WO2020134476A1 - 封装天线系统及移动终端 - Google Patents
封装天线系统及移动终端 Download PDFInfo
- Publication number
- WO2020134476A1 WO2020134476A1 PCT/CN2019/113380 CN2019113380W WO2020134476A1 WO 2020134476 A1 WO2020134476 A1 WO 2020134476A1 CN 2019113380 W CN2019113380 W CN 2019113380W WO 2020134476 A1 WO2020134476 A1 WO 2020134476A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- antenna system
- packaged
- metal
- substrate
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0428—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave
- H01Q9/0435—Substantially flat resonant element parallel to ground plane, e.g. patch antenna radiating a circular polarised wave using two feed points
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2258—Supports; Mounting means by structural association with other equipment or articles used with computer equipment
- H01Q1/2266—Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/2283—Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/08—Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/20—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/342—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
- H01Q5/35—Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using two or more simultaneously fed points
Definitions
- the invention relates to the technical field of wireless communication, in particular to a packaged antenna system and a mobile terminal.
- the rich bandwidth resources of the millimeter wave band provide a guarantee for the high-speed transmission rate, but due to the severe space loss of electromagnetic waves in this band, the wireless communication system using the millimeter wave band needs to adopt a phased array architecture.
- the phase shifter makes the phase of each array element distributed according to a certain rule, thereby forming a high-gain beam, and changes the phase shift to make the beam scan within a certain spatial range.
- the antenna is an indispensable component in the RF front-end system. While the RF circuit is developing towards integration and miniaturization, it is an inevitable trend for the future development of the RF front-end to integrate and package the antenna and the RF front-end circuit.
- Encapsulated antenna (AiP) technology is to integrate the antenna into the package that carries the chip through the packaging material and process. It takes into account the antenna performance, cost and volume, and is favored by the majority of chip and package manufacturers.
- Qualcomm, Intel, IBM and other companies have adopted packaged antenna technology. Needless to say, AiP technology will also provide a good antenna solution for 5G millimeter wave mobile communication systems.
- the packaged antenna cannot cover the two bands, so the 28 GHz band and The 39GHz band is two independent channels and requires a large area in the mobile phone space.
- An object of the present invention is to provide a packaged antenna system and a mobile terminal, which can achieve 28 GHz and 39 GHz dual-frequency coverage and reduce the overall area occupied by the packaged antenna system.
- a packaged antenna system is applied to a mobile terminal.
- the mobile terminal includes a motherboard.
- the packaged antenna system includes a substrate, a metal antenna disposed on a side of the substrate away from the motherboard, and a An integrated circuit chip on the side of the substrate close to the main board and a circuit provided in the substrate to connect the metal antenna and the integrated circuit chip, the circuit is connected to the main board, and the metal antenna is a patch An antenna, and the patch antenna is simultaneously fed by two feeding points, and the two feeding points are used to excite electromagnetic waves of different frequency bands.
- the feeding point includes a first feeding point and a second feeding point, the first feeding point is used to excite electromagnetic waves in the 28 GHz frequency band; the second feeding point is used to excite electromagnetic waves in the 39 GHz frequency band .
- the feeding point is connected to the circuit through a feeding probe.
- the packaged antenna system is a millimeter wave phased array antenna system.
- the metal antenna is a one-dimensional linear array, which includes a plurality of metal antenna units, and the plurality of metal antenna units are sequentially arranged at intervals.
- the metal antenna is selected from one of a square patch antenna, a loop patch antenna, a round patch antenna and a cross patch antenna.
- the substrate is a multilayer high-frequency low-loss sheet.
- the present invention also provides a mobile terminal, which includes the packaged antenna system described above.
- the packaged antenna system and mobile terminal have the following beneficial effects: the metal antenna includes a first feeding point and a second feeding point, and the first feeding point and the first The second feed point stimulates signals in different frequency bands to achieve dual-frequency coverage of the packaged antenna system; at the same time, the packaged antenna system is formed by stacking PCB technology or LTCC technology, compared with the dual-frequency antenna system in the related art , The size is reduced to 18*5mm, and the occupied area is greatly reduced; the millimeter wave phased array antenna system uses a linear array instead of a planar array, and the space occupied in the mobile phone becomes narrow, only one angle of scanning is required, which simplifies Design difficulty, test difficulty, and complexity of beam management.
- FIG. 1 is a schematic diagram of a stereo structure of a mobile terminal provided by the present invention.
- FIG. 2 is a schematic diagram of the connection structure of the packaged antenna system shown in FIG. 1 and the main board;
- FIG. 3 is a schematic diagram of a connection structure of a metal antenna unit and a feeding probe
- 4(a) is a radiation pattern of a metal antenna unit with a phase shift of 45° when the packaged antenna system provided by the present invention is in the 28 GHz frequency band;
- 4(b) is a radiation pattern of a metal antenna unit with a phase shift of 0° when the packaged antenna system provided by the present invention is in the 28 GHz frequency band;
- 4(c) is a radiation pattern of the metal antenna unit with a phase shift of -45° when the packaged antenna system provided by the present invention is in the 28 GHz frequency band;
- 5(a) is a radiation pattern of the second antenna unit with a phase shift of 45° when the packaged antenna system provided by the present invention is in the 39 GHz frequency band;
- 5(b) is a radiation pattern of the second antenna unit with a phase shift of 0° when the packaged antenna system provided by the present invention is in the 39 GHz frequency band;
- 5(c) is a radiation pattern of the second antenna unit with a phase shift of -45° when the packaged antenna system provided by the present invention is in the 39 GHz frequency band;
- 6(a) is a graph of the reflection coefficient of the packaged antenna system provided by the present invention in the 28 GHz frequency band;
- 6(b) is a graph of the reflection coefficient of the packaged antenna system provided by the present invention in the 39 GHz frequency band;
- 7(a) is a graph of the coverage efficiency of the packaged antenna system provided by the present invention in the 28 GHz frequency band;
- 7(b) is a graph of the coverage efficiency of the packaged antenna system provided by the present invention in the 39 GHz frequency band.
- the present invention provides a mobile terminal 100.
- the mobile terminal 100 may be a mobile phone, an iPad, and a POS machine.
- the present invention does not limit this.
- the mobile terminal 100 includes a screen 1 and a cover.
- the screen 1 cooperates with the screen 1 to form a back cover 2 of a receiving space, a main board 3 interposed between the screen 1 and the back cover 2, and a packaged antenna system 4 connected to the main board 3. Both the main board 3 and the packaged antenna system 4 are accommodated in the accommodation space.
- the back cover 2 is a 3D glass back cover, which can provide better protection, aesthetics, thermal diffusion, color and user experience.
- the rear cover 2 includes a bottom wall 21 spaced apart from the screen 1 and a side wall 22 bent and extending from the outer periphery of the bottom wall 21 toward the screen 1.
- the side wall 22 is connected to the screen 1, and the bottom wall 21 and the side wall 22 are integrally formed.
- the packaged antenna system 4 is disposed adjacent to the side wall 22 and parallel to the bottom wall 21.
- the packaged antenna system 4 is used to receive and transmit electromagnetic wave signals, thereby achieving the communication function of the mobile terminal 100.
- the packaged antenna system 4 may be connected to the main board 3 through a ball grid array (BGA) technology.
- BGA ball grid array
- the packaged antenna system 4 includes a substrate 41 disposed between the screen 1 and the back cover 2, an integrated circuit chip 42 disposed on a side of the substrate 41 near the main board 3, and disposed on the substrate 41 is a metal antenna 43 on a side away from the main board 3 and a circuit 44 provided in the substrate 41 to connect the integrated circuit chip 42 and the metal antenna 43.
- the substrate 41 is used to carry the metal antenna 43 and the circuit 44.
- the substrate 41 may be integrally formed or layered.
- the substrate 41 is a multilayer high-frequency low-loss plate.
- the integrated circuit chip 42 is fixedly connected to the substrate 41 through an inverted pile welding process.
- the metal antenna 43 is a patch antenna, which includes two feeding points 10, and the patch antenna is simultaneously fed by the two feeding points 10, and the two feeding points 10 are used to excite different Electromagnetic waves in the frequency band.
- the feeding point 10 includes a first feeding point 101 and a second feeding point 102, the first feeding point 101 and the second feeding point 102 are spaced apart from each other, and the first feeding point Point 101 is used to excite electromagnetic waves of 28 GHz; the second feeding point 102 is used to excite electromagnetic waves of 39 GHz.
- the feeding point 10 is connected to the circuit 44 through a feeding probe 20 to feed the metal antenna 43.
- the feeding probe 20 includes a first feeding probe 201 and a second feeding probe 202, and the first feeding point 101 passes through the first feeding probe 201 and the circuit 44 is connected, and the second feeding point 102 is connected to the circuit 44 through the second feeding probe 201.
- the packaged antenna system 4 is a millimeter wave phased array system, which occupies a narrow space in the mobile phone; and only needs to scan one angle, which simplifies the design difficulty, test difficulty, and beam management complexity.
- the metal antenna 43 is a one-dimensional linear array, which includes a plurality of metal antenna units 431, and the plurality of metal antenna units 431 are sequentially arranged at intervals.
- the metal antenna 43 is a linear array of 1*4, that is, the metal antenna 43 includes four metal antenna units 431, and each metal antenna unit 431 includes two of the feeding points 10 .
- the metal antenna 43 is a microstrip patch antenna, which is selected from one of a square patch antenna, a loop patch antenna, a circular patch antenna and a cross patch antenna.
- the metal antenna 43 is a square patch antenna.
- the metal antenna 43 may also use other types of antennas.
- the metal antenna 43 includes a first feeding point 101 and a second feeding point 102, and the first feeding point 101 And the second feeding point 102 excites signals in different frequency bands to achieve dual-frequency coverage of the packaged antenna system 4, and at the same time, the packaged antenna system 4 is formed by stacking using a PCB process or an LTCC process, compared to related
- the dual-band antenna system in the technology is reduced in size to 18*5mm, and the occupied area is greatly reduced.
- 4(a) is a radiation pattern of a metal antenna unit with a phase shift of 45° when the packaged antenna system provided by the present invention is in the 28 GHz frequency band;
- 4(b) is a radiation pattern of a metal antenna unit with a phase shift of 0° when the packaged antenna system provided by the present invention is in the 28 GHz frequency band;
- 4(c) is a radiation pattern of the metal antenna unit with a phase shift of -45° when the packaged antenna system provided by the present invention is in the 28 GHz frequency band;
- 5(a) is a radiation pattern of a metal antenna unit with a phase shift of 45° when the packaged antenna system provided by the present invention is in the 39 GHz frequency band;
- 5(b) is a radiation pattern of a metal antenna unit with a phase shift of 0° when the packaged antenna system provided by the present invention is in the 39 GHz frequency band;
- 5(c) is a radiation pattern of the metal antenna unit with a phase shift of -45° when the packaged antenna system provided by the present invention is in the 39 GHz frequency band;
- 6(a) is a graph of the reflection coefficient of the packaged antenna system provided by the present invention in the 28 GHz frequency band;
- 6(b) is a graph of the reflection coefficient of the packaged antenna system provided by the present invention in the 39 GHz frequency band;
- 7(a) is a graph of the coverage efficiency of the packaged antenna system provided by the present invention in the 28 GHz frequency band;
- 7(b) is a graph of the coverage efficiency of the packaged antenna system provided by the present invention in the 39 GHz frequency band.
- the gain threshold of the packaged antenna system 4 is 10dBi in the 28GHz frequency band, and the gain threshold of the packaged antenna system 4 drops when the coverage efficiency is 50% 10dBi, and in the 3GPP discussion, for 50% coverage efficiency, the gain threshold is reduced to 12.98dB; in the 39GHz band, the gain threshold of the packaged antenna system 4 is 13dBi, in the case of 50% coverage efficiency, the The gain threshold of the packaged antenna system 4 drops by 10dBi, and in the 3GPP discussion, for 50% coverage efficiency, the gain threshold drops to 13.6-18.0dBi, indicating that the packaged antenna system 4 of the present invention has better coverage efficiency.
- the metal antenna 43 includes a first feeding point 101 and a second feeding point 102, and the first feeding Point 101 and the second feed point 102 excite signals in different frequency bands to achieve dual-frequency coverage of the packaged antenna system 4; at the same time, the packaged antenna system 4 is formed by stacking a PCB process or an LTCC process, compared to In the related art dual-frequency antenna system, the size is reduced to 18*5mm, and the occupied area is greatly reduced; the millimeter wave phased array antenna system uses a linear array instead of a planar array, and the space occupied in the mobile phone becomes narrower , Only need to scan one angle, which simplifies the design difficulty, test difficulty, and the complexity of beam management.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Support Of Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明提供了一种封装天线系统及移动终端。所述移动终端包括主板,所述封装天线系统包括基板、设于所述基板远离所述主板的一侧的金属天线、设于所述基板靠近所述主板的一侧的集成电路芯片及设于所述基板内连接所述金属天线和所述集成电路芯片的电路,所述电路与所述主板连接,所述金属天线为贴片天线,且所述贴片天线同时由两个馈电点馈电,两个所述馈电点用于激励不同频段的电磁波。本发明提供的封装天线系统实现了28GHz和39GHz的双频覆盖,同时,尺寸减小为18*5mm,所占面积大幅减小,并且增益降低小。
Description
本发明涉及无线通信技术领域,尤其涉及一种封装天线系统及移动终端。
5G作为全球业界的研发焦点,发展5G技术制定5G标准已经成为业界共识。国际电信联盟 ITU 在 2015
年 6 月召开的
ITU-RWP5D 第 22 次会议上明确了 5G 的三个主要应用场景:增强型移动宽带、大规模机器通信、高可靠低延时通信。这三个应用场景分别对应着不同的关键指标,其中增强型移动带宽场景下用户峰值速度为20Gbps,最低用户体验速率为100Mbps。目前3GPP正在对5G技术进行标准化工作,第一个5G非独立组网(NSA)国际标准于2017年12月正式完成并冻结,并计划在2018年6月完成5G独立组网标准。3GPP会议期间诸多关键技术和系统架构等研究工作得到迅速聚焦,其中包含毫米波技术。毫米波独有的高载频、大带宽特性是实现5G超高数据传输速率的主要手段。
毫米波频段丰富的带宽资源为高速传输速率提供了保障,但是由于该频段电磁波剧烈的空间损耗,利用毫米波频段的无线通信系统需要采用相控阵的架构。通过移相器使得各个阵元的相位按一定规律分布,从而形成高增益波束,并且通过相移的改变使得波束在一定空间范围内扫描。
天线作为射频前端系统中不可缺少的部件,在射频电路向着集成化、小型化方向发展的同时,将天线与射频前端电路进行系统集成和封装成为未来射频前端发展的必然趋势。封装天线(AiP)技术是通过封装材料与工艺将天线集成在携带芯片的封装内,很好地兼顾了天线性能、成本及体积,深受广大芯片及封装制造商的青睐。目前高通,Intel,IBM等公司都采用了封装天线技术。毋庸置疑,AiP技术也将为5G毫米波移动通信系统提供很好的天线解决方案。
相关技术中,由于28GHz和39GHz频段相距甚远,封装天线无法覆盖两个频段,因此28GHz频段和
39GHz频段是两个独立的通道,在手机空间内需要占用较大的面积。
因此,实有必要提供一种新的封装天线系统及移动终端以解决上述问题。
本发明的目的在于提供一种封装天线系统及移动终端,其能够实现28GHz和39GHz双频覆盖,并缩小封装天线系统整体所占面积。
本发明的技术方案如下:一种封装天线系统,应用于移动终端,所述移动终端包括主板,所述封装天线系统包括基板、设于所述基板远离所述主板一侧的金属天线、设于所述基板靠近所述主板一侧的集成电路芯片和设于所述基板内连接所述金属天线和所述集成电路芯片的电路,所述电路与所述主板连接,所述金属天线为贴片天线,且所述贴片天线同时由两个馈电点馈电,两个所述馈电点用于激励不同频段的电磁波。
优选的,所述馈电点包括第一馈电点和第二馈电点,所述第一馈电点用于激励28GHz频段的电磁波;所述第二馈电点用于激励39GHz频段的电磁波。
优选的,所述馈电点通过馈电探针与所述电路连接。
优选的,所述封装天线系统为毫米波相控阵天线系统。
优选的,所述金属天线为一维直线阵,其包括多个金属天线单元,多个所述金属天线单元依次间隔排布。
优选的,所述金属天线选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种。
优选的,所述基板为多层高频低损耗板材。
本发明还提供一种移动终端,其包括上述的封装天线系统。
与相关技术相比,本发明提供的封装天线系统及移动终端具有如下有益效果:所述金属天线包括第一馈电点和第二馈电点,且所述第一馈电点和所述第二馈电点激励不同频段的信号,实现了所述封装天线系统的双频覆盖;同时,所述封装天线系统采用PCB工艺或者LTCC工艺层叠而成,相比于相关技术中的双频天线系统,尺寸减小为18*5mm,所占面积大幅减小;所述毫米波相控阵天线系统采用线阵而非平面阵,在手机中占用的空间变窄,只需扫描一个角度,简化了设计难度、测试难度、以及波束管理的复杂度。
图1为本发明提供的移动终端的立体结构示意图;
图2为图1所示的封装天线系统与主板的连接结构示意图;
图3为金属天线单元与馈电探针的连接结构的示意图;
图4(a)为本发明提供的封装天线系统在28GHz频段时,金属天线单元的相移为45°的辐射方向图;
图4(b)为本发明提供的封装天线系统在28GHz频段时,金属天线单元的相移为0°的辐射方向图;
图4(c)为本发明提供的封装天线系统在28GHz频段时,金属天线单元的相移为-45°的辐射方向图;
图5(a)为本发明提供的封装天线系统在39GHz频段时,第二天线单元的相移为45°的辐射方向图;
图5(b)为本发明提供的封装天线系统在39GHz频段时,第二天线单元的相移为0°的辐射方向图;
图5(c)为本发明提供的封装天线系统在39GHz频段时,第二天线单元的相移为-45°的辐射方向图;
图6(a)为本发明提供的封装天线系统在28GHz频段下的反射系数曲线图;
图6(b)为本发明提供的封装天线系统在39GHz频段下的反射系数曲线图;
图7(a)为本发明提供的封装天线系统在28GHz频段下的覆盖效率曲线图;
图7(b)为本发明提供的封装天线系统在39GHz频段下的覆盖效率曲线图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。
如图1-3所示,本发明提供一种移动终端100,该移动终端100可以是手机、ipad以及POS机等,本发明对此不作限定,所述移动终端100包括屏幕1、盖合于所述屏幕1并与所述屏幕1配合形成收容空间的后盖2、夹设于所述屏幕1和所述后盖2之间的主板3及与所述主板3连接的封装天线系统4。所述主板3和所述封装天线系统4均收容于所述收容空间内。
所述后盖2为3D玻璃后盖,能提供更好的保护、美观度、热扩散、色彩度以及用户体验。具体的,所述后盖2包括与所述屏幕1相对间隔设置的底壁21及自所述底壁21的外周缘向靠近所述屏幕1方向弯折延伸的侧壁22,所述侧壁22与所述屏幕1连接,所述底壁21和所述侧壁22一体成型。
所述封装天线系统4临近所述侧壁22设置并与所述底壁21平行,所述封装天线系统4用于接收和发送电磁波信号,进而实现所述移动终端100的通信功能。具体地,所述封装天线系统4可以通过焊球阵列封装(Ball Grid Array,BGA)技术与所述主板3连接。
所述封装天线系统4包括设于所述屏幕1和所述后盖2之间的基板41、设于所述基板41靠近所述主板3的一侧的集成电路芯片42、设于所述基板41远离所述主板3的一侧的金属天线43及设于所述基板41内连接所述集成电路芯片42和所述金属天线43的电路44。
所述基板41用于承载所述金属天线43和所述电路44,所述基板41可以一体成型,也可以分层设置,优选的,所述基板41为多层高频低损耗板材。所述集成电路芯片42通过倒桩焊工艺与所述基板41固定连接。
所述金属天线43为贴片天线,其包括两个馈电点10,且所述贴片天线同时由两个所述馈电点10馈电,两个所述馈电点10用于激励不同频段的电磁波。具体的,所述馈电点10包括第一馈电点101和第二馈电点102,所述第一馈电点101和所述第二馈电点102相互间隔,所述第一馈电点101用于激励28GHz的电磁波;所述第二馈电点102用于激励39GHz的电磁波。
所述馈电点10通过馈电探针20与所述电路44连接,为所述金属天线43馈电。具体的,所述馈电探针20包括第一馈电探针201和第二馈电探针202,且所述第一馈电点101通过所述第一馈电探针201与所述电路44连接,所述第二馈电点102通过所述第二馈电探针201与所述电路44连接。
进一步的,所述封装天线系统4为毫米波相控阵系统,在手机中占用的空间变窄;并只需扫描一个角度,简化了设计难度、测试难度、以及波束管理的复杂度。具体的,所述金属天线43为一维直线阵,其包括多个金属天线单元431,多个所述金属天线单元431依次间隔排布。优选的,所述金属天线43为1*4的直线阵,即所述金属天线43包括四个所述金属天线单元431,每个所述金属天线单元431均包括两个所述馈电点10。
更进一步的,所述金属天线43为微带贴片天线,其选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种。优选的,所述金属天线43为方形贴片天线,当然,在其他实施方式中,所述金属天线43也可以选用其他形式的天线。
相比于相关技术中的封装天线,本实施方式中的封装天线系统4中,所述金属天线43包括第一馈电点101和第二馈电点102,且所述第一馈电点101和所述第二馈电点102激励不同频段的信号,实现了所述封装天线系统4的双频覆盖,同时,所述封装天线系统4采用PCB工艺或者LTCC工艺层叠而成,相比于相关技术中的双频天线系统,尺寸减小为18*5mm,所占面积大幅减小。
请参阅图4(a)~图7(b),其中:
图4(a)为本发明提供的封装天线系统在28GHz频段时,金属天线单元的相移为45°的辐射方向图;
图4(b)为本发明提供的封装天线系统在28GHz频段时,金属天线单元的相移为0°的辐射方向图;
图4(c)为本发明提供的封装天线系统在28GHz频段时,金属天线单元的相移为-45°的辐射方向图;
图5(a)为本发明提供的封装天线系统在39GHz频段时,金属天线单元的相移为45°的辐射方向图;
图5(b)为本发明提供的封装天线系统在39GHz频段时,金属天线单元的相移为0°的辐射方向图;
图5(c)为本发明提供的封装天线系统在39GHz频段时,金属天线单元的相移为-45°的辐射方向图;
图6(a)为本发明提供的封装天线系统在28GHz频段下的反射系数曲线图;
图6(b)为本发明提供的封装天线系统在39GHz频段下的反射系数曲线图;
图7(a)为本发明提供的封装天线系统在28GHz频段下的覆盖效率曲线图;
图7(b)为本发明提供的封装天线系统在39GHz频段下的覆盖效率曲线图。
结合图7(a)和图7(b)可知,28GHz频段时,所述封装天线系统4的增益阈值为10dBi,在覆盖效率为50%的情况下,所述封装天线系统4的增益阈值下降10dBi,而在3GPP讨论中,对于50%覆盖效率, 该增益阈值下降为12.98dB;39GHz频段时,所述封装天线系统4的增益阈值为13dBi,在覆盖效率为50%的情况下,所述封装天线系统4的增益阈值下降10dBi,而在3GPP讨论中,对于50%覆盖效率, 该增益阈值下降为13.6-18.0dBi,说明本发明的封装天线系统4具有更优的覆盖效率。
与相关技术相比,本发明提供的封装天线系统4及移动终端100具有如下有益效果:所述金属天线43包括第一馈电点101和第二馈电点102,且所述第一馈电点101和所述第二馈电点102激励不同频段的信号,实现了所述封装天线系统4的双频覆盖;同时,所述封装天线系统4采用PCB工艺或者LTCC工艺层叠而成,相比于相关技术中的双频天线系统,尺寸减小为18*5mm,所占面积大幅减小;所述毫米波相控阵天线系统采用线阵而非平面阵,在手机中占用的空间变窄,只需扫描一个角度,简化了设计难度、测试难度、以及波束管理的复杂度。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (8)
- 一种封装天线系统,应用于移动终端,所述移动终端包括主板,其特征在于,所述封装天线系统包括基板、设于所述基板远离所述主板一侧的金属天线、设于所述基板靠近所述主板一侧的集成电路芯片和设于所述基板内连接所述金属天线和所述集成电路芯片的电路,所述电路与所述主板连接,所述金属天线为贴片天线,且所述贴片天线同时由两个馈电点馈电,两个所述馈电点用于激励不同频段的电磁波。
- 根据权利要求1所述的封装天线系统,其特征在于,所述馈电点包括第一馈电点和第二馈电点,所述第一馈电点用于激励28GHz频段的电磁波;所述第二馈电点用于激励39GHz频段的电磁波。
- 根据权利要求1所述的封装天线系统,其特征在于,所述馈电点通过馈电探针与所述电路连接。
- 根据权利要求1所述的封装天线系统,其特征在于,所述封装天线系统为毫米波相控阵天线系统。
- 根据权利要求4所述的封装天线系统,其特征在于,所述金属天线为一维直线阵,其包括多个金属天线单元,多个所述金属天线单元依次间隔排布。
- 根据权利要求1所述的封装天线系统,其特征在于,所述金属天线选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种。
- 根据权利要求1所述的封装天线系统,其特征在于,所述基板为多层高频低损耗板材。
- 一种移动终端,其特征在于,包括权利要求1-7任一项所述的封装天线系统 。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811645892.5 | 2018-12-29 | ||
CN201811645892.5A CN109687166A (zh) | 2018-12-29 | 2018-12-29 | 封装天线系统及移动终端 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020134476A1 true WO2020134476A1 (zh) | 2020-07-02 |
Family
ID=66191593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/113380 WO2020134476A1 (zh) | 2018-12-29 | 2019-10-25 | 封装天线系统及移动终端 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11056792B2 (zh) |
CN (1) | CN109687166A (zh) |
WO (1) | WO2020134476A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11201119B2 (en) | 2018-06-06 | 2021-12-14 | At&S Austria Technologie & Systemtechnik Aktiengesellschaft | RF functionality and electromagnetic radiation shielding in a component carrier |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109830799A (zh) * | 2018-12-29 | 2019-05-31 | 瑞声科技(南京)有限公司 | 介质谐振器封装天线系统及移动终端 |
CN109687166A (zh) * | 2018-12-29 | 2019-04-26 | 瑞声科技(南京)有限公司 | 封装天线系统及移动终端 |
CN111864343A (zh) * | 2019-04-30 | 2020-10-30 | Oppo广东移动通信有限公司 | 电子设备 |
CN111864362A (zh) * | 2019-04-30 | 2020-10-30 | Oppo广东移动通信有限公司 | 天线模组及电子设备 |
WO2020237559A1 (zh) | 2019-05-30 | 2020-12-03 | 华为技术有限公司 | 封装结构、网络设备以及终端设备 |
WO2021000146A1 (zh) * | 2019-06-30 | 2021-01-07 | 瑞声声学科技(深圳)有限公司 | 一种封装天线模组及电子设备 |
CN112290193B (zh) * | 2019-07-26 | 2023-07-25 | Oppo广东移动通信有限公司 | 毫米波模组、电子设备及毫米波模组的调节方法 |
CN113036461A (zh) * | 2019-12-25 | 2021-06-25 | 中国移动通信集团终端有限公司 | 系统级封装天线模组和终端 |
CN111403901B (zh) * | 2020-03-16 | 2021-06-15 | Oppo广东移动通信有限公司 | 天线模组及电子设备 |
TWI765743B (zh) * | 2021-06-11 | 2022-05-21 | 啓碁科技股份有限公司 | 天線結構 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070103369A1 (en) * | 2005-11-09 | 2007-05-10 | Sony Deutschland Gmbh | Planar antenna apparatus for ultra wide band applications |
CN101194441A (zh) * | 2005-04-07 | 2008-06-04 | 索尼爱立信移动通讯股份有限公司 | 天线装置 |
CN109103589A (zh) * | 2018-08-12 | 2018-12-28 | 瑞声科技(南京)有限公司 | 天线模组及移动终端 |
CN109687166A (zh) * | 2018-12-29 | 2019-04-26 | 瑞声科技(南京)有限公司 | 封装天线系统及移动终端 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203039113U (zh) * | 2013-01-11 | 2013-07-03 | 成都信息工程学院 | 八端口微带天线阵列 |
CN103682613A (zh) * | 2013-12-27 | 2014-03-26 | 禾邦电子(苏州)有限公司 | 双频双馈入天线及具有其的天线组件 |
CN104064867B (zh) * | 2014-06-12 | 2016-10-05 | 京信通信技术(广州)有限公司 | 多频段辐射单元及移动通信天线 |
CN108879114A (zh) * | 2017-05-16 | 2018-11-23 | 华为技术有限公司 | 集成天线封装结构和终端 |
CN110998974B (zh) * | 2017-07-31 | 2022-03-15 | 株式会社村田制作所 | 天线模块和通信装置 |
CN109088180B (zh) * | 2018-08-12 | 2020-11-20 | 瑞声科技(南京)有限公司 | Aog天线系统及移动终端 |
-
2018
- 2018-12-29 CN CN201811645892.5A patent/CN109687166A/zh active Pending
-
2019
- 2019-10-25 WO PCT/CN2019/113380 patent/WO2020134476A1/zh active Application Filing
- 2019-12-06 US US16/705,227 patent/US11056792B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101194441A (zh) * | 2005-04-07 | 2008-06-04 | 索尼爱立信移动通讯股份有限公司 | 天线装置 |
US20070103369A1 (en) * | 2005-11-09 | 2007-05-10 | Sony Deutschland Gmbh | Planar antenna apparatus for ultra wide band applications |
CN109103589A (zh) * | 2018-08-12 | 2018-12-28 | 瑞声科技(南京)有限公司 | 天线模组及移动终端 |
CN109687166A (zh) * | 2018-12-29 | 2019-04-26 | 瑞声科技(南京)有限公司 | 封装天线系统及移动终端 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11201119B2 (en) | 2018-06-06 | 2021-12-14 | At&S Austria Technologie & Systemtechnik Aktiengesellschaft | RF functionality and electromagnetic radiation shielding in a component carrier |
Also Published As
Publication number | Publication date |
---|---|
CN109687166A (zh) | 2019-04-26 |
US20200212579A1 (en) | 2020-07-02 |
US11056792B2 (en) | 2021-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10819002B2 (en) | AOG antenna system and mobile terminal | |
WO2020134476A1 (zh) | 封装天线系统及移动终端 | |
US11031671B2 (en) | AOG antenna system and mobile terminal | |
US10992059B2 (en) | Millimeter wave array antenna module and mobile terminal | |
US11024942B2 (en) | Antenna-in-package system and mobile terminal | |
US11075450B2 (en) | AOG antenna system and mobile terminal | |
WO2020134473A1 (zh) | 封装天线系统及移动终端 | |
US11108164B2 (en) | Antenna module and mobile terminal | |
US20210344103A1 (en) | Communication Device | |
US10978783B2 (en) | Antenna system and mobile terminal | |
US20200212581A1 (en) | Dielectric resonator antenna-in-package system and mobile terminal | |
CN103367917B (zh) | 移动装置 | |
TWI491104B (zh) | 具雙輻射場型之天線裝置 | |
US20200212542A1 (en) | Antenna system and mobile terminal | |
WO2020029661A1 (zh) | 毫米波阵列天线及移动终端 | |
WO2020134474A1 (zh) | 移动终端 | |
CN109786934B (zh) | 封装天线系统及移动终端 | |
WO2021000146A1 (zh) | 一种封装天线模组及电子设备 | |
CN219534865U (zh) | 一种双频毫米波天线模组及电子设备 | |
US20240322434A1 (en) | Antenna module and display device | |
CN116565526A (zh) | 一种双频毫米波天线模组及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19905870 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19905870 Country of ref document: EP Kind code of ref document: A1 |