WO2020034415A1 - 基于轴不变量的通用6r机械臂逆解建模与解算方法 - Google Patents

基于轴不变量的通用6r机械臂逆解建模与解算方法 Download PDF

Info

Publication number
WO2020034415A1
WO2020034415A1 PCT/CN2018/112750 CN2018112750W WO2020034415A1 WO 2020034415 A1 WO2020034415 A1 WO 2020034415A1 CN 2018112750 W CN2018112750 W CN 2018112750W WO 2020034415 A1 WO2020034415 A1 WO 2020034415A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
vector
equation
matrix
determinant
Prior art date
Application number
PCT/CN2018/112750
Other languages
English (en)
French (fr)
Inventor
居鹤华
Original Assignee
居鹤华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 居鹤华 filed Critical 居鹤华
Publication of WO2020034415A1 publication Critical patent/WO2020034415A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1607Calculation of inertia, jacobian matrixes and inverses

Definitions

  • the invention relates to a multi-axis robot 6R manipulator inverse solution modeling and calculation method, and belongs to the technical field of robots.
  • a dynamic graph structure (Dynamic Graph Structure) can be used to dynamically build a directed Span tree based on the motion axis, which lays a foundation for the study of robot modeling and control of Variable Topology Structure.
  • a dynamic graph structure (Dynamic Graph Structure) can be used to dynamically build a directed Span tree based on the motion axis, which lays a foundation for the study of robot modeling and control of Variable Topology Structure.
  • the 6R decoupling robotic arm has a common point constraint on the structure: either 4 to 6 axes are common, or 4 and 5 axes are common, and 5 and 6 axes are common. For high-precision robotic arms, this assumption does not hold due to machining and assembly errors. Because the common 6R manipulator does not have common point constraints, its inverse solution calculation is very difficult, and it has to succumb to the decoupling constraints in engineering. This constraint not only increases the difficulty of machining and assembly of the robot arm, but also reduces the absolute positioning accuracy of the robot arm. Only by breaking through the inverse solution method of the universal 6R manipulator can the demand for precise operation of the manipulator be met, and the theory of autonomous robots can be improved.
  • the technical problem to be solved by the present invention is to provide an inverse solution modeling method for a universal 6R manipulator based on an axis invariant, which breaks through the inverse solution method of a universal 6R manipulator and meets the needs of precise operation of the manipulator.
  • the present invention adopts the following technical solutions:
  • An inverse modeling and calculation method for a universal 6R manipulator based on an axis invariant is characterized by:
  • the pickup point is located on the axis of the 6th axis, and the robot arm whose 4th axis is not coaxial with the 5th axis is a universal 6R robot arm;
  • the posture equation of the 6R manipulator is expressed by the Cu-Gibbs quaternion expression, and the alignment is completed through the first 5 axes to eliminate the joint variables of the 4th and 5th axes; the 6th is controlled by the first 5 axes
  • the axis is aligned with the desired position and direction, so that the 6th axis can rotate infinitely or control the 6th axis to meet radial alignment, and the 6th axis will be given the desired position vector And expectations Inverse solution problem with given 6th axis expected position vector And 5th axis expected attitude
  • the inverse solution problem is equivalent.
  • Ju-Gibbs or Ju-Gibbs gauge quaternion that is isomorphic to Euler quaternions is defined:
  • Is Gibbs vector Is Gibbs vector
  • the matrix based on the structural parameters of the 6R manipulator system and the expected attitude of Gi-Gibs quaternion is expressed as
  • the position equation (169) after eliminating ⁇ 4 and ⁇ 5 is three "three-element two-order" polynomial equations, which are equivalent to the 3R manipulator problem.
  • the inverse 3R manipulator position solution based on the invariant of the axis is used to solve.
  • I a Dixon matrix of size S ⁇ S, whose [i] [j] member is an N-th order polynomial of univariate ⁇ 1 .
  • step [1] In step [1],
  • expression Represents the xth power of ⁇ ;
  • Delimiter I axis invariant Cross product matrix, member For members Same time replacement; 1 is the three-dimensional identity matrix; i Q n represents the attitude; Along the vector axis Line position Zero point from origin The translation vector to the origin O l ;
  • is the projection symbol, and i
  • is the ⁇ projection vector in the geodetic coordinate system.
  • step [2] the calculation formula of Dixon determinant based on the axis invariant is:
  • I the rotation transformation matrix
  • the coefficients of the combined variables are independent column vectors, so we choose Coefficients to form a square matrix
  • the remaining column vectors must be The columns are related;
  • I a Dixon matrix of size S ⁇ S, whose [i] [j] member is an N-th order polynomial of univariate ⁇ 1 .
  • step [2] the determinant formula of the block matrix is:
  • a square matrix of size (n + m) ⁇ (n + m) is M and a matrix of size n ⁇ n Is a sub-matrix consisting of the first n rows and any n columns of a square matrix M, a matrix of size m ⁇ m Is a sub-matrix consisting of the elements of m rows and the remaining m columns of the square matrix M;
  • step [2] perform the row staircase calculation principle on the determinant:
  • each term is an n-th order polynomial with respect to ⁇ 1 .
  • the original determinant can be changed to an upper triangular determinant through elementary row transformation, and then the nonzero diagonal elements are multiplied to obtain the determinant polynomial expression. This formula is 0, and all solutions of ⁇ 1 are obtained.
  • the specific method of row staging is to first sort the highest order of the first column of the determinant from high to low, and then perform a maximum of (S-1) ⁇ n elementary row transformation eliminations. Determinants whose elements are not zero. Then the elementary row transformation and elimination of the cofactors of the first row and the first column of the determinant are solved successively and iteratively.
  • step [3] the steps of constructing Dixon polynomials for n “n-ary N-th order” polynomial systems are:
  • a determinant consisting of a position vector or a rotation vector represents the volume of the vector expansion space; in different Cartesian spaces, it has a volume invariance. among them:
  • Equation (29) n n-elements
  • Equation (169) is a 16th-order mononomial equation with respect to ⁇ 1
  • Equation (5) is used to perform the determinant calculation of the quadratic block or the diagonalization of the determinant.
  • the method of the invention solves the problem of reversible solution kinematics modeling and inverse solution calculation of the 6R manipulator, has a simple and elegant motion chain symbol system, has the function of pseudo code, and has an iterative structure, ensuring the reliability and mechanization of system Calculus
  • Figure 3 is a schematic diagram of fixed axis rotation
  • Figure 4 shows the derived invariants of the axis invariants.
  • Natural coordinate axis The unit reference axis with a fixed origin that is coaxial with the motion axis or measurement axis is called the natural coordinate axis, also known as the natural reference axis.
  • Natural coordinate system As shown in Figure 1, if the multi-axis system D is at zero position, all Cartesian body coordinate systems have the same direction, and the origin of the body coordinate system is on the axis of the motion axis, then the coordinate system is a natural coordinate system. , Referred to as the natural coordinate system.
  • the advantages of the natural coordinate system are: (1) the coordinate system is easy to determine; (2) the joint variables at the zero position are zero; (3) the system attitude at the zero position is consistent; (4) it is not easy to introduce a measurement error.
  • the coordinate axis is a reference direction with a zero position and a unit scale. It can describe the position of translation in that direction, but it cannot fully describe the rotation angle around the direction, because the coordinate axis itself does not have a radial reference direction, that is There is a zero position that characterizes rotation. In practical applications, the radial reference of this shaft needs to be supplemented. For example: in Cartesian F [l] , to rotate around lx, you need to use ly or lz as the reference zero.
  • the coordinate axis itself is 1D, and three orthogonal 1D reference axes constitute a 3D Cartesian frame.
  • the axis invariant is a 3D spatial unit reference axis, which is itself a frame. It has its own radial reference axis, the reference mark.
  • the spatial coordinate axis and its own radial reference axis determine the Cartesian frame.
  • the spatial coordinate axis can reflect the three basic reference attributes of the motion axis and the measurement axis.
  • [2] is a 3D reference axis, which not only has an axial reference direction, but also has a radial reference zero position, which will be explained in section 3.3.1.
  • the axis invariant For axis invariants, its absolute derivative is its relative derivative. Since the axis invariant is a natural reference axis with invariance, its absolute derivative is always a zero vector. Therefore, the axis invariant is invariant to time differentiation. Have:
  • the basis vector e l is any vector consolidated with F [l] .
  • the basis vector With Any vector of consolidation, Is F [l] and Common unit vector, so Is F [l] and Shared basis vector. So the axis is invariant Is F [l] and Common reference base.
  • Axis invariants are parameterized natural coordinate bases and primitives for multi-axis systems. The translation and rotation of a fixed axis invariant are equivalent to the translation and rotation of a fixed coordinate system.
  • optical measurement equipment such as laser trackers can be applied to achieve accurate measurement of invariants of fixed axes.
  • the cylindrical pair can be applied to simplify the MAS kinematics and dynamics analysis.
  • Invariant A quantity that does not depend on a set of coordinate systems for measurement is called an invariant.
  • Natural coordinates take the natural coordinate axis vector as the reference direction, the angular position or line position relative to the zero position of the system, and record it as q l , which is called natural coordinates;
  • natural motion vector will be determined by the natural axis vector And the vector determined by natural coordinates q l Called the natural motion vector. among them:
  • the natural motion vector realizes the unified expression of axis translation and rotation.
  • a vector to be determined by the natural axis vector and the joint such as Called the free motion vector, also known as the free spiral.
  • the axis vector Is a specific free spiral.
  • joint space The space represented by the joint natural coordinates q l is called joint space.
  • the Cartesian space that expresses the position and pose (posture for short) is called a shape space, which is a double vector space or a 6D space.
  • Natural joint space using the natural coordinate system as a reference, through joint variables Means that there must be when the system is zero The joint space is called natural joint space.
  • Axis vector Is the natural reference axis of the natural coordinates of the joint. Because Is an axis invariant, so Is a fixed axis invariant, which characterizes the motion pair The structural relationship is determined by the natural coordinate axis. Fixed axis invariant Is a link Natural description of structural parameters.
  • Natural coordinate axis space The fixed axis invariant is used as the natural reference axis, and the space represented by the corresponding natural coordinate is called the natural coordinate axis space, which is referred to as the natural axis space. It is a 3D space with 1 degree of freedom.
  • any motion pair in the loop can be selected, and the stator and the mover constituting the motion pair can be separated; thus, a loop-free tree structure is obtained.
  • the Span tree represents a span tree with directions to describe the topological relationship of the tree chain movement.
  • I is a structural parameter; A is an axis sequence; F is a bar reference sequence; B is a bar body sequence; K is a motion pair type sequence; NT is a sequence of constrained axes, that is, a non-tree.
  • Axis sequence a member of.
  • Rotary pair R, prism pair P, spiral pair H, and contact pair O are special examples of cylindrical pair C.
  • the motion chain is identified by a partial order set ().
  • O () represents the number of operations in the calculation process, and usually refers to the number of floating-point multiplications and additions. It is very tedious to express the calculation complexity by the number of floating-point multiplication and addition. Therefore, the main operation times in the algorithm cycle are often used;
  • l l k is the kinematic chain from axis l to axis k, and the output is expressed as And
  • the cardinality is written as
  • l l k execution process execution If Then execute Otherwise, end.
  • the computational complexity of l l k is O (
  • l L means to obtain a closed subtree composed of axis l and its subtrees, Is a subtree without l; recursively execute l l with a computational complexity of
  • means attribute placeholder; if the attribute p or P is about position, then Should be understood as a coordinate system To the origin of F [l] ; if the attribute p or P is about direction, then Should be understood as a coordinate system To F [l] .
  • attribute variables or constants with partial order include the indicators indicating partial order in the name; either include the upper left corner and lower right corner indexes, or include the upper right corner and lower right corner indexes; Their directions are always from the upper left corner indicator to the lower right corner indicator, or from the upper right corner indicator to the lower right corner indicator.
  • the description of the direction is sometimes omitted. Even if omitted, those skilled in the art can also use symbolic expressions. It is known that, for each parameter used in this application, for a certain attribute symbol, their directions are always from the upper left corner index to the lower right corner index of the partial order index, or from the upper right corner index to the lower right corner index.
  • the symbol specifications and conventions of this application are determined based on the two principles of the partial order of the kinematic chain and the chain link being the basic unit of the kinematic chain, reflecting the essential characteristics of the kinematic chain.
  • the chain indicator represents the connection relationship, and the upper right indicator represents the reference system.
  • This symbolic expression is concise and accurate, which is convenient for communication and written expression.
  • they are structured symbol systems that contain the elements and relationships that make up each attribute quantity, which is convenient for computer processing and lays the foundation for computer automatic modeling.
  • the meaning of the indicator needs to be understood through the background of the attribute, that is, the context; for example: if the attribute is a translation type, the indicator at the upper left corner indicates the origin and direction of the coordinate system; if the attribute is a rotation type, the indicator at the top left The direction of the coordinate system.
  • the coordinate vector in the natural coordinate system F [k] that is, the coordinate vector from k to l;
  • rotation vector / angle vector I is a free vector, that is, the vector can be freely translated
  • the angular position that is, the joint angle and joint variables, are scalars
  • T means transpose of ⁇ , which means transpose the collection, and do not perform transpose on the members; for example:
  • Projection symbol ⁇ represents vector or tensor of second order group reference projection vector or projection sequence, i.e. the vector of coordinates or coordinate array, that is, the dot product projection "*"; as: position vector
  • the projection vector in the coordinate system F [k] is written as
  • Is a cross multiplier for example: Is axis invariant Cross product matrix; given any vector
  • the cross product matrix is
  • the cross product matrix is a second-order tensor.
  • i l j represents a kinematic chain from i to j
  • l l k is a kinematic chain from axis l to k
  • n represents the Cartesian Cartesian system, then Is a Cartesian axis chain; if n represents a natural reference axis, then For natural shaft chains.
  • the engineering structure parameters are characterized by fixed axis invariants to ensure the absolute positioning accuracy of the multi-axis system; on the other hand, the dimension reduction of the motion equation needs to be solved The problem and the computability of the inverse solution using the variable elimination method.
  • the translation axis and rotation axis in the 6R kinematic chain are Prism pair P, rotation pair R, motion pair Kinematic axis l, kinematic chain i l n .
  • the kinematic chain can be divided into three categories: pure translation (3 types), pure rotation (6 types), and composite (12 types) with both rotation and translation.
  • the three types of plain translation chains are ordinary kinematics and need not be discussed. Therefore, the existence conditions of the non-trivial inverse kinematics of the chain are:
  • the pose of natural space has 6 dimensions, it is necessary to establish 6 pose equations containing only 6 joint variables.
  • the pose equation based on Euler quaternions or dual quaternions does not satisfy the minimum number of equations.
  • the motion vector including translation and rotation is essentially a natural spiral.
  • the last axis of the robot arm must always be aligned with the desired direction in order to perform the required operation.
  • the first 5 axes control the alignment of the 6th axis with the desired position and direction. After that, the 6th axis is controlled to satisfy radial alignment; therefore, for a universal 6R robotic arm, it is only necessary to establish a pose equation including the first 5 joint variables.
  • the present invention proposes a "Ju-Gibs" attitude quaternion, the purpose of which is to complete the alignment through the first 5 axes to eliminate the joint variables of the 4th and 5th axes and lay the foundation for subsequent inverse solutions.
  • n> represents the full permutation of natural numbers [1: n], and there are n! Instances.
  • I [i1, ... in] represents the number of reverse order of the arrangement ⁇ i1, ... in>.
  • the computational complexity of equation (2) is: n! Product of n times and n! Sub-addition has exponential complexity and can only be applied to determinants with smaller dimensions. For determinants with larger dimensions, Laplace formula is usually used for recursive operations. for Adjugate Matrix, then
  • Simpler algorithms usually use Gaussian elimination or LU decomposition, first transform the matrix into a triangular matrix or a product of triangular matrices by elementary transformation, and then calculate the determinant.
  • the above determinant calculation method for number fields is not applicable to high-dimensional polynomial matrices, and a determinant calculation method for block matrices needs to be introduced.
  • Computing the determinant of Vector Polynomial is a specific block matrix determinant calculation problem. It expresses the inherent relationship between vectors and determinants at the vector level.
  • the determinant calculation of the block matrix expresses the inherent laws of the block matrix and the determinant at the matrix level.
  • Equations (4) and (5) can be generalized to n-dimensional space. Equation (4) helps to analyze the inherent law of the determinant at the vector level; for example, when any two vectors are parallel or the three vectors are coplanar, the corresponding determinant is zero. Equation (5) shows that the determinant of the vector polynomial is liable to cause a "combination explosion".
  • each term is an n-th order polynomial with respect to ⁇ 1 .
  • the original determinant can be changed to an upper triangular determinant through elementary row transformation, and then the nonzero diagonal elements are multiplied to obtain the determinant polynomial expression. Since this formula is 0, all solutions of ⁇ 1 are obtained.
  • the specific method of row staging is to first sort the highest order of the first column of the determinant from high to low, and then perform a maximum of (S-1) ⁇ n elementary row transformation eliminations. Determinants whose elements are not zero. Then the elementary row transformation and elimination of the cofactors of the first row and the first column of the determinant are solved successively and iteratively.
  • N-th order polynomial system based on "N-carry word” N-th order polynomial system based on "N-carry word”.
  • n "n-ary first-order” polynomial power products Independent variables appear N times repeatedly, then n “n-ary N-th order” polynomial systems are obtained "N-ary N-th Order Polynomial System” and "n-bit N Carry Word” Isomorphism.
  • the first m of the auxiliary variable Y m are used to sequentially replace the m variables in the Original Variables X n , and "
  • a determinant consisting of a position vector or a rotation vector represents the volume of the vector expansion space; in different Cartesian spaces, it has a volume invariance. among them:
  • Equation (29) n n-elements
  • n n-elements a necessary condition for Dixon elimination, so as to obtain feasible solutions. If there are zero-row or zero-column vectors in S ⁇ S , a polynomial equation of x 1 cannot be established; at this time, S ⁇ S is transformed into a row-echelon matrix Ech ( S ⁇ S ); obtain the square matrix after calculating the product of the Pivot of the matrix That is, S ′ independent column vectors are selected from S ⁇ S.
  • n "n-ary N-th order" polynomial system The example (referred to as polynomial) is written as among them: And have according to Polynomials to determine Dixon matrices and separate variables and Select and Satisfy
  • Equation (33) is a polynomial equation of univariate x 1 ; eliminating n-1 unknowns; thus, a feasible solution of univariate x 1 can be obtained. If x 1 is also satisfied
  • the steps are:
  • the formula is a four-order 1st-order polynomial system that meets the Dixon elimination conditions. From formula (20) and formula (23), we get
  • Axis vector Relative to rod And ⁇ l or natural coordinate system And F [l] is fixed, so this rotation is called fixed axis rotation.
  • the projection vector is Zero vector after rotation
  • the moment vector is
  • the axial component is Rodrigues vector equation with chain index
  • Equation (44) is about with Multivariable linear equation is an axis invariant Second-order polynomial. Given a natural zero vector As Zero reference, and Respectively the zero vector and the radial vector. Equation (44) is Symmetry Represents zero-axis tensor, antisymmetric part Represents the radial axial tensor, and the axial outer product tensor, respectively Orthogonal to determine the three-dimensional natural axis space; Equation (44) contains only one sine and cosine operation, 6 product operations, and 6 sum operations, and the calculation complexity is low; And joint variables The coordinate system and polarity are parameterized.
  • Equation (44) can be expressed as
  • Ju-Gibbs quaternion a standardized Ju-Gibbs quaternion (referred to as the standard Ju-Gibbs quaternion, that is, a quaternion with a "label" of 1);
  • Non-standard that is, its standard part is not 1. From equation (54), we can know that only given axis l and The canonical Ju-Gibbs quaternion, and the two axes are orthogonal, Is the canonical quaternion.
  • I the rotation transformation matrix
  • Equation (74) shows with Mutually orthogonal.
  • the best axis vector is obtained from equations (73) and (74)
  • the principle of pointing alignment based on Ju-Gibbs quaternion indicates that at least one expected Ju-Gibbs quaternion exists Make unit vector Vector with desired unit Aligned.
  • Equation (93) is divided by equation (94)
  • the joint variable is characterized by the normal Ju-Gibbs quaternion, which is obtained by equation (54)
  • Equation (97), Equation (98), and Equation (90) Equation (96) gives
  • equation (81) holds. There are 4 equations and 2 independent variables in factor (101). Constraint equations are obtained from the fourth row of equations (102) and (101).
  • Ju-Gibbs quaternion isomorphic with Euler quaternion; at the same time, equation (64) shows that the DCM-like DCM and DCM are the same as DCM. ⁇ Structure. Therefore, the Ju-Gibbs quaternion can be used to express the pose relationship.
  • the basic properties of the Dixon determinant of the radial invariant and the kinematic chain are proposed to lay the foundation for the inverse kinematic analysis of the robot based on the invariant of the axis.
  • the invariant of the axis is essentially different from the coordinate axis: the coordinate axis is a reference direction with a zero position and a unit scale. It does not have a radial reference direction, that is, there is no zero position that characterizes rotation. In actual application, the radial reference of the coordinate axis needs to be supplemented.
  • the coordinate axis itself is 1D, and three orthogonal coordinate axes constitute a 3D Cartesian frame; the axis invariant is a 3D space unit reference axis (referred to as a 3D reference axis), which has a radial reference zero.
  • the "3D reference axis" and its radial reference zero position can determine the corresponding Cartesian system.
  • the axis invariant based on the natural coordinate system can accurately reflect the three basic attributes of "coaxiality", "polarity” and “zero position" of the motion axis and the measurement axis.
  • the axis invariant is essentially different from the Euler axis: the directional cosine matrix (DCM) is a real matrix, the axis vector is the eigenvector corresponding to the eigenvalue 1 of the DCM, and is an invariant; the fixed axis invariant is the "3D reference axis ", Not only with the origin and axial direction, but also with the radial reference zero; in the natural coordinate system, the axis invariant does not depend on the adjacent consolidated natural coordinate system, that is, it has Variable natural coordinates; axis invariants have excellent mathematical operation functions such as nilpotency; in natural coordinate systems, DCM and reference polarities can be uniquely determined through axis invariants and joint coordinates; it is not necessary to establish for each member The respective systems can greatly simplify the modeling workload.
  • DCM directional cosine matrix
  • the fixed axis invariant is the "3D reference axis ", Not only with the origin and axial direction, but also with
  • measuring the axis invariants can improve the measurement accuracy of structural parameters.
  • iterative kinematics and dynamic equations including topological structure, coordinate system, polarity, structural parameters, and dynamic parameters can be established.
  • NP problems All problems that are not solvable in definite polynomial time are called NP problems.
  • the non-deterministic algorithm decomposes the problem into two stages: “guessing” and “verifying”: the “guessing” stage of the algorithm is non-deterministic, and the “verifying” stage of the algorithm is deterministic, and the correctness of the guessed solution is determined through verification. If it can be calculated in polynomial time, it is called a polynomial non-deterministic problem.
  • the elimination of multivariate polynomials is generally considered to be an NP problem. Usually applied Based on the elimination of multiple polynomials, we have to resort to heuristic "guessing” and “verification” to solve the problem.
  • Structural parameters and These are the structural parameters of the chain link l, which can be obtained by external measurement when the system is in the zero position. As shown in Fig. 4, the zero vector, the radial vector, and the axial vector are invariants independent of the rotation angle. The zero vector is a specific radial vector.
  • Any vector can be decomposed into zero vector and axial vector, so
  • Is the axis l and Common vertical line or common radial vector Is the axial vector of axis l.
  • any structure parameter vector Can be decomposed into zero invariants independent of the coordinate system
  • Axial invariant Their radial vectors are written as Structural parameter vector And axis invariants Uniquely determine the radial coordinate system, with 2 independent dimensions. If two axial invariants and Collinear
  • the axial invariant and the zero invariant shown in equation (111) are the decomposition of the natural parameter by the structural parameter vector.
  • the zero vector, radial vector, and axial vector derived from the axis invariant have the following relationships:
  • the equation (116) is called the inversion formula of the zero vector; the formula (117) is called the interchange formula of the zero vector and the radial vector; the formula (118) is called the radial vector invariance formula. From (110), (116) to (118),
  • Equation (130) is derived from three independent structural parameters And a motion variable ⁇ l . From equation (130),
  • Equation (138) is re-expressed as equation (135).
  • 0 solution.
  • equation (169) is a 16th-order mononomial equation for ⁇ 1 .
  • the pickup point is located on the axis of the sixth axis
  • the robot arm whose fourth axis and the fifth axis are not coaxial is a universal 6R robot arm.
  • Equation (185) is about Expectation attitude And constraint equations for 4- and 5-axis structural parameters. From equation (63),
  • Equations (185) to (191) are used for subsequent equation simplification.
  • C with superscript and subscript is a structure constant matrix.
  • Equations (185) to (191) are used for subsequent equation simplification.
  • C with superscript and subscript is a structure constant matrix.
  • Structural parameters and These are the structural parameters of the chain link l, which can be obtained by external measurement when the system is in the zero position.
  • the zero vector, radial vector and axial vector are invariants independent of the rotation angle.
  • the zero vector is a specific radial vector.
  • the position equation (170) after eliminating ⁇ 4 and ⁇ 5 is three "three-element two-order" polynomial equations, which can be equivalent to the 3R manipulator problem.
  • the above-mentioned inverse 3R manipulator position based solution is used to solve the problem. It lays the foundation for real-time calculation of the inverse solution of universal 6R-axis manipulator. On the one hand, it will help improve the absolute positioning accuracy of the 6R manipulator; on the other hand, the 4th and 5th axial root directions of the traditional decoupling manipulator can be moved in structure, which can not only optimize the structure of the manipulator, It also helps to increase the flexibility of the 6R manipulator to avoid obstacles.
  • the real-time inverse solution of the universal 6R manipulator is that it not only helps to improve the absolute positioning accuracy of the manipulator, but also can further optimize the structure of the manipulator and reduce the weight of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Manipulator (AREA)

Abstract

一种基于轴不变量的通用6R机械臂逆解建模与解算方法,设定有6个转动轴,拾取点位于第6轴轴线上,且第4轴与第5轴不共轴的机械臂为通用6R机械臂;将6R机械臂规范的位姿方程采用居-吉布斯四元数表达式进行表达,通过前5轴完成对齐,以消去第4轴及第5轴的关节变量;通过前5轴控制第6轴与期望的位置及指向对齐,使第6轴能无限转动或控制第6轴满足径向对齐。本方法突破了通用6R机械臂的建模逆解解算方法,可以满足机械臂精密作业的需求。

Description

基于轴不变量的通用6R机械臂逆解建模与解算方法 技术领域
本发明涉及一种多轴机器人6R机械臂逆解建模与解算方法,属于机器人技术领域。
背景技术
自主机器人研究的一个重要方面是需要解决变拓扑结构机器人的运动学建模问题。在MAS中,具有动态的图结构(Dynamic Graph Structure),可以动态地建立基于运动轴的有向Span树,为研究可变拓扑结构(Variable Topology Structure)的机器人建模与控制奠定了基础。为此,需要提出基于轴不变量的通用机械臂逆解原理,既要建立包含坐标系、极性、结构参数、关节变量的完全参数化的正运动学模型,又要实时地计算位姿方程;一方面,可以提高机器人的自主性,另一方面,可以提高机器人位姿控制的绝对精度。
6R解耦机械臂在结构上存在共点约束:要么4至6轴共点,要么4轴与5轴共点且5轴与6轴共点。对于高精度的机械臂而言,由于存在机加工及装配误差,该假设不成立。由于通用6R机械臂不存在共点约束,其逆解计算十分困难,在工程上不得不屈从于解耦约束,该约束既增加了机械臂加工及装配难度,又降低了机械臂绝对定位精度。只有突破通用6R机械臂的逆解方法,才能满足机械臂进行精密作业的需求,自主机器人理论才能得到完善。
发明内容
本发明所要解决的技术问题是提供一种基于轴不变量的通用6R机械臂逆解建模方法,突破了通用6R机械臂的逆解方法,满足机械臂精密作业的需求。
为解决上述技术问题,本发明采用以下技术方案:
一种基于轴不变量的通用6R机械臂逆解建模与解算方法,其特征是,
设定有6个转动轴,拾取点位于第6轴轴线上,且第4轴与第5轴不共轴的机械臂为通用6R机械臂;
将6R机械臂规范的位姿方程采用居-吉布斯四元数表达式进行表达,通过前5轴完成对齐,以消去第4轴及第5轴的关节变量;通过前5轴控制第6轴与期望的位置及指向对齐,使第6轴能无限转动或控制第6轴满足径向对齐,将给定第6轴期望位置矢量
Figure PCTCN2018112750-appb-000001
及期望姿态
Figure PCTCN2018112750-appb-000002
的逆解问题与给定第6轴期望位置矢量
Figure PCTCN2018112750-appb-000003
及第5轴期望姿态
Figure PCTCN2018112750-appb-000004
的逆解问题等价。
对于任意杆件
Figure PCTCN2018112750-appb-000005
定义与欧拉四元数同构的居-吉布斯即Ju-Gibbs规范四元数:
Figure PCTCN2018112750-appb-000006
其中:
Figure PCTCN2018112750-appb-000007
为Gibbs矢量;
Gibbs共轭四元数为:
Figure PCTCN2018112750-appb-000008
其中:
Figure PCTCN2018112750-appb-000009
式中,
Figure PCTCN2018112750-appb-000010
为居-吉布斯规范四元数
Figure PCTCN2018112750-appb-000011
模的平方;表达形式幂符
Figure PCTCN2018112750-appb-000012
表示□的x次幂;右上角角标∧或
Figure PCTCN2018112750-appb-000013
表示分隔符;轴不变量
Figure PCTCN2018112750-appb-000014
Figure PCTCN2018112750-appb-000015
为关节变量;轴矢量
Figure PCTCN2018112750-appb-000016
及关节变量
Figure PCTCN2018112750-appb-000017
唯一确定运动副的转动关系;
Figure PCTCN2018112750-appb-000018
是轴不变量
Figure PCTCN2018112750-appb-000019
的叉乘矩阵;
Figure PCTCN2018112750-appb-000020
是Gibbs矢量
Figure PCTCN2018112750-appb-000021
的叉乘矩阵;若用“□”表示属性占位,则式中的表达形式□ [□]表示成员访问符;式中的表达形式幂符
Figure PCTCN2018112750-appb-000022
表示□的x次幂;右上角角标∧或
Figure PCTCN2018112750-appb-000023
表示分隔符。
若给定6R轴链 il 6=(i,1:6], il 1=0 3,第6轴期望位置矢量为
Figure PCTCN2018112750-appb-000024
及第5轴期望姿态
Figure PCTCN2018112750-appb-000025
第3轴关节居-吉布斯规范四元数为
Figure PCTCN2018112750-appb-000026
其他轴表达方式同理;则由轴不变量表征的6R机械臂运动学多项式方程为:
Figure PCTCN2018112750-appb-000027
其中:
Figure PCTCN2018112750-appb-000028
基于6R机械臂系统结构参数及期望姿态居-吉布斯四元数构成的矩阵表示为
Figure PCTCN2018112750-appb-000029
Figure PCTCN2018112750-appb-000030
Figure PCTCN2018112750-appb-000031
Figure PCTCN2018112750-appb-000032
式中,\为续行符;
Figure PCTCN2018112750-appb-000033
分别表示轴4至轴5、轴5至轴6的零位矢量、 径向矢量;
Figure PCTCN2018112750-appb-000034
是轴不变量
Figure PCTCN2018112750-appb-000035
的叉乘矩阵;0 3=[0 0 0] T
Figure PCTCN2018112750-appb-000036
Figure PCTCN2018112750-appb-000037
Figure PCTCN2018112750-appb-000038
表示系统结构参数的4×4矩阵;
Figure PCTCN2018112750-appb-000039
表示取
Figure PCTCN2018112750-appb-000040
的第一行 3n 4
Figure PCTCN2018112750-appb-000041
素,依次类推,
Figure PCTCN2018112750-appb-000042
表示取
Figure PCTCN2018112750-appb-000043
的第k+1行元素;右上角标表达形式[]表示取行或列,表达形式[·]表示取所有列;
Figure PCTCN2018112750-appb-000044
表示取 3E 5的第3行、第所有列; 3n 4为杆件3到杆件4的坐标矢量,其是轴不变量;为轴不变量的叉乘矩阵,其余杆件同理。
消去τ 4及τ 5后的位置方程(169)是3个“3元2阶”多项式方程,等同于3R机械臂问题,采用基于轴不变量的3R机械臂位置逆解方法进行求解。
若给定6R轴链 il 6=(i,1:6], il 1=0 3;期望位置矢量及Ju-Gibbs四元数分别记为
Figure PCTCN2018112750-appb-000045
Figure PCTCN2018112750-appb-000046
则式(170)构成多项式系统F 3(Y 2|T 2)的Dixon矩阵具有如下结构:
Figure PCTCN2018112750-appb-000047
其中:
Figure PCTCN2018112750-appb-000048
Figure PCTCN2018112750-appb-000049
式中,
Figure PCTCN2018112750-appb-000050
为大小为S×S的Dixon矩阵,其第[i][j]成员为单变量τ 1的N阶多项式。
基于轴不变量的通用3R机械臂逆解建模与解算方法,应用n个“n元N阶”多项式的Dixon消元与求解原理,进行位姿逆解计算,主要包括以下步骤:
【1】根据机械臂n元3D矢量位姿方程,获得n个“n元2阶”多项式方程;
【2】应用基于轴不变量的Dixon行列式计算式、分块矩阵的行列式计算式或对行列式进行对角化计算式简化行列式计算;
【3】应用n个“n元N阶”多项式的Dixon消元与求解原理完成位姿逆解计算,其中:根据Dixon矩阵的行列式为0,得到一元高阶多项式方程,应用基于友阵的一元高阶多项式方程求解一元高阶多项式方程的解。
步骤【1】中,
对于轴链
Figure PCTCN2018112750-appb-000051
Figure PCTCN2018112750-appb-000052
建立规范的姿态方程为:
Figure PCTCN2018112750-appb-000053
建立规范的定位方程:
Figure PCTCN2018112750-appb-000054
式中,
Figure PCTCN2018112750-appb-000055
为任意杆件,表达形式
Figure PCTCN2018112750-appb-000056
表示□的x次幂;右上角角标∧或
Figure PCTCN2018112750-appb-000057
表示分隔符;
Figure PCTCN2018112750-appb-000058
是轴不变量
Figure PCTCN2018112750-appb-000059
的叉乘矩阵,杆件
Figure PCTCN2018112750-appb-000060
为杆件
Figure PCTCN2018112750-appb-000061
时同理替换;1为三维单位矩阵; iQ n表示姿态;
Figure PCTCN2018112750-appb-000062
为沿矢量轴
Figure PCTCN2018112750-appb-000063
的线位置;
Figure PCTCN2018112750-appb-000064
为零位时由原点
Figure PCTCN2018112750-appb-000065
至原点O l的平动矢量; |□为投影符, i|□为□在大地坐标系的投影矢量。
步骤【2】中,基于轴不变量的Dixon行列式计算式为:
根据运动链Dixon行列式性质有:
Figure PCTCN2018112750-appb-000066
并记:
Figure PCTCN2018112750-appb-000067
Figure PCTCN2018112750-appb-000068
式中,
Figure PCTCN2018112750-appb-000069
为旋转变换矩阵;
Figure PCTCN2018112750-appb-000070
表示用辅助变量y l的前l个依次替换原变量τ l中的l个变量,记“|”为替换操作符;
式(128)将
Figure PCTCN2018112750-appb-000071
Figure PCTCN2018112750-appb-000072
转化为关于
Figure PCTCN2018112750-appb-000073
的多重线性型;同时,
Figure PCTCN2018112750-appb-000074
对y l及τ l具有对称性;
由式(48)得3R运动学方程
Figure PCTCN2018112750-appb-000075
由式(143)得
Figure PCTCN2018112750-appb-000076
由式(144)得
Figure PCTCN2018112750-appb-000077
Figure PCTCN2018112750-appb-000078
则由式(62)及式得(146)
Figure PCTCN2018112750-appb-000079
由式(145)及式(146)得
Figure PCTCN2018112750-appb-000080
3R机械臂运动学方程的Dixon行列式的结构模型及特点:
由式(148)得3R运动学多项式方程
Figure PCTCN2018112750-appb-000081
多项式系统F 3(Y 2|T 2),根据双线性型行列式通式
Figure PCTCN2018112750-appb-000082
则有
Figure PCTCN2018112750-appb-000083
其中:
Figure PCTCN2018112750-appb-000084
Figure PCTCN2018112750-appb-000085
Figure PCTCN2018112750-appb-000086
中组合变量系数为独立的列向量,故选取
Figure PCTCN2018112750-appb-000087
的系数来构成方阵
Figure PCTCN2018112750-appb-000088
剩余列向量一定与
Figure PCTCN2018112750-appb-000089
的各列相关;
由式(128)及式(146)得
Figure PCTCN2018112750-appb-000090
Figure PCTCN2018112750-appb-000091
Figure PCTCN2018112750-appb-000092
式中,
Figure PCTCN2018112750-appb-000093
分别表示轴2至轴3、轴3至轴3 S的零位矢量、径向矢量及轴向矢量;其中
Figure PCTCN2018112750-appb-000094
Figure PCTCN2018112750-appb-000095
得简化的3元N阶Dixon行列式为
Figure PCTCN2018112750-appb-000096
式中,
Figure PCTCN2018112750-appb-000097
Figure PCTCN2018112750-appb-000098
为大小为S×S的Dixon矩阵,其第[i][j]成员为单变量τ 1的N阶多项式。
步骤【2】中,分块矩阵的行列式计算式为:
若记大小为(n+m)·(n+m)的方阵为M,大小为n·n的矩阵
Figure PCTCN2018112750-appb-000099
是方阵M的前n行及任意n列元素构成的子矩阵,大小为m·m的矩阵
Figure PCTCN2018112750-appb-000100
是方阵M后m行及剩余m列元素构成的子矩阵;由升序排列的矩阵列序号构成的序列cn及cm是序列[1:m+n]的子集,[cn,cm]∈<1:n+m>,且有cm∪cn=[1:m+n];则方阵M行列式与分块矩阵
Figure PCTCN2018112750-appb-000101
Figure PCTCN2018112750-appb-000102
的行列式关系为
Figure PCTCN2018112750-appb-000103
步骤【2】中,对行列式进行行阶梯化计算原理:
对于S×S矩阵,其每一项是关于τ 1的n阶多项式。计算该矩阵的行列式时,可通过初等行变换将原行列式变为上三角行列式,再将非零的对角线元素相乘,得到行列式的多项式表达式。该式为0,得到τ 1的所有解。
行阶梯化的具体方法为,先对行列式第一列的最高阶次由高到低进行排序,再进行最多(S-1)×n次初等行变换消元,得到第一列只有第一个元素不为0的行列式。再对该行列式第1行及1列的余子式进行初等行变换消元,依次迭代求解。
步骤【3】中,n个“n元N阶”多项式系统的Dixon多项式构建步骤为:
引入辅助变量[y 2,y 3,...,y n],且有
Figure PCTCN2018112750-appb-000104
对于多元多重多项式
Figure PCTCN2018112750-appb-000105
用辅助变量Y m的前m个依次替换原变量X n中的m个变量,记“|”为替换操作符,得到增广的多项式
Figure PCTCN2018112750-appb-000106
Figure PCTCN2018112750-appb-000107
Figure PCTCN2018112750-appb-000108
其中:
Figure PCTCN2018112750-appb-000109
定义可分离组合变量
Figure PCTCN2018112750-appb-000110
Figure PCTCN2018112750-appb-000111
如下:
Figure PCTCN2018112750-appb-000112
由式(15)及式(16)知:替换式
Figure PCTCN2018112750-appb-000113
是关于
Figure PCTCN2018112750-appb-000114
Figure PCTCN2018112750-appb-000115
的双重线性型;相应地,用辅助变量替换的多项式系统记为
Figure PCTCN2018112750-appb-000116
给定n个“n元N阶”多项式系统
Figure PCTCN2018112750-appb-000117
定义其Dixon多项式为
Figure PCTCN2018112750-appb-000118
由式(18)得
Figure PCTCN2018112750-appb-000119
考虑式(14)及式(19)得该多项式的Dixon行列式
Figure PCTCN2018112750-appb-000120
在笛卡尔空间下,由位置矢量或转动矢量构成的行列式表示矢量张成空间的容积(Volume);在不同笛卡尔空间下具有容积的不变性。其中:
Figure PCTCN2018112750-appb-000121
给定n个“n元N阶”多项式系统F n(Y n-1|X n-1),n≥2;存在与消去变量x 2,...,x n无 关的Dixon矩阵 SΘ S(x 1),其Dixon多项式
Figure PCTCN2018112750-appb-000122
表示为分离变量
Figure PCTCN2018112750-appb-000123
Figure PCTCN2018112750-appb-000124
的双重线性型:
Figure PCTCN2018112750-appb-000125
Figure PCTCN2018112750-appb-000126
Figure PCTCN2018112750-appb-000127
为大小为S×S的Dixon矩阵,其第[i][j]成员为单变量x 1的N阶多项式:
Figure PCTCN2018112750-appb-000128
其中:
Figure PCTCN2018112750-appb-000129
考虑式(23),若
Figure PCTCN2018112750-appb-000130
故得
Det( SΘ S(x 1))=0;              (29)
称式(29)中“n个n元”为Dixon消元的必要条件,从而获得可行解。
由式(29)、式(152)及式(153)得
Figure PCTCN2018112750-appb-000131
式(169)是关于τ 1的16阶单项式方程,应用式(5)进行二次分块的行列式计算或对行列式进行对角化计算。
通用6R机械臂4、5轴求解方法:基于“Ju-Gibbs”四元数2R方向逆解或基于类DCM的2R方向逆解
基于“Ju-Gibbs”四元数2R方向逆解:
首先介绍基于Ju-Gibbs四元数的指向对齐原理,考虑轴链 il l
Figure PCTCN2018112750-appb-000132
若单位轴矢量
Figure PCTCN2018112750-appb-000133
与期望单位轴矢量
Figure PCTCN2018112750-appb-000134
对齐,则至少存在一个多轴旋转的Ju-Gibbs四元数
Figure PCTCN2018112750-appb-000135
其中
Figure PCTCN2018112750-appb-000136
Figure PCTCN2018112750-appb-000137
Figure PCTCN2018112750-appb-000138
然后以Ju-Gibbs四元数指向对齐为基础,阐述2R机械臂指向逆解定理;
若给定6R转动链 il 6=(i,1:6],记第5轴关节Ju-Gibbs四元数期望为
Figure PCTCN2018112750-appb-000139
及第3轴关 节Ju-Gibbs规范四元数为
Figure PCTCN2018112750-appb-000140
则有指向对齐时的逆解
Figure PCTCN2018112750-appb-000141
Figure PCTCN2018112750-appb-000142
其中:
Figure PCTCN2018112750-appb-000143
Figure PCTCN2018112750-appb-000144
Ju-Gibbs方向四元数
Figure PCTCN2018112750-appb-000145
满足
Figure PCTCN2018112750-appb-000146
式中,
Figure PCTCN2018112750-appb-000147
表示取 3E 5的第3行、第所有列;为杆件3到杆件4的坐标矢量,其是轴不变量;
Figure PCTCN2018112750-appb-000148
为轴不变量 3n 4的叉乘矩阵,其余杆件同理;
与欧拉四元数及对偶四元数相比,Ju-Gibbs四元数表征的位姿对齐不存在冗余方程;通过指向对齐,可以求解第4轴及第5轴的关节 3n 4变量,为6R及7R机械臂逆解奠定了基础。
基于类DCM的2R方向逆解:
给定6R轴链 il 6=(i,1:6],轴矢量 3n 44n 5,期望第5轴的DCM为
Figure PCTCN2018112750-appb-000149
期望第3轴的DCM为
Figure PCTCN2018112750-appb-000150
方向矢量 5l 6与期望方向
Figure PCTCN2018112750-appb-000151
对齐的逆解需要满足以下方程:
Figure PCTCN2018112750-appb-000152
式中,\为续行符;
Figure PCTCN2018112750-appb-000153
分别表示轴5至轴6的零位矢量、径向矢量;
Figure PCTCN2018112750-appb-000154
是轴不变量
Figure PCTCN2018112750-appb-000155
的叉乘矩阵;0 3=[0 0 0] T
Figure PCTCN2018112750-appb-000156
Figure PCTCN2018112750-appb-000157
3n 4为杆件3到杆件4的坐标矢量,其是轴不变量;
Figure PCTCN2018112750-appb-000158
为轴不变量 3n 4的叉乘矩阵,其余杆件同理。
本发明所达到的有益效果:
本发明的方法解决了6R机械臂可逆解运动学建模及逆解计算问题,具有简洁、优雅的运动链符号系统,具有伪代码的功能,具有迭代式结构,保证系统实现的可靠性及机械化演算;
具有基于轴不变量的迭代式,保证计算的实时性;实现坐标系、极性及系统结构参量的完全参数化,基于轴不变量的可逆解运动学具有统一的表达及简洁的结构化层次模型,保证位姿分析逆解的通用性。
直接应用激光跟踪仪精密测量获得的基于固定轴不变量的结构参数,保证位姿逆解的准确性;从而,使系统的绝对定位与定姿精度接近重复精度。
附图说明
图1自然坐标系与轴链;
图2固定轴不变量;
图3为定轴转动示意图;
图4为轴不变量的导出不变量。
具体实施方式
下面对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
定义1自然坐标轴:称与运动轴或测量轴共轴的,具有固定原点的单位参考轴为自然坐标轴,亦称为自然参考轴。
定义2自然坐标系:如图1所示,若多轴系统D处于零位,所有笛卡尔体坐标系方向一致,且体坐标系原点位于运动轴的轴线上,则该坐标系统为自然坐标系统,简称自然坐标系。
自然坐标系优点在于:(1)坐标系统易确定;(2)零位时的关节变量为零;(3)零位时的系统姿态一致;(4)不易引入测量累积误差。
由定义2可知,在系统处于零位时,所有杆件的自然坐标系与底座或世界系的方向一致。系统处于零位即
Figure PCTCN2018112750-appb-000159
时,自然坐标系
Figure PCTCN2018112750-appb-000160
绕轴矢量
Figure PCTCN2018112750-appb-000161
转动角度
Figure PCTCN2018112750-appb-000162
Figure PCTCN2018112750-appb-000163
转至F [l]
Figure PCTCN2018112750-appb-000164
Figure PCTCN2018112750-appb-000165
下的坐标矢量与
Figure PCTCN2018112750-appb-000166
在F [l]下的坐标矢量
Figure PCTCN2018112750-appb-000167
恒等,即有
Figure PCTCN2018112750-appb-000168
由上式知,
Figure PCTCN2018112750-appb-000169
Figure PCTCN2018112750-appb-000170
不依赖于相邻的坐标系
Figure PCTCN2018112750-appb-000171
及F [l];故称
Figure PCTCN2018112750-appb-000172
Figure PCTCN2018112750-appb-000173
为轴不变量。在不强调不变性时,可以称之为坐标轴矢量(简称轴矢量)。
Figure PCTCN2018112750-appb-000174
Figure PCTCN2018112750-appb-000175
表征的是体
Figure PCTCN2018112750-appb-000176
与体l共有的参考单位坐标矢量,与参考点
Figure PCTCN2018112750-appb-000177
及O l无关。体
Figure PCTCN2018112750-appb-000178
与体l即为杆件或轴。
轴不变量与坐标轴具有本质区别:
(1)坐标轴是具有零位及单位刻度的参考方向,可以描述沿该方向平动的位置,但不能完整描述绕该方向的转动角度,因为坐标轴自身不具有径向参考方向,即不存在表征转动的零位。在实际应用时,需要补充该轴的径向参考。例如:在笛卡尔系F [l]中,绕lx转动,需以ly或lz为参考零位。坐标轴自身是1D的,3个正交的1D参考轴构成3D的笛卡尔标架。
(2)轴不变量是3D的空间单位参考轴,其自身就是一个标架。其自身具有径向参考轴,即参考零位。空间坐标轴及其自身的径向参考轴可以确定笛卡尔标架。空间坐标轴可以反映运动轴及测量轴的三个基本参考属性。
已有文献将无链指标的轴矢量记为
Figure PCTCN2018112750-appb-000179
并称之为欧拉轴(Euler Axis),相应的关节角称为欧拉角(Euler Angle)。本申请之所以不再沿用欧拉轴,而称之为轴不变量,是因为轴不变量具有以下属性:
【1】给定旋转变换阵
Figure PCTCN2018112750-appb-000180
因其是实矩阵,其模是单位的,故其有一个实特征值λ 1及两个互为共轭的复特征值λ 2=e 及λ 3=e -iφ;其中:i为纯虚数。因此,|λ 1|·||λ 2||·||λ 3||=1,得λ 1=1。轴矢量
Figure PCTCN2018112750-appb-000181
是实特征值λ 1=1对应的特征矢量,是不变量;
【2】是3D参考轴,不仅具有轴向参考方向,而且具有径向参考零位,将在3.3.1节予以阐述。
【3】在自然坐标系下:
Figure PCTCN2018112750-appb-000182
即轴不变量
Figure PCTCN2018112750-appb-000183
是非常特殊的矢量,它对时间的导数也具有不变性,且有非常优良的数学操作性能;
对轴不变量而言,其绝对导数就是其相对导数。因轴不变量是具有不变性的自然参考轴,故其绝对导数恒为零矢量。因此,轴不变量具有对时间微分的不变性。有:
Figure PCTCN2018112750-appb-000184
【4】在自然坐标系统中,通过轴矢量
Figure PCTCN2018112750-appb-000185
及关节变量
Figure PCTCN2018112750-appb-000186
可以直接描述旋转坐标阵
Figure PCTCN2018112750-appb-000187
没有必要为除根之外的杆件建立各自的体系。同时,以唯一需要定义的根坐标系为参考,可以提高系统结构参数的测量精度;
【5】应用轴矢量
Figure PCTCN2018112750-appb-000188
的优良操作,将建立包含拓扑结构、坐标系、极性、结构参量及力学 参量的完全参数化的统一的多轴系统运动学及动力学模型。
因基矢量e l是与F [l]固结的任一矢量,基矢量
Figure PCTCN2018112750-appb-000189
是与
Figure PCTCN2018112750-appb-000190
固结的任一矢量,又
Figure PCTCN2018112750-appb-000191
是F [l]
Figure PCTCN2018112750-appb-000192
共有的单位矢量,故
Figure PCTCN2018112750-appb-000193
是F [l]
Figure PCTCN2018112750-appb-000194
共有的基矢量。因此,轴不变量
Figure PCTCN2018112750-appb-000195
是F [l]
Figure PCTCN2018112750-appb-000196
共有的参考基。轴不变量是参数化的自然坐标基,是多轴系统的基元。固定轴不变量的平动与转动与其固结的坐标系的平动与转动等价。
在系统处于零位时,以自然坐标系为参考,测量得到坐标轴矢量
Figure PCTCN2018112750-appb-000197
在运动副
Figure PCTCN2018112750-appb-000198
运动时,轴矢量
Figure PCTCN2018112750-appb-000199
是不变量;轴矢量
Figure PCTCN2018112750-appb-000200
及关节变量
Figure PCTCN2018112750-appb-000201
唯一确定运动副
Figure PCTCN2018112750-appb-000202
的转动关系。
因此,应用自然坐标系统,当系统处于零位时,只需确定一个公共的参考系,而不必为系统中每一杆件确定各自的体坐标系,因为它们由轴不变量及自然坐标唯一确定。当进行系统分析时,除底座系外,与杆件固结的其它自然坐标系只发生在概念上,而与实际的测量无关。自然坐标系统对于多轴系统(MAS)理论分析及工程作用在于:
(1)系统的结构参数测量需要以统一的参考系测量;否则,不仅工程测量过程烦琐,而且引入不同的体系会引入更大的测量误差。
(2)应用自然坐标系统,除根杆件外,其它杆件的自然坐标系统由结构参量及关节变量自然确定,有助于MAS系统的运动学与动力学分析。
(3)在工程上,可以应用激光跟踪仪等光学测量设备,实现对固定轴不变量的精确测量。
(4)由于运动副R及P、螺旋副H、接触副O是圆柱副C的特例,可以应用圆柱副简化MAS运动学及动力学分析。
定义3不变量:称不依赖于一组坐标系进行度量的量为不变量。
定义4转动坐标矢量:绕坐标轴矢量
Figure PCTCN2018112750-appb-000203
转动到角位置
Figure PCTCN2018112750-appb-000204
的坐标矢量
Figure PCTCN2018112750-appb-000205
Figure PCTCN2018112750-appb-000206
定义5平动坐标矢量:沿坐标轴矢量
Figure PCTCN2018112750-appb-000207
平动到线位置
Figure PCTCN2018112750-appb-000208
的坐标矢量
Figure PCTCN2018112750-appb-000209
Figure PCTCN2018112750-appb-000210
定义6自然坐标:以自然坐标轴矢量为参考方向,相对系统零位的角位置或线位置,记为q l,称为自然坐标;称与自然坐标一一映射的量为关节变量;其中:
Figure PCTCN2018112750-appb-000211
定义7机械零位:对于运动副
Figure PCTCN2018112750-appb-000212
在初始时刻t 0时,关节绝对编码器的零位
Figure PCTCN2018112750-appb-000213
不一定为零,该零位称为机械零位;
故关节
Figure PCTCN2018112750-appb-000214
的控制量
Figure PCTCN2018112750-appb-000215
Figure PCTCN2018112750-appb-000216
定义8自然运动矢量:将由自然坐标轴矢量
Figure PCTCN2018112750-appb-000217
及自然坐标q l确定的矢量
Figure PCTCN2018112750-appb-000218
称为自然运动矢量。其中:
Figure PCTCN2018112750-appb-000219
自然运动矢量实现了轴平动与转动的统一表达。将由自然坐标轴矢量及关节确定的矢量,例如
Figure PCTCN2018112750-appb-000220
称为自由运动矢量,亦称为自由螺旋。显然,轴矢量
Figure PCTCN2018112750-appb-000221
是特定的自由螺旋。
定义9关节空间:以关节自然坐标q l表示的空间称为关节空间。
定义10位形空间:称表达位置及姿态(简称位姿)的笛卡尔空间为位形空间,是双矢量空间或6D空间。
定义11自然关节空间:以自然坐标系为参考,通过关节变量
Figure PCTCN2018112750-appb-000222
表示,在系统零位时必有
Figure PCTCN2018112750-appb-000223
的关节空间,称为自然关节空间。
如图2所示,给定链节
Figure PCTCN2018112750-appb-000224
原点O l受位置矢量
Figure PCTCN2018112750-appb-000225
约束的轴矢量
Figure PCTCN2018112750-appb-000226
为固定轴矢量,记为
Figure PCTCN2018112750-appb-000227
其中:
Figure PCTCN2018112750-appb-000228
轴矢量
Figure PCTCN2018112750-appb-000229
是关节自然坐标的自然参考轴。因
Figure PCTCN2018112750-appb-000230
是轴不变量,故称
Figure PCTCN2018112750-appb-000231
为固定轴不变量,它表征了运动副
Figure PCTCN2018112750-appb-000232
的结构关系,即确定了自然坐标轴。固定轴不变量
Figure PCTCN2018112750-appb-000233
是链节
Figure PCTCN2018112750-appb-000234
结构参数的自然描述。
定义12自然坐标轴空间:以固定轴不变量作为自然参考轴,以对应的自然坐标表示的空间称为自然坐标轴空间,简称自然轴空间。它是具有1个自由度的3D空间。
如图2所示,
Figure PCTCN2018112750-appb-000235
Figure PCTCN2018112750-appb-000236
不因杆件Ω l的运动而改变,是不变的结构参考量。
Figure PCTCN2018112750-appb-000237
确定了轴l相对于轴
Figure PCTCN2018112750-appb-000238
的五个结构参数;与关节变量q l一起,完整地表达了杆件Ω l的6D位形。给定
Figure PCTCN2018112750-appb-000239
时,杆件固结的自然坐标系可由结构参数
Figure PCTCN2018112750-appb-000240
及关节变量
Figure PCTCN2018112750-appb-000241
唯一确定。称轴不变量
Figure PCTCN2018112750-appb-000242
固定轴不变量
Figure PCTCN2018112750-appb-000243
关节变量
Figure PCTCN2018112750-appb-000244
Figure PCTCN2018112750-appb-000245
为自然不变量。显然,由固 定轴不变量
Figure PCTCN2018112750-appb-000246
及关节变量
Figure PCTCN2018112750-appb-000247
构成的关节自然不变量
Figure PCTCN2018112750-appb-000248
与由坐标系
Figure PCTCN2018112750-appb-000249
至F [l]确定的空间位形
Figure PCTCN2018112750-appb-000250
具有一一映射关系,即
Figure PCTCN2018112750-appb-000251
给定多轴系统D={T,A,B,K,F,NT},在系统零位时,只要建立底座系或惯性系,以及各轴上的参考点O l,其它杆件坐标系也自然确定。本质上,只需要确定底座系或惯性系。
给定一个由运动副连接的具有闭链的结构简图,可以选定回路中任一个运动副,将组成该运动副的定子与动子分割开来;从而,获得一个无回路的树型结构,称之为Span树。T表示带方向的span树,以描述树链运动的拓扑关系。
I为结构参数;A为轴序列,F为杆件参考系序列,B为杆件体序列,K为运动副类型序列,NT为约束轴的序列即非树。
Figure PCTCN2018112750-appb-000252
为取轴序列
Figure PCTCN2018112750-appb-000253
的成员。转动副R,棱柱副P,螺旋副H,接触副O是圆柱副C的特例。
描述运动链的基本拓扑符号及操作是构成运动链拓扑符号系统的基础,定义如下:
【1】运动链由偏序集合(]标识。
【2】A [l]为取轴序列A的成员;因轴名l具有唯一的编号对应于A [l]的序号,故A [l]计算复杂度为O(1)。
【3】
Figure PCTCN2018112750-appb-000254
为取轴l的父轴;轴
Figure PCTCN2018112750-appb-000255
的计算复杂度为O(1)。计算复杂度O()表示计算过程的操作次数,通常指浮点乘与加的次数。以浮点乘与加的次数表达计算复杂度非常烦琐,故常采用算法循环过程中的主要操作次数;比如:关节位姿、速度、加速度等操作的次数。
【4】
Figure PCTCN2018112750-appb-000256
为取轴序列
Figure PCTCN2018112750-appb-000257
的成员;
Figure PCTCN2018112750-appb-000258
计算复杂度为O(1)。
【5】 ll k为取由轴l至轴k的运动链,输出表示为
Figure PCTCN2018112750-appb-000259
Figure PCTCN2018112750-appb-000260
基数记为| ll k|。 ll k执行过程:执行
Figure PCTCN2018112750-appb-000261
Figure PCTCN2018112750-appb-000262
则执行
Figure PCTCN2018112750-appb-000263
否则,结束。 ll k计算复杂度为O(| ll k|)。
【6】 ll为取轴l的子。该操作表示在
Figure PCTCN2018112750-appb-000264
中找到成员l的地址k;从而,获得轴l的子 A[k]。因
Figure PCTCN2018112750-appb-000265
不具有偏序结构,故 ll的计算复杂度为
Figure PCTCN2018112750-appb-000266
【7】 lL表示获得由轴l及其子树构成的闭子树,
Figure PCTCN2018112750-appb-000267
为不含l的子树;递归执行 ll,计算复杂度为
Figure PCTCN2018112750-appb-000268
【8】支路、子树及非树弧的增加与删除操作也是必要的组成部分;从而,通过动态Span树及动态图描述可变拓扑结构。在支路 ll k中,若
Figure PCTCN2018112750-appb-000269
则记
Figure PCTCN2018112750-appb-000270
Figure PCTCN2018112750-appb-000271
Figure PCTCN2018112750-appb-000272
表示在支路中取成员m的子。
定义以下表达式或表达形式:
轴与杆件具有一一对应性;轴间的属性量
Figure PCTCN2018112750-appb-000273
及杆件间的属性量
Figure PCTCN2018112750-appb-000274
具有偏序性。
约定:“□”表示属性占位;若属性p或P是关于位置的,则
Figure PCTCN2018112750-appb-000275
应理解为坐标系
Figure PCTCN2018112750-appb-000276
的原点至F [l]的原点;若属性p或P是关于方向的,则
Figure PCTCN2018112750-appb-000277
应理解为坐标系
Figure PCTCN2018112750-appb-000278
至F [l]
Figure PCTCN2018112750-appb-000279
Figure PCTCN2018112750-appb-000280
应分别理解为关于时间t的函数
Figure PCTCN2018112750-appb-000281
Figure PCTCN2018112750-appb-000282
Figure PCTCN2018112750-appb-000283
Figure PCTCN2018112750-appb-000284
是t 0时刻的常数或常数阵列。但是正体的
Figure PCTCN2018112750-appb-000285
Figure PCTCN2018112750-appb-000286
应视为常数或常数阵列。
本申请中约定:在运动链符号演算系统中,具有偏序的属性变量或常量,在名称上包含表示偏序的指标;要么包含左上角及右下角指标,要么包含右上角及右下角指标;它们的方向总是由左上角指标至右下角指标,或由右上角指标至右下角指标,本申请中为叙述简便,有时省略方向的描述,即使省略,本领域技术人员通过符号表达式也可以知道,本申请中采用的各参数,对于某种属性符,它们的方向总是由偏序指标的左上角指标至右下角指标,或由右上角指标至右下角指标。例如:
Figure PCTCN2018112750-appb-000287
可简述为(表示由k至l)平动矢量;
Figure PCTCN2018112750-appb-000288
表示(由k至l的)线位置;
Figure PCTCN2018112750-appb-000289
表示(由k至l的)平动矢量;其中:r表示“平动”属性符,其余属性符对应为:属性符φ表示“转动”;属性符Q表示“旋转变换矩阵”;属性符l表示“运动链”;属性符u表示“单位矢量”;属性符ω表示“角速度”;角标为i表示惯性坐标系或大地坐标系;其他角标可以为其他字母,也可以为数字。
本申请的符号规范与约定是根据运动链的偏序性、链节是运动链的基本单位这两个原则确定的,反映了运动链的本质特征。链指标表示的是连接关系,右上指标表征参考系。采用这种符号表达简洁、准确,便于交流与书面表达。同时,它们是结构化的符号系统,包含了组成各属性量的要素及关系,便于计算机处理,为计算机自动建模奠定基础。指标的含义需要通过属性符的背景即上下文进行理解;比如:若属性符是平动类型的,则左上角指标表示坐标系的原点及方向;若属性符是转动类型的,则左上角指标表示坐标系的方向。
(1)l S-杆件l中的点S;而S表示空间中的一点S。
(2)
Figure PCTCN2018112750-appb-000290
-杆件k的原点O k至杆件l的原点O l的平动矢量;
Figure PCTCN2018112750-appb-000291
在自然坐标系F [k]下的坐标矢量,即由k至l的坐标矢量;
(3)
Figure PCTCN2018112750-appb-000292
-原点O k至点l S的平动矢量;
Figure PCTCN2018112750-appb-000293
在F [k]下的坐标矢量;
(4)
Figure PCTCN2018112750-appb-000294
-原点O k至点S的平动矢量;
Figure PCTCN2018112750-appb-000295
在F [k]下的坐标矢量;
(5)
Figure PCTCN2018112750-appb-000296
-连接杆件
Figure PCTCN2018112750-appb-000297
及杆件l的运动副;
Figure PCTCN2018112750-appb-000298
-运动副
Figure PCTCN2018112750-appb-000299
的轴矢量;
Figure PCTCN2018112750-appb-000300
Figure PCTCN2018112750-appb-000301
分别在
Figure PCTCN2018112750-appb-000302
及F [l]下的坐标矢量;
Figure PCTCN2018112750-appb-000303
是轴不变量,为一结构常数;
Figure PCTCN2018112750-appb-000304
为转动矢量,转动矢量/角矢量
Figure PCTCN2018112750-appb-000305
是自由矢量,即该矢量可自由平移;
(6)
Figure PCTCN2018112750-appb-000306
-沿轴
Figure PCTCN2018112750-appb-000307
的线位置(平动位置),
Figure PCTCN2018112750-appb-000308
-绕轴
Figure PCTCN2018112750-appb-000309
的角位置,即关节角、关节变量,为标量;
(7)左下角指标为0时,表示机械零位;如:
Figure PCTCN2018112750-appb-000310
-平动轴
Figure PCTCN2018112750-appb-000311
的机械零位,
Figure PCTCN2018112750-appb-000312
-转动轴
Figure PCTCN2018112750-appb-000313
的机械零位;
(8)0-三维零矩阵;1-三维单位矩阵;
(9)约定:“\”表示续行符;“□”表示属性占位;则
幂符
Figure PCTCN2018112750-appb-000314
表示□的x次幂;右上角角标∧或
Figure PCTCN2018112750-appb-000315
表示分隔符;如:
Figure PCTCN2018112750-appb-000316
Figure PCTCN2018112750-appb-000317
Figure PCTCN2018112750-appb-000318
的x次幂。
[□] T表示□的转置,表示对集合转置,不对成员执行转置;如:
Figure PCTCN2018112750-appb-000319
|□为投影符,表示矢量或二阶张量对参考基的投影矢量或投影序列,即坐标矢量或坐标阵列,投影即是点积运算“·”;如:位置矢量
Figure PCTCN2018112750-appb-000320
在坐标系F [k]中的投影矢量记为
Figure PCTCN2018112750-appb-000321
Figure PCTCN2018112750-appb-000322
为叉乘符;如:
Figure PCTCN2018112750-appb-000323
是轴不变量
Figure PCTCN2018112750-appb-000324
的叉乘矩阵;给定任一矢量
Figure PCTCN2018112750-appb-000325
的叉乘矩阵为
Figure PCTCN2018112750-appb-000326
叉乘矩阵是二阶张量。
叉乘符运算的优先级高于投影符 |□的优先级。投影符 |□的优先级高于成员访问符□ [□]或□ [□],成员访问符□ [□]优先级高于幂符
Figure PCTCN2018112750-appb-000327
(10)单位矢量在大地坐标系的投影矢量
Figure PCTCN2018112750-appb-000328
单位零位矢量
Figure PCTCN2018112750-appb-000329
(11)
Figure PCTCN2018112750-appb-000330
-零位时由原点
Figure PCTCN2018112750-appb-000331
至原点O l的平动矢量,且记
Figure PCTCN2018112750-appb-000332
表示位置结构参数。
(12) iQ l,相对绝对空间的旋转变换阵;
(13)以自然坐标轴矢量为参考方向,相对系统零位的角位置或线位置,记为q l,称为自然坐标;关节变量
Figure PCTCN2018112750-appb-000333
自然关节坐标为φ l
(14)对于一给定有序的集合r=[1,4,3,2] T,记r [x]表示取集合r的第x行元素。常记[x]、[y]、[z]及[w]表示取第1、2、3及4列元素。
(15) il j表示由i到j的运动链; ll k为取由轴l至轴k的运动链;
给定运动链
Figure PCTCN2018112750-appb-000334
若n表示笛卡尔直角系,则称
Figure PCTCN2018112750-appb-000335
为笛卡尔轴链;若n表示自然参考轴,则称
Figure PCTCN2018112750-appb-000336
为自然轴链。
(16)Rodrigues四元数表达形式:
Figure PCTCN2018112750-appb-000337
欧拉四元数表达形式:
Figure PCTCN2018112750-appb-000338
不变量的四元数(也称为轴四元数)表达形式
Figure PCTCN2018112750-appb-000339
对于6R通用机械臂,需要解决分析逆解的可操作性问题:一方面,通过固定轴不变量表征工程结构参数,保证多轴系统的绝对定位精度;另一方面,需要解决运动方程的降维问题及应用变量消元法进行逆解的可计算性问题。
自然空间的平动轴及转动轴数各有3个,其中平动轴可以由转动轴替代。记6R运动链中的平动轴及转动轴分别为
Figure PCTCN2018112750-appb-000340
棱柱副P,转动副R,运动副
Figure PCTCN2018112750-appb-000341
运动轴l,运动链 il n。显然,
Figure PCTCN2018112750-appb-000342
Figure PCTCN2018112750-appb-000343
可以将该运动链划分为三大类别:纯平动类(3种)、纯转动类(6种)以及既有转动又有平动的复合类(12种),合计21种。其中,3种纯平动链是平凡运动学问题,不需讨论。因此,非平凡轴链运动学逆解的存在条件为:
Figure PCTCN2018112750-appb-000344
当| il n|=6时,则要求
Figure PCTCN2018112750-appb-000345
即至少需要3个转动副才能满足位姿对齐需求。
人工推导6R运动链的运动学方程非常繁琐且易出错,难以保证建模的可靠性;一方面, 需要建立迭代式的方程,以满足计算机自动建立多轴系统符号模型的需求;另一方面,需要应用更少轴数的运动链进行等价。运动学方程存在很多等价的形式,只有特定结构的运动学方程才具有逆解的可行性,既要求正运动学方程具有阶次最小、方程数最少及独立变量数最少;又要求逆解过程不存在数值计算导致的奇异性。
因自然空间的位姿有6个维度,故要建立仅含6个关节变量的6个位姿方程。显然,基于欧拉四元数或对偶四元数的位姿方程不满足方程数最小的要求。包含平动及转动的运动矢量本质上是自然螺旋,机械臂的最后一轴总要与期望方向对齐,才能执行所需的操作;在前5轴控制第6轴与期望的位置及指向的对齐之后,再控制第6轴满足径向对齐;因此,对于通用6R机械臂,只需要建立包含前5个关节变量的位姿方程。
为此,本发明提出“居-吉布斯”姿态四元数,目的是:通过前5轴完成对齐,以消去第4轴及第5轴的关节变量,为后续的逆解奠定基础。
分块矩阵的高维行列式计算:
记<1:n>表示自然数[1:n]的全排列,共有n!个实例。给定属于数域的大小为n×n的矩阵M,其j行i列元素记为
Figure PCTCN2018112750-appb-000346
根据行列式定义得
Figure PCTCN2018112750-appb-000347
其中:I[i1,...in]表示排列<i1,...in>的逆序个数。式(2)计算复杂度为:n!次n个数积及n!次加法,具有指数计算复杂度,只能适用于维度较小的行列式。对于维度较大的行列式,通常应用Laplace公式进行递规运算,记
Figure PCTCN2018112750-appb-000348
Figure PCTCN2018112750-appb-000349
的伴随矩阵(Adjugate Matrix),则有
Figure PCTCN2018112750-appb-000350
更简单的算法通常应用高斯消去法或LU分解法,先通过初等变换将矩阵变为三角阵或三角阵的乘积,后计算行列式。上述针对数域的行列式计算方法不适用于高维度的多项式矩阵,需要引入分块矩阵的行列式计算方法。计算矢量多项式(Vector Polynomial)的行列式是一个特定的分块矩阵行列式的计算问题,它在矢量层次上表达了矢量与行列式的内在联系。而分块矩阵行列式计算则从矩阵层次上表达分块矩阵与行列式的内在规律。
若给定矢量多项式
Figure PCTCN2018112750-appb-000351
其中:
Figure PCTCN2018112750-appb-000352
Figure PCTCN2018112750-appb-000353
为3D坐标矢量,
Figure PCTCN2018112750-appb-000354
为多项式变量序列;若约定
Figure PCTCN2018112750-appb-000355
则有
Figure PCTCN2018112750-appb-000356
上式的推导步骤为:因
Figure PCTCN2018112750-appb-000357
故式(5)成立。
式(4)及式(5)可以推广至n维空间。式(4)有助于从矢量层次上分析行列式的内在规律;比如,当任两矢量平行或三矢量共面时,对应的行列式为零。式(5)表明:矢量多项式的行列式易导致“组合爆炸”。
实施例1
给定2个2维行矢量多项式
Figure PCTCN2018112750-appb-000358
Figure PCTCN2018112750-appb-000359
Figure PCTCN2018112750-appb-000360
一方面,由式(5)得
Figure PCTCN2018112750-appb-000361
另一方面,
Figure PCTCN2018112750-appb-000362
上面的结果验证了式(5)的正确性。
给出分块矩阵的行列式计算定理:
若记大小为(n+m)·(n+m)的方阵为M,大小为n·n的矩阵
Figure PCTCN2018112750-appb-000363
是方阵M的前n行及任意n列元素构成的子矩阵,大小为m·m的矩阵
Figure PCTCN2018112750-appb-000364
是方阵M后m行及剩余m列元素构成的子矩阵;由升序排列的矩阵列序号构成的序列cn及cm是序列[1:m+n]的子集,[cn,cm]∈<1:n+m>,且有cm∪cn=[1:m+n];则方阵
Figure PCTCN2018112750-appb-000365
Figure PCTCN2018112750-appb-000366
的行列式关系为
Figure PCTCN2018112750-appb-000367
对行列式进行行阶梯化计算原理:
对于S×S矩阵,其每一项是关于τ 1的n阶多项式。计算该矩阵的行列式时,可通过初 等行变换将原行列式变为上三角行列式,再将非零的对角线元素相乘,得到行列式的多项式表达式。因该式为0,求得到τ 1的所有解。
行阶梯化的具体方法为,先对行列式第一列的最高阶次由高到低进行排序,再进行最多(S-1)×n次初等行变换消元,得到第一列只有第一个元素不为0的行列式。再对该行列式第1行及1列的余子式进行初等行变换消元,依次迭代求解。
实施例2
通过矩阵的初等行变换,得到
Figure PCTCN2018112750-appb-000368
的行阶梯矩阵。
步骤为:rk代表第k行。得
Figure PCTCN2018112750-appb-000369
则得
Figure PCTCN2018112750-appb-000370
基于“N进位字”的N阶多项式系统:
若n个“n元1阶”多项式幂积
Figure PCTCN2018112750-appb-000371
中独立变量重复出现N次,则得到n个“n元N阶”多项式系统
Figure PCTCN2018112750-appb-000372
“n元N阶多项式系统”与“n位N进位字”
Figure PCTCN2018112750-appb-000373
同构。
Figure PCTCN2018112750-appb-000374
Figure PCTCN2018112750-appb-000375
Figure PCTCN2018112750-appb-000376
Figure PCTCN2018112750-appb-000377
n个“n元N阶”多项式系统的Dixon多项式:
引入辅助变量[y 2,y 3,...,y n],且有
Figure PCTCN2018112750-appb-000378
在多元多重多项式(9)中,用辅助变量Y m的前m个依次替换原变量(Original Variables)X n中的m个变量,记“|”为替换操作符,得到增广的(Extended)多项式
Figure PCTCN2018112750-appb-000379
Figure PCTCN2018112750-appb-000380
式中右上角标α、
Figure PCTCN2018112750-appb-000381
表示幂;
由式(7)及式(13)得
Figure PCTCN2018112750-appb-000382
其中:
Figure PCTCN2018112750-appb-000383
定义可分离组合变量
Figure PCTCN2018112750-appb-000384
Figure PCTCN2018112750-appb-000385
如下:
Figure PCTCN2018112750-appb-000386
由式(15)及式(16)可知:替换式
Figure PCTCN2018112750-appb-000387
是关于
Figure PCTCN2018112750-appb-000388
Figure PCTCN2018112750-appb-000389
的双重线性型。相应地,用辅助变量替换的多项式系统记为
Figure PCTCN2018112750-appb-000390
给定n个“n元N阶”多项式系统
Figure PCTCN2018112750-appb-000391
定义其Dixon多项式为
Figure PCTCN2018112750-appb-000392
由式(18)得
Figure PCTCN2018112750-appb-000393
式(16)中分离变量与文献不同:原变量X n-1被辅助变量Y n-1替换的次序不同,Dixon多项式也不同。考虑式(14)及式(19)得该多项式的Dixon行列式
Figure PCTCN2018112750-appb-000394
在笛卡尔空间下,由位置矢量或转动矢量构成的行列式表示矢量张成空间的容积(Volume);在不同笛卡尔空间下具有容积的不变性。其中:
Figure PCTCN2018112750-appb-000395
n个“n元N阶”多项式的Dixon行列式的阶次及替换变量项数分别为:
Figure PCTCN2018112750-appb-000396
n个“n元N阶”Dixon矩阵:
给定n个“n元N阶”多项式系统F n(Y n-1|X n-1),n≥2;存在与消去变量x 2,...,x n无关的Dixon矩阵 SΘ S(x 1),其Dixon多项式
Figure PCTCN2018112750-appb-000397
表示为分离变量
Figure PCTCN2018112750-appb-000398
Figure PCTCN2018112750-appb-000399
的双重线性型:
Figure PCTCN2018112750-appb-000400
Figure PCTCN2018112750-appb-000401
Figure PCTCN2018112750-appb-000402
为大小为S×S的Dixon矩阵,其第[i][j]成员为单变量x 1的N阶多项式:
Figure PCTCN2018112750-appb-000403
其中:
Figure PCTCN2018112750-appb-000404
Figure PCTCN2018112750-appb-000405
则有
Figure PCTCN2018112750-appb-000406
n个“n元N阶”多项式的Dixon消元与求解
考虑式(23),若
Figure PCTCN2018112750-appb-000407
故得
Det( SΘ S(x 1))=0。             (29)
称式(29)中“n个n元”为Dixon消元的必要条件,从而获得可行解。若 SΘ S存在零行或零列向量,则无法建立x 1的多项式方程;此时,通过除标量积之外的初等变换,将 SΘ S变为行阶梯(Row Echelon)矩阵Ech( SΘ S);在计算该矩阵的杻轴(Pivot)的积之后得方阵
Figure PCTCN2018112750-appb-000408
即在 SΘ S中选取S′个独立的列向量。
任一个n个“n元N阶”多项式系统
Figure PCTCN2018112750-appb-000409
的实例(简称多项式)记为
Figure PCTCN2018112750-appb-000410
其中:
Figure PCTCN2018112750-appb-000411
且有
Figure PCTCN2018112750-appb-000412
根据
Figure PCTCN2018112750-appb-000413
的多项式确定Dixon矩阵、分离变量
Figure PCTCN2018112750-appb-000414
Figure PCTCN2018112750-appb-000415
选取
Figure PCTCN2018112750-appb-000416
Figure PCTCN2018112750-appb-000417
满足
Figure PCTCN2018112750-appb-000418
确定双线性型
Figure PCTCN2018112750-appb-000419
Figure PCTCN2018112750-appb-000420
其中:
Figure PCTCN2018112750-appb-000421
中与
Figure PCTCN2018112750-appb-000422
对应的各列线性独立。因
Figure PCTCN2018112750-appb-000423
由式(23)及式(26)得
Figure PCTCN2018112750-appb-000424
称其为结式或消去式。式(33)是单变量x 1的多项式方程;消去了n-1个未知量;从而,可 以获得单变量x 1的可行解。若x 1同时满足
Figure PCTCN2018112750-appb-000425
则x 1为正确解。将已解的x 1代入式(35),因式(33)成立且
Figure PCTCN2018112750-appb-000426
任意,故得
Figure PCTCN2018112750-appb-000427
即有
Figure PCTCN2018112750-appb-000428
若有必要条件
Figure PCTCN2018112750-appb-000429
成立,解式(36),得被消去变量
Figure PCTCN2018112750-appb-000430
的解;否则,需要结合式(17)得到全部解。考虑式(26),因式(23)两边的x 1阶次相等,故必有
Figure PCTCN2018112750-appb-000431
若同时满足
Figure PCTCN2018112750-appb-000432
则由式(36)能解得
Figure PCTCN2018112750-appb-000433
中n-1个互不相同的组合变量;从而,得到所有独立变量的解。
给定n个“n元N阶”多项式
Figure PCTCN2018112750-appb-000434
Dixon矩阵计算步骤如下:
①确定系统结构。方程数及独立变量数记为n;独立变量记为X n;多项式复合变量记为
Figure PCTCN2018112750-appb-000435
替换变量记为
Figure PCTCN2018112750-appb-000436
替换变量数为n-1;大小为S·S的Dixon矩阵记为
Figure PCTCN2018112750-appb-000437
其成员系数如式(25)所示,其中:S由式(33)确定;待消去变量为x 1
②由式(9)得
Figure PCTCN2018112750-appb-000438
Figure PCTCN2018112750-appb-000439
对应关系,表达式(12)中
Figure PCTCN2018112750-appb-000440
至多有S项。
③根据式(20)及Sarrus规则,计算Dixon(F n(Y n-1|X n-1));根据
Figure PCTCN2018112750-appb-000441
对应的N进位字运算结果,完成多项式合并。
④Dixon矩阵成员如式(33)所示,由式(33)计算Dixon矩阵 SΘ S的(n+1)·S 2个系数。
⑤当满足式(38)及式(39)直接解判别准则时,由式(35)及式(36)得全部数值解。
实施例3
对多项式系统(40)进行Dixon消元。
Figure PCTCN2018112750-appb-000442
步骤为:该式是4个“4元1阶”多项式系统,满足Dixon消元条件。由式(20)及式(23),得
Figure PCTCN2018112750-appb-000443
其中:
Figure PCTCN2018112750-appb-000444
由式(35)及式(41)得5个解:
Figure PCTCN2018112750-appb-000445
Figure PCTCN2018112750-appb-000446
其中:
Figure PCTCN2018112750-appb-000447
不是该方程组的解。将其它解分别代入式(36)。当
Figure PCTCN2018112750-appb-000448
时,由式(36)得
Figure PCTCN2018112750-appb-000449
解得:τ 3=1,τ 4=-2。将
Figure PCTCN2018112750-appb-000450
τ 3及τ 4代入式(40)得τ 2=1。同样,可得其他三组解。显然,因变量不满足式(27),式(41)所示的Dixon矩阵不对称。该例表明Dixon行列式为零对于多重线性多项式系统是充分的。
基于轴不变量的定轴转动
如图3所示,给定轴矢量
Figure PCTCN2018112750-appb-000451
及与其固结的单位矢量
Figure PCTCN2018112750-appb-000452
在转动前,对于单位矢量
Figure PCTCN2018112750-appb-000453
Figure PCTCN2018112750-appb-000454
对系统零位轴
Figure PCTCN2018112750-appb-000455
的投影矢量为
Figure PCTCN2018112750-appb-000456
对系统径向轴
Figure PCTCN2018112750-appb-000457
的矩矢量为
Figure PCTCN2018112750-appb-000458
径向矢量为
Figure PCTCN2018112750-appb-000459
轴矢量
Figure PCTCN2018112750-appb-000460
相对于杆件
Figure PCTCN2018112750-appb-000461
及Ω l或自然坐标系
Figure PCTCN2018112750-appb-000462
及F [l]是固定不变的,故称该转动为定轴转动。单位矢量
Figure PCTCN2018112750-appb-000463
绕轴
Figure PCTCN2018112750-appb-000464
转动
Figure PCTCN2018112750-appb-000465
后,转动后的零位矢量
Figure PCTCN2018112750-appb-000466
对系统零位轴
Figure PCTCN2018112750-appb-000467
的投影矢 量为
Figure PCTCN2018112750-appb-000468
转动后的零位矢量
Figure PCTCN2018112750-appb-000469
对系统径向轴
Figure PCTCN2018112750-appb-000470
的矩矢量为
Figure PCTCN2018112750-appb-000471
轴向分量为
Figure PCTCN2018112750-appb-000472
故得具有链指标的Rodrigues矢量方程
Figure PCTCN2018112750-appb-000473
因单位矢量
Figure PCTCN2018112750-appb-000474
是任意的且
Figure PCTCN2018112750-appb-000475
得具有链指标的Rodrigues转动方程
Figure PCTCN2018112750-appb-000476
Figure PCTCN2018112750-appb-000477
由式(43),得
Figure PCTCN2018112750-appb-000478
Figure PCTCN2018112750-appb-000479
即坐标系
Figure PCTCN2018112750-appb-000480
与F [l]的方向一致,由式(43)可知:反对称部分
Figure PCTCN2018112750-appb-000481
必有
Figure PCTCN2018112750-appb-000482
因此,系统零位是自然坐标系
Figure PCTCN2018112750-appb-000483
与F [l]重合的充分必要条件,即初始时刻的自然坐标系方向一致是系统零位定义的前提条件。利用自然坐标系可以很方便地分析多轴系统运动学和动力学。
Figure PCTCN2018112750-appb-000484
式(44)是关于
Figure PCTCN2018112750-appb-000485
Figure PCTCN2018112750-appb-000486
的多重线性方程,是轴不变量
Figure PCTCN2018112750-appb-000487
的二阶多项式。给定自然零位矢量
Figure PCTCN2018112750-appb-000488
作为
Figure PCTCN2018112750-appb-000489
的零位参考,则
Figure PCTCN2018112750-appb-000490
Figure PCTCN2018112750-appb-000491
分别表示零位矢量及径向矢量。式(44)即为
Figure PCTCN2018112750-appb-000492
对称部分
Figure PCTCN2018112750-appb-000493
表示零位轴张量,反对称部分
Figure PCTCN2018112750-appb-000494
表示径向轴张量,分别与轴向外积张量
Figure PCTCN2018112750-appb-000495
正交,从而确定三维自然轴空间;式(44)仅含一个正弦及余弦运算、6个积运算及6个和运算,计算复杂度低;同时,通过轴不变量
Figure PCTCN2018112750-appb-000496
及关节变量
Figure PCTCN2018112750-appb-000497
实现了坐标系及极性的参数化。
对于轴链
Figure PCTCN2018112750-appb-000498
由式(45)及式(44)得
Figure PCTCN2018112750-appb-000499
Figure PCTCN2018112750-appb-000500
Figure PCTCN2018112750-appb-000501
Figure PCTCN2018112750-appb-000502
的多重线性型,其中:l∈ il k。式(44)可表示为
Figure PCTCN2018112750-appb-000503
称(46)为改进的Cayley变换。即有
Figure PCTCN2018112750-appb-000504
规范的位置方程为
Figure PCTCN2018112750-appb-000505
“居-吉布斯”四元数的确定:
对于任意杆件
Figure PCTCN2018112750-appb-000506
定义与欧拉四元数同构的“居-吉布斯”(Ju-Gibbs)规范四元数:
Figure PCTCN2018112750-appb-000507
其中:
Figure PCTCN2018112750-appb-000508
为Gibbs矢量。Gibbs共轭四元数为:
Figure PCTCN2018112750-appb-000509
其中:
Figure PCTCN2018112750-appb-000510
显然,
Figure PCTCN2018112750-appb-000511
Figure PCTCN2018112750-appb-000512
模的平方。因居-吉布斯四元数是四元数,故满足四元数乘法运算
Figure PCTCN2018112750-appb-000513
其中:
Figure PCTCN2018112750-appb-000514
由式(53)得
Figure PCTCN2018112750-appb-000515
习惯上,单关节及运动链的期望姿态以规范的Ju-Gibbs四元数(简称规范Ju-Gibbs四元数,即“标部”为1的四元数)表示;但是它们积运算通常是不规范的,即其标部不为1。由式(54)可知:只有给定轴l及
Figure PCTCN2018112750-appb-000516
的规范Ju-Gibbs四元数,且两轴正交,
Figure PCTCN2018112750-appb-000517
才为规范四元数。
由式(54)得
Figure PCTCN2018112750-appb-000518
由四维复数性质得
Figure PCTCN2018112750-appb-000519
Figure PCTCN2018112750-appb-000520
由式(53)得
Figure PCTCN2018112750-appb-000521
Figure PCTCN2018112750-appb-000522
为单位Ju-Gibbs四元数。
由式(49)至式(51)及式(56)得
Figure PCTCN2018112750-appb-000523
由式(51)、式(55)及式(58)得
Figure PCTCN2018112750-appb-000524
类DCM及性质:
对于轴链
Figure PCTCN2018112750-appb-000525
规范的姿态方程为:
Figure PCTCN2018112750-appb-000526
由式(60)得
Figure PCTCN2018112750-appb-000527
Figure PCTCN2018112750-appb-000528
式中,
Figure PCTCN2018112750-appb-000529
为旋转变换矩阵;
Figure PCTCN2018112750-appb-000530
表示用辅助变量y l的前l个依次替换原变量τ l中的l个变量,记“|”为替换操作符;
其中:
Figure PCTCN2018112750-appb-000531
由式(62)可知: iQ n
Figure PCTCN2018112750-appb-000532
是关于τ k的n重2阶多项式。由式(61)可知:因
Figure PCTCN2018112750-appb-000533
Figure PCTCN2018112750-appb-000534
类似,故称之为类DCM(DCM,方向余弦矩阵)。由式(63)得
Figure PCTCN2018112750-appb-000535
显然,类DCM可以通过Ju-Gibbs四元数表达。因此,式(60)姿态方程及式(48)位置方程是关于Ju-Gibbs四元数的表达式。
分块方阵的逆:
若给定可逆方阵K、B及C,其中B及C分别为l×l、c×c的方阵;A、D分别为l×c、c×l的矩阵,且
Figure PCTCN2018112750-appb-000536
则有
Figure PCTCN2018112750-appb-000537
基于Ju-Gibbs四元数的指向对齐原理
考虑轴链 il l
Figure PCTCN2018112750-appb-000538
若单位轴矢量
Figure PCTCN2018112750-appb-000539
与期望单位轴矢量
Figure PCTCN2018112750-appb-000540
对齐,则至少存在一个多轴旋转的Ju-Gibbs四元数
Figure PCTCN2018112750-appb-000541
其中
Figure PCTCN2018112750-appb-000542
Figure PCTCN2018112750-appb-000543
Figure PCTCN2018112750-appb-000544
上式的具体建立步骤为:
定轴转动的Cayley正变换为
Figure PCTCN2018112750-appb-000545
由式(70),得
Figure PCTCN2018112750-appb-000546
由式(71)得
Figure PCTCN2018112750-appb-000547
Figure PCTCN2018112750-appb-000548
因轴矢量
Figure PCTCN2018112750-appb-000549
与期望矢量
Figure PCTCN2018112750-appb-000550
是单位矢量,假定
Figure PCTCN2018112750-appb-000551
Figure PCTCN2018112750-appb-000552
Figure PCTCN2018112750-appb-000553
式(74)表明
Figure PCTCN2018112750-appb-000554
Figure PCTCN2018112750-appb-000555
相互正交。由式(73)和(74)得到最佳的轴矢量
Figure PCTCN2018112750-appb-000556
Figure PCTCN2018112750-appb-000557
由式(75)和(76)得(67),若
Figure PCTCN2018112750-appb-000558
Figure PCTCN2018112750-appb-000559
由式(71)得
Figure PCTCN2018112750-appb-000560
由式(77)得
Figure PCTCN2018112750-appb-000561
Figure PCTCN2018112750-appb-000562
由式(78)得
Figure PCTCN2018112750-appb-000563
Figure PCTCN2018112750-appb-000564
由式(79)得式(68),由式(80)得式(69)
基于Ju-Gibbs四元数的指向对齐原理表明:至少存在一个期望的Ju-Gibbs四元数
Figure PCTCN2018112750-appb-000565
使单位矢量
Figure PCTCN2018112750-appb-000566
与期望单位矢量
Figure PCTCN2018112750-appb-000567
对齐。
实施例4
考虑轴链 il 6,由基于Ju-Gibbs四元数的指向对齐原理得
Figure PCTCN2018112750-appb-000568
基于Ju-Gibbs四元数的2R方向逆解
以Ju-Gibbs四元数指向对齐为基础,阐述2R方向逆解。
若给定6R转动链 il 6=(i,1:6],记第5轴关节Ju-Gibbs四元数期望为
Figure PCTCN2018112750-appb-000569
及第3轴关节Ju-Gibbs规范四元数为
Figure PCTCN2018112750-appb-000570
则有指向对齐时的逆解
Figure PCTCN2018112750-appb-000571
Figure PCTCN2018112750-appb-000572
其中:
Figure PCTCN2018112750-appb-000573
Figure PCTCN2018112750-appb-000574
Ju-Gibbs方向四元数
Figure PCTCN2018112750-appb-000575
满足
Figure PCTCN2018112750-appb-000576
上式的具体建立步骤为:
首先考虑基于欧拉四元数的姿态对齐,且
Figure PCTCN2018112750-appb-000577
由式(86)得
Figure PCTCN2018112750-appb-000578
由式(87)得
Figure PCTCN2018112750-appb-000579
其中:
Figure PCTCN2018112750-appb-000580
由式(65)及式(89)得
Figure PCTCN2018112750-appb-000581
由式(88)得
Figure PCTCN2018112750-appb-000582
其中:
Figure PCTCN2018112750-appb-000583
由式(90)及式(91)得
Figure PCTCN2018112750-appb-000584
由式(93)得
Figure PCTCN2018112750-appb-000585
Figure PCTCN2018112750-appb-000586
式(93)与式(94)两边对应相除得
Figure PCTCN2018112750-appb-000587
其次,考虑Ju-Gibbs四元数的指向对齐。因
Figure PCTCN2018112750-appb-000588
故得(83)。由式(59)得
Figure PCTCN2018112750-appb-000589
以规范Ju-Gibbs四元数表征关节变量,由式(54)得
Figure PCTCN2018112750-appb-000590
由式(97)得
Figure PCTCN2018112750-appb-000591
3n 44n 5独立,由式(84)可知, 3E 5必存在。显然,
Figure PCTCN2018112750-appb-000592
3n 44n 5唯一确定。将式(97)、式(98)及式(90)代入式(96)得
Figure PCTCN2018112750-appb-000593
Figure PCTCN2018112750-appb-000594
由式(99)第1行得
Figure PCTCN2018112750-appb-000595
将式(100)代入式(99)得
Figure PCTCN2018112750-appb-000596
由式(95)及式(101)可知两种原理等价。由式(101)第2、3行得
Figure PCTCN2018112750-appb-000597
由式(102)可知式(81)成立。因式(101)存在4个等式,2个独立变量,由式(102)及式(101)中第4行得约束方程
Figure PCTCN2018112750-appb-000598
Figure PCTCN2018112750-appb-000599
由式(94)得C 4C 5=0;由式(88)得
Figure PCTCN2018112750-appb-000600
由式(104)得
Figure PCTCN2018112750-appb-000601
显然,
Figure PCTCN2018112750-appb-000602
Figure PCTCN2018112750-appb-000603
时,若
Figure PCTCN2018112750-appb-000604
由式(103)得
Figure PCTCN2018112750-appb-000605
Figure PCTCN2018112750-appb-000606
由式(103)得
Figure PCTCN2018112750-appb-000607
由式(107)可知:要么
Figure PCTCN2018112750-appb-000608
要么
Figure PCTCN2018112750-appb-000609
由式(107)及式(102)可知,式(82)亦成立。当
Figure PCTCN2018112750-appb-000610
时,若
Figure PCTCN2018112750-appb-000611
则式(81)亦成立。证毕。Ju-Gibbs方向四元数
由式(81),(82)和(100)得
Figure PCTCN2018112750-appb-000612
Figure PCTCN2018112750-appb-000613
Figure PCTCN2018112750-appb-000614
代入以上两个方程中得到式(85),表明是特定的Ju-Gibbs四元数,称之为Ju-Gibbs方向四元数。
实施例5
继实施例4,考虑轴链 il 6,且有 3n 4=1 [x]4n 5=1 [y],由式(84)得 3E 5=1。由式(81)及式(82)得
Figure PCTCN2018112750-appb-000615
基于Ju-Gibbs四元数的2R方向逆解原理表明Ju-Gibbs四元数与欧拉四元数同构;同时,式(64)表明以Ju-Gibbs四元数表示的类DCM与DCM同构。因此,应用Ju-Gibbs四元数可以完整表达位姿关系。
若给定运动链 il n,k∈ il n,期望规范Ju-Gibbs四元数
Figure PCTCN2018112750-appb-000616
及期望位置矢量
Figure PCTCN2018112750-appb-000617
考虑式(48)及式(96);则位置及指向对齐关系表示为
Figure PCTCN2018112750-appb-000618
且具有模不变性
Figure PCTCN2018112750-appb-000619
与欧拉四元数及对偶四元数相比,Ju-Gibbs四元数表征的位姿对齐不存在冗余方程;通过指向对齐,可以求解第4轴及第5轴的关节变量,为6R及7R机械臂逆解奠定了基础。
基于轴不变量的Dixon行列式计算原理:
下面基于轴不变量,提出径向不变量及运动链的Dixon行列式基本性质,为基于轴不变量的机器人逆运动学分析奠定基础。
【1】轴不变量
首先,轴不变量与坐标轴具有本质区别:坐标轴是具有零位及单位刻度的参考方向,可以描述沿轴向平动的线位置,但不能完整描述绕轴向的角位置,因为坐标轴自身不具有径向参考方向,即不存在表征转动的零位。在实际应用时,需要补充坐标轴的径向参考。坐标轴自身是1D的,3个正交的坐标轴构成3D的笛卡尔标架;轴不变量是3D空间单位参考轴(简称3D参考轴),具有径向参考零位。“3D参考轴”及其径向参考零位可以确定对应的笛卡尔系。以自然坐标系为基础的轴不变量可以准确地反映运动轴及测量轴的“共轴性”、“极性”与“零位”三个基本属性。
其次,轴不变量与欧拉轴具有本质的区别:方向余弦矩阵(DCM)是实矩阵,轴矢量是DCM的特征值1对应的特征矢量,是不变量;固定轴不变量是“3D参考轴”,不仅具有原点及轴向,也有径向参考零位;在自然坐标系下,轴不变量不依赖于相邻固结的自然坐标系,即在相邻固结的自然坐标系下具有不变的自然坐标;轴不变量具有幂零特性等优良的数学操作功能;在自然坐标系统中,通过轴不变量及关节坐标,可以唯一确定DCM及参考极性;没有必要为每一个杆件建立各自的体系,可以极大地简化建模的工作量。
同时,以唯一需要定义的笛卡尔直角坐标系为参考,测量轴不变量,可以提高结构参数的测量精度。基于轴不变量的优良操作及属性,可以建立包含拓扑结构、坐标系、极性、结构参量及动力学参量的迭代式的运动学及动力学方程。
由式(60)及式(48)可知:多轴系统的姿态及位置方程本质上是多元二阶多项式方程,其逆解本质上归结于多元二阶多项式的消元问题,包含Dixon矩阵及Dixon行列式计算的两个子问题。用式(48)的表达3R机械臂位置方程,是3个“3元2阶”多项式,应用Dixon消元方法计算逆解,有两个替换变量,在计算8×8的Dixon行列式时,最大可能的阶次为16。 由式(5)可知:行列式计算是一个排列过程,面临着“组合爆炸”的难题。
所有的不在确定的多项式时间内可解的问题称为NP问题。非确定性算法将问题分解为“猜测”与“验证”两个阶段:算法的“猜测”阶段具有非确定性,算法的“验证”阶段具有确定性,通过验证来确定猜测的解是否正确。假如可以在多项式时间内计算出来,就称为多项式非确定性问题。多元多项式的消元通常被认为是NP问题。通常应用
Figure PCTCN2018112750-appb-000620
基进行多元多项式的消元,不得不求助于启发式的“猜测”与“验证”来解决问题。
【2】径向不变量
结构参数
Figure PCTCN2018112750-appb-000621
Figure PCTCN2018112750-appb-000622
是链节l的结构参量,在系统零位时,它们可以通过外部测量得到。如图4所示,零位矢量、径向矢量及轴向矢量是与转动角无关的不变量。其中,零位矢量是特定的径向矢量。
任一个矢量可以分解为零位矢量及轴向矢量,故有
Figure PCTCN2018112750-appb-000623
其中:
Figure PCTCN2018112750-appb-000624
Figure PCTCN2018112750-appb-000625
考虑链节
Figure PCTCN2018112750-appb-000626
其D-H参数有
Figure PCTCN2018112750-appb-000627
显然,
Figure PCTCN2018112750-appb-000628
是轴l及
Figure PCTCN2018112750-appb-000629
的公垂线或公共径向矢量,
Figure PCTCN2018112750-appb-000630
是轴l的轴向矢量。由式
Figure PCTCN2018112750-appb-000631
可知:任一个结构参数矢量
Figure PCTCN2018112750-appb-000632
可分解为与坐标系为无关的零位不变量
Figure PCTCN2018112750-appb-000633
及轴向不变量
Figure PCTCN2018112750-appb-000634
它们的径向矢量记为
Figure PCTCN2018112750-appb-000635
结构参数矢量
Figure PCTCN2018112750-appb-000636
及轴不变量
Figure PCTCN2018112750-appb-000637
唯一确定径向坐标系,具有2个独立维度。若两个轴向不变量
Figure PCTCN2018112750-appb-000638
Figure PCTCN2018112750-appb-000639
共线,则记为
Figure PCTCN2018112750-appb-000640
若两个零位不变量
Figure PCTCN2018112750-appb-000641
Figure PCTCN2018112750-appb-000642
与任两个径向不变量
Figure PCTCN2018112750-appb-000643
Figure PCTCN2018112750-appb-000644
共面,则记为
Figure PCTCN2018112750-appb-000645
因此,称式(111)所示的轴向不变量及零位不变量是结构参数矢量对自然轴的分解。
由式(114)及式(115)可知:同一个轴的三个径向矢量的行列式为零;同一个轴的任意两个轴向矢量的行列式为零。可以用轴不变量及其导出的不变量来简化Dixon行列式计算。
由轴不变量导出的零位矢量、径向矢量及轴向矢量具有以下关系:
Figure PCTCN2018112750-appb-000646
Figure PCTCN2018112750-appb-000647
Figure PCTCN2018112750-appb-000648
称式(116)为零位矢量的反转公式;称式(117)为零位矢量与径向矢量的互换公式;称式(118)为径向矢量不变性公式。由式(110)、式(116)至式(118)得
Figure PCTCN2018112750-appb-000649
Figure PCTCN2018112750-appb-000650
由式(119)得
Figure PCTCN2018112750-appb-000651
Figure PCTCN2018112750-appb-000652
Figure PCTCN2018112750-appb-000653
的对称部分的结构常数,故称式(119)为矢量
Figure PCTCN2018112750-appb-000654
的对称分解式。因
Figure PCTCN2018112750-appb-000655
Figure PCTCN2018112750-appb-000656
的反对称部分的结构常数,故称式(120)为矢量
Figure PCTCN2018112750-appb-000657
的反对称分解式。称式(121)为归零等式。
【3】运动链Dixon行列式性质
定义
Figure PCTCN2018112750-appb-000658
由式(53)得
Figure PCTCN2018112750-appb-000659
其中:
考虑式(123),若M为4·4的矩阵,则有
Figure PCTCN2018112750-appb-000660
Figure PCTCN2018112750-appb-000661
Figure PCTCN2018112750-appb-000662
且有
Figure PCTCN2018112750-appb-000663
由式(63)及式(111)得
Figure PCTCN2018112750-appb-000664
由式(127)证得
Figure PCTCN2018112750-appb-000665
由式(130)得
Figure PCTCN2018112750-appb-000666
式(128)可以将
Figure PCTCN2018112750-appb-000667
Figure PCTCN2018112750-appb-000668
可以转化为关于
Figure PCTCN2018112750-appb-000669
的多重线性型。同时,
Figure PCTCN2018112750-appb-000670
对y l及τ l具有对称(轮换)性。由式(112)、式(119)及式(120)得
Figure PCTCN2018112750-appb-000671
式(130)由三个导出的独立结构参量
Figure PCTCN2018112750-appb-000672
及一个运动变量τ l构成。由式(130)得
Figure PCTCN2018112750-appb-000673
Figure PCTCN2018112750-appb-000674
由式(128)及式(132)得
Figure PCTCN2018112750-appb-000675
由式(128)及式(133)得
Figure PCTCN2018112750-appb-000676
基于类DCM的2R方向逆解
给定6R轴链 il 6=(i,1:6],轴矢量 3n 44n 5,期望第5轴的DCM为
Figure PCTCN2018112750-appb-000677
期望第3轴的DCM为
Figure PCTCN2018112750-appb-000678
方向矢量 5l 6与期望方向
Figure PCTCN2018112750-appb-000679
对齐的逆解需要满足以下方程:
Figure PCTCN2018112750-appb-000680
上述方程的建立步骤为:
方向矢量 5l 6与期望方向
Figure PCTCN2018112750-appb-000681
对齐需满足
Figure PCTCN2018112750-appb-000682
由式(61)得
Figure PCTCN2018112750-appb-000683
Figure PCTCN2018112750-appb-000684
式(138)被重新表达为式(135)。
基于轴不变量的Cayley变换
当给定角度
Figure PCTCN2018112750-appb-000685
后,其正、余弦及其半角的正、余弦均是常数;为方便表达,记
Figure PCTCN2018112750-appb-000686
由式(139)得
Figure PCTCN2018112750-appb-000687
定义
Figure PCTCN2018112750-appb-000688
故有
Figure PCTCN2018112750-appb-000689
Figure PCTCN2018112750-appb-000690
与径向矢量
Figure PCTCN2018112750-appb-000691
及切向矢量
Figure PCTCN2018112750-appb-000692
是线性关系,称
Figure PCTCN2018112750-appb-000693
为“Rodrigues线性不变量”。通常称
Figure PCTCN2018112750-appb-000694
Figure PCTCN2018112750-appb-000695
为Rodrigues或Gibbs矢量,而将
Figure PCTCN2018112750-appb-000696
称为修改的Rodrigues参数(MRPs)。
一、基于轴不变量的3R机械臂位置逆解方法
给定3R转动链
Figure PCTCN2018112750-appb-000697
及期望姿态
Figure PCTCN2018112750-appb-000698
轴不变量序列
Figure PCTCN2018112750-appb-000699
求关节变量序列
Figure PCTCN2018112750-appb-000700
这是3R姿态逆解问题。
【1】根据机械臂n元3D矢量位姿方程,获得n个“n元2阶”多项式方程。
由式(48)得3R运动学方程
Figure PCTCN2018112750-appb-000701
由式(143)得
Figure PCTCN2018112750-appb-000702
由式(144)得
Figure PCTCN2018112750-appb-000703
若记
Figure PCTCN2018112750-appb-000704
则由式(62)及式得(146)
Figure PCTCN2018112750-appb-000705
由式(145)及式(146)得
Figure PCTCN2018112750-appb-000706
下面,阐述3R机械臂运动学方程的Dixon行列式的结构模型及特点。
由式(148)得3R运动学多项式方程
Figure PCTCN2018112750-appb-000707
多项式系统F 3(Y 2|T 2),根据双线性型行列式通式
Figure PCTCN2018112750-appb-000708
则有
Figure PCTCN2018112750-appb-000709
其中:
Figure PCTCN2018112750-appb-000710
Figure PCTCN2018112750-appb-000711
由式(19)、式(148)及式(149)得
Figure PCTCN2018112750-appb-000712
由式(23)及式(154)可知式(152)成立。由式(128)及式(146)得
Figure PCTCN2018112750-appb-000713
Figure PCTCN2018112750-appb-000714
由式(146)、式(155)及式(156)得
Figure PCTCN2018112750-appb-000715
其中:应用式(134)计算
Figure PCTCN2018112750-appb-000716
显然,式(157)中的y 2阶次β2∈[0:3]及y 3阶次β3∈[0:1]。考虑式(154)后三项:
Figure PCTCN2018112750-appb-000717
中的y 2阶次β2∈[0:3]及y 3阶次β3∈[0:1];
Figure PCTCN2018112750-appb-000718
中的y 2阶次β2∈[0:2]及y 3阶次β3∈[0:1];
Figure PCTCN2018112750-appb-000719
中的y 2的阶次β2∈[0:3]及y 3的阶次β3∈[0:1]。由上可知:式(154)中的y 2阶次β2∈[0:3]及y 3的阶次β3∈[0:1]。故有S=8。
由式(146)、式(154)至式(157)可知:
Figure PCTCN2018112750-appb-000720
中组合变量系数为独立的列向量,故选取
Figure PCTCN2018112750-appb-000721
的系数来构成方阵
Figure PCTCN2018112750-appb-000722
剩余列向量一定与
Figure PCTCN2018112750-appb-000723
的各列相关。故式(153)成立。
【2】应用“基于轴不变量的Dixon行列式计算”方法,“分块矩阵的高维行列式计算”方法或者“对行列式进行行阶梯化计算”方法简化行列式计算。
根据运动链Dixon行列式性质,由式(128)及式(146)得
Figure PCTCN2018112750-appb-000724
Figure PCTCN2018112750-appb-000725
Figure PCTCN2018112750-appb-000726
Figure PCTCN2018112750-appb-000727
分别表示轴2至轴3、轴3至轴3 S的零位矢量、径向矢量及轴向矢量。
由式(158)得
Figure PCTCN2018112750-appb-000728
由式(159)得
Figure PCTCN2018112750-appb-000729
由式(160)得
Figure PCTCN2018112750-appb-000730
由式(154)得
Figure PCTCN2018112750-appb-000731
将式(161)至式(163)代入式(164)得
Figure PCTCN2018112750-appb-000732
【3】应用n个“n元N阶”多项式的Dixon消元与求解原理完成位姿逆解计算,其中:根据Dixon矩阵的行列式为0,得到一元高阶多项式方程,应用基于友阵的一元高阶多项式方程求解一元高阶多项式方程的解。
一元n阶多项式p(x)=a 0+a 1x+...a n-1x n-1+x n具有n个解。若能找到一个矩阵A,满足|A-λ l·1 n|·v l=0,其中:l∈[1:n],λ l为该矩阵的特征值,v l为对应的特征矢量。若矩阵A的特征方程为
Figure PCTCN2018112750-appb-000733
则称该矩阵为多项式p(x)的友矩阵(Companion Matrix,简称友阵),因此,多项式方程p(λ l)=0的解为其友阵A的特征方程|A-λ l·1 n|=0的解。
若多项式p(x)的友阵为
Figure PCTCN2018112750-appb-000734
则由矩阵A的特征向量构成的矩阵为范德蒙德(Vandermonde)矩阵为
Figure PCTCN2018112750-appb-000735
且有
p(λ l)=|A-λ l·1 n|=0              (168)。
由式(29)、式(152)及式(153)得
Figure PCTCN2018112750-appb-000736
因S=8,应用式(2)计算
Figure PCTCN2018112750-appb-000737
的复杂度为8·8!=322560;而应用式(6)进行二次分块的行列式计算,其中:2·2分块矩阵计算复杂度为4!(2·2!+2·2!+1)/(2!2!)=30,4·4分块分矩阵计算复杂度为8!(30+30+1)/(4!4!)=4270。一般情况下,式(169)是关于τ 1的16阶单项式方程。
二、基于轴不变量的通用6R机械臂位姿逆解方法
设定有6个转动轴,拾取点位于第6轴轴线上,且第4轴与第5轴不共轴的机械臂为通用6R机械臂。通过前5轴控制第6轴与期望的位置及指向对齐,第6轴可以无限转动或控制第6轴满足径向对齐。
基于轴不变量的通用6R机械臂位姿逆解:
给定第6轴期望位置矢量
Figure PCTCN2018112750-appb-000738
及期望姿态
Figure PCTCN2018112750-appb-000739
的逆解问题与给定第6轴期望位置矢量
Figure PCTCN2018112750-appb-000740
及第5轴期望姿态
Figure PCTCN2018112750-appb-000741
的逆解问题等价;通用6R机械臂本质上是5R轴链系统。
若给定6R轴链 il 6=(i,1:6], il 1=0 3,第6轴期望位置矢量为
Figure PCTCN2018112750-appb-000742
及第5轴期望姿态
Figure PCTCN2018112750-appb-000743
第3轴关节Ju-Gibbs规范四元数为
Figure PCTCN2018112750-appb-000744
其他轴表达方式同理;则由轴不变量表征的6R机械臂运动学多项式方程为:
Figure PCTCN2018112750-appb-000745
其中:
Figure PCTCN2018112750-appb-000746
式中,\为续行符;
Figure PCTCN2018112750-appb-000747
分别表示轴4至轴5、轴5至轴6的零位矢量、径向矢量;
Figure PCTCN2018112750-appb-000748
是轴不变量
Figure PCTCN2018112750-appb-000749
的叉乘矩阵;0 3=[0 0 0]] T
Figure PCTCN2018112750-appb-000750
Figure PCTCN2018112750-appb-000751
系统结构参数及期望Ju-Gibbs姿态四元数构成的矩阵表示为
Figure PCTCN2018112750-appb-000752
Figure PCTCN2018112750-appb-000753
Figure PCTCN2018112750-appb-000754
其中,
Figure PCTCN2018112750-appb-000755
表示系统结构参数的4×4矩阵;
Figure PCTCN2018112750-appb-000756
表示取
Figure PCTCN2018112750-appb-000757
的第一行元素,依次类推,
Figure PCTCN2018112750-appb-000758
表示取
Figure PCTCN2018112750-appb-000759
的第k+1行元素;右上角标表达形式[]表示取行或列,表达形式[·]表示取所有 列;
Figure PCTCN2018112750-appb-000760
表示取 3E 5的第3行、第所有列。
并进行如下定义:
Figure PCTCN2018112750-appb-000761
下面给出上式的建立过程:
期望
Figure PCTCN2018112750-appb-000762
与第5轴期望姿态
Figure PCTCN2018112750-appb-000763
对齐,若给定运动链 il n,k∈ il n,期望规范Ju-Gibbs四元数
Figure PCTCN2018112750-appb-000764
及期望位置矢量
Figure PCTCN2018112750-appb-000765
则位置及指向对齐关系表示为
Figure PCTCN2018112750-appb-000766
由式(176)得
Figure PCTCN2018112750-appb-000767
进而,由式(59)得
Figure PCTCN2018112750-appb-000768
由式(53)得式(171),由式(177)得
Figure PCTCN2018112750-appb-000769
由式(54)得
Figure PCTCN2018112750-appb-000770
其中:
Figure PCTCN2018112750-appb-000771
由式(178)及式(179)得
Figure PCTCN2018112750-appb-000772
由式(65)得
Figure PCTCN2018112750-appb-000773
将式(182)代入式(178)得
Figure PCTCN2018112750-appb-000774
其中:
Figure PCTCN2018112750-appb-000775
由式(184)得式(173)。由式(173)及式(183)得
Figure PCTCN2018112750-appb-000776
Figure PCTCN2018112750-appb-000777
式(185)是关于
Figure PCTCN2018112750-appb-000778
期望姿态
Figure PCTCN2018112750-appb-000779
及4轴、5轴结构参数的约束方程。由式(63)得
Figure PCTCN2018112750-appb-000780
一方面,由式(185)、式(186)及式(187)得
Figure PCTCN2018112750-appb-000781
另一方面,由式(177)、(185)及式(188)得
Figure PCTCN2018112750-appb-000782
故得
Figure PCTCN2018112750-appb-000783
由式(186)得式(175)及
Figure PCTCN2018112750-appb-000784
由式(185)及式(175)得
Figure PCTCN2018112750-appb-000785
式(185)至式(191)用于后续方程简化,带有上下标的C是结构常数矩阵。考虑式(183)两边2范数得
Figure PCTCN2018112750-appb-000786
考虑当 il 1=0 3时的位置矢量对齐关系得
Figure PCTCN2018112750-appb-000787
由式(48)及式(194)得
Figure PCTCN2018112750-appb-000788
进而,得
Figure PCTCN2018112750-appb-000789
即有
Figure PCTCN2018112750-appb-000790
显然,有
Figure PCTCN2018112750-appb-000791
由式(111)、式(177)及式(196)得式(195)之左式
Figure PCTCN2018112750-appb-000792
结构参数
Figure PCTCN2018112750-appb-000793
Figure PCTCN2018112750-appb-000794
是链节l的结构参量,在系统零位时,它们可以通过外部测量得到。 零位矢量、径向矢量及轴向矢量是与转动角无关的不变量。其中,零位矢量是特定的径向矢量。
由式(111)、式(186)、式(191)及式(189)得
Figure PCTCN2018112750-appb-000795
由式(191)及式(198)得
Figure PCTCN2018112750-appb-000796
由式(185)、式(191)及式(199)得
Figure PCTCN2018112750-appb-000797
将式(197)及式(200)代入(195),且消去两边的
Figure PCTCN2018112750-appb-000798
得式(170)。
消去τ 4及τ 5后的位置方程(170)是3个“3元2阶”多项式方程,可以等同于3R机械臂问题,采用上述基于轴不变量的3R机械臂位置逆解方法进行求解,为实时计算通用6R轴机械臂的逆解奠定了基础。一方面,将有利于提高6R机械臂的绝对定位精度;另一方面,在结构上可以使传统解耦机械臂的第4轴及第5轴向根方向移动,不仅可以优化机械臂的结构,而且有利于提高6R机械臂避让障碍的灵活性。
实施例6
6R机械臂的结构参数如下: in 1=1 [z]1n 2=1 [y]2n 3=1 [y]3n 4=1 [x]4n 5=1 [y]5n 6=1 [x]il 1=0 3m,
Figure PCTCN2018112750-appb-000799
Figure PCTCN2018112750-appb-000800
若给定期望位置
Figure PCTCN2018112750-appb-000801
及期望方向,则存在如下8组逆解:
φ [1][*]=[-76.69657,170.546093,-20,33.69583,-16.915188]Deg,
φ [2][*]=[-76.69657,170.546093,-20,-146.30417,16.915188]Deg,
φ [3][*]=[-76.69657,150,20,-16.44416,-34.76538]Deg,
φ [4][*]=[-76.69657,150,20,-163.55584,34.76538]Deg,
φ [5][*]=[-90,30,-20,30,40]Deg,φ [6][*]=[-90,30,-20,-150,-40]Deg,
φ [7][*]=[90,9.4539,-20,-130.008225,-24.80936]Deg,
φ [8][*]=[90,9.4539,-20,49.99178,24.80936]Deg。
实施例7
6R机械臂的结构参数如下: in 1=1 [z]1n 2=1 [y]2n 3=1 [y]3n 4=1 [x]4n 5=1 [y]5n 6=1 [x]il 1=0 3m,
Figure PCTCN2018112750-appb-000802
Figure PCTCN2018112750-appb-000803
5l 6=0 3m。(a)若给定期望位置
Figure PCTCN2018112750-appb-000804
及期望方向
Figure PCTCN2018112750-appb-000805
则仅存在一组解φ [1][*]=[90,30,-20,30,40]Deg。(b)若给定期望位置
Figure PCTCN2018112750-appb-000806
及期望方向
Figure PCTCN2018112750-appb-000807
则存在如下两组逆解:
φ [1][*]=[90,30,-20,0,0]Deg andφ [2][*]=[90,9.45391,20,0,-19.45391]Deg。
通用6R机械臂的实时逆解作用在于:不仅有助于提高机械臂的绝对定位精度,而且可以进一步优化机械臂的结构,降低系统的重量。
基于轴不变量的通用6R机械臂Dixon矩阵结构
下面,以通用6R机械臂运动学方程为基础,阐述该方程的Dixon矩阵的结构特点。
若给定6R轴链 il 6=(i,1:6], il 1=0 3;期望位置矢量及Ju-Gibbs四元数分别记为
Figure PCTCN2018112750-appb-000808
Figure PCTCN2018112750-appb-000809
则式(170)构成多项式系统F 3(Y 2|T 2)的Dixon矩阵具有如下结构:
Figure PCTCN2018112750-appb-000810
其中:
Figure PCTCN2018112750-appb-000811
Figure PCTCN2018112750-appb-000812
上述方程的建立步骤为:记
Figure PCTCN2018112750-appb-000813
Figure PCTCN2018112750-appb-000814
由式(170)、式(204)至式(205)得
Figure PCTCN2018112750-appb-000815
由式(206)得
Figure PCTCN2018112750-appb-000816
其中:由式(125)及式(204)得
Figure PCTCN2018112750-appb-000817
由式(126)及式(204)得
Figure PCTCN2018112750-appb-000818
由式(125)、式(126)及式(205)得
Figure PCTCN2018112750-appb-000819
Figure PCTCN2018112750-appb-000820
由式(208)至式(211)可知:
Figure PCTCN2018112750-appb-000821
是关于y 2的1阶及y 3的0阶多项式;
Figure PCTCN2018112750-appb-000822
关于y 2的2阶及y 3的1阶多项式。同时,因式(206)是矢量多项式,当任意两列的结构参数矢量相同时,对应的行列式为零,故式(201)是关于y 2的3阶及y 3的1阶多项式,故式(203)成立。又因式(206)是关于τ 1的2阶多项式,故式(202)成立。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (14)

  1. 一种基于轴不变量的通用6R机械臂逆解建模与解算方法,其特征是,
    设定有6个转动轴,拾取点位于第6轴轴线上,且第4轴与第5轴不共轴的机械臂为通用6R机械臂;
    将6R机械臂规范的位姿方程采用居-吉布斯四元数表达式进行表达,通过前5轴完成对齐,以消去第4轴及第5轴的关节变量;通过前5轴控制第6轴与期望的位置及指向对齐,使第6轴能无限转动或控制第6轴满足径向对齐,将给定第6轴期望位置矢量
    Figure PCTCN2018112750-appb-100001
    及期望姿态
    Figure PCTCN2018112750-appb-100002
    的逆解问题与给定第6轴期望位置矢量
    Figure PCTCN2018112750-appb-100003
    及第5轴期望姿态
    Figure PCTCN2018112750-appb-100004
    的逆解问题等价。
  2. 根据权利要求1所述的基于轴不变量的通用6R机械臂逆解建模与解算方法,其特征是,
    对于任意杆件
    Figure PCTCN2018112750-appb-100005
    定义与欧拉四元数同构的居-吉布斯即Ju-Gibbs规范四元数:
    Figure PCTCN2018112750-appb-100006
    其中:
    Figure PCTCN2018112750-appb-100007
    为Gibbs矢量;
    Gibbs共轭四元数为:
    Figure PCTCN2018112750-appb-100008
    其中:
    Figure PCTCN2018112750-appb-100009
    式中,
    Figure PCTCN2018112750-appb-100010
    为居-吉布斯规范四元数
    Figure PCTCN2018112750-appb-100011
    模的平方;表达形式幂符
    Figure PCTCN2018112750-appb-100012
    表示□的x次幂;右上角角标∧或
    Figure PCTCN2018112750-appb-100013
    表示分隔符;轴不变量
    Figure PCTCN2018112750-appb-100014
    为关节变量;轴矢量
    Figure PCTCN2018112750-appb-100015
    及关节变量
    Figure PCTCN2018112750-appb-100016
    唯一确定运动副的转动关系;
    Figure PCTCN2018112750-appb-100017
    是轴不变量
    Figure PCTCN2018112750-appb-100018
    的叉乘矩阵;
    Figure PCTCN2018112750-appb-100019
    是Gibbs矢量
    Figure PCTCN2018112750-appb-100020
    的叉乘矩阵;若用“□”表示属性占位,则式中的表达形式□ [□]表示成员访问符;式中的表达形式幂符
    Figure PCTCN2018112750-appb-100021
    表示□的x次幂;右上角角标∧或
    Figure PCTCN2018112750-appb-100022
    表示分隔符。
  3. 根据权利要求2所述的基于轴不变量的通用6R机械臂逆解建模与解算方法,其特征是,
    若给定6R轴链 il 6=(i,1:6], il 1=0 3,第6轴期望位置矢量为
    Figure PCTCN2018112750-appb-100023
    及第5轴期望姿态
    Figure PCTCN2018112750-appb-100024
    第3轴关节居-吉布斯规范四元数为
    Figure PCTCN2018112750-appb-100025
    其他轴表达方式同理;则由轴不变量表征的6R机械臂运动学多项式方程为:
    Figure PCTCN2018112750-appb-100026
    其中:
    Figure PCTCN2018112750-appb-100027
    基于6R机械臂系统结构参数及期望姿态居-吉布斯四元数构成的矩阵表示为
    Figure PCTCN2018112750-appb-100028
    Figure PCTCN2018112750-appb-100029
    Figure PCTCN2018112750-appb-100030
    Figure PCTCN2018112750-appb-100031
    式中,\为续行符;
    Figure PCTCN2018112750-appb-100032
    分别表示轴4至轴5、轴5至轴6的零位矢量、径向矢量;
    Figure PCTCN2018112750-appb-100033
    是轴不变量
    Figure PCTCN2018112750-appb-100034
    的叉乘矩阵;0 3=[0 0 0] T
    Figure PCTCN2018112750-appb-100035
    Figure PCTCN2018112750-appb-100036
    表示系统结构参数的4×4矩阵;
    Figure PCTCN2018112750-appb-100037
    表示取
    Figure PCTCN2018112750-appb-100038
    的第一行元素,依次类推,
    Figure PCTCN2018112750-appb-100039
    表示取
    Figure PCTCN2018112750-appb-100040
    的第k+1行元素;右上角标表达形式[]表示取行或列,表达形式[·]表示取所有列;
    Figure PCTCN2018112750-appb-100041
    表示取 3E 5的第3行、第所有列; 3n 4为杆件3到杆件4的坐标矢量,其是轴不变量;
    Figure PCTCN2018112750-appb-100042
    为轴不变量 3n 4的叉乘矩阵,其余杆件同理;
    消去τ 4及τ 5后的位置方程(169)是3个“3元2阶”多项式方程,等同于3R机械臂问题,采用基于轴不变量的3R机械臂位置逆解方法进行求解。
  4. 根据权利要求3所述的基于轴不变量的通用6R机械臂逆解建模与解算方法,其特征是,
    若给定6R轴链 il 6=(i,1:6], il 1=0 3;期望位置矢量及Ju-Gibbs四元数分别记为
    Figure PCTCN2018112750-appb-100043
    Figure PCTCN2018112750-appb-100044
    则式(170)构成多项式系统F 3(Y 2|T 2)的Dixon矩阵具有如下结构:
    Figure PCTCN2018112750-appb-100045
    其中:
    Figure PCTCN2018112750-appb-100046
    Figure PCTCN2018112750-appb-100047
    式中,
    Figure PCTCN2018112750-appb-100048
    为大小为S×S的Dixon矩阵,其第[i][j]成员为单变量τ 1的N阶多项式。
  5. 根据权利要求4所述的基于轴不变量的通用6R机械臂逆解建模与解算方法,其特征是,
    基于轴不变量的通用3R机械臂逆解建模与解算方法,应用n个“n元N阶”多项式的Dixon消元与求解原理,进行位姿逆解计算,主要包括以下步骤:
    【1】根据机械臂n元3D矢量位姿方程,获得n个“n元2阶”多项式方程;
    【2】应用基于轴不变量的Dixon行列式计算式、分块矩阵的行列式计算式或对行列式进行对角化计算式简化行列式计算;
    【3】应用n个“n元N阶”多项式的Dixon消元与求解原理完成位姿逆解计算,其中:根据Dixon矩阵的行列式为0,得到一元高阶多项式方程,应用基于友阵的一元高阶多项式方程求解一元高阶多项式方程的解。
  6. 根据权利要求5所述的基于轴不变量的通用6R机械臂逆解建模与解算方法,其特征是,
    步骤【1】中,
    对于轴链
    Figure PCTCN2018112750-appb-100049
    Figure PCTCN2018112750-appb-100050
    建立规范的姿态方程为:
    Figure PCTCN2018112750-appb-100051
    建立规范的定位方程:
    Figure PCTCN2018112750-appb-100052
    式中,
    Figure PCTCN2018112750-appb-100053
    为任意杆件,表达形式
    Figure PCTCN2018112750-appb-100054
    表示□的x次幂;右上角角标∧或
    Figure PCTCN2018112750-appb-100055
    表示分隔符;
    Figure PCTCN2018112750-appb-100056
    是轴不变量
    Figure PCTCN2018112750-appb-100057
    的叉乘矩阵,杆件
    Figure PCTCN2018112750-appb-100058
    为杆件
    Figure PCTCN2018112750-appb-100059
    时同理替换;1为三维单位矩阵; iQ n表示姿态;
    Figure PCTCN2018112750-appb-100060
    为沿矢量轴
    Figure PCTCN2018112750-appb-100061
    的线位置;
    Figure PCTCN2018112750-appb-100062
    为零位时由原点
    Figure PCTCN2018112750-appb-100063
    至原点O l的平动矢量; |□为投影符, i|□为□在大地坐标系的投影矢量。
  7. 根据权利要求6所述的基于轴不变量的通用6R机械臂逆解建模与解算方法,其特征是,
    步骤【2】中,基于轴不变量的Dixon行列式计算式为:
    根据运动链Dixon行列式性质有:
    Figure PCTCN2018112750-appb-100064
    并记:
    Figure PCTCN2018112750-appb-100065
    Figure PCTCN2018112750-appb-100066
    式中,
    Figure PCTCN2018112750-appb-100067
    为旋转变换矩阵;
    Figure PCTCN2018112750-appb-100068
    表示用辅助变量y l的前l个依次替换原变量τ l中的l个变量,记“|”为替换操作符;
    式(128)将
    Figure PCTCN2018112750-appb-100069
    Figure PCTCN2018112750-appb-100070
    转化为关于
    Figure PCTCN2018112750-appb-100071
    的多重线性型;同时,
    Figure PCTCN2018112750-appb-100072
    对y l及τ l具有对称性;
    由式(48)得3R运动学方程
    Figure PCTCN2018112750-appb-100073
    由式(143)得
    Figure PCTCN2018112750-appb-100074
    由式(144)得
    Figure PCTCN2018112750-appb-100075
    Figure PCTCN2018112750-appb-100076
    则由式(62)及式得(146)
    Figure PCTCN2018112750-appb-100077
    由式(145)及式(146)得
    Figure PCTCN2018112750-appb-100078
    3R机械臂运动学方程的Dixon行列式的结构模型及特点:
    由式(148)得3R运动学多项式方程
    Figure PCTCN2018112750-appb-100079
    多项式系统F 3(Y 2|T 2),根据双线性型行列式通式
    Figure PCTCN2018112750-appb-100080
    则有
    Figure PCTCN2018112750-appb-100081
    其中:
    Figure PCTCN2018112750-appb-100082
    Figure PCTCN2018112750-appb-100083
    Figure PCTCN2018112750-appb-100084
    中组合变量系数为独立的列向量,故选取
    Figure PCTCN2018112750-appb-100085
    的系数来构成方阵
    Figure PCTCN2018112750-appb-100086
    剩余列向量一定与
    Figure PCTCN2018112750-appb-100087
    的各列相关;
    由式(128)及式(146)得
    Figure PCTCN2018112750-appb-100088
    Figure PCTCN2018112750-appb-100089
    Figure PCTCN2018112750-appb-100090
    式中,
    Figure PCTCN2018112750-appb-100091
    分别表示轴2至轴3、轴3至轴3S的零位矢量、径向矢量及轴向矢量;其中
    Figure PCTCN2018112750-appb-100092
    Figure PCTCN2018112750-appb-100093
    得简化的3元N阶Dixon行列式为
    Figure PCTCN2018112750-appb-100094
    式中,
    Figure PCTCN2018112750-appb-100095
    为大小为S×S的Dixon矩阵,其第[i][j]成员为单变量τ 1的N阶多项式。
  8. 根据权利要求5所述的基于轴不变量的通用6R机械臂逆解建模与解算方法,其特征是,
    步骤【2】中,分块矩阵的行列式计算式为:
    若记大小为(n+m)·(n+m)的方阵为M,大小为n·n的矩阵
    Figure PCTCN2018112750-appb-100096
    是方阵M的前n行及任意n列元素构成的子矩阵,大小为m·m的矩阵
    Figure PCTCN2018112750-appb-100097
    是方阵M后m行及剩余m列元素构成的子矩阵;由升序排列的矩阵列序号构成的序列cn及cm是序列[1:m+n]的子集,[cn,cm]∈<1:n+m>,且有cm∪cn=[1:m+n];则方阵M行列式与分块矩阵
    Figure PCTCN2018112750-appb-100098
    Figure PCTCN2018112750-appb-100099
    的行列式关系为
    Figure PCTCN2018112750-appb-100100
  9. 根据权利要求5所述的基于轴不变量的通用3R机械臂逆解建模与解算方法,其特征是,
    步骤【2】中,对行列式进行行阶梯化计算原理:
    对于S×S矩阵,其每一项是关于τ 1的n阶多项式;计算该矩阵的行列式时,可通过初等行变换将原行列式变为上三角行列式,再将非零的对角线元素相乘,得到行列式的多项式表达式,该式为0,得到τ 1的所有解;
    行阶梯化的具体方法为,先对行列式第一列的最高阶次由高到低进行排序,再进行最多(S-1)×n次初等行变换消元,得到第一列只有第一个元素不为0的行列式;再对该行列式第1行及1列的余子式进行初等行变换消元,依次迭代求解。
  10. 根据权利要求5所述的基于轴不变量的通用6R机械臂逆解建模与解算方法,其特征是,
    步骤【3】中,n个“n元N阶”多项式系统的Dixon多项式构建步骤为:
    引入辅助变量[y 2,y 3,…,y n],且有
    Figure PCTCN2018112750-appb-100101
    对于多元多重多项式
    Figure PCTCN2018112750-appb-100102
    用辅助变量Y m的前m个依次替换原变量X n中的m个变量,记“|”为替换操作符,得到增广的多项式
    Figure PCTCN2018112750-appb-100103
    Figure PCTCN2018112750-appb-100104
    Figure PCTCN2018112750-appb-100105
    其中:
    Figure PCTCN2018112750-appb-100106
    定义可分离组合变量
    Figure PCTCN2018112750-appb-100107
    Figure PCTCN2018112750-appb-100108
    如下:
    Figure PCTCN2018112750-appb-100109
    由式(15)及式(16)知:替换式
    Figure PCTCN2018112750-appb-100110
    是关于
    Figure PCTCN2018112750-appb-100111
    Figure PCTCN2018112750-appb-100112
    的双重线性型;相应地,用辅助变量替换的多项式系统记为
    Figure PCTCN2018112750-appb-100113
    给定n个“n元N阶”多项式系统
    Figure PCTCN2018112750-appb-100114
    定义其Dixon多项式为
    Figure PCTCN2018112750-appb-100115
    由式(18)得
    Figure PCTCN2018112750-appb-100116
    考虑式(14)及式(19)得该多项式的Dixon行列式
    Figure PCTCN2018112750-appb-100117
    在笛卡尔空间下,由位置矢量或转动矢量构成的行列式表示矢量张成空间的容积(Volume);在不同笛卡尔空间下具有容积的不变性;其中:
    Figure PCTCN2018112750-appb-100118
    给定n个“n元N阶”多项式系统F n(Y n-1|X n-1),n≥2;存在与消去变量x 2,…,x n无关的Dixon矩阵 SΘ S(x 1),其Dixon多项式
    Figure PCTCN2018112750-appb-100119
    表示为分离变量
    Figure PCTCN2018112750-appb-100120
    Figure PCTCN2018112750-appb-100121
    的双重线性型:
    Figure PCTCN2018112750-appb-100122
    Figure PCTCN2018112750-appb-100123
    Figure PCTCN2018112750-appb-100124
    为大小为S×S的Dixon矩阵,其第[i][j]成员为单变量x 1的N阶多项式:
    Figure PCTCN2018112750-appb-100125
    其中:
    Figure PCTCN2018112750-appb-100126
    考虑式(23),若
    Figure PCTCN2018112750-appb-100127
    故得
    Det( SΘ S(x 1))=0; (29)称式(29)中“n个n元”为Dixon消元的必要条件,从而获得可行解。
  11. 根据权利要求7所述的基于轴不变量的通用6R机械臂逆解建模与解算方法,其特征是,
    由式(29)、式(152)及式(153)得
    Figure PCTCN2018112750-appb-100128
    式(169)是关于τ 1的16阶单项式方程,应用式(5)进行二次分块的行列式计算或对行列式进行对角化计算。
  12. 根据权利要求3所述的基于轴不变量的通用6R机械臂逆解建模与解算方法,其特征是,
    通用6R机械臂4、5轴求解方法:基于“Ju-Gibbs”四元数2R方向逆解或基于类DCM的2R方向逆解。
  13. 根据权利要求12所述的基于轴不变量的通用6R机械臂逆解建模与解算方法,其特征是,
    基于“Ju-Gibbs”四元数2R方向逆解:
    首先基于Ju-Gibbs四元数的指向对齐原理,考虑轴链 il l
    Figure PCTCN2018112750-appb-100129
    若单位轴矢量
    Figure PCTCN2018112750-appb-100130
    与期望单位轴矢量
    Figure PCTCN2018112750-appb-100131
    对齐,则至少存在一个多轴旋转的Ju-Gibbs四元数
    Figure PCTCN2018112750-appb-100132
    其中
    Figure PCTCN2018112750-appb-100133
    Figure PCTCN2018112750-appb-100134
    Figure PCTCN2018112750-appb-100135
    然后以Ju-Gibbs四元数指向对齐为基础,阐述2R机械臂指向逆解定理;
    若给定6R转动链 il 6=(i,1:6],记第5轴关节Ju-Gibbs四元数期望为
    Figure PCTCN2018112750-appb-100136
    及第3轴关节Ju-Gibbs规范四元数为
    Figure PCTCN2018112750-appb-100137
    则有指向对齐时的逆解
    Figure PCTCN2018112750-appb-100138
    Figure PCTCN2018112750-appb-100139
    其中:
    Figure PCTCN2018112750-appb-100140
    Figure PCTCN2018112750-appb-100141
    Ju-Gibbs方向四元数
    Figure PCTCN2018112750-appb-100142
    满足
    Figure PCTCN2018112750-appb-100143
    式中,
    Figure PCTCN2018112750-appb-100144
    表示取 3E 5的第3行、第所有列; 3n 4为杆件3到杆件4的坐标矢量,其是轴不变量;
    Figure PCTCN2018112750-appb-100145
    为轴不变量 3n 4的叉乘矩阵,其余杆件同理;
    与欧拉四元数及对偶四元数相比,Ju-Gibbs四元数表征的位姿对齐不存在冗余方程;通过指向对齐,可以求解第4轴及第5轴的关节变量,为6R及7R机械臂逆解奠定了基础。
  14. 根据权利要求12所述的基于轴不变量的通用6R机械臂逆解建模与解算方法,其特征是,
    基于类DCM的2R方向逆解:
    给定6R轴链 il 6=(i,1:6],轴矢量 3n 44n 5,期望第5轴的DCM为
    Figure PCTCN2018112750-appb-100146
    期望第3轴的DCM为
    Figure PCTCN2018112750-appb-100147
    方向矢量 5l 6与期望方向
    Figure PCTCN2018112750-appb-100148
    对齐的逆解需要满足以下方程:
    Figure PCTCN2018112750-appb-100149
    式中,\为续行符;
    Figure PCTCN2018112750-appb-100150
    分别表示轴5至轴6的零位矢量、径向矢量;
    Figure PCTCN2018112750-appb-100151
    是轴不变量
    Figure PCTCN2018112750-appb-100152
    的叉乘矩阵;0 3=[0 0 0] T
    Figure PCTCN2018112750-appb-100153
    Figure PCTCN2018112750-appb-100154
    3n 4为杆件3到杆件4的坐标矢量,其是轴不变量;
    Figure PCTCN2018112750-appb-100155
    为轴不变量 3n 4的叉乘矩阵,其余杆件同理。
PCT/CN2018/112750 2018-08-16 2018-10-30 基于轴不变量的通用6r机械臂逆解建模与解算方法 WO2020034415A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810933665.6A CN109015641B (zh) 2018-08-16 2018-08-16 基于轴不变量的通用6r机械臂逆解建模与解算方法
CN201810933665.6 2018-08-16

Publications (1)

Publication Number Publication Date
WO2020034415A1 true WO2020034415A1 (zh) 2020-02-20

Family

ID=64630530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112750 WO2020034415A1 (zh) 2018-08-16 2018-10-30 基于轴不变量的通用6r机械臂逆解建模与解算方法

Country Status (2)

Country Link
CN (1) CN109015641B (zh)
WO (1) WO2020034415A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111967099B (zh) * 2020-07-20 2021-04-27 居鹤华 多自由度机械臂矢量多项式系统最优求解方法
CN113997288B (zh) * 2021-11-01 2023-11-21 武汉科技大学 一种求解非球腕6r工业机器人逆运动学的数值算法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040133309A1 (en) * 2002-11-06 2004-07-08 Manfred Huttenhofer Method and device for controlling movements in the case of manipulators
CN102243620A (zh) * 2011-06-02 2011-11-16 安凯 六关节机械臂逆运动学问题的快速求解方法
CN104834809A (zh) * 2015-04-17 2015-08-12 中国石油大学(华东) 基于人工蜂群搜索的七自由度机械臂逆向运动学求解方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785248B (zh) * 2012-07-23 2015-03-04 华中科技大学 一种解耦型六自由度工业机器人的运动控制方法
CN103538067B (zh) * 2013-10-08 2015-08-19 南京航空航天大学 一种基于四元数的快速求解Stewart并联机构的运动学正解方法
US10192022B2 (en) * 2014-06-04 2019-01-29 IronCAD, LLC Geometric modeling system with intelligent behaviors of design components
CN106426176B (zh) * 2016-11-08 2018-06-26 北京邮电大学 一种六自由度空间机械臂动态负载能力工作空间分析方法
CN107053176B (zh) * 2017-04-09 2019-07-12 北京工业大学 一种六自由度机器人末端空间曲线轨迹的误差建模方法
US10255480B2 (en) * 2017-05-15 2019-04-09 The Boeing Company Monitoring object shape and deviation from design
CN107756400B (zh) * 2017-10-13 2020-12-04 北京工业大学 一种基于旋量理论的6r机器人逆运动学几何求解方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040133309A1 (en) * 2002-11-06 2004-07-08 Manfred Huttenhofer Method and device for controlling movements in the case of manipulators
CN102243620A (zh) * 2011-06-02 2011-11-16 安凯 六关节机械臂逆运动学问题的快速求解方法
CN104834809A (zh) * 2015-04-17 2015-08-12 中国石油大学(华东) 基于人工蜂群搜索的七自由度机械臂逆向运动学求解方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU FENG ET AL.: "Inverse Kinematics Equation Solving Method for six Degrees of Freedom Manipulator based on six dimensional linear Interpolation", JOURNAL OF COMPUTER APPLICATIONS, vol. 38, no. 2, 10 February 2018 (2018-02-10), pages 563 - 567 *

Also Published As

Publication number Publication date
CN109015641A (zh) 2018-12-18
CN109015641B (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
CN108972558B (zh) 一种基于轴不变量的多轴机器人动力学建模方法
WO2020034420A1 (zh) 一种基于轴不变量的多轴机器人逆运动学建模与解算方法
CN108983705B (zh) 一种基于轴不变量的多轴机器人系统正运动学建模与解算方法
CN109079784B (zh) 一种基于轴不变量的多轴机器人系统建模与控制方法
WO2020034415A1 (zh) 基于轴不变量的通用6r机械臂逆解建模与解算方法
WO2020034416A1 (zh) 基于轴不变量的通用7r机械臂逆解建模与解算方法
WO2020034407A1 (zh) 基于轴不变量的通用3r机械臂逆解建模与解算方法
WO2020034417A1 (zh) 基于轴不变量多轴机器人d-h系及d-h参数确定方法
WO2020034418A1 (zh) 基于轴不变量及dh参数1r/2r/3r逆解建模方法
WO2020034403A1 (zh) 基于轴不变量的多轴机器人正运动学计算方法
WO2020034405A1 (zh) 基于轴不变量的树链机器人动力学建模与解算方法
CN108959829B (zh) 基于轴不变量的非理想关节机器人动力学建模方法
WO2020034402A1 (zh) 基于轴不变量的多轴机器人结构参数精测方法
CN111967099B (zh) 多自由度机械臂矢量多项式系统最优求解方法
CN109086544B (zh) 基于轴不变量的闭链机器人动力学建模与解算方法
CN108803350B (zh) 基于轴不变量的动基座多轴机器人动力学建模与解算方法
Li et al. Pose-Shape Unified Planning of Cable-driven Serial Manipulators based on Multiple Arm-Angle Construction
Silva et al. Dynamic Modeling of Branched Robots using Modular Composition
Corrochano et al. Robot Perception and Action Using Conformal Geometric Algebra

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930149

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18930149

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18930149

Country of ref document: EP

Kind code of ref document: A1