WO2020034682A1 - Aog天线系统及移动终端 - Google Patents

Aog天线系统及移动终端 Download PDF

Info

Publication number
WO2020034682A1
WO2020034682A1 PCT/CN2019/087456 CN2019087456W WO2020034682A1 WO 2020034682 A1 WO2020034682 A1 WO 2020034682A1 CN 2019087456 W CN2019087456 W CN 2019087456W WO 2020034682 A1 WO2020034682 A1 WO 2020034682A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
aog
back cover
metal
antenna system
Prior art date
Application number
PCT/CN2019/087456
Other languages
English (en)
French (fr)
Inventor
雍征东
王超
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020034682A1 publication Critical patent/WO2020034682A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to an AOG (Antenna On Glass) antenna system and a mobile terminal.
  • AOG Antenna On Glass
  • 5G is the focus of research and development in the global industry, and it has become the consensus of the industry to develop 5G technologies and formulate 5G standards.
  • the International Telecommunication Union's ITU identified the three main application scenarios of 5G at the 22nd ITU-RWP5D meeting held in June 2015: enhanced mobile broadband, large-scale machine communication, and high-reliability low-latency communication. These three application scenarios respectively correspond to different key indicators.
  • the enhanced mobile bandwidth scenario the peak user speed is 20Gbps, and the minimum user experience rate is 100Mbps.
  • 3GPP is currently standardizing 5G technology.
  • the first 5G Non-Independent Networking (NSA) international standard was officially completed and frozen in December 2017. It is planned to complete the 5G independent networking standard in June 2018.
  • NSA Non-Independent Networking
  • the rich bandwidth resources of the millimeter-wave band provide a guarantee for high-speed transmission rates.
  • wireless communication systems using the millimeter-wave band need to use a phased array architecture.
  • the phase shifter is used to make the phase of each array element distribute according to a certain law, so as to form a high-gain beam, and the beam is scanned in a certain spatial range by changing the phase shift.
  • the antenna is an indispensable part of the RF front-end system. While the RF circuit is moving towards integration and miniaturization, the system integration and packaging of the antenna and the RF front-end circuit has become an inevitable trend in the future development of the RF front-end.
  • the packaged antenna (AiP) technology integrates the antenna into the package carrying the chip through packaging materials and processes, which takes into account the antenna performance, cost and volume, and is favored by the majority of chip and package manufacturers. At present, companies such as Qualcomm, Intel and IBM have adopted packaged antenna technology. There is no doubt that AiP technology will also provide a good antenna solution for 5G millimeter wave mobile communication systems.
  • Metal frame with 3D glass is the mainstream solution in the design of full-screen mobile phones in the future, which can provide better protection, aesthetics, heat diffusion, color, and user experience.
  • 3D glass due to the high dielectric constant of 3D glass, it will seriously affect the radiation performance of millimeter wave antennas and reduce the antenna array gain.
  • the object of the present invention is to provide an AOG antenna system, which can greatly reduce the influence of the 3D glass back cover on the antenna packaged inside the mobile terminal.
  • An AOG antenna system is applied to a mobile terminal.
  • the mobile terminal includes a 3D glass back cover and a motherboard disposed at a distance from the 3D glass back cover.
  • the AOG antenna system includes a A package antenna between the motherboard and the 3D glass back cover and electrically connected to the motherboard, and a metal antenna formed on the surface of the 3D glass back cover, the metal antenna corresponding to the position of the package antenna and passing through The packaged antenna is coupled and fed.
  • the package antenna includes a substrate, a package antenna unit provided on a side of the substrate facing the 3D glass back cover, an integrated circuit chip provided on a side of the substrate facing away from the 3D glass back cover, and A circuit provided in the substrate to connect the packaged antenna unit and the integrated circuit chip, and the circuit is connected to the motherboard.
  • the AOG antenna system is a millimeter wave phased array AOG antenna system.
  • the metal antenna and the package antenna are one-dimensional linear arrays
  • the metal antenna includes a plurality of metal antenna units
  • the package antenna includes a plurality of the package antenna units
  • each of the metal antenna units It is spaced from and coupled to one of the packaged antenna units.
  • the metal antenna is formed on a surface of the 3D glass back cover facing away from the main board by a printed conductive silver paste method or a printed LDS ink method.
  • the metal antenna is formed on a surface of the 3D glass back cover facing the main board by a printed conductive silver paste method or a printed LDS ink method.
  • the packaged antenna is selected from one of a square patch antenna, a loop patch antenna, a circular patch antenna, and a cross-shaped patch antenna.
  • the metal antenna is selected from one of a square patch antenna, a loop patch antenna, a circular patch antenna, and a cross-shaped patch antenna.
  • a protective film is applied on the surface of the metal antenna.
  • the present invention also provides a mobile terminal, which includes the AOG antenna system described above.
  • the AOG antenna system and mobile terminal provided by the present invention have the following beneficial effects: greatly reducing the influence of the 3D glass back cover on the antenna performance, high antenna radiation efficiency, small gain reduction, and ensuring communication effects;
  • the millimeter-wave phased array antenna system uses a linear array instead of a planar millimeter-wave array antenna.
  • the space occupied in the mobile phone is narrow and only one angle needs to be scanned, which simplifies the design difficulty, test difficulty, and complexity of beam management.
  • FIG. 1 is a partial structural schematic diagram of a mobile terminal provided by the present invention
  • FIG. 2 is a schematic diagram of the connection between the 3D glass back cover, the AOG antenna system, and the motherboard in the mobile terminal shown in FIG. 1;
  • FIG. 3 is a comparison diagram of return loss of an AOG antenna system provided in the present invention in a mobile terminal and in a free space;
  • FIG. 4 is a comparison diagram of the isolation degree of the AOG antenna system provided in the present invention in a mobile terminal and in a free space;
  • 5 (a) is a radiation pattern of the AOG antenna system provided by the present invention when the phase shift of each antenna unit is 0 °;
  • 5 (b) is a radiation pattern of the AOG antenna system provided by the present invention when the phase shift of each antenna unit is 0 ° in free space;
  • 6 (a) is a radiation pattern of an AOG antenna system provided by the present invention when the phase shift of each antenna unit is 45 °;
  • FIG. 7 is a coverage efficiency curve of an AOG antenna system provided by the present invention.
  • an embodiment of the present invention provides a mobile terminal 100.
  • the mobile terminal may be a mobile phone, an iPad, and a POS machine.
  • the present invention does not limit this.
  • the mobile terminal includes a frame 1 and a cover.
  • the frame 1 and the 3D glass back cover 2 surrounding the housing space 2 and the motherboard 3 and the AOG antenna system 4 housed in the storage space and spaced from the 3D glass back cover 2.
  • the 3D glass back cover 2 can be covered on the frame 1 with an adhesive, or a corresponding buckle structure can be provided on the frame 1 and the 3D glass back cover 2 respectively, so that the 3D glass back cover 2 can
  • the frame 1 is fixedly connected to the frame 1 by a snapping method, or the frame 1 and the 3D glass back cover are integrally formed.
  • the 3D glass back cover 2 can provide better protection, aesthetics, heat diffusion, color, and user experience.
  • the AOG antenna system 4 can receive and send electromagnetic wave signals, thereby realizing the communication function of the mobile terminal.
  • the AOG antenna system 4 is a millimeter-wave phased array antenna system. Specifically, the AOG antenna system 4 includes a motherboard 3 and a 3D glass back cover 2 and is electrically connected to the motherboard 3. A package antenna 41 and a metal antenna 42 formed on the surface of the 3D glass back cover 2. The metal antenna 42 corresponds to the position of the package antenna 41 and is coupled and fed through the package antenna.
  • the back cover of a mobile terminal will seriously affect the radiation performance of the internally packaged millimeter-wave array antenna, reduce radiation efficiency, reduce gain, and radiation direction due to the influence of surface waves.
  • 0.7mm thick 3D glass usually results in 2.5 ⁇ 3.5dB gain attenuation and severe radiation pattern distortion.
  • the 3D glass back cover 2 is used as a dielectric substrate for the antenna, and a metal antenna 42 coupled to the internally packaged antenna is provided on the surface of the 3D glass back cover 2 to greatly reduce the 3D glass.
  • the influence of the rear cover 2 on the antenna performance maintains excellent antenna efficiency and avoids distortion of the radiation pattern.
  • the package antenna 41 includes a substrate 411, a plurality of package antenna units 412 provided on a side of the substrate 411 facing the 3D glass back cover 2, and a substrate 411 facing away from the 3D glass back cover.
  • the integrated circuit chip 413 on one side of 2 and a circuit 414 provided in the substrate 411 and connecting the packaged antenna unit 412 and the integrated circuit chip 413 are connected to the motherboard 3.
  • the package antenna 41 may be connected to the motherboard through a BGA packaging technology.
  • the metal antenna 42 may be formed on an inner surface of the 3D glass back cover 2, that is, a surface of the 3D glass back cover 2 facing the main board 3, or may be formed on an outer surface of the 3D glass back cover 2, That is, the 3D glass back cover 2 faces away from the surface of the motherboard 3. In this embodiment, the metal antenna 42 is formed on the outer surface of the 3D glass back cover 2.
  • Each surface of the 3D glass back cover 2 may be all designed as a flat surface, or a part of the surface may be designed as a flat surface, and another part of the surface may be designed as a curved surface, so as to satisfy different users' demands for products.
  • the metal antenna 42 can be formed on the surface of the 3D glass back cover 2 by printing a conductive silver paste method or printing an LDS ink method.
  • the metal antenna 42 may be designed near the logo, or A protective film is pasted on the surface of the metal antenna 42 to avoid affecting the aesthetic appearance and protect the antenna.
  • the protective film is preferably a low-dielectric-layer film or plastic.
  • the package antenna 41 and the metal antenna 42 are both one-dimensional linear arrays, occupying a small space in a mobile phone, and only need to scan an angle, which simplifies design difficulty, test difficulty, and complexity of beam management.
  • the package antenna 41 is a 1 * 4 linear array
  • the metal antenna 42 is also a 1 * 4 linear array, that is, the package antenna 41 includes four of the package antenna units 412, and the metal antenna 42 includes four metal antenna units 421, and each of the metal antenna units 421 is spaced from and coupled to one of the packaged antenna units 412.
  • Each of the packaged antenna units 412 is connected to a phase shifter, which is a 5-bit phase shifter with an accuracy of 11.25 °.
  • the package antenna 41 is selected from one of a square patch antenna, a loop patch antenna, a circular patch antenna, and a cross-shaped patch antenna; and the metal antenna 42 is selected from a square patch antenna, a loop One of a patch antenna, a circular patch antenna, and a cross-shaped patch antenna.
  • the package antenna 41 and the metal antenna 42 are both square patch antennas.
  • the dielectric constant of the 3D glass back cover 2 is 6.3 + i0.039, and the thickness is 0.7mm;
  • the substrate 411 of the package antenna 41 is made of 6 layers of high-frequency and low-loss PCB material.
  • the core layer is Rogers4350B with a thickness of 0.254mm, and the other dielectric layers are Rogers4450F laminated with a thickness of 0.2mm.
  • this application does not limit the dielectric constant of the 3D glass back cover 2, nor does it limit the number, thickness and manufacturing method of the substrate 411 of the package antenna 41.
  • FIG. 3 is a comparison diagram of the return loss of the AOG antenna system in a mobile terminal and in free space provided by the present invention, where the solid line and the dashed line represent the return of the AOG antenna system in the mobile terminal and in free space, respectively.
  • Wave loss, the free space referred to here refers to the case where the 3D glass back cover in the AOG antenna system provided by the present invention is removed. It can be seen from FIG. 3 that compared with the free space, the broadband of the AOG antenna system in the mobile terminal is hardly affected, and the return loss S11 ⁇ -10dB in the frequency band of 2.6GHz (26.6-29.2GHz).
  • FIG. 4 is a comparison diagram of the isolation degree of the AOG antenna system in the mobile terminal and in free space provided by the present invention, where the solid line and the dotted line represent the isolation degree of the AOG antenna system in the mobile terminal and in free space, respectively. . It can be seen from FIG. 4 that the AOG antenna system improves the isolation between antenna units in a mobile terminal compared with that in free space, and satisfies the isolation S21 ⁇ -22dB in a bandwidth range.
  • FIG. 5 (a) and FIG. 5 (b) are radiation patterns of the AOG antenna system provided in the present invention when the phase shift of each antenna unit is 0 ° in a mobile terminal and in free space, respectively. It can be seen from the figure that the AOG antenna system in the mobile terminal maintains undistorted patterns, and when the phase shift of each antenna unit is 0 °, the gain is only reduced by 0.75dB; please refer to FIG. 6 (a) and 6 (b) is a directional diagram of the AOG antenna system provided by the present invention when the phase shift of each antenna unit in the mobile terminal and in free space is 45 °.
  • the AOG antenna system in the mobile terminal keeps the pattern undistorted, and when the phase shift is 45 °, the gain is only reduced by 1.75dB. Therefore, it can be concluded that after the metal antenna is provided on the surface of the glass back cover, the influence of the 3D glass back cover on the internally packaged antenna is greatly reduced.
  • FIG. 7 is a coverage efficiency curve of an AOG antenna system provided by the present invention. From Figure 7, it can be observed that for 50% coverage efficiency, the gain threshold drops by 11dB, and in the 3GPP discussion, for 50% coverage efficiency, the gain threshold drops to 12.98dB, so it is significantly better than the average value in the 3GPP discussion. It shows that the AOG antenna system of the present invention has better coverage efficiency.
  • the AOG antenna system and mobile terminal provided by the present invention have the following beneficial effects: greatly reducing the influence of the 3D glass back cover on the antenna performance, high antenna radiation efficiency, small gain reduction, and ensuring communication effects;
  • the millimeter-wave phased array antenna system uses a linear array instead of a planar millimeter-wave array antenna.
  • the space occupied in the mobile phone is narrow and only one angle needs to be scanned, which simplifies the design difficulty, test difficulty, and complexity of beam management.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Telephone Set Structure (AREA)

Abstract

本发明提供了一种AOG天线系统,应用于移动终端,所述移动终端包括3D玻璃后盖和与所述3D玻璃后盖相对间隔设置的主板,所述AOG天线系统包括设于所述主板与所述3D玻璃后盖之间并与所述主板电连接的封装天线和成型于所述3D玻璃后盖表面的金属天线,所述金属天线与所述封装天线的位置相对应且通过所述封装天线耦合馈电。与相关技术相比,本发明提供的AOG天线系统通过在3D玻璃后盖表面设置与移动终端内部封装天线耦合馈电的金属天线,极大地降低了3D玻璃后盖对天线性能的影响,天线辐射效率高,增益降低小,保证了通信效果。

Description

AOG天线系统及移动终端 【技术领域】
本发明涉及无线通信技术领域,尤其涉及一种AOG(Antenna On Glass,玻璃表面天线)天线系统及移动终端。
【背景技术】
5G作为全球业界的研发焦点,发展5G技术制定5G标准已经成为业界共识。国际电信联盟ITU在2015年6月召开的ITU-RWP5D第22次会议上明确了5G的三个主要应用场景:增强型移动宽带、大规模机器通信、高可靠低延时通信。这三个应用场景分别对应着不同的关键指标,其中增强型移动带宽场景下用户峰值速度为20Gbps,最低用户体验速率为100Mbps。目前3GPP正在对5G技术进行标准化工作,第一个5G非独立组网(NSA)国际标准于2017年12月正式完成并冻结,并计划在2018年6月完成5G独立组网标准。3GPP会议期间诸多关键技术和系统架构等研究工作得到迅速聚焦,其中包含毫米波技术。毫米波独有的高载频、大带宽特性是实现5G超高数据传输速率的主要手段。
毫米波频段丰富的带宽资源为高速传输速率提供了保障,但是由于该频段电磁波剧烈的空间损耗,利用毫米波频段的无线通信系统需要采用相控阵的架构。通过移相器使得各个阵元的相位按一定规律分布,从而形成高增益波束,并且通过相移的改变使得波束在一定空间范围内扫描。
天线作为射频前端系统中不可缺少的部件,在射频电路向着集成化、小型化方向发展的同时,将天线与射频前端电路进行系统集成和封装成为未来射频前端发展的必然趋势。封装天线(AiP)技术是通过封装材料与工艺将天线集成在携带芯片的封装内,很好地兼顾了天线性能、成本及体积,深受广大芯片及封装制造商的青睐。目前高通,Intel,IBM等公司都采用 了封装天线技术。毋庸置疑,AiP技术也将为5G毫米波移动通信系统提供很好的天线解决方案。
金属中框配合3D玻璃是未来全面屏手机结构设计中的主流方案,能提供更好的保护、美观度、热扩散、色彩度以及用户体验。然而由于3D玻璃较高的介电常数,会严重影响毫米波天线的辐射性能,降低天线阵列增益等。
因此,实有必要提供一种新的AOG天线系统以解决上述问题。
【发明内容】
本发明的目的在于提供一种AOG天线系统,其能够极大降低3D玻璃后盖对移动终端内部封装天线的影响。
本发明的技术方案如下:一种AOG天线系统,应用于移动终端,所述移动终端包括3D玻璃后盖和与所述3D玻璃后盖相对间隔设置的主板,所述AOG天线系统包括设于所述主板与所述3D玻璃后盖之间并与所述主板电连接的封装天线和成型于所述3D玻璃后盖表面的金属天线,所述金属天线与所述封装天线的位置相对应且通过所述封装天线耦合馈电。
优选地,所述封装天线包括基板、设于所述基板朝向所述3D玻璃后盖的一侧的封装天线单元、设于所述基板背离所述3D玻璃后盖的一侧的集成电路芯片及设于所述基板内连接所述封装天线单元和所述集成电路芯片的电路,所述电路与所述主板连接。
优选地,所述AOG天线系统为毫米波相控阵AOG天线系统。
优选地,所述金属天线和所述封装天线均为一维直线阵,所述金属天线包括多个金属天线单元,所述封装天线包括多个所述封装天线单元,每个所述金属天线单元与一个所述封装天线单元间隔设置并耦合。
优选地,所述金属天线通过印刷导电银浆法或者印刷LDS油墨法成型于所述3D玻璃后盖背离所述主板的表面。
优选地,所述金属天线通过印刷导电银浆法或者印刷LDS油墨法成型于所述3D玻璃后盖朝向所述主板的表面。
优选地,所述封装天线选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种。
优选地,所述金属天线选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种。
优选地,所述金属天线表面贴敷有保护膜。
本发明还提供一种移动终端,其包括上文所述的的AOG天线系统。
与相关技术相比,本发明提供的AOG天线系统及移动终端具有如下有益效果:极大地降低了3D玻璃后盖对天线性能的影响,天线辐射效率高,增益降低小,保证了通信效果;所述毫米波相控阵天线系统采用线阵而非平面的毫米波阵列天线,在手机中占用的空间窄,并只需扫描一个角度,简化了设计难度、测试难度、以及波束管理的复杂度。
【附图说明】
图1为本发明提供的移动终端的部分结构示意图;
图2为图1所示移动终端中3D玻璃后盖、AOG天线系统及主板的连接示意图;
图3为本发明提供的AOG天线系统在移动终端中与在自由空间中的回波损耗对比图;
图4为本发明提供的AOG天线系统在移动终端中与在自由空间中的隔离度对比图;
图5(a)为本发明提供的AOG天线系统在移动终端中,各天线单元相移为0°时的辐射方向图;
图5(b)为本发明提供的AOG天线系统在自由空间中,各天线单元相移为0°时的辐射方向图;
图6(a)为本发明提供的AOG天线系统在移动终端中,各天线单元相移为45°时的辐射方向图;
图6(b)为本发明提供的AOG天线系统在自由空间中,各天线单元相移为45°时的辐射方向图;
图7为本发明提供的AOG天线系统的覆盖效率曲线。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。
如图1-2所示,本发明实施例提供一种移动终端100,该移动终端可以是手机、ipad以及POS机等,本发明对此不作限定,所述移动终端包括边框1、盖合于所述边框1并与其围成收容空间的3D玻璃后盖2、收容于所述收容空间内并与所述3D玻璃后盖2间隔设置的主板3和AOG天线系统4。所述3D玻璃后盖2可以通过胶粘剂盖合在所述边框1上,或者可以在所述边框1和所述3D玻璃后盖2上分别设置相应的卡扣结构,使得3D玻璃后盖2可以通过卡接方式固定连接在所述边框1上,或者所述边框1与所述3D玻璃后盖一体成型。所述3D玻璃后盖2能提供更好的保护、美观度、热扩散、色彩度以及用户体验。所述AOG天线系统4可以接收和发送电磁波信号,进而实现移动终端的通信功能。
所述AOG天线系统4为毫米波相控阵天线系统,具体地,所述AOG天线系统4包括设于所述主板3与所述3D玻璃后盖2之间并与所述主板3电连接的封装天线41、以及成型于所述3D玻璃后盖2表面的金属天线42,所述金属天线42与所述封装天线41的位置相对应且通过所述封装天线耦合馈电。
通常,由于3D玻璃较高的介电常数较大,作为移动终端的后盖会严重影响内部封装的毫米波阵列天线的辐射性能,降低辐射效率,降低增益以及由于表面波的影响导致的辐射方向图失真,通常情况下相比于自由空间天线辐射,0.7mm厚的3D玻璃会导致2.5~3.5dB的增益衰减,以及严重的辐射方向图失真。本发明中,通过利用所述3D玻璃后盖2作为天线的介质基板,在所述3D玻璃后盖2表面设置与内部封装天线耦合馈电的金属天线42,能够极大地降低了所述3D玻璃后盖2对天线性能的影响,保持了优异的天线效率避免了辐射方向图的失真。
具体地,所述封装天线41包括基板411、设于所述基板411朝向所述 3D玻璃后盖2的一侧的多个封装天线单元412、设于所述基板411背离所述3D玻璃后盖2的一侧的集成电路芯片413及设于所述基板411内连接所述封装天线单元412和所述集成电路芯片413的电路414,所述电路414与所述主板3连接。具体地,所述封装天线41可以通过BGA封装技术与主板连接。
所述金属天线42可以成型于所述3D玻璃后盖2的内表面,即所述3D玻璃后盖2朝向所述主板3的表面,还可以成型于所述3D玻璃后盖2的外表面,即所述3D玻璃后盖2背离所述主板3的表面,在本实施例中,所述金属天线42成型于所述3D玻璃后盖2的外表面。
所述3D玻璃后盖2的各个表面可以全部设计为平面,或者部分表面设计为平面,另一部分表面设计为曲面,以满足不同用户对产品的需求。所述金属天线42可以通过印刷导电银浆法或者印刷LDS油墨法成型于所述3D玻璃后盖2的表面。当所述金属天线42成型于所述3D玻璃后盖2的外表面时,为了避免所述金属天线42影响所述移动终端100的美观度,可以将所述金属天线42设计在logo附近,或者在所述金属天线42表面贴敷保护膜,既避免影响美观,又可以起到保护天线的作用,所述保护膜优选为低介电层薄膜或塑料。
进一步地,所述封装天线41和所述金属天线42均为一维直线阵,在手机中占用的空间窄,并只需扫描一个角度,简化了设计难度、测试难度、以及波束管理的复杂度。优选的,所述封装天线41为1*4的直线阵,所述金属天线42也为1*4的直线阵,即所述封装天线41包括4个所述封装天线单元412,所述金属天线42包括4个金属天线单元421,每个所述金属天线单元421与一个所述封装天线单元412间隔设置并耦合。
每个所述封装天线单元412均与一个移相器连接,所述移相器为5bit移相器,其精度为11.25°。
更进一步地,所述封装天线41选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种;所述金属天线42选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种,优选的, 所述封装天线41及所述金属天线42均为正方形贴片天线。
在本实施例中,所述3D玻璃后盖2的介电常数为6.3+i0.039,厚度为0.7mm;所述封装天线41的基板411采用6层高频低损PCB板材压合制成,其核心层采用Rogers4350B,厚度为0.254mm,其余介质层采用Rogers4450F压合,厚度为0.2mm。当然,需要说明的是,本申请并不限制所述3D玻璃后盖2的介电常数,也并不限制所述封装天线41的基板411的层数、厚度及制成方式。
请参阅图3,为本发明提供的AOG天线系统在移动终端中与在自由空间中的回波损耗对比图,其中实线和虚线分别代表AOG天线系统在移动终端中和在自由空间中的回波损耗,此处所指的自由空间是指将本发明提供的AOG天线系统中的3D玻璃后盖去除的情况。从图3中可看出,所述AOG天线系统在移动终端中相比于在自由空间中,宽带几乎不受影响,带宽2.6GHz(26.6~29.2GHz)频带内回波损耗S11<-10dB。
请参阅图4,为本发明提供的AOG天线系统在移动终端中与在自由空间中的隔离度对比图,其中实线和虚线分别代表AOG天线系统在移动终端中和在自由空间中的隔离度。从图4中可看出,所述AOG天线系统在移动终端中相比于在自由空间中,提高了天线单元间的隔离度,在带宽范围内满足隔离度S21<-22dB。
请结合参阅图5(a)和图5(b),分别为本发明提供的AOG天线系统在移动终端中与在自由空间中,各天线单元相移为0°时的辐射方向图。从图中看出,所述AOG天线系统在移动终端中方向图保持不失真,并且在各天线单元相移为0°时,增益仅降低0.75dB;再请结合参阅图6(a)和图6(b),分别为本发明提供的AOG天线系统在移动终端中与在自由空间中,各天线单元相移为45°时的方向图。从图中看出,所述AOG天线系统在移动终端中方向图保持不失真,并且在相移为45°时,增益仅降低1.75dB。因此,可以得出在玻璃后盖表面设置金属天线后,极大地降低了3D玻璃后盖对内部封装天线的影响。
请参阅图7,为本发明提供的AOG天线系统的覆盖效率曲线。从图7 可以观察到,对于50%覆盖效率,增益阈值下降11dB,而在3GPP讨论中,对于50%覆盖效率,该增益阈值下降为12.98dB,因此,明显优于3GPP讨论中的平均值,说明本发明的AOG天线系统具有更优的覆盖效率。
与相关技术相比,本发明提供的AOG天线系统及移动终端具有如下有益效果:极大地降低了3D玻璃后盖对天线性能的影响,天线辐射效率高,增益降低小,保证了通信效果;所述毫米波相控阵天线系统采用线阵而非平面的毫米波阵列天线,在手机中占用的空间窄,并只需扫描一个角度,简化了设计难度、测试难度、以及波束管理的复杂度。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种AOG天线系统,应用于移动终端,所述移动终端包括3D玻璃后盖和与所述3D玻璃后盖相对间隔设置的主板,其特征在于,所述AOG天线系统包括设于所述主板与所述3D玻璃后盖之间并与所述主板电连接的封装天线和成型于所述3D玻璃后盖表面的金属天线,所述金属天线与所述封装天线的位置相对应且通过所述封装天线耦合馈电。
  2. 根据权利要求1所述的AOG天线系统,其特征在于,所述封装天线包括基板、设于所述基板朝向所述3D玻璃后盖的一侧的封装天线单元、设于所述基板背离所述3D玻璃后盖的一侧的集成电路芯片及设于所述基板内连接所述封装天线单元和所述集成电路芯片的电路,所述电路与所述主板连接。
  3. 根据权利要求2所述的AOG天线系统,其特征在于,所述AOG天线系统为毫米波相控阵AOG天线系统。
  4. 根据权利要求3所述的AOG天线系统,其特征在于,所述金属天线和所述封装天线均为一维直线阵,所述金属天线包括多个金属天线单元,所述封装天线包括多个所述封装天线单元,每个所述金属天线单元与一个所述封装天线单元间隔设置并耦合。
  5. 根据权利要求1所述的AOG天线系统,其特征在于,所述金属天线通过印刷导电银浆法或者印刷LDS油墨法成型于所述3D玻璃后盖背离所述主板的表面。
  6. 根据权利要求1所述的AOG天线系统,其特征在于,所述金属天线通过印刷导电银浆法或者印刷LDS油墨法成型于所述3D玻璃后盖朝向所述主板的表面。
  7. 根据权利要求1所述的AOG天线系统,其特征在于,所述封装天线选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种。
  8. 根据权利要求1所述的AOG天线系统,其特征在于,所述金属天 线选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种。
  9. 根据权利要求1所述的AOG天线系统,其特征在于,所述金属天线表面贴敷有保护膜。
  10. 一种移动终端,其特征在于,包括权利要求1-9中任一项所述的AOG天线系统。
PCT/CN2019/087456 2018-08-12 2019-05-17 Aog天线系统及移动终端 WO2020034682A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810910595.2 2018-08-12
CN201810910595.2A CN109149069A (zh) 2018-08-12 2018-08-12 Aog天线系统及移动终端

Publications (1)

Publication Number Publication Date
WO2020034682A1 true WO2020034682A1 (zh) 2020-02-20

Family

ID=64792826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087456 WO2020034682A1 (zh) 2018-08-12 2019-05-17 Aog天线系统及移动终端

Country Status (3)

Country Link
US (1) US11075450B2 (zh)
CN (1) CN109149069A (zh)
WO (1) WO2020034682A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119768A (zh) * 2018-08-12 2019-01-01 瑞声科技(南京)有限公司 Aog天线系统及移动终端
CN109088180B (zh) * 2018-08-12 2020-11-20 瑞声科技(南京)有限公司 Aog天线系统及移动终端
CN109149069A (zh) * 2018-08-12 2019-01-04 瑞声科技(南京)有限公司 Aog天线系统及移动终端
CN111725607B (zh) * 2019-03-20 2021-09-14 Oppo广东移动通信有限公司 毫米波天线模组和电子设备
CN110048224B (zh) * 2019-03-28 2021-05-11 Oppo广东移动通信有限公司 天线模组和电子设备
CN110034374B (zh) * 2019-04-08 2022-05-17 Oppo广东移动通信有限公司 电子设备
CN112701444B (zh) * 2019-10-22 2022-06-28 华为技术有限公司 天线、天线封装方法及终端
CN111193098A (zh) * 2020-02-20 2020-05-22 Oppo广东移动通信有限公司 立体式天线及电子装置
WO2021164512A1 (zh) * 2020-02-20 2021-08-26 Oppo广东移动通信有限公司 立体式天线及电子装置
CN111430334A (zh) * 2020-04-28 2020-07-17 罕王微电子(辽宁)有限公司 一种mems 5g通讯射频天线及制作工艺
CN111786077A (zh) * 2020-07-17 2020-10-16 盐城工学院 一种用于电子通信设备的天线模组
CN112582783A (zh) * 2020-10-27 2021-03-30 西安交通大学 一种集成aip组件、终端设备及终端设备外壳
CN112736492A (zh) * 2020-12-25 2021-04-30 深圳市信维通信股份有限公司 基于终端外壳的5g天线及一种移动终端设备
CN112993592B (zh) * 2021-02-08 2023-06-09 维沃移动通信有限公司 天线封装模组及电子设备
US12090729B2 (en) 2022-07-08 2024-09-17 Agc Automotive Americas Co. Glass assembly including an opaque boundary feature and method of manufacturing thereof
US11773011B1 (en) 2022-07-08 2023-10-03 Agc Automotive Americas Co. Glass assembly including a conductive feature and method of manufacturing thereof
US12071365B2 (en) 2022-07-08 2024-08-27 Agc Automotive Americas Co. Glass assembly including a performance-enhancing feature and method of manufacturing thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051537B1 (ko) * 2003-12-10 2011-07-22 엘지전자 주식회사 휴대용 단말기의 내장형 글래스 안테나 장치
CN105552517A (zh) * 2015-12-25 2016-05-04 宇龙计算机通信科技(深圳)有限公司 一种射频天线装置和移动终端
CN106486761A (zh) * 2016-09-30 2017-03-08 努比亚技术有限公司 保护壳体
CN106711583A (zh) * 2016-12-29 2017-05-24 努比亚技术有限公司 一种终端天线的频段扩展结构
CN206323417U (zh) * 2016-11-29 2017-07-11 广东欧珀移动通信有限公司 移动终端以及显示装置
CN107181043A (zh) * 2017-05-22 2017-09-19 上海安费诺永亿通讯电子有限公司 一种无线移动终端
CN107369923A (zh) * 2017-06-22 2017-11-21 北京小米移动软件有限公司 天线组件及终端
CN108232408A (zh) * 2018-01-03 2018-06-29 瑞声精密制造科技(常州)有限公司 移动设备及其制造方法
CN109088180A (zh) * 2018-08-12 2018-12-25 瑞声科技(南京)有限公司 Aog天线系统及移动终端
CN109149069A (zh) * 2018-08-12 2019-01-04 瑞声科技(南京)有限公司 Aog天线系统及移动终端

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132447B1 (ko) * 2006-06-23 2012-03-30 엘지전자 주식회사 휴대 단말기
US7728774B2 (en) * 2008-07-07 2010-06-01 International Business Machines Corporation Radio frequency (RF) integrated circuit (IC) packages having characteristics suitable for mass production
US9937526B2 (en) * 2011-09-30 2018-04-10 Apple Inc. Antenna structures with molded and coated substrates
US9806422B2 (en) * 2013-09-11 2017-10-31 International Business Machines Corporation Antenna-in-package structures with broadside and end-fire radiations
US10211169B2 (en) * 2014-05-27 2019-02-19 University Of Florida Research Foundation, Inc. Glass interposer integrated high quality electronic components and systems
KR20160024631A (ko) * 2014-08-26 2016-03-07 삼성전자주식회사 다중대역 루프 안테나 및 이를 구비한 전자 장치
KR102218021B1 (ko) * 2014-09-12 2021-02-19 삼성전자주식회사 안테나 장치 및 그 제작 방법
TWM544129U (zh) * 2017-01-06 2017-06-21 Luminous Optical Technology Co Ltd 可接收及發射無線訊號的通訊裝置玻璃背蓋
CN108376828B (zh) * 2018-01-25 2021-01-12 瑞声科技(南京)有限公司 天线系统及移动终端
CN108305856B (zh) * 2018-03-16 2023-08-18 盛合晶微半导体(江阴)有限公司 天线的封装结构及封装方法
US10879585B2 (en) * 2018-04-09 2020-12-29 Lg Electronics Inc. Mobile terminal

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051537B1 (ko) * 2003-12-10 2011-07-22 엘지전자 주식회사 휴대용 단말기의 내장형 글래스 안테나 장치
CN105552517A (zh) * 2015-12-25 2016-05-04 宇龙计算机通信科技(深圳)有限公司 一种射频天线装置和移动终端
CN106486761A (zh) * 2016-09-30 2017-03-08 努比亚技术有限公司 保护壳体
CN206323417U (zh) * 2016-11-29 2017-07-11 广东欧珀移动通信有限公司 移动终端以及显示装置
CN106711583A (zh) * 2016-12-29 2017-05-24 努比亚技术有限公司 一种终端天线的频段扩展结构
CN107181043A (zh) * 2017-05-22 2017-09-19 上海安费诺永亿通讯电子有限公司 一种无线移动终端
CN107369923A (zh) * 2017-06-22 2017-11-21 北京小米移动软件有限公司 天线组件及终端
CN108232408A (zh) * 2018-01-03 2018-06-29 瑞声精密制造科技(常州)有限公司 移动设备及其制造方法
CN109088180A (zh) * 2018-08-12 2018-12-25 瑞声科技(南京)有限公司 Aog天线系统及移动终端
CN109149069A (zh) * 2018-08-12 2019-01-04 瑞声科技(南京)有限公司 Aog天线系统及移动终端

Also Published As

Publication number Publication date
CN109149069A (zh) 2019-01-04
US11075450B2 (en) 2021-07-27
US20200052394A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
WO2020034682A1 (zh) Aog天线系统及移动终端
WO2020034708A1 (zh) Aog天线系统及移动终端
US11031671B2 (en) AOG antenna system and mobile terminal
US11024942B2 (en) Antenna-in-package system and mobile terminal
US11108164B2 (en) Antenna module and mobile terminal
WO2020134471A1 (zh) 毫米波阵列天线模组和移动终端
Watanabe et al. A review of 5G front-end systems package integration
CN109786933B (zh) 封装天线系统及移动终端
WO2020134476A1 (zh) 封装天线系统及移动终端
WO2020134477A1 (zh) 介质谐振器封装天线系统及移动终端
US20200212542A1 (en) Antenna system and mobile terminal
Hwang et al. 28 GHz and 38 GHz dual-band vertically stacked dipole antennas on flexible liquid crystal polymer substrates for millimeter-wave 5G cellular handsets
CN111786098A (zh) 5g毫米波双频介质谐振器天线模组及移动终端
US20130162491A1 (en) Dual radiation patterns antenna
CN111786084B (zh) 5g毫米波模组及具有陶瓷壳的移动终端
WO2022242146A1 (zh) 一种小型化超宽带和蓝牙印刷天线
CN112448129A (zh) 一种显示模组及电子设备
CN110676580A (zh) 一种天线模组以及终端
US20120287015A1 (en) Multi-layer antenna
CN109786934B (zh) 封装天线系统及移动终端
CN110265770B (zh) 一种封装天线模组及电子设备
Martínez-Vázquez et al. Highly integrated antennas and front-ends for 60 GHz WLAN applications
CN219534865U (zh) 一种双频毫米波天线模组及电子设备
US20240322434A1 (en) Antenna module and display device
CN114899611B (zh) 介质谐振器天线及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19850626

Country of ref document: EP

Kind code of ref document: A1