WO2020034708A1 - Aog天线系统及移动终端 - Google Patents

Aog天线系统及移动终端 Download PDF

Info

Publication number
WO2020034708A1
WO2020034708A1 PCT/CN2019/088588 CN2019088588W WO2020034708A1 WO 2020034708 A1 WO2020034708 A1 WO 2020034708A1 CN 2019088588 W CN2019088588 W CN 2019088588W WO 2020034708 A1 WO2020034708 A1 WO 2020034708A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
aog
back cover
glass back
antenna system
Prior art date
Application number
PCT/CN2019/088588
Other languages
English (en)
French (fr)
Inventor
邾志民
夏晓岳
雍征东
赵伟
王超
Original Assignee
瑞声声学科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2020034708A1 publication Critical patent/WO2020034708A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to an AOG (Antenna On Glass (glass surface antenna) antenna system and mobile terminal.
  • AOG Antenna On Glass (glass surface antenna) antenna system and mobile terminal.
  • 5G is the focus of research and development in the global industry, and it has become the consensus of the industry to develop 5G technologies and formulate 5G standards.
  • ITU-RWP5D held in June 2015
  • the International Telecommunication Union ITU identified three main application scenarios of 5G: enhanced mobile broadband, large-scale machine communication, and high-reliability low-latency communication. These three application scenarios respectively correspond to different key indicators.
  • the peak user speed is 20Gbps
  • the minimum user experience rate is 100Mbps.
  • 3GPP is currently standardizing 5G technology.
  • the first 5G Non-Independent Networking (NSA) international standard was officially completed and frozen in December 2017. It is planned to complete the 5G independent networking standard in June 2018.
  • NSA Non-Independent Networking
  • the rich bandwidth resources of the millimeter-wave band provide a guarantee for high-speed transmission rates.
  • wireless communication systems using the millimeter-wave band need to use a phased array architecture.
  • the phase shifter is used to make the phase of each array element distribute according to a certain law, so as to form a high-gain beam, and the beam is scanned in a certain spatial range by changing the phase shift.
  • the antenna is an indispensable part of the RF front-end system. While the RF circuit is moving towards integration and miniaturization, the system integration and packaging of the antenna and the RF front-end circuit has become an inevitable trend in the future development of the RF front-end.
  • the packaged antenna (AiP) technology integrates the antenna in the package carrying the chip through packaging materials and processes, which takes into account the antenna performance, cost and volume, and is favored by the majority of chip and package manufacturers. At present, Qualcomm, Intel, IBM and other companies have adopted packaged antenna technology. There is no doubt that AiP technology will also provide a good antenna solution for 5G millimeter wave mobile communication systems.
  • Metal frame with 3D glass is the mainstream solution in the design of full-screen mobile phones in the future, which can provide better protection, aesthetics, heat diffusion, color, and user experience.
  • 3D glass due to the high dielectric constant of 3D glass, it will seriously affect the radiation performance of millimeter wave antennas and reduce the antenna array gain.
  • An object of the present invention is to provide an AOG antenna system and a mobile terminal, which can greatly reduce the influence of the 3D glass back cover on the antenna inside the mobile terminal and have dual-frequency coverage.
  • the technical solution of the present invention is as follows: An AOG antenna system is applied to a mobile terminal.
  • the mobile terminal includes a 3D glass back cover and a motherboard disposed at a distance from the 3D glass back cover.
  • the AOG antenna system includes a A package antenna between the main board and the 3D glass back cover and being electrically connected to the main board; and a metal antenna formed on a surface of the 3D glass back cover, the metal antenna includes being attached to the 3D glass back cover A first antenna on the surface and a second antenna attached to the outer surface of the 3D glass back cover, the first antenna corresponding to the position of the packaged antenna and coupled to feed through the packaged antenna, the second antenna The antenna corresponds to the position of the first antenna and is coupled and fed through the first antenna.
  • the packaged antenna includes a substrate, a plurality of packaged antenna units provided on a side of the substrate facing the 3D glass back cover, and an integrated circuit provided on a side of the substrate facing away from the 3D glass back cover.
  • a chip and a circuit provided in the substrate to connect the packaged antenna unit and the integrated circuit chip, and the circuit is connected to the motherboard.
  • the AOG antenna system is a millimeter wave phased array antenna system.
  • the metal antenna and the package antenna are one-dimensional linear arrays
  • the first antenna includes a plurality of first antenna units
  • the second antenna includes a plurality of second antenna units
  • each of the An antenna unit is spaced and coupled with one of the packaged antenna units
  • each of the second antenna unit is spaced and coupled with one of the first antenna units.
  • the metal antenna is formed on the surface of the 3D glass back cover by a printed conductive silver paste method or a printed LDS ink method.
  • the packaged antenna is selected from one of a square patch antenna, a loop patch antenna, a circular patch antenna, and a cross-shaped patch antenna.
  • the metal antenna is selected from one of a square patch antenna, a loop patch antenna, a circular patch antenna, and a cross-shaped patch antenna.
  • a protective film is applied on the surface of the metal antenna.
  • the antenna system is a dual-frequency antenna system.
  • the present invention also provides a mobile terminal including the AOG antenna system.
  • the AOG antenna system and mobile terminal provided by the present invention have the following beneficial effects:
  • a metal antenna on the surface of the 3D glass back cover By setting a metal antenna on the surface of the 3D glass back cover, the influence of the 3D glass back cover on the antenna inside the mobile terminal is greatly reduced. High radiation efficiency and small gain reduction ensure communication effect; by mounting metal antennas on the inner and outer surfaces of the 3D glass back cover, dual-frequency radiation is achieved; the millimeter wave phased array antenna system uses a linear array instead of a plane Array, the space occupied in the mobile phone becomes narrower, and only one angle needs to be scanned, which simplifies the design difficulty, test difficulty, and complexity of beam management.
  • FIG. 1 is a schematic structural diagram of a mobile terminal provided by the present invention
  • FIG. 2 is a schematic diagram of the connection between the 3D glass back cover, the AOG antenna system, and the motherboard in the mobile terminal shown in FIG. 1;
  • FIG. 3 is a graph of a reflection coefficient of an AOG antenna system provided by the present invention.
  • FIG. 5 (a) is a radiation pattern of a phase shift of 0 ° for each packaged antenna unit when the AOG antenna system provided by the present invention is at 28 GHz;
  • FIG. 5 (b) is a radiation pattern of a phase shift of 45 ° for each packaged antenna unit when the AOG antenna system provided by the present invention is at 28 GHz;
  • FIG. 6 (a) is a radiation pattern of a phase shift of 0 ° of each packaged antenna unit when the AOG antenna system provided by the present invention is 39 GHz;
  • FIG. 6 (b) is a radiation pattern of a 45 ° phase shift of each packaged antenna unit at the 39 GHz frequency of the AOG antenna system provided by the present invention
  • FIG. 7 (a) is a coverage efficiency graph of an AOG antenna system provided in the present invention in a 28 GHz frequency band;
  • FIG. 7 (b) is a coverage efficiency graph of the AOG antenna system provided in the present invention in a 39 GHz frequency band.
  • the present invention provides a mobile terminal 100.
  • the mobile terminal 100 may be a mobile phone, an iPad, a POS machine, or the like. The present invention does not limit this.
  • the mobile terminal 100 includes a frame 1 and a cover.
  • the frame 1 and the 3D glass back cover 2 surrounding the housing space 2 and the motherboard 3 and the AOG antenna system 4 housed in the storage space and spaced from the 3D glass back cover 2.
  • the 3D glass back cover 2 can be covered on the frame 1 with an adhesive, or a corresponding buckle structure can be provided on the frame 1 and the 3D glass back cover 2 respectively, so that the 3D glass back cover 2 can
  • the frame 1 is fixedly connected to the frame 1 by a snapping method, or the frame 1 and the 3D glass back cover are integrally formed.
  • the 3D glass back cover 2 can provide better protection, aesthetics, heat diffusion, color, and user experience.
  • the AOG antenna system 4 can receive and send electromagnetic wave signals, thereby realizing the communication function of the mobile terminal 100.
  • the AOG antenna system 4 is a millimeter-wave phased array antenna system. Specifically, the AOG antenna system 4 includes a motherboard 3 and a 3D glass back cover 2 and is electrically connected to the motherboard 3. The package antenna 41 and the metal antenna 42 formed on the surface of the 3D glass back cover 2 correspond to positions of the package antenna 41.
  • the package antenna 41 includes a substrate 411, a plurality of package antenna units 412 provided on a side of the substrate 411 facing the 3D glass back cover 2, and a substrate 411 facing away from the 3D glass back cover.
  • the integrated circuit chip 413 on one side of 2 and a circuit 414 provided in the substrate 411 and connecting the packaged antenna unit 412 and the integrated circuit chip 413 are connected to the motherboard 3.
  • the package antenna 41 may be connected to the motherboard 3 through a BGA packaging technology.
  • the metal antenna 42 includes a first antenna 421 attached to an inner surface of the 3D glass back cover 2 and a second antenna 422 attached to an outer surface of the 3D glass back cover 2.
  • the first antenna 421 and The second antenna 422 is provided correspondingly.
  • the inner surface of the 3D glass back cover 2 is a side facing the main board 3
  • the outer surface of the 3D glass back cover 2 is a side facing away from the main board 3.
  • the AOG antenna system 4 is a dual-frequency antenna system. Specifically, the first antenna 421, the second antenna 422, and the package antenna 41 are coupled to generate a first resonance frequency and a second resonance frequency, thereby realizing Dual-frequency coverage of the AOG antenna system 4.
  • the first resonance frequency is a 28 GHz frequency band
  • the second resonance frequency is a 39 GHz frequency band.
  • the second antenna 422 can also play a guiding role and improve the gain of the AOG antenna system 4.
  • the package antenna 41 and the metal antenna 42 are both one-dimensional linear arrays, and the space occupied by the millimeter wave array in the mobile phone is narrowed, and only one angle needs to be scanned, which simplifies the design difficulty, the test difficulty, and the beam. The complexity of management.
  • the package antenna 41 is a 1 * 4 linear array
  • the metal antenna 42 is also a 1 * 4 linear array
  • the package antenna 41 includes four of the package antenna units 412
  • the first The antenna 421 includes four first antenna units 4211
  • the second antenna 422 includes four second antenna units 4221, and each of the first antenna units 4211 is spaced from and coupled to one of the packaged antenna units 412; each The second antenna unit 4221 is spaced from and coupled to one of the first antenna units 4211.
  • Each of the packaged antenna units 412 is connected to a phase shifter, which is a 5-bit phase shifter with an accuracy of 11.25 °.
  • the package antenna 41 is selected from one of a square patch antenna, a loop patch antenna, a circular patch antenna, and a cross-shaped patch antenna;
  • the metal antenna 42 is selected from a square patch antenna, a loop One of a patch antenna, a circular patch antenna, and a cross-shaped patch antenna.
  • the package antenna 41 and the metal antenna 42 are both square patch antennas.
  • the packaged antenna 41 and the metal antenna 42 may also be antennas of other types.
  • the dielectric constant of the 3D glass back cover 2 is 6.3 + i0.039, and the thickness is 0.7mm; the substrate 411 of the package antenna 41 is laminated with 6 layers of high frequency and low loss PCB material.
  • the core layer is made of Rogers4350B with a thickness of 0.254mm, and the other dielectric layers are laminated with Rogers4450F with a thickness of 0.2mm.
  • this application does not limit the dielectric constant of the 3D glass back cover 2, nor does it limit the number, thickness and manufacturing method of the substrate 411 of the package antenna 41.
  • Each surface of the 3D glass back cover 2 may be all designed as a flat surface, or a part of the surface may be designed as a flat surface, and another part of the surface may be designed as a curved surface, so as to satisfy different users' demands for products.
  • the metal antenna 42 is formed on the surface of the 3D glass back cover 2 by a printed conductive silver paste method or a printed LDS ink method.
  • the second antenna 422 may be designed near the logo, or a protective film may be applied on the surface of the second antenna 422, so as not to affect the It is beautiful and can also protect the antenna.
  • the protective film is preferably a low-dielectric layer film or plastic.
  • FIG. 3 is a reflection coefficient diagram of the AOG antenna system 4 provided by the present invention
  • FIG. 4 is an antenna efficiency diagram of the AOG antenna system 4 provided by the present invention
  • FIG. 5 (a) is When the AOG antenna system 4 provided by the present invention is 28 GHz, the phase shift of each packaged antenna unit 412 is a radiation pattern of 0 °
  • FIG. 5 (b) is the phase shift of each packaged antenna unit 412 when the AOG antenna system 4 is at 28 GHz. Is a radiation pattern of 45 °
  • FIG. 6 (a) is a radiation pattern of a phase shift of 0 ° for each packaged antenna unit 412 when the AOG antenna system 4 provided by the present invention is 39 GHz
  • FIG. 6 (b) is an AOG antenna When the system 4 is at 39 GHz, the radiation pattern of the phase shift of each packaged antenna unit 412 is 45.
  • 3D glass back cover 2 As the back cover of a mobile phone, it will seriously affect the radiation performance of the antenna system housed inside it, reduce the radiation efficiency, reduce the gain, and the radiation pattern distortion due to the influence of surface waves.
  • the 3D glass back cover 2 by using the 3D glass back cover 2 as a dielectric substrate of the antenna, it is possible to greatly reduce the influence of the 3D glass back cover 2 on the inner package antenna 41 while achieving dual-frequency coverage, and improve This improves antenna efficiency and avoids distortion of the radiation pattern.
  • FIG. 7 (a) is a coverage efficiency curve of the AOG antenna system 4 provided in the present invention at a frequency of 28 GHz.
  • FIG. 7 (b) is an AOG antenna provided by the present invention.
  • the threshold is reduced by 9.5dB, and in the 3GPP discussion, for a 50% coverage efficiency, the gain threshold is reduced to 12.98dB. Therefore, it is shown that the AOG antenna system 4 of the present invention has better coverage efficiency.
  • the AOG antenna system 4 and the mobile terminal 100 provided by the present invention have the following beneficial effects:
  • the 3D glass back cover is greatly reduced.
  • the effect on the antenna 41 inside the mobile terminal 100 is high antenna radiation efficiency and small gain reduction, which ensures the communication effect;
  • the millimeter-wave phased array antenna system uses a linear array instead of a planar array, and the space occupied in the mobile phone is narrowed.
  • the metal antenna 42 includes a first antenna 421 and a second antenna 422, and the first antenna 421 and the first antenna 421 The two antennas 422 are coupled to achieve dual-frequency coverage of the AOG antenna system 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种AOG天线系统及移动终端。所述AOG天线系统包括设于所述主板与所述3D玻璃后盖之间并与所述主板电连接的封装天线和成型于所述3D玻璃后盖表面的金属天线,所述金属天线包括贴设于所述3D玻璃后盖内表面的第一天线和贴设于所述3D玻璃后盖外表面的第二天线,所述第一天线与所述封装天线的位置相对应且通过所述封装天线耦合馈电,所述第二天线与所述第一天线的位置相对应且通过所述第一天线耦合馈电。与相关技术相比,本发明提供的AOG天线系统通过在3D玻璃后盖表面设置金属天线,极大地降低了3D玻璃后盖对移动终端内部封装天线的影响,天线辐射效率高,增益降低小,同时具有双频覆盖。

Description

AOG天线系统及移动终端 技术领域
本发明涉及无线通信技术领域,尤其涉及一种AOG(Antenna On Glass,玻璃表面天线)天线系统及移动终端。
背景技术
5G作为全球业界的研发焦点,发展5G技术制定5G标准已经成为业界共识。国际电信联盟 ITU 在 2015 年 6 月召开的 ITU-RWP5D 第 22 次会议上明确了 5G 的三个主要应用场景:增强型移动宽带、大规模机器通信、高可靠低延时通信。这三个应用场景分别对应着不同的关键指标,其中增强型移动带宽场景下用户峰值速度为20Gbps,最低用户体验速率为100Mbps。目前3GPP正在对5G技术进行标准化工作,第一个5G非独立组网(NSA)国际标准于2017年12月正式完成并冻结,并计划在2018年6月完成5G独立组网标准。3GPP会议期间诸多关键技术和系统架构等研究工作得到迅速聚焦,其中包含毫米波技术。毫米波独有的高载频、大带宽特性是实现5G超高数据传输速率的主要手段。
毫米波频段丰富的带宽资源为高速传输速率提供了保障,但是由于该频段电磁波剧烈的空间损耗,利用毫米波频段的无线通信系统需要采用相控阵的架构。通过移相器使得各个阵元的相位按一定规律分布,从而形成高增益波束,并且通过相移的改变使得波束在一定空间范围内扫描。
天线作为射频前端系统中不可缺少的部件,在射频电路向着集成化、小型化方向发展的同时,将天线与射频前端电路进行系统集成和封装成为未来射频前端发展的必然趋势。封装天线(AiP)技术是通过封装材料与工艺将天线集成在携带芯片的封装内,很好地兼顾了天线性能、成本及体积,深受广大芯片及封装制造商的青睐。目前高通,Intel,IBM等公司都采用了封装天线技术。毋庸置疑,AiP技术也将为5G毫米波移动通信系统提供很好的天线解决方案。
金属中框配合3D玻璃是未来全面屏手机结构设计中的主流方案,能提供更好的保护、美观度、热扩散、色彩度以及用户体验。然而由于3D玻璃较高的介电常数,会严重影响毫米波天线的辐射性能,降低天线阵列增益等。
因此,实有必要提供一种新的天线系统及移动终端以解决上述问题。
技术问题
本发明的目的在于提供一种AOG天线系统及移动终端,其能够极大降低3D玻璃后盖对移动终端内部封装天线并具有双频覆盖的影响。
技术解决方案
本发明的技术方案如下:一种AOG天线系统,应用于移动终端,所述移动终端包括3D玻璃后盖和与所述3D玻璃后盖相对间隔设置的主板,所述AOG天线系统包括设于所述主板与所述3D玻璃后盖之间并与所述主板电连接的封装天线和成型于所述3D玻璃后盖表面的金属天线,所述金属天线包括贴设于所述3D玻璃后盖内表面的第一天线和贴设于所述3D玻璃后盖外表面的第二天线,所述第一天线与所述封装天线的位置相对应且通过所述封装天线耦合馈电,所述第二天线与所述第一天线的位置相对应且通过所述第一天线耦合馈电。
优选的,所述封装天线包括基板、设于所述基板朝向所述3D玻璃后盖的一侧的多个封装天线单元、设于所述基板背离所述3D玻璃后盖的一侧的集成电路芯片及设于所述基板内连接所述封装天线单元和所述集成电路芯片的电路,所述电路与所述主板连接。
优选的,所述AOG天线系统为毫米波相控阵天线系统。
优选的,所述金属天线和所述封装天线均为一维直线阵,所述第一天线包括多个第一天线单元,所述第二天线包括多个第二天线单元,每个所述第一天线单元与一个所述封装天线单元间隔设置并耦合;每个所述第二天线单元与一个所述第一天线单元间隔设置并耦合。
优选的,所述金属天线通过印刷导电银浆法或者印刷LDS油墨法成型于所述3D玻璃后盖表面。
优选的,所述封装天线选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种。
优选的,所述金属天线选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种。
优选的,所述金属天线表面贴敷有保护膜。
优选的,所述天线系统为双频天线系统。
本发明还提供一种移动终端,其包括所述的AOG天线系统。
有益效果
与相关技术相比,本发明提供的AOG天线系统及移动终端具有如下有益效果:通过在3D玻璃后盖表面设置金属天线,极大地降低了3D玻璃后盖对移动终端内部封装天线的影响,天线辐射效率高,增益降低小,保证了通信效果;通过在3D玻璃后盖内、外表面均贴设金属天线,实现了双频辐射;所述毫米波相控阵天线系统采用线阵而非平面阵,在手机中占用的空间变窄,只需扫描一个角度,简化了设计难度、测试难度、以及波束管理的复杂度。
附图说明
图1为本发明提供的移动终端的结构示意图;
图2为图1所示移动终端中3D玻璃后盖、AOG天线系统及主板的连接示意图;
图3为本发明提供的AOG天线系统的反射系数曲线图;
图4为本发明提供的AOG天线系统的天线效率曲线图;
图5(a)为本发明提供的AOG天线系统在28GHz时,各封装天线单元的相移为0°的辐射方向图;
图5(b)为本发明提供的AOG天线系统在28GHz时,各封装天线单元的相移为45°的辐射方向图;
图6(a)为本发明提供的AOG天线系统在39GHz时,各封装天线单元的相移为0°的辐射方向图;
图6(b)为本发明提供的AOG天线系统在39GHz时,各封装天线单元的相移为45°的辐射方向图;
图7(a)为本发明提供的AOG天线系统在28GHz频段下的覆盖效率曲线图;
图7(b)为本发明提供的AOG天线系统在39GHz频段下的覆盖效率曲线图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部份实施例,而不是全部的实施例。
如图1-2所示,本发明提供一种移动终端100,该移动终端100可以是手机、ipad以及POS机等,本发明对此不作限定,所述移动终端100包括边框1、盖合于所述边框1并与其围成收容空间的3D玻璃后盖2、收容于所述收容空间内并与所述3D玻璃后盖2间隔设置的主板3和AOG天线系统4。所述3D玻璃后盖2可以通过胶粘剂盖合在所述边框1上,或者可以在所述边框1和所述3D玻璃后盖2上分别设置相应的卡扣结构,使得3D玻璃后盖2可以通过卡接方式固定连接在所述边框1上,或者所述边框1与所述3D玻璃后盖一体成型。所述3D玻璃后盖2能提供更好的保护、美观度、热扩散、色彩度以及用户体验。所述AOG天线系统4可以接收和发送电磁波信号,进而实现所述移动终端100的通信功能。
所述AOG天线系统4为毫米波相控阵天线系统,具体地,所述AOG天线系统4包括设于所述主板3与所述3D玻璃后盖2之间并与所述主板3电连接的封装天线41以及成型于所述3D玻璃后盖2表面的金属天线42,所述金属天线42与所述封装天线41的位置相对应。
具体地,所述封装天线41包括基板411、设于所述基板411朝向所述3D玻璃后盖2的一侧的多个封装天线单元412、设于所述基板411背离所述3D玻璃后盖2的一侧的集成电路芯片413及设于所述基板411内连接所述封装天线单元412和所述集成电路芯片413的电路414,所述电路414与所述主板3连接。具体地,所述封装天线41可以通过BGA封装技术与所述主板3连接。
所述金属天线42包括贴设于所述3D玻璃后盖2内表面的第一天线421及贴设于所述3D玻璃后盖2外表面的第二天线422,所述第一天线421和所述第二天线422对应设置。需要说明的是,所述3D玻璃后盖2的内表面为朝向所述主板3的一面,所述3D玻璃后盖2的外表面为背离所述主板3的一面。
所述AOG天线系统4为双频天线系统,具体的,所述第一天线421、所述第二天线422及所述封装天线41三者耦合产生第一谐振频率和第二谐振频率,从而实现所述AOG天线系统4的双频覆盖。在本实施例中,所述第一谐振频率为28GHz频段,所述第二谐振频率为39GHz频段。同时,所述第二天线422还可以起到引向作用,提高所述AOG天线系统4的增益。
进一步地,所述封装天线41和所述金属天线42均为一维直线阵,将毫米波阵列在手机中占用的空间变窄,只需扫描一个角度,简化了设计难度、测试难度、以及波束管理的复杂度。优选的,所述封装天线41为1*4的直线阵,所述金属天线42也为1*4的直线阵,即所述封装天线41包括4个所述封装天线单元412,所述第一天线421包括4个第一天线单元4211,所述第二天线422包括4个第二天线单元4221,每个所述第一天线单元4211与一个所述封装天线单元412间隔设置并耦合;每个所述第二天线单元4221与一个所述第一天线单元4211间隔设置并耦合。每个所述封装天线单元412均与一个移相器连接,所述移相器为5bit移相器,其精度为11.25°。
更进一步的,所述封装天线41选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种;所述金属天线42选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种,优选的,所述封装天线41及所述金属天线42均为正方形贴片天线。当然,在其他实施方式中,所述封装天线41和所述金属天线42也可以选用其他形式的天线。
同时,在本实施例中,所述3D玻璃后盖2的介电常数为6.3+i0.039,厚度为0.7mm;所述封装天线41的基板411采用6层高频低损耗PCB板材压合制成,其核心层采用Rogers4350B,厚度为0.254mm,其余介质层采用Rogers4450F压合,厚度为0.2mm。当然,需要说明的是,本申请并不限制所述3D玻璃后盖2的介电常数,也并不限制所述封装天线41的基板411的层数、厚度及制成方式。
所述3D玻璃后盖2的各个表面可以全部设计为平面,或者部分表面设计为平面,另一部分表面设计为曲面,以满足不同用户对产品的需求。所述金属天线42通过印刷导电银浆法或者印刷LDS油墨法成型于所述3D玻璃后盖2的表面。同时,为避免所述第二天线422影响所述移动终端100的美观度,可以将所述第二天线422设计在Logo附近,或者在所述第二天线422表面贴敷保护膜,既避免影响美观,又可以起到保护天线的作用,所述保护膜优选为低介电层薄膜或塑料。
请参阅图3~图6(b),其中图3为本发明提供的AOG天线系统4的反射系数图;图4为本发明提供的AOG天线系统4的天线效率图;图5(a)为本发明提供的AOG天线系统4在28GHz时,各封装天线单元412的相移为0°的辐射方向图;图5(b)为AOG天线系统4在28GHz时,各封装天线单元412的相移为45°的辐射方向图;图6(a)为本发明提供的AOG天线系统4在39GHz时,各封装天线单元412的相移为0°的辐射方向图;图6(b)为AOG天线系统4在39GHz时,各封装天线单元412的相移为45的辐射方向图。
通常,由于3D玻璃较高的介电常数6.3+i0.039, 作为手机后盖会严重影响收容于其内部的天线系统的辐射性能,降低辐射效率,降低增益以及由于表面波的影响导致的辐射方向图失真。本发明中,通过利用所述3D玻璃后盖2作为天线的介质基板,在实现双频覆盖的同时能够极大地降低了所述3D玻璃后盖2对内部的所述封装天线41的影响,提高了天线效率,避免了辐射方向图的失真。
请参阅图7(a)及图7(b),图7(a)为本发明提供的AOG天线系统4在28GHz频段下的覆盖效率曲线图;图7(b)为本发明提供的AOG天线系统4在39GHz频段下的覆盖效率曲线图,由图7(a)及图7(b)可知,在覆盖效率为50%的情况下,所述AOG天线系统4在28GHz频段和39GHz频段的增益阈值下降9.5dB,而在3GPP讨论中,对于50%覆盖效率, 该增益阈值下降为12.98dB,因此,说明本发明的AOG天线系统4具有更优的覆盖效率。
与相关技术相比,本发明提供的AOG天线系统4及移动终端100具有如下有益效果:通过在3D玻璃后盖2表面设置与封装天线41耦合的金属天线42,极大地降低了3D玻璃后盖对移动终端100内部封装天线41的影响,天线辐射效率高,增益降低小,保证了通信效果;所述毫米波相控阵天线系统采用线阵而非平面阵,在手机中占用的空间变窄,只需扫描一个角度,简化了设计难度、测试难度、以及波束管理的复杂度,同时,所述金属天线42包括第一天线421和第二天线422,所述第一天线421与所述第二天线422耦合,可以实现所述AOG天线系统4的双频覆盖。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种AOG天线系统,应用于移动终端,所述移动终端包括3D玻璃后盖和与所述3D玻璃后盖相对间隔设置的主板,其特征在于,所述AOG天线系统包括设于所述主板与所述3D玻璃后盖之间并与所述主板电连接的封装天线和成型于所述3D玻璃后盖表面的金属天线,所述金属天线包括贴设于所述3D玻璃后盖内表面的第一天线和贴设于所述3D玻璃后盖外表面的第二天线,所述第一天线与所述封装天线的位置相对应且通过所述封装天线耦合馈电,所述第二天线与所述第一天线的位置相对应且通过所述第一天线耦合馈电。
  2. 根据权利要求1所述的AOG天线系统,其特征在于,所述封装天线包括基板、设于所述基板朝向所述3D玻璃后盖的一侧的多个封装天线单元、设于所述基板背离所述3D玻璃后盖的一侧的集成电路芯片及设于所述基板内连接所述封装天线单元和所述集成电路芯片的电路,所述电路与所述主板连接。
  3. 根据权利要求2所述的AOG天线系统,其特征在于,所述AOG天线系统为毫米波相控阵天线系统。
  4. 根据权利要求3所述的AOG天线系统,其特征在于,所述金属天线和所述封装天线均为一维直线阵,所述第一天线包括多个第一天线单元,所述第二天线包括多个第二天线单元,每个所述第一天线单元与一个所述封装天线单元间隔设置并耦合;每个所述第二天线单元与一个所述第一天线单元间隔设置并耦合。
  5. 根据权利要求1所述的AOG天线系统,其特征在于,所述金属天线通过印刷导电银浆法或者印刷LDS油墨法成型于所述3D玻璃后盖表面。
  6. 根据权利要求1所述的AOG天线系统,其特征在于,所述封装天线选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种。
  7. 根据权利要求1所述的AOG天线系统,其特征在于,所述金属天线选自方形贴片天线、环形贴片天线、圆形贴片天线及十字形贴片天线中的一种。
  8. 根据权利要求1所述的AOG天线系统,其特征在于,所述金属天线表面贴敷有保护膜。
  9. 根据权利要求1所述的AOG天线系统,其特征在于,所述AOG天线系统为双频天线系统。
  10. 一种移动终端,其特征在于,包括权利要求1-9中任一项所述的AOG天线系统。
PCT/CN2019/088588 2018-08-12 2019-05-27 Aog天线系统及移动终端 WO2020034708A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810911474.XA CN109088180B (zh) 2018-08-12 2018-08-12 Aog天线系统及移动终端
CN201810911474.X 2018-08-12

Publications (1)

Publication Number Publication Date
WO2020034708A1 true WO2020034708A1 (zh) 2020-02-20

Family

ID=64834294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088588 WO2020034708A1 (zh) 2018-08-12 2019-05-27 Aog天线系统及移动终端

Country Status (3)

Country Link
US (1) US10819002B2 (zh)
CN (1) CN109088180B (zh)
WO (1) WO2020034708A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109149069A (zh) * 2018-08-12 2019-01-04 瑞声科技(南京)有限公司 Aog天线系统及移动终端
CN109103589B (zh) * 2018-08-12 2021-01-12 瑞声科技(南京)有限公司 天线模组及移动终端
CN109119768A (zh) * 2018-08-12 2019-01-01 瑞声科技(南京)有限公司 Aog天线系统及移动终端
CN109088180B (zh) * 2018-08-12 2020-11-20 瑞声科技(南京)有限公司 Aog天线系统及移动终端
CN109830799A (zh) * 2018-12-29 2019-05-31 瑞声科技(南京)有限公司 介质谐振器封装天线系统及移动终端
CN109687166A (zh) * 2018-12-29 2019-04-26 瑞声科技(南京)有限公司 封装天线系统及移动终端
WO2020133496A1 (zh) * 2018-12-29 2020-07-02 瑞声科技(南京)有限公司 一种封装天线模组及电子设备
CN109786933B (zh) * 2018-12-29 2021-09-07 瑞声科技(南京)有限公司 封装天线系统及移动终端
CN109638459B (zh) * 2018-12-29 2021-07-09 瑞声科技(南京)有限公司 一种封装天线模组及电子设备
CN109786934B (zh) * 2018-12-29 2021-08-17 瑞声科技(南京)有限公司 封装天线系统及移动终端
WO2020133499A1 (zh) * 2018-12-29 2020-07-02 瑞声科技(南京)有限公司 一种封装天线模组及电子设备
CN109888454B (zh) * 2018-12-29 2021-06-11 瑞声精密制造科技(常州)有限公司 一种封装天线模组及电子设备
CN111294093B (zh) * 2019-01-31 2022-03-22 展讯通信(上海)有限公司 基于AiP结构的波束检测方法及装置、计算机可读存储介质
CN111294121B (zh) * 2019-01-31 2021-04-02 展讯通信(上海)有限公司 基于AiP结构的波束调整方法及装置、计算机可读存储介质
US11664872B2 (en) 2019-01-31 2023-05-30 Spreadtrum Communications (Shanghai) Co., Ltd. Beam detection method and device, beam adjusting method and device, antenna module selection method and device, and computer readable storage media
KR102626886B1 (ko) * 2019-02-19 2024-01-19 삼성전자주식회사 안테나 및 상기 안테나를 포함하는 전자 장치
CN209298341U (zh) * 2019-03-18 2019-08-23 Oppo广东移动通信有限公司 天线装置和电子设备
CN111725607B (zh) * 2019-03-20 2021-09-14 Oppo广东移动通信有限公司 毫米波天线模组和电子设备
CN110048224B (zh) 2019-03-28 2021-05-11 Oppo广东移动通信有限公司 天线模组和电子设备
CN110021812B (zh) * 2019-04-08 2021-04-13 Oppo广东移动通信有限公司 天线组件及电子设备
KR102661906B1 (ko) * 2019-04-28 2024-04-29 칼테라 세미컨덕터 테크놀로지 (상하이) 컴퍼니 리미티드 안테나-인-패키지 및 레이다 어셈블리 패키지
CN113302801A (zh) * 2019-05-30 2021-08-24 华为技术有限公司 封装结构、网络设备以及终端设备
CN110085575A (zh) * 2019-06-03 2019-08-02 中芯长电半导体(江阴)有限公司 半导体封装结构及其制备方法
CN110350293A (zh) * 2019-06-26 2019-10-18 加特兰微电子科技(上海)有限公司 片上天线及雷达系统
CN112234341B (zh) * 2019-06-30 2022-02-01 Oppo广东移动通信有限公司 天线组件及电子设备
CN112235449B (zh) * 2019-06-30 2022-01-04 Oppo广东移动通信有限公司 壳体组件、天线组件及电子设备
CN113036461A (zh) * 2019-12-25 2021-06-25 中国移动通信集团终端有限公司 系统级封装天线模组和终端
WO2021164512A1 (zh) * 2020-02-20 2021-08-26 Oppo广东移动通信有限公司 立体式天线及电子装置
CN111430942B (zh) * 2020-04-01 2021-06-29 深圳市睿德通讯科技有限公司 一种毫米波与非毫米波天线整合模块
CN112002989B (zh) * 2020-08-27 2023-02-10 宁波大学 一种基于玻璃通孔阵列的片上天线
CN112736492A (zh) * 2020-12-25 2021-04-30 深圳市信维通信股份有限公司 基于终端外壳的5g天线及一种移动终端设备
US20230048611A1 (en) * 2021-08-13 2023-02-16 KYOCERA AVX Components (San Diego), Inc. Antenna Array on Curved and Flat Substrates
CN113809513B (zh) * 2021-11-16 2022-02-15 深圳市睿德通讯科技有限公司 天线装置及电子设备
US11773011B1 (en) 2022-07-08 2023-10-03 Agc Automotive Americas Co. Glass assembly including a conductive feature and method of manufacturing thereof
US20240055768A1 (en) * 2022-08-12 2024-02-15 Apple Inc. Antenna Feed Structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106583A (zh) * 2006-06-23 2008-01-16 Lg电子株式会社 使用具有导电层的内部天线的移动终端
WO2014025364A1 (en) * 2012-08-10 2014-02-13 Research In Motion Limited Portable electronic device with merged rear housing and antenna
US20150188210A1 (en) * 2013-12-31 2015-07-02 Motorola Mobility Llc Systems and methods for a reconfigurable antenna using design elements on an electronic device housing
US20160064832A1 (en) * 2014-08-26 2016-03-03 Samsung Electronics Co., Ltd. Multi-band loop antenna and electronic device utilizing the same
CN106910995A (zh) * 2017-05-08 2017-06-30 常熟市泓博通讯技术股份有限公司 双层耦合宽频手机天线
CN107146946A (zh) * 2017-05-04 2017-09-08 深圳市金立通信设备有限公司 一种终端的天线制作方法、天线以及终端
CN107275756A (zh) * 2017-06-05 2017-10-20 捷开通讯(深圳)有限公司 一种移动通讯终端及其天线
CN108376828A (zh) * 2018-01-25 2018-08-07 瑞声科技(南京)有限公司 天线系统及移动终端
CN109088180A (zh) * 2018-08-12 2018-12-25 瑞声科技(南京)有限公司 Aog天线系统及移动终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728774B2 (en) * 2008-07-07 2010-06-01 International Business Machines Corporation Radio frequency (RF) integrated circuit (IC) packages having characteristics suitable for mass production
TWM544129U (zh) * 2017-01-06 2017-06-21 Luminous Optical Technology Co Ltd 可接收及發射無線訊號的通訊裝置玻璃背蓋
US10700410B2 (en) * 2017-10-27 2020-06-30 Mediatek Inc. Antenna-in-package with better antenna performance
US10879585B2 (en) * 2018-04-09 2020-12-29 Lg Electronics Inc. Mobile terminal
CN109149115B (zh) * 2018-08-03 2021-01-12 瑞声科技(南京)有限公司 天线系统及移动终端
CN109149069A (zh) * 2018-08-12 2019-01-04 瑞声科技(南京)有限公司 Aog天线系统及移动终端
CN109786933B (zh) * 2018-12-29 2021-09-07 瑞声科技(南京)有限公司 封装天线系统及移动终端

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106583A (zh) * 2006-06-23 2008-01-16 Lg电子株式会社 使用具有导电层的内部天线的移动终端
WO2014025364A1 (en) * 2012-08-10 2014-02-13 Research In Motion Limited Portable electronic device with merged rear housing and antenna
US20150188210A1 (en) * 2013-12-31 2015-07-02 Motorola Mobility Llc Systems and methods for a reconfigurable antenna using design elements on an electronic device housing
US20160064832A1 (en) * 2014-08-26 2016-03-03 Samsung Electronics Co., Ltd. Multi-band loop antenna and electronic device utilizing the same
CN107146946A (zh) * 2017-05-04 2017-09-08 深圳市金立通信设备有限公司 一种终端的天线制作方法、天线以及终端
CN106910995A (zh) * 2017-05-08 2017-06-30 常熟市泓博通讯技术股份有限公司 双层耦合宽频手机天线
CN107275756A (zh) * 2017-06-05 2017-10-20 捷开通讯(深圳)有限公司 一种移动通讯终端及其天线
CN108376828A (zh) * 2018-01-25 2018-08-07 瑞声科技(南京)有限公司 天线系统及移动终端
CN109088180A (zh) * 2018-08-12 2018-12-25 瑞声科技(南京)有限公司 Aog天线系统及移动终端

Also Published As

Publication number Publication date
CN109088180A (zh) 2018-12-25
CN109088180B (zh) 2020-11-20
US10819002B2 (en) 2020-10-27
US20200052367A1 (en) 2020-02-13

Similar Documents

Publication Publication Date Title
WO2020034708A1 (zh) Aog天线系统及移动终端
US11031671B2 (en) AOG antenna system and mobile terminal
WO2020034682A1 (zh) Aog天线系统及移动终端
US11024942B2 (en) Antenna-in-package system and mobile terminal
US11108164B2 (en) Antenna module and mobile terminal
Watanabe et al. A review of 5G front-end systems package integration
CN109786933B (zh) 封装天线系统及移动终端
WO2020134471A1 (zh) 毫米波阵列天线模组和移动终端
WO2020134476A1 (zh) 封装天线系统及移动终端
WO2020134477A1 (zh) 介质谐振器封装天线系统及移动终端
TWI491104B (zh) 具雙輻射場型之天線裝置
US20200212542A1 (en) Antenna system and mobile terminal
CN111786084B (zh) 5g毫米波模组及具有陶瓷壳的移动终端
US20220006486A1 (en) Dielectric Resonator Antenna Modules
CN111786098A (zh) 5g毫米波双频介质谐振器天线模组及移动终端
Hwang et al. 28 GHz and 38 GHz dual-band vertically stacked dipole antennas on flexible liquid crystal polymer substrates for millimeter-wave 5G cellular handsets
CN109786934B (zh) 封装天线系统及移动终端
US8717239B2 (en) Multi-band antenna
US20230318183A1 (en) Metasurface for smartphone antenna, and smartphone device comprising same
CN113708058B (zh) 基于陶瓷壳体的5g毫米波天线结构及电子设备
WO2021000146A1 (zh) 一种封装天线模组及电子设备
Martínez-Vázquez et al. Highly integrated antennas and front-ends for 60 GHz WLAN applications
CN219534865U (zh) 一种双频毫米波天线模组及电子设备
Koul et al. Antenna Design Requirements
CN116565526A (zh) 一种双频毫米波天线模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19850315

Country of ref document: EP

Kind code of ref document: A1