WO2020034715A1 - Aog天线系统及移动终端 - Google Patents

Aog天线系统及移动终端 Download PDF

Info

Publication number
WO2020034715A1
WO2020034715A1 PCT/CN2019/088768 CN2019088768W WO2020034715A1 WO 2020034715 A1 WO2020034715 A1 WO 2020034715A1 CN 2019088768 W CN2019088768 W CN 2019088768W WO 2020034715 A1 WO2020034715 A1 WO 2020034715A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
metal
aog
antenna system
metal antenna
Prior art date
Application number
PCT/CN2019/088768
Other languages
English (en)
French (fr)
Inventor
夏晓岳
雍征东
邾志民
王超
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020034715A1 publication Critical patent/WO2020034715A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to an AOG (Antenna On Glass, glass surface antenna) antenna system and a mobile terminal.
  • AOG Antenna On Glass, glass surface antenna
  • 5G is the focus of research and development in the global industry, and it has become the consensus of the industry to develop 5G technologies and formulate 5G standards.
  • ITU-RWP5D held in June 2015
  • the International Telecommunication Union ITU identified three main application scenarios of 5G: enhanced mobile broadband, large-scale machine communication, and high-reliability low-latency communication. These three application scenarios respectively correspond to different key indicators.
  • the peak user speed is 20Gbps
  • the minimum user experience rate is 100Mbps.
  • 3GPP is currently standardizing 5G technology.
  • the first 5G Non-Independent Networking (NSA) international standard was officially completed and frozen in December 2017. It is planned to complete the 5G independent networking standard in June 2018.
  • NSA Non-Independent Networking
  • the rich bandwidth resources of the millimeter-wave band provide a guarantee for high-speed transmission rates.
  • wireless communication systems using the millimeter-wave band need to use a phased array architecture.
  • the phase shifter is used to make the phase of each array element distribute according to a certain law, so as to form a high-gain beam, and the beam is scanned in a certain spatial range by changing the phase shift.
  • the antenna is an indispensable part of the RF front-end system. While the RF circuit is moving towards integration and miniaturization, the system integration and packaging of the antenna and the RF front-end circuit has become an inevitable trend in the future development of the RF front-end.
  • the packaged antenna (AiP) technology integrates the antenna in the package carrying the chip through packaging materials and processes, which takes into account the antenna performance, cost and volume, and is favored by the majority of chip and package manufacturers. At present, Qualcomm, Intel, IBM and other companies have adopted packaged antenna technology. There is no doubt that AiP technology will also provide a good antenna solution for 5G millimeter wave mobile communication systems.
  • Metal frame with 3D glass is the mainstream solution in the design of full-screen mobile phones in the future, which can provide better protection, aesthetics, heat diffusion, color, and user experience.
  • 3D glass due to the higher dielectric constant of 3D glass, it will seriously affect the radiation performance of millimeter-wave antennas and reduce the antenna array gain.
  • the overall thickness of the antenna system is large, which does not meet the miniaturization requirements of the antenna system. .
  • An object of the present invention is to provide an AOG antenna system and a mobile terminal, which can greatly reduce the influence of the 3D glass back cover on the antenna system of the mobile terminal and greatly reduce the thickness of the antenna system.
  • An AOG antenna system is applied to a mobile terminal.
  • the mobile terminal includes a 3D glass back cover and a motherboard disposed at a distance from the 3D glass back cover.
  • the AOG antenna system includes a A metal antenna on the surface of the 3D glass back cover and a packaged feed module provided between the 3D glass back cover and the main board and electrically connected to the main board, the packaged feed module and the metal
  • the positions of the antennas correspond to and are coupled to the metal antennas for feeding.
  • the AOG antenna system is a millimeter wave phased array antenna system.
  • the packaged feeding module includes a substrate, an integrated circuit chip provided on a side of the substrate facing the motherboard, a feeding network and connection provided in the substrate and opposite to the metal antenna.
  • the feeding network and a circuit of the integrated circuit chip, the feeding network is coupled to the metal antenna for feeding, and the circuit is electrically connected to the motherboard.
  • the feeding network is a strip line, which includes a first metal layer close to the metal antenna, a second metal layer spaced apart from the first metal layer, and sandwiched between the first metal layer.
  • a slot is provided at the position, the feeding network is coupled to feed the metal antenna through the slot, and the strip line layer is electrically connected to the circuit.
  • the metal antenna is a one-dimensional linear array, which includes a plurality of metal antenna units, and the number of the slots matches the number of the metal antenna units, and each of the metal antenna units communicates with all of the antennas through the slots.
  • the feeding network is described as coupled feeding.
  • the orthographic projection of the slot in the direction of the metal antenna unit is completely within the range of the metal antenna unit.
  • the metal antenna is formed on the surface of the 3D glass back cover by a printed conductive silver paste method or a printed LDS ink method.
  • the metal antenna is selected from one of a square patch antenna, a loop patch antenna, a circular patch antenna, and a cross-shaped patch antenna.
  • a protective film is applied on the surface of the metal antenna.
  • the present invention also provides a mobile terminal including the AOG antenna system.
  • the AOG antenna system and mobile terminal have the following beneficial effects: by providing a metal antenna on the surface of a 3D glass back cover, and coupling and feeding the metal antenna through a package feed module, The earth reduces the influence of the 3D glass back cover on the antenna system.
  • the antenna has high radiation efficiency and small gain reduction, which ensures the communication effect and reduces the space occupied by the AOG antenna system.
  • the millimeter-wave phased array antenna system uses wires. Arrays, rather than flat arrays, occupy a small space in the phone and only need to scan an angle, which simplifies design difficulty, test difficulty, and complexity of beam management.
  • FIG. 1 is a schematic diagram of a three-dimensional structure of a mobile terminal provided by the present invention
  • FIG. 2 is a schematic plan structural view of a part of the structure of the mobile terminal shown in FIG. 1;
  • FIG. 3 is a schematic diagram of a layered structure of the feeding network shown in FIG. 1;
  • FIG. 5 is a graph of a reflection coefficient of an AOG antenna system provided by the present invention.
  • FIG. 6 is a coverage efficiency graph of an AOG antenna system provided by the present invention.
  • the present invention provides a mobile terminal 100.
  • the mobile terminal 100 may be a mobile phone, an iPad, a POS machine, and the like.
  • the present invention is not limited thereto.
  • the mobile terminal 100 includes a frame 1 and a cover.
  • the frame 1 and a 3D glass back cover 2 surrounding the housing space 2 and a main board 3 housed in the storage space and spaced from the 3D glass back cover 2 and an AOG antenna system electrically connected to the main board 3 4.
  • the 3D glass back cover 2 can be covered on the frame 1 with an adhesive, or a corresponding buckle structure can be provided on the frame 1 and the 3D glass back cover 2 respectively, so that the 3D glass back cover 2 can
  • the frame 1 is fixedly connected to the frame 1 by a snapping method, or the frame 1 and the 3D glass back cover are integrally formed.
  • the 3D glass back cover 2 can provide better protection, aesthetics, heat diffusion, color, and user experience.
  • the AOG antenna system 4 can receive and send electromagnetic wave signals, thereby realizing the communication function of the mobile terminal 100.
  • the A0G antenna system 4 may be connected to the motherboard 3 through a BGA packaging technology.
  • the AOG antenna system 4 is a millimeter wave phased array antenna system. Specifically, the AOG antenna system 4 includes a metal antenna 41 provided on a surface of the 3D glass back cover 2 and a 3D glass back cover 2 and A packaged feeding module 42 electrically connected between the main boards 3 and electrically connected to the main board 3.
  • the packaged feeding module 42 corresponds to the position of the metal antenna 41 and is coupled to the metal antenna 41 for feeding.
  • the metal antenna 41 may be provided on the outer surface or the inner surface of the 3D glass back cover 2, wherein the outer surface of the 3D glass back cover 2 is a side away from the main board 3, and the 3D The inner surface of the glass back cover 2 is a side close to the main board 3.
  • the metal antenna 41 is selected from one of a square patch antenna, a loop patch antenna, a circular patch antenna, and a cross-shaped patch antenna.
  • the metal antenna 41 is a square patch antenna.
  • the metal antenna 41 may also be selected from other types of antennas.
  • Each surface of the 3D glass back cover 2 may be all designed as a flat surface, or a part of the surface may be designed as a flat surface, and another part of the surface may be designed as a curved surface, so as to satisfy different users' demands for products.
  • the metal antenna 41 is formed on the surface of the 3D glass back cover 2 by a printed conductive silver paste method or a printed LDS ink method.
  • the metal antenna 41 can be designed near the logo, or a protective film can be affixed on the surface of the metal antenna 41 to avoid affecting the aesthetics, and It can protect the antenna, and the protective film is preferably a low dielectric layer film or plastic.
  • the metal antenna 41 is a one-dimensional linear array, and the space occupied in the mobile phone is narrow, and only one angle needs to be scanned, which simplifies design difficulty, test difficulty, and complexity of beam management.
  • the metal antenna 41 is a 1 * 4 linear array, that is, the metal antenna 41 includes four metal antenna units 411.
  • the package feed module 42 includes a substrate 421, an integrated circuit chip 422 disposed on a side of the substrate 421 facing the motherboard 3, and a feeder disposed in the substrate 421 and disposed opposite to the metal antenna 41.
  • the substrate 421 is used to carry the feeding network 423, and the substrate 421 may be integrally formed or layered.
  • the integrated circuit chip 422 is fixedly connected to the substrate 421 through an inverted stake welding process.
  • the feeding network 423 is a strip line, which has easy impedance control and good shielding, which can effectively reduce electromagnetic energy loss and improve antenna efficiency.
  • the feeding network 423 includes a first metal layer 4321 near the metal antenna 41, a second metal layer 4232 disposed at a distance from the first metal layer 4231, and interposed between the first metal layer 4231 and the first metal layer 4231.
  • the strip line layer 4233 between the second metal layers 4232 is described.
  • the first metal layer 4231 is provided with a slot 40 at a position corresponding to the metal antenna 41, and the feeding network 423 is coupled to feed the metal antenna 41 through the slot 40.
  • the number of the slots 40 matches the number of the metal antenna units 411.
  • Each of the metal antenna units 411 is coupled to the feeding network 423 through the slots 40, and specifically, electromagnetic energy passes through the The slot 40 is coupled to the metal antenna unit 411.
  • the number of the slits 40 is four, and each of the slits 40 is disposed corresponding to one of the metal antenna units 411, and the cross-sectional shape of the slits 40 is “I” -shaped.
  • the cross-sectional shape of the slot 40 may also be a square, a circle or a triangle, which is not limited in the present invention.
  • the orthographic projection of the slot 40 in the direction of the metal antenna unit 411 completely falls within the range of the metal antenna unit 411.
  • the packaged feeding module 42 is laminated by using a PCB process or an LTCC process.
  • the AOG antenna system 4 in this embodiment designs the metal antenna 41 on the 3D glass back cover 2 and only designs a feeding structure on the substrate 421 as the
  • the packaging structure of the integrated circuit chip 422 can reduce the space occupied by the AOG antenna system 4 as a whole. Specifically, according to the bandwidth of 5G communication n257, taking a 1 * 4 array as an example, the thickness of the AOG antenna system 4 can be reduced by at least 0.4mm, and the area is reduced from 5.5mm * 12mm to 3mm * 10mm.
  • the dielectric constant of the 3D glass back cover 2 is 6.3 + i0.039, and the thickness is 0.7mm;
  • the substrate 421 of the package feed module 42 is a 6-layer high-frequency low-loss PCB
  • the board is made by pressing.
  • the core layer is made of Rogers4350B with a thickness of 0.254mm.
  • the remaining dielectric layer is made of Rogers4450F with a thickness of 0.2mm.
  • this application does not limit the dielectric constant of the 3D glass back cover 2, nor does it limit the number, thickness, and manufacturing method of the substrate 411 of the power feeding module 42.
  • FIG. 4 (a) is a radiation pattern of a phase shift of 45 ° for each metal antenna unit in the AOG antenna system provided by the present invention
  • FIG. 4 (b) is the present invention.
  • the radiation pattern of the phase shift of each metal antenna unit is 0 °
  • FIG. 4 (c) is the radiation of the phase shift of each metal antenna unit in the AOG antenna system provided by the present invention is -45 °
  • Directional diagram is a graph of a reflection coefficient of the antenna system provided by the present invention.
  • 3D glass back cover 2 As the back cover of a mobile phone, it will seriously affect the radiation performance of the antenna system housed inside it, reduce the radiation efficiency, reduce the gain, and the radiation pattern distortion due to the influence of surface waves.
  • electromagnetic energy is transmitted from the packaged feed module 42 to the metal antenna 41 in a coupling manner, thereby radiating outward.
  • FIG. 6 is a coverage efficiency curve diagram of an AOG antenna system provided by the present invention. It can be known from FIG. 6 that when the coverage efficiency is 50%, the gain threshold of the AOG antenna system 4 decreases by 12dB, and in the 3GPP discussion, for 50% coverage efficiency, the gain threshold decreases to 12.98dB. Therefore, the description The AOG antenna system 4 of the present invention has better coverage efficiency.
  • the AOG antenna system 4 and the mobile terminal 100 provided by the present invention have the following beneficial effects: a metal antenna 41 is provided on the surface of the 3D glass back cover 2, and the feeding module 42 is connected to the metal antenna
  • the coupling feed greatly reduces the influence of the 3D glass back cover on the antenna system.
  • the antenna has high radiation efficiency and small gain reduction, which ensures the communication effect and reduces the space occupied by the AOG antenna system 4.
  • the millimeter wave phase The array-controlled antenna system uses a linear array instead of a planar array. The space occupied in the mobile phone becomes narrower. It only needs to scan an angle, which simplifies the design difficulty, test difficulty, and complexity of beam management.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Telephone Set Structure (AREA)
  • Support Of Aerials (AREA)

Abstract

本发明提供了一种AOG天线系统及移动终端。所述AOG天线系统包括3D玻璃后盖和与所述3D玻璃后盖相对间隔设置的主板,所述AOG天线系统包括贴设于所述3D玻璃后盖表面的金属天线及设于所述3D玻璃后盖和所述主板之间并与所述主板电连接的封装馈电模组,所述封装馈电模组与所述金属天线的位置相对应,并与所述金属天线耦合馈电。与相关技术相比,本发明提供的AOG天线系统通过在3D玻璃后盖表面设置金属天线,并通过封装馈电模组与所述金属天线耦合馈电,极大地降低了3D玻璃后盖对天线系统的影响,天线辐射效率高,增益降低小,同时可大幅缩减天线系统的厚度,节约空间。

Description

AOG天线系统及移动终端 技术领域
本发明涉及无线通信技术领域,尤其涉及一种AOG(Antenna On Glass,玻璃表面天线)天线系统及移动终端。
背景技术
5G作为全球业界的研发焦点,发展5G技术制定5G标准已经成为业界共识。国际电信联盟 ITU 在 2015 年 6 月召开的 ITU-RWP5D 第 22 次会议上明确了 5G 的三个主要应用场景:增强型移动宽带、大规模机器通信、高可靠低延时通信。这三个应用场景分别对应着不同的关键指标,其中增强型移动带宽场景下用户峰值速度为20Gbps,最低用户体验速率为100Mbps。目前3GPP正在对5G技术进行标准化工作,第一个5G非独立组网(NSA)国际标准于2017年12月正式完成并冻结,并计划在2018年6月完成5G独立组网标准。3GPP会议期间诸多关键技术和系统架构等研究工作得到迅速聚焦,其中包含毫米波技术。毫米波独有的高载频、大带宽特性是实现5G超高数据传输速率的主要手段。
毫米波频段丰富的带宽资源为高速传输速率提供了保障,但是由于该频段电磁波剧烈的空间损耗,利用毫米波频段的无线通信系统需要采用相控阵的架构。通过移相器使得各个阵元的相位按一定规律分布,从而形成高增益波束,并且通过相移的改变使得波束在一定空间范围内扫描。
天线作为射频前端系统中不可缺少的部件,在射频电路向着集成化、小型化方向发展的同时,将天线与射频前端电路进行系统集成和封装成为未来射频前端发展的必然趋势。封装天线(AiP)技术是通过封装材料与工艺将天线集成在携带芯片的封装内,很好地兼顾了天线性能、成本及体积,深受广大芯片及封装制造商的青睐。目前高通,Intel,IBM等公司都采用了封装天线技术。毋庸置疑,AiP技术也将为5G毫米波移动通信系统提供很好的天线解决方案。
金属中框配合3D玻璃是未来全面屏手机结构设计中的主流方案,能提供更好的保护、美观度、热扩散、色彩度以及用户体验。然而由于3D玻璃较高的介电常数,会严重影响毫米波天线的辐射性能,降低天线阵列增益,并且相关的天线封装技术中,天线系统的整体厚度较大,不满足天线系统的微小化需求。
因此,实有必要提供一种新的天线系统及移动终端以解决上述问题。
技术问题
本发明的目的在于提供一种AOG天线系统及移动终端,其能够极大降低3D玻璃后盖对移动终端的天线系统的影响并可大幅缩减天线系统的厚度。
技术解决方案
本发明的技术方案如下:一种AOG天线系统,应用于移动终端,所述移动终端包括3D玻璃后盖和与所述3D玻璃后盖相对间隔设置的主板,所述AOG天线系统包括贴设于所述3D玻璃后盖表面的金属天线及设于所述3D玻璃后盖和所述主板之间并与所述主板电连接的封装馈电模组,所述封装馈电模组与所述金属天线的位置相对应,并与所述金属天线耦合馈电。
优选的,所述AOG天线系统为毫米波相控阵天线系统。
优选的,所述封装馈电模组包括基板、设于所述基板朝向所述主板的一侧的集成电路芯片、设于所述基板内并与所述金属天线相对设置的馈电网络及连接所述馈电网络与所述集成电路芯片的电路,所述馈电网络与所述金属天线耦合馈电,所述电路与所述主板电连接。
优选的,所述馈电网络为带状线,其包括靠近所述金属天线的第一金属层、与所述第一金属层相对间隔设置的第二金属层以及夹设于所述第一金属层和所述第二金属层之间的带状线路层,所述带状线路层与所述第一金属层和所述第二金属层间隔设置,所述第一金属层对应所述金属天线的位置设有缝隙,所述馈电网络通过所述缝隙与所述金属天线耦合馈电,所述带状线路层与所述电路电连接。
优选的,所述金属天线为一维直线阵,其包括多个金属天线单元,所述缝隙的数量与所述金属天线单元的数量相匹配,每个所述金属天线单元通过所述缝隙与所述馈电网络耦合馈电。
优选的,所述缝隙向所述金属天线单元方向的正投影完全位于所述金属天线单元的范围内。
优选的,所述金属天线通过印刷导电银浆法或者印刷LDS油墨法成型于所述3D玻璃后盖表面。
优选的,所述金属天线选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种。
优选的,所述金属天线表面贴敷有保护膜。
本发明还提供一种移动终端,其包括所述的AOG天线系统。
有益效果
与相关技术相比,本发明提供的AOG天线系统及移动终端具有如下有益效果:通过在3D玻璃后盖的表面设置金属天线,并通过封装馈电模组与所述金属天线耦合馈电,极大地降低了3D玻璃后盖对天线系统的影响,天线辐射效率高,增益降低小,保证了通信效果,减少了所述AOG天线系统所占用的空间;所述毫米波相控阵天线系统采用线阵而非平面阵,在手机中占用的空间窄,只需扫描一个角度,简化了设计难度、测试难度、以及波束管理的复杂度。
附图说明
图1为本发明提供的移动终端的立体结构示意图;
图2为图1所示的移动终端的部分结构的平面结构示意图;
图3为图1所示的馈电网络的分层结构示意图;
图4(a)为本发明提供的AOG天线系统中,各金属天线单元的相移为45°的辐射方向图;
图4(b)为本发明提供的AOG天线系统中,各金属天线单元的相移为0°的辐射方向图;
图4(c)为本发明提供的AOG天线系统中,各金属天线单元的相移为-45°的辐射方向图;
图5为本发明提供的AOG天线系统的反射系数曲线图;
图6为本发明提供的AOG天线系统的覆盖效率曲线图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。
如图1-3所示,本发明提供一种移动终端100,该移动终端100可以是手机、ipad以及POS机等,本发明对此不作限定,所述移动终端100包括边框1、盖合于所述边框1并与其围成收容空间的3D玻璃后盖2、收容于所述收容空间内并与所述3D玻璃后盖2间隔设置的主板3和与所述主板3电连接的AOG天线系统4。
所述3D玻璃后盖2可以通过胶粘剂盖合在所述边框1上,或者可以在所述边框1和所述3D玻璃后盖2上分别设置相应的卡扣结构,使得3D玻璃后盖2可以通过卡接方式固定连接在所述边框1上,或者所述边框1与所述3D玻璃后盖一体成型。所述3D玻璃后盖2能提供更好的保护、美观度、热扩散、色彩度以及用户体验。
所述AOG天线系统4可以接收和发送电磁波信号,进而实现所述移动终端100的通信功能。具体地,所述A0G天线系统4可以通过BGA封装技术与所述主板3连接。
所述AOG天线系统4为毫米波相控阵天线系统,具体地,所述AOG天线系统4包括设于所述3D玻璃后盖2表面的金属天线41及设于所述3D玻璃后盖2和所述主板3之间并与所述主板3电连接的封装馈电模组42。所述封装馈电模组42与所述金属天线41的位置相对应,并与所述金属天线41耦合馈电。需要说明的是,所述金属天线41可设于所述3D玻璃后盖2的外表面或内表面,其中所述3D玻璃后盖2的外表面为远离所述主板3的一面,所述3D玻璃后盖2的内表面为靠近所述主板3的一面。
本实施方式中,所述金属天线41选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种。优选的,所述金属天线41为正方形贴片天线。当然,在其他实施方式中,所述金属天线41也可以选用其他形式的天线。
所述3D玻璃后盖2的各个表面可以全部设计为平面,或者部分表面设计为平面,另一部分表面设计为曲面,以满足不同用户对产品的需求。所述金属天线41通过印刷导电银浆法或者印刷LDS油墨法成型于所述3D玻璃后盖2的表面。同时,为避免所述金属天线41影响所述移动终端100的美观度,可以将所述金属天线41设计在Logo附近,或者在所述金属天线41表面贴敷保护膜,既避免影响美观,又可以起到保护天线的作用,所述保护膜优选为低介电层薄膜或塑料。
进一步的,所述金属天线41为一维直线阵,在手机中占用的空间窄,并只需扫描一个角度,简化了设计难度、测试难度、以及波束管理的复杂度。优选的,所述金属天线41为1*4的直线阵,即所述金属天线41包括四个金属天线单元411。
所述封装馈电模组42包括基板421、设于所述基板421朝向所述主板3的一侧的集成电路芯片422、设于所述基板421内并与所述金属天线41相对设置的馈电网络423及连接所述馈电网络423与所述集成电路芯片422的电路424,所述馈电网络423与所述金属天线41耦合馈电,所述电路424与所述主板3电连接。
所述基板421用于承载所述馈电网络423,所述基板421可以一体成型,也可以分层设置。
所述集成电路芯片422通过倒桩焊工艺与所述基板421固定连接。
所述馈电网络423为带状线,阻抗容易控制,同时屏蔽较好,可以有效减少电磁能量的损耗,提高天线效率。所述馈电网络423包括靠近所述金属天线41的第一金属层4231、与所述第一金属层4231相对间隔设置的第二金属层4232及夹设于所述第一金属层4231和所述第二金属层4232之间的带状线路层4233。
所述第一金属层4231对应所述金属天线41的位置设有缝隙40,所述馈电网络423通过所述缝隙40与所述金属天线41耦合馈电。
所述缝隙40的数量与所述金属天线单元411的数量相匹配,每个所述金属天线单元411通过所述缝隙40与所述馈电网络423耦合馈电,具体的,电磁能量通过所述缝隙40耦合至所述金属天线单元411。在本实施例中,所述缝隙40的数量为四个,每个所述缝隙40与一个所述金属天线单元411对应设置,所述缝隙40的横截面形状呈“工”字型,在其他实施例中,所述缝隙40的横截面形状还可以为方形,圆形或者三角形,本发明对此不做限制。
进一步的,所述缝隙40向所述金属天线单元411方向的正投影完全落入所述金属天线单元411的范围内。
更进一步的,所述封装馈电模组42采用PCB工艺或者LTCC工艺层叠而成。
相比于封装天线,本实施方式中的AOG天线系统4,将所述金属天线41设计在所述3D玻璃后盖2上,而仅将馈电结构设计在所述基板421上并作为所述集成电路芯片422的封装结构,可减少所述AOG天线系统4整体所占用的空间。具体的,按照5G通信n257的带宽,以1*4阵列为例,所述AOG天线系统4的厚度至少可以降低0.4mm,面积由5.5mm*12mm降低至3mm*10mm。
同时,在本实施例中,所述3D玻璃后盖2的介电常数为6.3+i0.039,厚度为0.7mm;所述封装馈电模组42的基板421采用6层高频低损耗PCB板材压合制成,其核心层采用Rogers4350B,厚度为0.254mm,其余介质层采用Rogers4450F压合,厚度为0.2mm。当然,需要说明的是,本申请并不限制所述3D玻璃后盖2的介电常数,也并不限制封装馈电模组42的基板411的层数、厚度及制成方式。
请参阅图4(a)~图6,其中图4(a)为本发明提供的AOG天线系统中,各金属天线单元的相移为45°的辐射方向图;图4(b)为本发明提供的AOG天线系统中,各金属天线单元的相移为0°的辐射方向图;图4(c)为本发明提供的AOG天线系统中,各金属天线单元的相移为-45°的辐射方向图;图5为本发明提供的天线系统的反射系数曲线图。
通常,由于3D玻璃较高的介电常数, 作为手机后盖会严重影响收容于其内部的天线系统的辐射性能,降低辐射效率,降低增益以及由于表面波的影响导致的辐射方向图失真。本发明中,通过利用所述3D玻璃后盖2作为天线的介质基板,通过耦合的方式将电磁能量从所述封装馈电模组42上传递到所述金属天线41上,从而进行向外辐射,极大地降低了所述3D玻璃后盖2对天线系统的影响,提高了天线效率,避免了辐射方向图的失真,保持很好的工作状态。
请参阅图6,图6为本发明提供的AOG天线系统的覆盖效率曲线图。由图6可知,在覆盖效率为50%的情况下,所述AOG天线系统4的增益阈值下降12dB,而在3GPP讨论中,对于50%覆盖效率, 该增益阈值下降为12.98dB,因此,说明本发明的AOG天线系统4具有更优的覆盖效率。
与相关技术相比,本发明提供的AOG天线系统4及移动终端100具有如下有益效果:通过在3D玻璃后盖2的表面设置金属天线41,并通过封装馈电模组42与所述金属天线耦合馈电,极大地降低了3D玻璃后盖对天线系统的影响,天线辐射效率高,增益降低小,保证了通信效果,减少了所述AOG天线系统4所占用的空间;所述毫米波相控阵天线系统采用线阵而非平面阵,在手机中占用的空间变窄,只需扫描一个角度,简化了设计难度、测试难度、以及波束管理的复杂度。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种AOG天线系统,应用于移动终端,所述移动终端包括3D玻璃后盖和与所述3D玻璃后盖相对间隔设置的主板,其特征在于,所述AOG天线系统包括贴设于所述3D玻璃后盖表面的金属天线及设于所述3D玻璃后盖和所述主板之间并与所述主板电连接的封装馈电模组,所述封装馈电模组与所述金属天线的位置相对应,并与所述金属天线耦合馈电。
  2. 根据权利要求1所述的AOG天线系统,其特征在于,所述AOG天线系统为毫米波相控阵天线系统。
  3. 根据权利要求2所述AOG天线系统,其特征在于,所述封装馈电模组包括基板、设于所述基板朝向所述主板的一侧的集成电路芯片、设于所述基板内并与所述金属天线相对设置的馈电网络及连接所述馈电网络与所述集成电路芯片的电路,所述馈电网络与所述金属天线耦合馈电,所述电路与所述主板电连接。
  4. 根据权利要求3所述的AOG天线系统,其特征在于,所述馈电网络为带状线,其包括靠近所述金属天线的第一金属层、与所述第一金属层相对间隔设置的第二金属层以及夹设于所述第一金属层和所述第二金属层之间的带状线路层,所述带状线路层与所述第一金属层和所述第二金属层间隔设置,所述第一金属层对应所述金属天线的位置设有缝隙,所述馈电网络通过所述缝隙与所述金属天线耦合馈电,所述带状线路层与所述电路电连接。
  5. 根据权利要求4所述的AOG天线系统,其特征在于,所述金属天线为一维直线阵,其包括多个金属天线单元,所述缝隙的数量与所述金属天线单元的数量相匹配,每个所述金属天线单元通过所述缝隙与所述馈电网络耦合馈电。
  6. 根据权利要求5所述的AOG天线系统,其特征在于,所述缝隙向所述金属天线单元方向的正投影完全位于所述金属天线单元的范围内。
  7. 根据权利要求1所述的AOG天线系统,其特征在于,所述金属天线通过印刷导电银浆法或者印刷LDS油墨法成型于所述3D玻璃后盖的表面。
  8. 根据权利要求1所述的AOG天线系统,其特征在于,所述金属天线选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种。
  9. 根据权利要求1所述的AOG天线系统,其特征在于,所述金属天线表面贴敷有保护膜。
  10. 一种移动终端,其特征在于,包括权利要求1-9任一项所述的天线系统。
PCT/CN2019/088768 2018-08-12 2019-05-28 Aog天线系统及移动终端 WO2020034715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810911473.5A CN109119768A (zh) 2018-08-12 2018-08-12 Aog天线系统及移动终端
CN201810911473.5 2018-08-12

Publications (1)

Publication Number Publication Date
WO2020034715A1 true WO2020034715A1 (zh) 2020-02-20

Family

ID=64852728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088768 WO2020034715A1 (zh) 2018-08-12 2019-05-28 Aog天线系统及移动终端

Country Status (3)

Country Link
US (1) US11031671B2 (zh)
CN (1) CN109119768A (zh)
WO (1) WO2020034715A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119768A (zh) * 2018-08-12 2019-01-01 瑞声科技(南京)有限公司 Aog天线系统及移动终端
CN109103589B (zh) * 2018-08-12 2021-01-12 瑞声科技(南京)有限公司 天线模组及移动终端
CN110021821B (zh) * 2019-01-09 2021-11-19 华为技术有限公司 一种终端设备
CN109659670B (zh) * 2019-02-25 2024-05-10 昆山联滔电子有限公司 天线组件
CN111725606B (zh) * 2019-03-20 2021-08-31 Oppo广东移动通信有限公司 天线封装模组和电子设备
CN111725607B (zh) * 2019-03-20 2021-09-14 Oppo广东移动通信有限公司 毫米波天线模组和电子设备
CN110048224B (zh) * 2019-03-28 2021-05-11 Oppo广东移动通信有限公司 天线模组和电子设备
CN111834731B (zh) 2019-04-19 2022-03-01 Oppo广东移动通信有限公司 天线模组及电子设备
CN110138391B (zh) 2019-05-20 2021-03-02 维沃移动通信有限公司 一种移动终端
WO2021000146A1 (zh) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 一种封装天线模组及电子设备
CN113381167B (zh) * 2020-02-25 2022-11-01 荣耀终端有限公司 一种天线连接装置、天线组件和电子设备
CN113871870B (zh) * 2020-06-30 2023-02-10 华为技术有限公司 一种天线组件和电子设备
CN111786077A (zh) * 2020-07-17 2020-10-16 盐城工学院 一种用于电子通信设备的天线模组
CN111987447A (zh) * 2020-08-31 2020-11-24 上海安费诺永亿通讯电子有限公司 一种带有封装的天线模组及通信设备
KR20220114965A (ko) * 2021-02-09 2022-08-17 삼성전자주식회사 안테나 모듈 및 이를 포함하는 장치
WO2023279245A1 (en) * 2021-07-05 2023-01-12 Huawei Technologies Co.,Ltd. Surface-mountable antenna device
US11773011B1 (en) 2022-07-08 2023-10-03 Agc Automotive Americas Co. Glass assembly including a conductive feature and method of manufacturing thereof
US20240055768A1 (en) * 2022-08-12 2024-02-15 Apple Inc. Antenna Feed Structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107181043A (zh) * 2017-05-22 2017-09-19 上海安费诺永亿通讯电子有限公司 一种无线移动终端
US20170346155A1 (en) * 2016-05-27 2017-11-30 Danlaw, Inc. Through-glass-antenna
CN206850753U (zh) * 2017-04-01 2018-01-05 成都天锐星通科技有限公司 一种信号收发连接装置
CN207598161U (zh) * 2017-12-11 2018-07-10 重庆工业职业技术学院 一种载有毫米波天线的玻璃窗
CN108376828A (zh) * 2018-01-25 2018-08-07 瑞声科技(南京)有限公司 天线系统及移动终端
CN109119768A (zh) * 2018-08-12 2019-01-01 瑞声科技(南京)有限公司 Aog天线系统及移动终端

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001244715A (ja) * 2000-02-28 2001-09-07 Sony Corp アンテナ装置
KR101132447B1 (ko) * 2006-06-23 2012-03-30 엘지전자 주식회사 휴대 단말기
US7728774B2 (en) * 2008-07-07 2010-06-01 International Business Machines Corporation Radio frequency (RF) integrated circuit (IC) packages having characteristics suitable for mass production
KR20160024631A (ko) * 2014-08-26 2016-03-07 삼성전자주식회사 다중대역 루프 안테나 및 이를 구비한 전자 장치
TWM544129U (zh) * 2017-01-06 2017-06-21 Luminous Optical Technology Co Ltd 可接收及發射無線訊號的通訊裝置玻璃背蓋
CN108305856B (zh) * 2018-03-16 2023-08-18 盛合晶微半导体(江阴)有限公司 天线的封装结构及封装方法
US10879585B2 (en) * 2018-04-09 2020-12-29 Lg Electronics Inc. Mobile terminal
CN109088180B (zh) * 2018-08-12 2020-11-20 瑞声科技(南京)有限公司 Aog天线系统及移动终端
CN109149069A (zh) * 2018-08-12 2019-01-04 瑞声科技(南京)有限公司 Aog天线系统及移动终端
CN109149068B (zh) * 2018-08-12 2021-04-02 瑞声科技(南京)有限公司 封装天线系统及移动终端
CN109786933B (zh) * 2018-12-29 2021-09-07 瑞声科技(南京)有限公司 封装天线系统及移动终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170346155A1 (en) * 2016-05-27 2017-11-30 Danlaw, Inc. Through-glass-antenna
CN206850753U (zh) * 2017-04-01 2018-01-05 成都天锐星通科技有限公司 一种信号收发连接装置
CN107181043A (zh) * 2017-05-22 2017-09-19 上海安费诺永亿通讯电子有限公司 一种无线移动终端
CN207598161U (zh) * 2017-12-11 2018-07-10 重庆工业职业技术学院 一种载有毫米波天线的玻璃窗
CN108376828A (zh) * 2018-01-25 2018-08-07 瑞声科技(南京)有限公司 天线系统及移动终端
CN109119768A (zh) * 2018-08-12 2019-01-01 瑞声科技(南京)有限公司 Aog天线系统及移动终端

Also Published As

Publication number Publication date
CN109119768A (zh) 2019-01-01
US20200052368A1 (en) 2020-02-13
US11031671B2 (en) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2020034715A1 (zh) Aog天线系统及移动终端
WO2020034708A1 (zh) Aog天线系统及移动终端
WO2020034682A1 (zh) Aog天线系统及移动终端
CN109149068B (zh) 封装天线系统及移动终端
US11108164B2 (en) Antenna module and mobile terminal
CN109786933B (zh) 封装天线系统及移动终端
WO2020134471A1 (zh) 毫米波阵列天线模组和移动终端
AU2017413139B2 (en) Communication device
WO2020134476A1 (zh) 封装天线系统及移动终端
WO2020134477A1 (zh) 介质谐振器封装天线系统及移动终端
US20200212542A1 (en) Antenna system and mobile terminal
Hwang et al. 28 GHz and 38 GHz dual-band vertically stacked dipole antennas on flexible liquid crystal polymer substrates for millimeter-wave 5G cellular handsets
WO2022121764A1 (zh) 一种显示模组及电子设备
WO2020138448A1 (ja) 通信装置
US20230420828A1 (en) Display assembly, client device comprising the display assembly, and method of manufacturing the display assembly
CN109786934B (zh) 封装天线系统及移动终端
TWI674704B (zh) 低旁波瓣陣列天線
WO2021000146A1 (zh) 一种封装天线模组及电子设备
CN219534865U (zh) 一种双频毫米波天线模组及电子设备
US20230318183A1 (en) Metasurface for smartphone antenna, and smartphone device comprising same
CN112701461B (zh) 5g毫米波超表面天线模组及移动设备
CN219086244U (zh) 一种2.4GHz频段的PCB平板定向天线
CN112310652B (zh) 电子设备
CN116565526A (zh) 一种双频毫米波天线模组及电子设备
CN113690575A (zh) 一种应用于金属边框5g终端的三维波束覆盖毫米波天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19850532

Country of ref document: EP

Kind code of ref document: A1