源LDV、LDB、LDG、LDA、LDRが発生する光を、それぞれV光、B光、G光、A光、R光と呼ぶ。
 V光は、ピーク波長が410nmである狭帯域光である。V光の半値幅は数nm~数10nmである。V光の帯域は、白色光における青色波長帯域に属し、その青色波長帯域よりも狭い。B光は、白色光における青色波長帯域を有する光である。G光は、白色光における緑色波長帯域を有する光である。A光は、ピーク波長が600nmである狭帯域光である。A光の半値幅は数nm~数10nmである。A光の帯域は、白色光における赤色波長帯域に属し、その赤色波長帯域よりも狭い。R光は、白色光における赤色波長帯域を有する光である。撮像素子240がベイヤ型イメージセンサである場合において、V光及びB光は青色カラーフィルタを透過し、G光は緑色カラーフィルタを透過し、A光及びR光は赤色カラーフィルタを透過する。
 なお、上記の波長は一例である。例えば各光のピーク波長は10%程度ずれていてもよい。また、B光及びG光、R光が、数nm~数10nmの半値幅を有する狭帯域光であってもよい。また、光源LDAがA光ではなく赤外光を発生してもよい。
 合波部120は、LDV、LDB、LDG、LDA、LDRが射出する光を合波し、その合波された光をライトガイド210へ入射させる。合波部120は、例えばダイクロイックミラーとレンズ等により構成される。
 光源装置100は、1回の発光タイミングにおいて、V光、B光、G光、A光、R光のうち1波長又は複数波長の光を出射する。以下、この1回の発光タイミングにおいて出射される1波長又は複数波長の光を照明光群と呼ぶ。照明の詳細については後述する。
 挿入部200は、体内へ挿入される部分である。挿入部200は、ライトガイド210と照明レンズ220と対物レンズ230と撮像素子240とA/D変換回路250とを含む。また挿入部200はメモリ260を含むことができる。撮像素子240はイメージセンサとも呼ぶ。挿入部200は不図示のコネクタを有し、そのコネクタにより制御装置300に対して着脱される。
 ライトガイド210は、光源装置100からの照明光を、挿入部200の先端まで導光する。照明レンズ220は、ライトガイド210により導光された照明光を被写体へ照射する。本実施形態において被写体は生体である。被写体からの反射光は、対物レンズ230へ入射する。対物レンズ230によって被写体像が結像され、撮像素子240が、その被写体像を撮像する。
 撮像素子240は、被写体像を光電変換する複数の画素を含み、その複数の画素から画素信号を取得する。撮像素子240は、1回の撮像により複数色の画素信号が得られるカラーイメージセンサである。撮像素子240は、例えばベイヤ配列のカラーフィルタを有するベイヤ型イメージセンサ、或いは補色フィルタを有する補色イメージセンサである。
 A/D変換回路250は、撮像素子240からのアナログの画素信号をデジタルの画素信号にA/D変換する。なお、A/D変換回路250は撮像素子240に内蔵されてもよい。
 制御装置300は、画像処理を含む信号処理を行う。また制御装置300は、内視鏡装置の各部を制御する。制御装置300は、処理回路310と制御回路320とを含む。
 制御回路320は、内視鏡装置の各部を制御する。例えばユーザが外部I/F部500を操作して強調処理の有無等を設定する。例えば、強調処理を行う指示が入力された場合、制御回路320は、強調処理を行う指示を処理回路310へ出力する。処理回路310は、例えばV光により得られる画像等に基づいて、白色光画像における血管構造を強調する。強調処理を行わない指示が入力された場合、制御回路320は、強調処理を行わない指示を処理回路310へ出力する。処理回路310は、白色光画像を強調せずに表示部400へ出力する。
 挿入部200のメモリ260は、挿入部200に関する情報を記憶している。制御回路320は、メモリ260から読み出した情報に基づいて、内視鏡装置の各部を制御する。例えばメモリ260は撮像素子240に関する情報を記憶している。撮像素子240に関する情報は、例えば撮像素子240の種類に関する情報等である。制御回路320は、メモリ260から読み出した撮像素子240に関する情報に基づいて、それに対応した画像処理を処理回路310に行わせる。
 処理回路310は、A/D変換回路250からの画素信号に基づいて画像処理を行うことで、表示画像を生成し、その表示画像を表示部400へ出力する。表示部400は、例えば液晶表示装置等であり、処理回路310からの表示画像を表示する。
 図2は、処理回路310の詳細な構成例である。処理回路310は、補間処理部311と特徴量抽出部312と表示画像生成部313とを含む。
 補間処理部311には、A/D変換回路250から画像信号が入力される。補間処理部311は、画像信号に基づいて、V光、B光、G光、A光、R光の各々に対応した画像を取得する。以下、V光、B光、G光、A光、R光に対応した画像を、それぞれV画像、B画像、G画像、A画像、R画像と呼ぶ。例えば撮像素子240がベイヤ型イメージセンサである場合、V光は青色画素により撮像される。補間処理部311は、青色画素の画素信号を補間処理することで、V画像を生成する。同様に、B光、G光、A光、R光は、それぞれ青色画素、緑色画素、赤色画素、赤色画素により撮像される。補間処理部311は、それらの画素信号を補間処理することで、B画像、G画像、A画像、R画像を生成する。
 なお、撮像素子240が補色イメージセンサであり、インターレース撮影を行う場合、補間処理部311は、下式(1)~(3)によりYCrCb信号を求める。補間処理部311は、YCrCb信号をRGB信号に変換する。例えば、V光が照射されたとき、RGB信号のBチャンネルがV画像となる。同様にして、補間処理部311は、B画像、G画像、A画像、R画像を求める。
 Y={(Mg+Cy)+(G+Ye)}/2 ・・・(1)
 Cb=(Mg+Cy)-(G+Ye) ・・・(2)
 Cr=(Mg+Ye)-(G+Cy) ・・・(3)
 上式(1)~(3)において、Mg、Cy、G、Yeは、それぞれマゼンダ、シアン、グリーン、イエローの画素値を意味する。また(Mg+Cy)は、マゼンダの画素値とシアンの画素値が加算読み出しされたものを意味する。上式(2)のCb信号は、インターレース撮影における2フィールドのうち一方のフィールドにおいて得られ、上式(3)のCr信号は、2フィールドのうち他方のフィールドにおいて得られる。
 表示画像生成部313は、B画像、G画像、R画像を合成することで白色光画像を生成する。また表示画像生成部313は、白色光画像を強調処理する。具体的には、特徴量抽出部312が、V画像又はA画像から特徴量を抽出する。表示画像生成部313は、その特徴量に基づいて白色光画像を強調処理する。特徴量抽出部312は、V画像から高周波数成分を抽出することで、表層血管の構造を示す特徴量を抽出する。或いは、特徴量抽出部312は、A画像から高周波数成分を抽出することで、深層血管の構造を示す特徴量を抽出する。表示画像生成部313は、特徴量抽出部312により抽出された高周波数成分を白色光画像のGチャンネルに加算処理することで、白色光画像を強調処理する。表示画像生成部313は、強調処理後の白色光画像を表示部400へ出力する。
 外部I/F部500は、内視鏡装置に対するユーザからの入力等を行うためのインターフェースである。即ち、内視鏡装置を操作するためのインターフェース、或いは内視鏡装置の動作設定を行うためのインターフェース等である。例えば、内視鏡装置を操作するためのボタン又はダイヤル、レバー等を含む。
 図3は、本実施形態の内視鏡装置が行う面順次撮像を説明する図である。図3に示すように、光源装置100は、第1フレームF1において第1照明光群GR1を出射し、第2フレームF2において第2照明光群GR2を出射し、第3フレームF3において第1照明光群GR1を出射し、第4フレームF4において第2照明光群GR2を出射する。フレームは、撮像素子240が撮像を行う期間であり、動画撮影におけるフレームに相当する。補色イメージセンサによるインターレース撮影では、2フィールドが1フレームに相当する。
 撮像素子240は、第1フレームF1及び第3フレームF3において、第1照明光群GR1が照射された被写体を撮像し、第2フレームF2及び第4フレームF4において、第2照明光群GR2が照射された被写体を撮像する。
 処理回路310は、第1フレームF1及び第2フレームF2において撮像された画像に基づいて、第1表示画像IM1を生成する。また処理回路310は、第2フレームF2及び第3フレームF3において撮像された画像に基づいて、第2表示画像IM2を生成し、第3フレームF3及び第4フレームF4において撮像された画像に基づいて、第3表示画像IM3を生成する。表示画像IM1~IM3は、動画におけるフレーム画像となる。以降、同様の動作が行われることで、動画が撮影され、その動画が表示部400に表示される。
 以下では、後述の実施形態を適宜に引用しながら、本実施形態の内視鏡装置が行う動作及び処理について説明する。
 本実施形態の内視鏡装置は、光源装置100と撮像素子240と処理回路310とを含む。図3で説明したように、光源装置100は、第1照明光群GR1と第2照明光群GR2とを、交互に発光させる。図4、図5で説明するように、第1照明光群GR1は、緑色の波長帯域を有するG光を含み、第2照明光群GR2は、G光を含まない。撮像素子240は、複数色のカラーフィルタを有する。図3で説明したように、処理回路310は、第1照明光群GR1が照射されたときに撮像素子240により撮像された画像と、第2照明光群GR2が照射されたときに撮像素子240により撮像された画像とに基づいて、表示画像を生成する。第1照明光群GR1は、青色の波長帯域に属する狭帯域のV光を含む。処理回路310は、G光により得られるG画像、及びV光により得られるV画像に基づいて、表示画像におけるGチャンネルの画像を生成する。
 本実施形態によれば、撮像素子240が複数色のカラーフィルタを有し、光源装置100が、第1照明光群GR1と第2照明光群GR2とを交互に発光させる。これにより、面順次の回数が2回となるので、色ずれを低減できる。また本実施形態によれば、光源装置100が、G光及びV光を同時に発光させ、処理回路310が、V画像を用いて表示画像のGチャンネルを強調処理する。同タイミングで撮像された画像を用いて強調処理を行うので、高画質な強調画像が得られる。また本実施形態によれば、光源装置100は、緑色の波長帯域を有するG光を含む第1照明光群GR1と、G光を含まない第2照明光群GR2とを、交互に発光させる。G光によって撮影可能な構造は、第1照明光群GR1が発光されたときのみ撮像され、第2照明光群GR2を発光させたときには撮像されない。即ち、第2照明光群GR2を発光させたときには、G光による混色が生じない。これにより、被写体がちらついて見えるフリッカ現象が生じにくくなる。
 なお、G光を緑色光とも呼び、V光を青色狭帯域光とも呼ぶ。またG画像を緑色画像とも呼び、V画像を青色狭帯域画像とも呼ぶ。またGチャンネルを緑色チャンネルとも呼ぶ。
 図4、図5等で説明するように、第1照明光群GR1は、赤色の波長帯域を有するR光を含む。第2照明光群GR2は、青色の波長帯域を有するB光を含む。
 本実施形態によれば、第1照明光群GR1が照射されたときに、V画像及びG画像、R画像を撮影できる。また、第2照明光群GR2が照射されたときに、B画像を撮影できる。これにより、V画像及びB画像、G画像、R画像に基づいて表示画像を生成できる。このとき、上述したようにV画像及びG画像に基づいて表示画像のGチャンネルが生成される。
 また本実施形態では、処理回路310は、R光により得られるR画像、及びG画像、B光により得られるB画像に基づいて、白色光画像を表示画像として生成する。処理回路310は、V画像に基づいて、Gチャンネルの画像に対する構造強調処理を行う。
 G画像を撮影するためのG光と、V画像を撮影するためのV光とは、同時に発光されるので、V画像及びGチャンネルの画像が同タイミングにおける被写体の画像となる。これにより、V画像に基づいて、Gチャンネルの画像に対する構造強調処理を行う際に、高画質な強調画像が得られる。即ち、構造強調におけるエッジの位置ずれ等を抑制できる。
 また図3で説明したように、光源装置100は、第1フレームF1において第1照明光群GR1を発光させ、第2フレームF2において第2照明光群GR2を発光させ、第3フレームF3において第1照明光群GR1を発光させ、第4フレームF4において第2照明光群GR2を発光させる。処理回路310は、第1フレームF1において撮像素子240により撮像された画像と、第2フレームF2において撮像素子240により撮像された画像とに基づいて、第1表示画像IM1を生成する。処理回路310は、第2フレームF2において撮像素子240により撮像された画像と、第3フレームF3において撮像素子240により撮像された画像とに基づいて、第2表示画像IM2を生成する。処理回路310は、第3フレームF3において撮像素子240により撮像された画像と、第4フレームF4において撮像素子240により撮像された画像とに基づいて、第3表示画像IM3を生成する。
 本実施形態によれば、カラーイメージセンサを用いた2面順次撮影が実現される。G光を含む第1照明光群GR1は2フレームに1回ずつ発光するため、G画像は2フレームに1回ずつ更新される。具体的には、第2表示画像IM2と第3表示画像IM3はG画像が共通である。このとき、第2表示画像IM2においてG画像に合成されるB画像と、第3表示画像IM3においてG画像に合成されるB画像とは、異なるタイミングで撮像された画像である。しかし、B画像を撮像する際にG光が発光されないため、混色が生じない。これにより、フリッカが低減される。
 また図7、図8で説明するように、第2実施形態において、第2照明光群GR2は、A光を含む。図9で説明するように、処理回路310は、G画像、及びV画像、A光により得られるA画像に基づいて、表示画像におけるGチャンネルの画像を生成する。なお、A光を赤色狭帯域光とも呼び、A画像を赤色狭帯域画像とも呼ぶ。
 A光はV光よりも長波長なので、V光よりも粘膜の深いところまで届く。このため、A光を用いることで深層血管を撮影できる。本実施形態によれば、V画像に基づいて表示画像を強調処理することで粘膜表層の血管を強調でき、且つA画像に基づいて表示画像を強調処理することで粘膜深層の血管を強調できる。
 また本実施形態では、V光のピーク波長は、415±20nmの範囲内である。
 415±20nmにおいて、ヘモグロビンの吸光特性は最大となる。即ち、ピーク波長が415±20nmの範囲内であるV光は、ヘモグロビンに吸収されやすい光である。このV光を用いることで、例えば粘膜内の血管などのヘモグロビン濃度が高い領域を撮影できる。V光は粘膜内の比較的浅いところで散乱されるので、V光により粘膜表層の血管を撮影できる。
 また本実施形態では、A光のピーク波長は、600±20nmの範囲内である。
 600nm付近では、波長が長くなるほどヘモグロビンの吸光係数は低下していく。しかし、600±20nmにおいてヘモグロビンの吸光係数はある程度の大きさを有している。このため、A光を用いることで、粘膜内の血管などのヘモグロビン濃度が高い領域を撮影できる。A光はV光よりも波長が長いため、粘膜内の比較的深いところまで到達できる。即ち、A光により粘膜深層の血管を撮影できる。
 また図6で説明するように、処理回路310は、G画像及びV画像に基づいて、被写体の構造に関する特徴量を抽出する。特徴量は、着目する構造が存在する位置において値が大きくなる量である。例えば、特徴量はエッジ成分などである。具体的には、処理回路310は、V画像に対してハイパスフィルタを適用することでエッジ成分を抽出する。また処理回路310は、G画像とV画像の差分を求めることで、G画像に写らずV画像に写る構造を抽出する。即ち、処理回路310は、G画像とV画像の相関に基づいて、G画像に写らずV画像に写る構造を抽出する。処理回路310は、この相関に基づいて表示画像を強調処理する。
 また本実施形態では、処理回路310は、上記の特徴量をG画像に合成することで、表示画像における被写体の構造を強調する。
 上述したように、V画像には粘膜表層の血管が撮影されている。このため、V画像から抽出される特徴量は、粘膜表層の血管に関する特徴量である。この特徴量をG画像に合成することで、表示画像における血管構造を強調処理できる。
 また、処理回路310は、G画像及びA画像に基づいて、被写体の構造に関する特徴量を抽出してもよい。特徴量は、着目する構造が存在する位置において値が大きくなる量である。例えば、特徴量はエッジ成分などである。具体的には、処理回路310は、A画像に対してハイパスフィルタを適用することでエッジ成分を抽出してもよい。また処理回路310は、G画像とA画像の差分を求めることで、G画像に写らずA画像に写る構造を抽出してもよい。即ち、処理回路310は、G画像とA画像の相関に基づいて、G画像に写らずA画像に写る構造を抽出する。処理回路310は、この相関に基づいて表示画像を強調処理してもよい。処理回路310は、上記の特徴量をG画像に合成することで、表示画像における被写体の構造を強調してもよい。
 上述したように、A画像には粘膜深層の血管が撮影されている。このため、A画像から抽出される特徴量は、粘膜深層の血管に関する特徴量である。この特徴量をG画像に合成することで、表示画像における血管構造を強調処理できる。
 なお、以上ではG光とV光を同時に発光させる場合を例に説明したが、これに限定されず、G光とA光とを同時に発光させてもよい。即ち、第1照明光群GR1は、赤色の波長帯域に属する狭帯域のA光を含んでもよい。処理回路310は、G画像、及びA光により得られるA画像に基づいて、表示画像におけるGチャンネルの画像を生成してもよい。具体的には、第1照明光群GR1がG光及びA光を含み、第2照明光群GR2がB光及びR光を含んでもよい。また第1照明光群GR1が更にV光を含んでもよい。
 このようにすれば、G画像とA画像が同時に撮像される。これにより、上述したG画像とV画像を同時に撮像する場合と同様な効果が得られる。即ち、面順次の回数が2回となるので、色ずれを低減できる。また同タイミングで撮像された画像を用いて強調処理を行うので、高画質な強調画像が得られる。また、緑色の波長帯域を有するG光を含む第1照明光群GR1と、G光を含まない第2照明光群GR2とを、交互に発光させるので、フリッカ現象が生じにくくなる。
 また、以上ではG画像を表示画像のGチャンネルに入力する場合を例に説明したが、これに限定されず、G光以外の照明光により撮影される画像をGチャンネルに入力してもよい。例えば、NBI(Narrow Band Imaging)においては、B画像が表示画像のGチャンネルに入力される。このような場合においても、本発明を適用できる。
 即ち、光源装置100は、第1色の波長帯域を有する第1色光を含む第1照明光群と、第1色光を含まない第2照明光群とを、交互に発光させる。撮像素子240は、複数色のカラーフィルタを有する。処理回路310は、第1照明光群が照射されたときに撮像素子により撮像された画像と、第2照明光群が照射されたときに撮像素子により撮像された画像とに基づいて、表示画像を生成する。第1照明光群は、第2色の波長帯域に属する狭帯域の第2色狭帯域光を含む。処理回路310は、第1色光により得られる第1色画像、及び第2色狭帯域光により得られる第2色狭帯域画像に基づいて、表示画像におけるGチャンネルの画像を生成する。
 例えば第1色が青色である場合、第2色は緑色及び赤色の一方であり、第3色は緑色及び赤色の他方である。第2照明光群は、第2色及び第3色の少なくとも一方の光を含む。例えば、処理回路310は、第1色画像を表示画像のGチャンネルに入力し、第2色狭帯域画像に基づいて、表示画像のGチャンネルに対して構造強調処理を行う。
 なお、本実施形態の制御装置300は以下のように構成されてもよい。即ち、処理回路310及び制御回路320の各々は、下記のハードウェアにより構成される。また、処理回路310及び制御回路320は、下記のハードウェアにより一体に構成されてもよい。ハードウェアは、デジタル信号を処理する回路及びアナログ信号を処理する回路の少なくとも一方を含むことができる。例えば、ハードウェアは、回路基板に実装された1又は複数の回路装置や、1又は複数の回路素子で構成することができる。1又は複数の回路装置は例えばIC等である。1又は複数の回路素子は例えば抵抗、キャパシター等である。
 また処理回路310及び制御回路320の各々は、下記のプロセッサにより実現されてもよい。また、また、処理回路310及び制御回路320は、1つのプロセッサにより実現されてもよい。即ち、本実施形態の制御装置300は、情報を記憶するメモリと、メモリに記憶された情報に基づいて動作するプロセッサと、を含む。情報は、例えばプログラムと各種のデータ等である。プロセッサは、ハードウェアを含む。プロセッサは、光源装置100を制御することで、第1照明光群GR1と第2照明光群GR2とを交互に発光させる。プロセッサは、第1照明光群GR1が照射されたときに撮像素子240により撮像された画像と、第2照明光群GR2が照射されたときに撮像素子240により撮像された画像とに基づいて、表示画像を生成する。このとき、プロセッサは、G画像及びV画像に基づいて、表示画像におけるGチャンネルの画像を生成する。
 プロセッサは、例えばCPU(Central Processing Unit)であってもよい。ただし、プロセッサはCPUに限定されるものではなく、GPU(Graphics Processing Unit)、或いはDSP(Digital Signal Processor)等、各種のプロセッサを用いることが可能である。メモリは、SRAM、DRAMなどの半導体メモリであってもよいし、レジスターであってもよいし、ハードディスク装置等の磁気記憶装置であってもよいし、光学ディスク装置等の光学式記憶装置であってもよい。例えば、メモリはコンピュータにより読み取り可能な命令を格納しており、当該命令がプロセッサにより実行されることで、制御装置300の各部の機能が処理として実現されることになる。ここでの命令は、プログラムを構成する命令セットの命令でもよいし、プロセッサのハードウェア回路に対して動作を指示する命令であってもよい。例えば、プロセッサは、図1において処理回路310の機能を実現する。或いは、プロセッサは、図1において処理回路310及び制御回路320の機能を実現する。
 また、本実施形態の内視鏡装置の各部は、プロセッサ上で動作するプログラムのモジュールとして実現されてもよい。例えば、プログラムは、光源装置100を制御することで、第1照明光群GR1と第2照明光群GR2とを交互に発光させる光源制御モジュールと、第1照明光群GR1が照射されたときに撮像素子240により撮像された画像と、第2照明光群GR2が照射されたときに撮像素子240により撮像された画像とに基づいて、表示画像を生成する処理モジュールと、を含む。処理モジュールは、G画像及びV画像に基づいて、表示画像におけるGチャンネルの画像を生成する。
 また、本実施形態の制御装置300の各部が行う処理を実現するプログラムは、例えばコンピュータにより読み取り可能な媒体である情報記憶媒体に格納できる。情報記憶媒体は、例えば光ディスク、メモリカード、HDD、或いは半導体メモリなどにより実現できる。半導体メモリは例えばROMである。処理回路310及び制御回路320は、情報記憶媒体に格納されるプログラムとデータに基づいて本実施形態の種々の処理を行う。即ち情報記憶媒体には、本実施形態の内視鏡装置の各部としてコンピュータを機能させるためのプログラムが記憶される。コンピュータは、入力装置、及び処理部、記憶部、出力部を備える装置である。プログラムは、各部の処理をコンピュータに実行させるためのプログラムである。プログラムは、情報記憶媒体に記録される。ここで、情報記録媒体としては、DVDやCD等の光ディスク、光磁気ディスク、ハードディスク、不揮発性メモリやRAM等のメモリなど、光学式検出システムによって読み取り可能な種々の記録媒体を想定できる。
 2.第1実施形態
 図4、図5は、第1実施形態における照明光のスペクトルである。図4には、第1照明光群に含まれる光のスペクトルを示し、図5には、第2照明光群に含まれる光のスペクトルを示す。
 第1実施形態では、光源装置100は、図3の第1照明光群GR1としてV光及びG光、R光を出射し、図3の第2照明光群GR2としてB光を出射する。
 第1照明光群GR1が出射されるフレームF1、F3において、補間処理部311は、補間処理によりRGB画像を生成し、RGB画像のBチャンネルをV画像として出力し、RGB画像のGチャンネルをG画像として出力し、RGB画像のRチャンネルをR画像として出力する。
 第2照明光群GR2が出射されるフレームF2、F4において、補間処理部311は、補間処理によりRGB画像のBチャンネルを生成し、そのBチャンネルをB画像として出力する。補間処理部311は、Gチャンネル及びRチャンネルを生成しないか、又は生成したとしても出力しない。
 図6は、第1実施形態において特徴量抽出部312が行う処理を示すフローチャートである。
 ステップS1において、特徴量抽出部312は、V画像に対してハイパスフィルタを適用することで、V画像の高周波数成分を抽出する。
 ステップS2において、特徴量抽出部312は、V画像の平均強度を求める。平均強度は、例えば画素値の平均値である。平均強度は画像全体の平均値であってもよいし、画像の各局所領域における平均値であってもよい。特徴量抽出部312は、V画像の平均強度を基準として、G画像の平均強度を補正する。特徴量抽出部312は、例えばV画像とG画像の平均強度が同じになるように補正する、或いはV画像とG画像の平均強度が所定比となるように補正する。
 ステップS3において、特徴量抽出部312は、V画像と、平均強度が補正された後のG画像との間の差分を求める。
 ステップS4において、特徴量抽出部312は、ステップS1において求めた高周波数成分と、ステップS3において求めた差分とを加算する。
 表示画像生成部313は、補間処理部311が出力するR画像及びG画像、B画像を合成することで白色光画像を生成する。表示画像生成部313は、特徴量抽出部312がステップS4において求めた加算値を、白色光画像のGチャンネルに加算することで、強調処理を行う。
 V光の波長においては、ヘモグロビンの吸光係数が高く、且つ粘膜内における散乱係数が可視光の中で相対的に高い。このため、V画像には、粘膜表層の血管が高コントラストで撮像される。従って、上記強調処理により、白色光画像における粘膜表層の血管構造が強調される。
 以上の第1実施形態によれば、撮像素子240がカラーイメージセンサであり、光源装置100が、4つの光源を2つのグループに分けて、その2グループを交互に発光させる。これにより、面順次の回数が2回となり、モノクロ撮像素子を用いて4面順次にする場合に比べて、面順次の回数を低減できる。面順次の回数が多くなるほど、色間の撮影タイミング差が大きくなるので、色ずれが発生しやすい。本実施形態によれば、面順次の回数が2回となるので、色ずれを低減できる。
 また本実施形態によれば、光源装置100が、G光及びV光をフレームF1、F3において同時に発光させ、処理回路310が、G画像を表示画像のGチャンネルに入力し、V画像を用いて表示画像のGチャンネルを強調処理する。このとき、仮にV画像とG画像の撮像タイミングが異なった場合、強調処理されたGチャンネルにおいてエッジが2重になる等の画質低下が生じるおそれがある。3原色のうち緑色は輝度への寄与が大きいため、画質低下の影響が大きくなる。この点、本実施形態によれば、V画像とG画像の撮像タイミングが同じであるため、高画質な強調画像が得られる。
 また、本実施形態によれば、光源装置100は、フレームF1、F3においてG光を発光させ、フレームF2、F4においてG光を発光させない。即ち、交互に繰り返される2つの発光タイミングのうち一方のみにおいてG光が発光される。これにより、混色又はフリッカによる画質低下を低減できる。仮にフレームF2、F4においてもG光が発光されたとする。このとき、撮像素子240のカラーフィルタの感度特性によって、B画像がG光に対して感度を有する。即ち、G光による被写体像がB画像に混ざることになる。このような混色によって表示画像の画質が低下するおそれがある。また、B画像に混ざったG光による被写体像は、G画像とは異なるタイミングで撮像されている。このタイミング差によってフリッカが生じるおそれがある。本実施形態によれば、フレームF2、F4においてG光が発光されないので、混色又はフリッカによる画質低下を低減できる。
 3.第2実施形態
 図7、図8は、第2実施形態における照明光のスペクトルである。図7には、第1照明光群に含まれる光のスペクトルを示し、図8には、第2照明光群に含まれる光のスペクトルを示す。
 第2実施形態では、光源装置100は、図3の第1照明光群GR1としてV光及びG光、R光を出射し、図3の第2照明光群GR2としてB光及びA光を出射する。
 第1照明光群GR1が出射されるフレームF1、F3において、補間処理部311は、補間処理によりRGB画像を生成し、RGB画像のBチャンネルをV画像として出力し、RGB画像のGチャンネルをG画像として出力し、RGB画像のRチャンネルをR画像として出力する。
 第2照明光群GR2が出射されるフレームF2、F4において、補間処理部311は、補間処理によりRGB画像のBチャンネル及びRチャンネルを生成し、BチャンネルをB画像として出力し、RチャンネルA画像として出力する。補間処理部311は、Gチャンネルを生成しないか、又は生成したとしても出力しない。
 図9は、第2実施形態において特徴量抽出部312が行う処理を示すフローチャートである。なお、第2実施形態においても、特徴量抽出部312が図6に示すフローを実行する。図6と図9のフローが実行される順番は任意である。
 ステップS11において、特徴量抽出部312は、A画像に対してハイパスフィルタを適用することで、A画像の高周波数成分を抽出する。ステップS11におけるハイパスフィルタのカットオフ周波数は、図6のステップS1におけるハイパスフィルタのカットオフ周波数と異なってもよい。
 ステップS12において、特徴量抽出部312は、A画像の平均強度を求める。平均強度は、例えば画素値の平均値である。平均強度は画像全体の平均値であってもよいし、画像の各局所領域における平均値であってもよい。特徴量抽出部312は、A画像の平均強度を基準として、G画像の平均強度を補正する。特徴量抽出部312は、例えばA画像とG画像の平均強度が同じになるように補正する、或いはA画像とG画像の平均強度が所定比となるように補正する。
 ステップS13において、特徴量抽出部312は、A画像と、平均強度が補正された後のG画像との間の差分を求める。
 ステップS14において、特徴量抽出部312は、ステップS11において求めた高周波数成分と、ステップS13において求めた差分とを加算する。
 表示画像生成部313は、補間処理部311が出力するR画像及びG画像、B画像を合成することで白色光画像を生成する。表示画像生成部313は、特徴量抽出部312が図6のステップS4及び図9のステップS14において求めた加算値を、白色光画像のGチャンネルに加算することで、強調処理を行う。
 第1実施形態において説明したように、V画像には、粘膜表層の血管が高コントラストで撮像される。また、A光の波長においては、R光の波長に比べてヘモグロビンの吸光係数がある程度存在し、且つ粘膜内における散乱係数が可視光の中で相対的に低い。このため、A画像には、粘膜深層の血管が高コントラストで撮像される。従って、上記強調処理により、白色光画像における粘膜表層及び粘膜深層の血管構造が強調される。
 以上の第2実施形態によれば、第1実施形態と同様に面順次の回数が2回となるので、色ずれを低減できる。また第2実施形態によれば、A画像を用いて表示画像のGチャンネルを強調処理する。このとき、A画像とG画像の撮像タイミングが同じであるため、高画質な強調画像が得られる。また、第2実施形態によれば、第1実施形態と同様にフレームF2、F4においてG光が発光されないので、混色又はフリッカによる画質低下を低減できる。
 4.特徴量抽出部
 図10は、特徴量抽出部312が行う詳細な処理を示すフローチャートである。図10のフローは第1実施形態及び第2実施形態のいずれにも適用可能である。
 ステップS31において、特徴量抽出部312は、V画像の平均強度を求め、そのV画像の平均強度を基準としてG画像の平均強度を補正する。特徴量抽出部312は、この補正を行うことで、G画像の平均的な明るさをV画像の平均的な明るさに合わせる。
 ステップS32において、特徴量抽出部312は、平均強度が補正されたG画像に対してハイパスフィルタを適用する。特徴量抽出部312は、ハイパスフィルタの出力を、G画像の高周波数成分として出力する。
 ステップS33において、特徴量抽出部312は、V画像に対してハイパスフィルタを適用する。特徴量抽出部312は、ハイパスフィルタの出力を、V画像の高周波数成分として出力する。
 ステップS34において、特徴量抽出部312は、ステップS33において算出されたV画像の高周波数成分と、ステップS32において算出されたG画像の高周波数成分との差分を、算出する。
 ステップS35において、特徴量抽出部312は、V画像と、ステップS31において平均強度が補正されたG画像との間の差分を算出する。この差分を強度差分と呼ぶ。強度は各画像における画素値のことである。強度差分は白色光画像の強調に用いられるが、強度差分をそのまま強調処理に用いた場合、血管構造が強調され過ぎるおそれがある。このため、ステップS36~S38において強度差分を抑制する。
 ステップS36において、特徴量抽出部312は、V画像の平均強度を基準としてR画像の平均強度を補正する。特徴量抽出部312は、この補正を行うことで、R画像の平均的な明るさをV画像の平均的な明るさに合わせる。
 ステップS37において、特徴量抽出部312は、V画像と、平均強度が補正されたR画像との間の比率を算出する。比率は強度の比率であり、例えば各画素において比率が算出される。
 ステップS38において、特徴量抽出部312は、ステップS37において算出された比率を用いて、ステップS35において算出された強度差分を抑制する。例えば、ステップS37において、R画像の強度に対する、V画像の強度の比率が算出された場合、特徴量抽出部312は、強度差分を比率で除算する。この演算は例えば各画素に対して行われる。
 ステップS39において、特徴量抽出部312は、ステップS34において算出された高周波数成分の差分と、ステップS38において抑制された強度差分とを、合成する。合成は、例えば加算である。この演算は例えば各画素に対して行われる。
 表示画像生成部313は、特徴量抽出部312がステップS39において求めた合成値を、白色光画像のGチャンネルに加算する。この演算は例えば各画素に対して行われる。このようにして、白色光画像における血管構造がV画像に基づいて強調処理される。
 以上、本発明を適用した実施形態およびその変形例について説明したが、本発明は、各実施形態やその変形例そのままに限定されるものではなく、実施段階では、発明の要旨を逸脱しない範囲内で構成要素を変形して具体化することができる。また、上記した各実施形態や変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、各実施形態や変形例に記載した全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施の形態や変形例で説明した構成要素を適宜組み合わせてもよい。このように、発明の主旨を逸脱しない範囲内において種々の変形や応用が可能である。また、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。
100 光源装置、120 合波部、200 挿入部、210 ライトガイド、220 照明レンズ、230 対物レンズ、240 撮像素子、250 A/D変換回路、260 メモリ、300 制御装置、310 処理回路、311 補間処理部、312 特徴量抽出部、313 表示画像生成部、320 制御回路、400 表示部、500 外部I/F部、F1~F4 フレーム、GR1 第1照明光群、GR2 第2照明光群、IM1 第1表示画像、IM2 第2表示画像、IM3 第3表示画像、LDA,LDB,LDG,LDR,LDV 光源

Claims (13)

  1.  緑色の波長帯域を有する緑色光を含む第1照明光群と、前記緑色光を含まない第2照明光群とを、交互に発光させる光源装置と、
     複数色のカラーフィルタを有する撮像素子と、
     前記第1照明光群が照射されたときに前記撮像素子により撮像された画像と、前記第2照明光群が照射されたときに前記撮像素子により撮像された画像とに基づいて、表示画像を生成する処理回路と、
     を含み、
     前記第1照明光群は、前記緑色光と共に、青色の波長帯域に属する青色狭帯域光を更に含み、
     前記処理回路は、
     前記緑色光により得られる緑色画像、及び前記青色狭帯域光により得られる青色狭帯域画像に基づいて、前記表示画像における緑色チャンネルの画像を生成することを特徴とする内視鏡装置。
  2.  請求項1において、
     前記第1照明光群は、赤色の波長帯域を有する赤色光を含み、
     前記第2照明光群は、青色の波長帯域を有する青色光を含むことを特徴とする内視鏡装置。
  3.  請求項2において、
     前記処理回路は、
     前記赤色光により得られる赤色画像、及び前記緑色画像、前記青色光により得られる青色画像に基づいて、前記表示画像として白色光画像を生成し、
     前記青色狭帯域画像に基づいて、前記緑色チャンネルの画像に対する構造強調処理を行うことを特徴とする内視鏡装置。
  4.  請求項1において、
     前記光源装置は、
     第1フレームにおいて前記第1照明光群を発光させ、第2フレームにおいて前記第2照明光群を発光させ、第3フレームにおいて前記第1照明光群を発光させ、第4フレームにおいて前記第2照明光群を発光させ、
     前記処理回路は、
     前記第1フレームにおいて前記撮像素子により撮像された画像と、前記第2フレームにおいて前記撮像素子により撮像された画像とに基づいて、第1表示画像を生成し、前記第2フレームにおいて前記撮像素子により撮像された画像と、前記第3フレームにおいて前記撮像素子により撮像された画像とに基づいて、第2表示画像を生成し、前記第3フレームにおいて前記撮像素子により撮像された画像と、前記第4フレームにおいて前記撮像素子により撮像された画像とに基づいて、第3表示画像を生成することを特徴とする内視鏡装置。
  5.  請求項1において、
     前記第2照明光群は、赤色の波長帯域に属する赤色狭帯域光を含み、
     前記処理回路は、
     前記緑色画像、及び前記青色狭帯域画像、前記赤色狭帯域光により得られる赤色狭帯域画像に基づいて、前記表示画像における前記緑色チャンネルの画像を生成することを特徴とする内視鏡装置。
  6.  請求項1において、
     前記青色狭帯域光のピーク波長は、415±20nmの範囲内であることを特徴とする内視鏡装置。
  7.  請求項5において、
     前記赤色狭帯域光のピーク波長は、600±20nmの範囲内であることを特徴とする内視鏡装置。
  8.  請求項1において、
     前記処理回路は、
     前記緑色画像及び前記青色狭帯域画像に基づいて、被写体の構造に関する特徴量を抽出することを特徴とする内視鏡装置。
  9.  請求項8において、
     前記処理回路は、
     前記特徴量を前記緑色画像に合成することで、前記表示画像における前記被写体の構造を強調することを特徴とする内視鏡装置。
  10.  緑色の波長帯域を有する緑色光を含む第1照明光群と、前記緑色光を含まない第2照明光群とを、交互に発光させる光源装置と、
     複数色のカラーフィルタを有する撮像素子と、
     前記第1照明光群が照射されたときに前記撮像素子により撮像された画像と、前記第2照明光群が照射されたときに前記撮像素子により撮像された画像とに基づいて、表示画像を生成する処理回路と、
     を含み、
     前記第1照明光群は、前記緑色光と共に、赤色の波長帯域に属する狭帯域の赤色狭帯域光を更に含み、
     前記処理回路は、
     前記緑色光により得られる緑色画像、及び前記赤色狭帯域光により得られる赤色狭帯域画像に基づいて、前記表示画像における緑色チャンネルの画像を生成することを特徴とする内視鏡装置。
  11.  第1色の波長帯域を有する第1色光を含む第1照明光群と、前記第1色光を含まない第2照明光群とを、交互に発光させる光源装置と、
     複数色のカラーフィルタを有する撮像素子と、
     前記第1照明光群が照射されたときに前記撮像素子により撮像された画像と、前記第2照明光群が照射されたときに前記撮像素子により撮像された画像とに基づいて、表示画像を生成する処理回路と、
     を含み、
     前記第1照明光群は、前記第1色光と共に、第2色の波長帯域に属する狭帯域の第2色狭帯域光を更に含み、
     前記処理回路は、
     前記第1色光により得られる第1色画像、及び前記第2色狭帯域光により得られる第2色狭帯域画像に基づいて、前記表示画像における緑色チャンネルの画像を生成することを特徴とする内視鏡装置。
  12.  複数色のカラーフィルタを有する撮像素子を含む内視鏡装置の作動方法であって、
     緑色の波長帯域を有する緑色光、及び青色の波長帯域に属する狭帯域の青色狭帯域光を含む第1照明光群と、前記緑色光を含まない第2照明光群とを、交互に発光させ、
     前記第1照明光群が照射されたときに前記撮像素子により撮像された画像と、前記第2照明光群が照射されたときに前記撮像素子により撮像された画像とに基づいて、表示画像を生成し、
     前記表示画像を生成する際に、前記緑色光により得られる緑色画像、及び前記青色狭帯域光により得られる青色狭帯域画像に基づいて、前記表示画像における緑色チャンネルの画像を生成することを特徴とする内視鏡装置の作動方法。
  13.  複数色のカラーフィルタを有する撮像素子により撮像された画像を処理するための画像処理プログラムであって、
     第1照明光群が、緑色の波長帯域を有する緑色光、及び青色の波長帯域に属する狭帯域の青色狭帯域光を含み、第2照明光群が、前記緑色光を含まない場合において、
     前記第1照明光群が照射されたときに前記撮像素子により撮像された画像と、前記第2照明光群が照射されたときに前記撮像素子により撮像された画像とに基づいて、表示画像を生成し、
     前記表示画像を生成する際に、前記緑色光により得られる緑色画像、及び前記青色狭帯域光により得られる青色狭帯域画像に基づいて、前記表示画像における緑色チャンネルの画像を生成するステップを、
     コンピュータに実行させる画像処理プログラム。
PCT/JP2018/030434 2018-08-16 2018-08-16 内視鏡装置、内視鏡装置の作動方法及び画像処理プログラム WO2020035929A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020537335A JPWO2020035929A1 (ja) 2018-08-16 2018-08-16 内視鏡装置、内視鏡装置の作動方法及び画像処理プログラム
PCT/JP2018/030434 WO2020035929A1 (ja) 2018-08-16 2018-08-16 内視鏡装置、内視鏡装置の作動方法及び画像処理プログラム
US17/133,793 US12023007B2 (en) 2018-08-16 2020-12-24 Endoscope apparatus and operation method of endoscope apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/030434 WO2020035929A1 (ja) 2018-08-16 2018-08-16 内視鏡装置、内視鏡装置の作動方法及び画像処理プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/133,793 Continuation US12023007B2 (en) 2018-08-16 2020-12-24 Endoscope apparatus and operation method of endoscope apparatus

Publications (1)

Publication Number Publication Date
WO2020035929A1 true WO2020035929A1 (ja) 2020-02-20

Family

ID=69525303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030434 WO2020035929A1 (ja) 2018-08-16 2018-08-16 内視鏡装置、内視鏡装置の作動方法及び画像処理プログラム

Country Status (3)

Country Link
US (1) US12023007B2 (ja)
JP (1) JPWO2020035929A1 (ja)
WO (1) WO2020035929A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210044750A1 (en) * 2018-05-14 2021-02-11 Fujifilm Corporation Image processing apparatus, endoscope system, and image processing method
WO2022140444A1 (en) * 2020-12-22 2022-06-30 Stryker Corporation Systems and methods for medical imaging illumination

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7019039B2 (ja) * 2018-06-05 2022-02-14 オリンパス株式会社 内視鏡装置、内視鏡装置の作動方法及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016032494A (ja) * 2014-07-30 2016-03-10 富士フイルム株式会社 内視鏡システム、内視鏡システムの作動方法、光源装置、光源装置の作動方法
JP2016077756A (ja) * 2014-10-21 2016-05-16 富士フイルム株式会社 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP2016131837A (ja) * 2015-01-22 2016-07-25 富士フイルム株式会社 内視鏡用のプロセッサ装置、内視鏡用のプロセッサ装置の作動方法、内視鏡用の制御プログラム、及び内視鏡システム

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL151049A0 (en) * 2001-08-02 2003-04-10 Given Imaging Ltd In vivo imaging methods and devices
JP2009165553A (ja) * 2008-01-11 2009-07-30 Olympus Medical Systems Corp 医療用画像処理装置及び医療用撮像システム
JP5658873B2 (ja) * 2009-11-13 2015-01-28 オリンパス株式会社 画像処理装置、電子機器、内視鏡システム及びプログラム
JP5802364B2 (ja) * 2009-11-13 2015-10-28 オリンパス株式会社 画像処理装置、電子機器、内視鏡システム及びプログラム
JP5501210B2 (ja) 2010-12-16 2014-05-21 富士フイルム株式会社 画像処理装置
JP5309120B2 (ja) * 2010-12-20 2013-10-09 富士フイルム株式会社 内視鏡装置
JP5355827B1 (ja) * 2012-03-30 2013-11-27 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP5925169B2 (ja) * 2013-09-27 2016-05-25 富士フイルム株式会社 内視鏡システム及びその作動方法並びに内視鏡用光源装置
JP5892985B2 (ja) * 2013-09-27 2016-03-23 富士フイルム株式会社 内視鏡システム及びプロセッサ装置並びに作動方法
JP6196900B2 (ja) * 2013-12-18 2017-09-13 オリンパス株式会社 内視鏡装置
US10052015B2 (en) * 2014-09-30 2018-08-21 Fujifilm Corporation Endoscope system, processor device, and method for operating endoscope system
JP6210962B2 (ja) * 2014-09-30 2017-10-11 富士フイルム株式会社 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
WO2016117112A1 (ja) * 2015-01-23 2016-07-28 オリンパス株式会社 画像処理装置、画像処理方法および画像処理プログラム
DE112015006176T5 (de) * 2015-03-19 2017-10-26 Olympus Corporation Endoskopvorrichtung
JP6461742B2 (ja) * 2015-07-31 2019-01-30 富士フイルム株式会社 内視鏡システム及び内視鏡システムの作動方法
WO2017216878A1 (ja) * 2016-06-14 2017-12-21 オリンパス株式会社 内視鏡装置
JP6762816B2 (ja) * 2016-09-08 2020-09-30 富士フイルム株式会社 内視鏡システム及びその作動方法
JP6576895B2 (ja) * 2016-09-29 2019-09-18 富士フイルム株式会社 内視鏡システム、プロセッサ装置、及び内視鏡システムの作動方法
JP6710151B2 (ja) * 2016-12-02 2020-06-17 富士フイルム株式会社 内視鏡装置及び内視鏡装置の作動方法
JP7219208B2 (ja) * 2017-03-10 2023-02-07 ソニー・オリンパスメディカルソリューションズ株式会社 内視鏡装置
WO2018229831A1 (ja) * 2017-06-12 2018-12-20 オリンパス株式会社 内視鏡システム
JP6909856B2 (ja) * 2017-08-23 2021-07-28 富士フイルム株式会社 内視鏡システム
WO2019049376A1 (ja) * 2017-09-11 2019-03-14 オリンパス株式会社 内視鏡システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016032494A (ja) * 2014-07-30 2016-03-10 富士フイルム株式会社 内視鏡システム、内視鏡システムの作動方法、光源装置、光源装置の作動方法
JP2016077756A (ja) * 2014-10-21 2016-05-16 富士フイルム株式会社 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP2016131837A (ja) * 2015-01-22 2016-07-25 富士フイルム株式会社 内視鏡用のプロセッサ装置、内視鏡用のプロセッサ装置の作動方法、内視鏡用の制御プログラム、及び内視鏡システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210044750A1 (en) * 2018-05-14 2021-02-11 Fujifilm Corporation Image processing apparatus, endoscope system, and image processing method
US11563921B2 (en) * 2018-05-14 2023-01-24 Fujifilm Corporation Image processing apparatus, endoscope system, and image processing method
WO2022140444A1 (en) * 2020-12-22 2022-06-30 Stryker Corporation Systems and methods for medical imaging illumination
US12035894B2 (en) 2020-12-22 2024-07-16 Stryker Corporation Systems and methods for medical imaging illumination

Also Published As

Publication number Publication date
US20210145266A1 (en) 2021-05-20
JPWO2020035929A1 (ja) 2021-08-10
US12023007B2 (en) 2024-07-02

Similar Documents

Publication Publication Date Title
JP6367683B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
US9582878B2 (en) Image processing device and operation method therefor
US12023007B2 (en) Endoscope apparatus and operation method of endoscope apparatus
JP6234350B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
US10039439B2 (en) Endoscope system and method for operating the same
JP5808031B2 (ja) 内視鏡システム
US10003774B2 (en) Image processing device and method for operating endoscope system
JP6047467B2 (ja) 内視鏡システム及びその作動方法
JP2017164393A (ja) 内視鏡システム及びその作動方法
JP5670400B2 (ja) 内視鏡システム及びそのプロセッサ装置並びに内視鏡システムの作動方法
JP6576895B2 (ja) 内視鏡システム、プロセッサ装置、及び内視鏡システムの作動方法
JPWO2019039354A1 (ja) 光源装置及び内視鏡システム
US20210088772A1 (en) Endoscope apparatus, operation method of endoscope apparatus, and information storage media
JP7019039B2 (ja) 内視鏡装置、内視鏡装置の作動方法及びプログラム
US11789283B2 (en) Imaging apparatus
US12053148B2 (en) Endoscope apparatus, operating method of endoscope apparatus, and information storage medium
JPWO2020008527A1 (ja) 内視鏡装置、内視鏡装置の作動方法及びプログラム
JP6153913B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
WO2021152704A1 (ja) 内視鏡装置、内視鏡装置の作動方法及び画像処理プログラム
JP6153912B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP6896053B2 (ja) 特に顕微鏡および内視鏡のための、蛍光発光性蛍光体のhdrモノクローム画像を作成するためのシステムおよび方法
JP6615950B2 (ja) 内視鏡システム、プロセッサ装置、内視鏡システムの作動方法、及びプロセッサ装置の作動方法
JP7090699B2 (ja) 内視鏡装置及び内視鏡装置の作動方法
WO2021019663A1 (ja) 内視鏡用光源装置及び内視鏡装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020537335

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929865

Country of ref document: EP

Kind code of ref document: A1