WO2020034402A1 - 基于轴不变量的多轴机器人结构参数精测方法 - Google Patents

基于轴不变量的多轴机器人结构参数精测方法 Download PDF

Info

Publication number
WO2020034402A1
WO2020034402A1 PCT/CN2018/112641 CN2018112641W WO2020034402A1 WO 2020034402 A1 WO2020034402 A1 WO 2020034402A1 CN 2018112641 W CN2018112641 W CN 2018112641W WO 2020034402 A1 WO2020034402 A1 WO 2020034402A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
vector
invariant
sequence
joint
Prior art date
Application number
PCT/CN2018/112641
Other languages
English (en)
French (fr)
Inventor
居鹤华
Original Assignee
居鹤华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 居鹤华 filed Critical 居鹤华
Publication of WO2020034402A1 publication Critical patent/WO2020034402A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0095Means or methods for testing manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/023Cartesian coordinate type

Definitions

  • the invention relates to a method for precisely measuring the structural parameters of a multi-axis robot, and belongs to the technical field of robots.
  • Multi-axis system modeling needs to fully parameterize the system topology, coordinate system, structural parameters and mass inertia in order to ensure the accuracy, reliability and real-time performance of the system.
  • a fully parameterized kinematics and dynamics model is an important aspect of machine intelligence and the basis for system adaptability and inheritance.
  • errors in the design structural parameters will inevitably be caused during machining and assembly. Therefore, the problem of accurate measurement of Engineering Structure Parameters of multi-axis robot systems needs to be solved.
  • the technical problem to be solved by the present invention is to provide a precise measurement method for structural parameters of a multi-axis multi-axis robot based on an axis invariant, so as to avoid the problem of excessive measurement error of the structural parameters of the multi-axis robot caused by taking Cartesian Cartesian coordinate system as a reference.
  • the present invention adopts the following technical solutions:
  • the multi-axis robot system includes a sequence of rods and joints.
  • the joint sequence in the tree chain is converted into a corresponding axis sequence and its parent axis.
  • Sequence, the axis of the axis sequence is a translation axis or a rotation axis;
  • the axis set is used to describe the multi-axis robot system correspondingly.
  • the natural joint space is based on the natural coordinate system F.
  • the origin of the natural coordinate system F is located on the joint axis and the coordinate system directions are consistent when the system is reset ;
  • A is the axis sequence
  • F is the rod reference system sequence
  • B is the rod body sequence
  • K is the motion pair type sequence
  • NT is the sequence of the constrained axis, that is, non-tree
  • F is Cartesian Cartesian coordinate system sequence.
  • the fixed axis invariant is formed by the axis invariant and the position vector of the origin on the axis.
  • the structure parameter of the multi-axis system is the fixed axis invariant.
  • a laser tracker or other measuring equipment is used to measure the end point of the robot arm to determine the invariance of the fixed axis of each axis.
  • the measurement process is always performed in sequence from the root member to the blade member.
  • Measurement steps include
  • the measuring prism is consolidated with the rod l to be measured, and the position of the center l S of the prism is measured by a laser tracker i to obtain a corresponding position vector.
  • a unit vector consolidated with the rod 1 to be measured is obtained
  • the determination process of the dual vector attitude is:
  • the fixed axis invariance is determined by the laser trackball fixed at the end of the robotic arm.
  • each joint rotates 3 times, and 3 points are measured to obtain two vectors.
  • the two trackballs at the end are tracked separately, Two laser tracking balls, each joint rotates once, get two vectors, and then use the precise measurement method to determine the fixed axis invariant.
  • the method of this method is based on the natural coordinate system, and can accurately measure the fixed axis invariant in engineering.
  • the repeatability of joints can be achieved, and the problem of excessive measurement error of structural parameters caused by Cartesian Cartesian coordinate system is avoided, which lays the foundation for the development of precision multi-axis robot systems.
  • the present invention proposes and proves a method for precise measurement of structural parameters of a multi-axis system based on an axis invariant, which is characterized by: directly applying a structural parameter based on a fixed axis invariant obtained by precise measurement by a laser tracker or other measuring equipment to ensure accurate modeling Sex.
  • the kinematics of a multi-axis system based on axis invariants unifies the classic kinematic principles of four-dimensional complex numbers and quaternions; it improves the compactness of the real-time kinematics system of multi-axis systems; thus, it improves the computing efficiency of kinematics systems.
  • Figure 3 Schematic diagram of radial projection and natural zero position
  • Figure 4 Schematic diagram of fixed axis rotation
  • FIG. 6 is a schematic diagram of determining an origin of a fixed axis invariant.
  • Natural coordinate axis The unit reference axis with a fixed origin that is coaxial with the motion axis or measurement axis is called the natural coordinate axis, also known as the natural reference axis.
  • Natural coordinate system As shown in Figure 1, if the multi-axis system D is at zero position, all Cartesian body coordinate systems have the same direction, and the origin of the body coordinate system is on the axis of the motion axis, then the coordinate system is a natural coordinate system. , Referred to as the natural coordinate system.
  • the advantages of the natural coordinate system are: (1) the coordinate system is easy to determine; (2) the joint variables at the zero position are zero; (3) the system attitude at the zero position is consistent; (4) it is not easy to introduce a measurement error.
  • the coordinate axis is a reference direction with a zero position and a unit scale. It can describe the position of translation in that direction, but it cannot fully describe the rotation angle around the direction, because the coordinate axis itself does not have a radial reference direction, that is There is a zero position that characterizes rotation. In practical applications, the radial reference of this shaft needs to be supplemented. For example: in Cartesian F [l] , to rotate around lx, you need to use ly or lz as the reference zero.
  • the coordinate axis itself is 1D, and three orthogonal 1D reference axes constitute a 3D Cartesian frame.
  • the axis invariant is a 3D spatial unit reference axis, which is itself a frame. It has its own radial reference axis, the reference mark.
  • the spatial coordinate axis and its own radial reference axis determine the Cartesian frame.
  • the spatial coordinate axis can reflect the three basic reference attributes of the motion axis and the measurement axis.
  • [2] is a 3D reference axis, which not only has an axial reference direction, but also has a radial reference zero position, which will be explained in section 3.3.1.
  • the axis invariant For axis invariants, its absolute derivative is its relative derivative. Since the axis invariant is a natural reference axis with invariance, its absolute derivative is always a zero vector. Therefore, the axis invariant is invariant to time differentiation. Have:
  • the basis vector e l is any vector consolidated with F [l] .
  • the basis vector With Any vector of consolidation, Is F [l] and Common unit vector, so Is F [l] and Shared basis vector. So the axis is invariant Is F [l] and Common reference base.
  • Axis invariants are parameterized natural coordinate bases and primitives for multi-axis systems. The translation and rotation of a fixed axis invariant are equivalent to the translation and rotation of a fixed coordinate system.
  • optical measurement equipment such as laser trackers can be applied to achieve accurate measurement of invariants of fixed axes.
  • the cylindrical pair can be applied to simplify the MAS kinematics and dynamics analysis.
  • Invariant A quantity that does not depend on a set of coordinate systems for measurement is called an invariant.
  • Natural coordinates take the natural coordinate axis vector as the reference direction, the angular position or line position relative to the zero position of the system, and record it as q l , which is called natural coordinates;
  • natural motion vector will be determined by the natural axis vector And the vector determined by natural coordinates q l Called the natural motion vector. among them:
  • the natural motion vector realizes the unified expression of axis translation and rotation.
  • a vector to be determined by the natural axis vector and the joint such as Called the free motion vector, also known as the free spiral.
  • the axis vector Is a specific free spiral.
  • joint space The space represented by the joint natural coordinates q l is called joint space.
  • the Cartesian space that expresses the position and pose (posture for short) is called a shape space, which is a double vector space or a 6D space.
  • Natural joint space using the natural coordinate system as a reference, through joint variables Means that there must be when the system is zero The joint space is called natural joint space.
  • Axis vector Is the natural reference axis of the natural coordinates of the joint. Because Is an axis invariant, so Is a fixed axis invariant, which characterizes the motion pair The structural relationship is determined by the natural coordinate axis. Fixed axis invariant Is a link Natural description of structural parameters.
  • Natural coordinate axis space The fixed axis invariant is used as the natural reference axis, and the space represented by the corresponding natural coordinate is called the natural coordinate axis space, which is referred to as the natural axis space. It is a 3D space with 1 degree of freedom.
  • any motion pair in the loop can be selected, and the stator and the mover constituting the motion pair can be separated; thus, a loop-free tree structure is obtained.
  • the Span tree represents a span tree with directions to describe the topological relationship of the tree chain movement.
  • I is a structural parameter; A is an axis sequence; F is a bar reference sequence; B is a bar body sequence; K is a motion pair type sequence; NT is a sequence of constrained axes, that is, a non-tree.
  • Axis sequence a member of.
  • Rotary pair R, prism pair P, spiral pair H, and contact pair O are special examples of cylindrical pair C.
  • the motion chain is identified by a partial order set ().
  • O () represents the number of operations in the calculation process, and usually refers to the number of floating-point multiplications and additions. It is very tedious to express the calculation complexity by the number of floating-point multiplication and addition. Therefore, the main operation times in the algorithm cycle are often used;
  • l l k is the kinematic chain from axis l to axis k, and the output is expressed as And
  • the cardinality is written as
  • l l k execution process execution If Then execute Otherwise, end.
  • the computational complexity of l l k is O (
  • l L means to obtain a closed subtree composed of axis l and its subtrees, Is a subtree without l; recursively execute l l with a computational complexity of
  • means attribute placeholder; if the attribute p or P is about position, then Should be understood as a coordinate system To the origin of F [l] ; if the attribute p or P is about direction, then Should be understood as a coordinate system To F [l] .
  • attribute variables or constants with partial order include the indicators indicating partial order in the name; either include the upper left corner and lower right corner indexes, or include the upper right corner and lower right corner indexes; Their directions are always from the upper left corner indicator to the lower right corner indicator, or from the upper right corner indicator to the lower right corner indicator.
  • the description of the direction is sometimes omitted. Even if omitted, those skilled in the art can also use symbolic expressions. It is known that, for each parameter used in this application, for a certain attribute symbol, their directions are always from the upper left corner index to the lower right corner index of the partial order index, or from the upper right corner index to the lower right corner index.
  • the symbol specifications and conventions of this application are determined based on the two principles of the partial order of the kinematic chain and the chain link being the basic unit of the kinematic chain, reflecting the essential characteristics of the kinematic chain.
  • the chain indicator represents the connection relationship, and the upper right indicator represents the reference system.
  • This symbolic expression is concise and accurate, which is convenient for communication and written expression.
  • they are structured symbol systems that contain the elements and relationships that make up each attribute quantity, which is convenient for computer processing and lays the foundation for computer automatic modeling.
  • the meaning of the indicator needs to be understood through the background of the attribute, that is, the context; for example: if the attribute is a translation type, the indicator at the upper left corner indicates the origin and direction of the coordinate system; if the attribute is a rotation type, the indicator at the top left The direction of the coordinate system.
  • rotation vector / angle vector I is a free vector, that is, the vector can be freely translated
  • the angular position that is, the joint angle and joint variables, are scalars
  • T means transpose of ⁇ , which means transpose the collection and do not perform transpose on the members; for example:
  • Projection symbol ⁇ represents vector or tensor of second order group reference projection vector or projection sequence, i.e. the vector of coordinates or coordinate array, that is, the dot product projection "*"; as: position vector
  • the projection vector in the coordinate system F [k] is written as
  • Is a cross multiplier for example: Is axis invariant Cross product matrix; given any vector
  • the cross product matrix is
  • the cross product matrix is a second-order tensor.
  • i l j represents a kinematic chain from i to j
  • l l k is a kinematic chain from axis l to k
  • n represents the Cartesian Cartesian system, then Is a Cartesian axis chain; if n represents a natural reference axis, then For natural shaft chains.
  • the adjacent members l and Axis vectors have the same coordinates; on the other hand, the axis vectors By origin direction Outside, axis vector Point from the origin O l to the outside of O l , they have the same coordinates, that is, the axis invariant It has a total order relationship, and there is no difference between its positive order and reverse order. therefore
  • the projection scalar is the coordinate Zero vector Pair of axes vector
  • the projection vector is Zero vector Zero axis vector
  • the projection vector is Zero vector Radial projection transformation And system zero projection transformation
  • Axis vector Relative to rod And ⁇ l or natural coordinate system And F [l] is fixed, so this rotation is called fixed axis rotation.
  • the projection vector is Zero vector after rotation
  • the moment vector is
  • the axial component is Rodrigues vector equation with chain index
  • Equation (7) shows: On the one hand, in adjacent natural coordinate systems, Axis vectors have the same coordinates; on the other hand, the axis vectors By origin direction Outside, axis vector Point from O l to the outside of O l , they have the same coordinates, that is, the axis invariant It has a total order relationship, and there is no difference between its positive order and reverse order. therefore
  • Negative value and opposite joint angle Can be obtained in reverse order
  • negative values and inversion of topological (connection) order are two different concepts.
  • multi-axis system theory Used as a reference axis for joint actuators and sensors. It is a system reference specification. Heng holds, that is, the axis vector Is invariant.
  • Equation (10) is about with Multivariable linear equation is an axis invariant Second-order polynomial. Given a natural zero vector As Zero reference, and Respectively the zero vector and the radial vector. Equation (10) is Symmetry Represents zero-axis tensor, antisymmetric part Represents the radial axial tensor, and the axial outer product tensor, respectively Orthogonal to determine the three-dimensional natural axis space; Equation (10) contains only one sine and cosine operation, 6 product operations, and 6 sum operations, and the calculation complexity is low; And joint variables The coordinate system and polarity are parameterized.
  • Axis vector With second-order nilpotency Is a first-order radial transformation or a first-order moment transformation, which is antisymmetric; and Second and third-order radial transformations, respectively; Periodic.
  • the natural joint space of the multi-axis system D ⁇ T, A, B, K, F, NT ⁇ is based on the natural coordinate system F.
  • the origin of the natural coordinate system F is located on the joint axis and the coordinate system directions are the same when the system is reset. .
  • A is the axis sequence
  • F is the rod reference frame sequence
  • B is the rod body sequence
  • K is the motion pair type sequence
  • NT is the sequence that constrains the axis, that is, non-tree.
  • F is the Cartesian Cartesian coordinate system sequence.
  • Axis sequence a member of.
  • Rotary pair R, prism pair P, spiral pair H, and contact pair O are special examples of cylindrical pair C.
  • the structure parameters of the multi-axis system are The configuration space is expressed as
  • sports pair Joint rotation angle vector Position vector Position vector
  • joint variable q l Zero point from origin Translation vector to origin O l ;
  • the measurement of the fixed-axis invariant is shown in FIG. 5.
  • the laser tracker is used to measure the measurement points l S ′ and l S on the rod l. First, get the shaft l to rotate The position of the measuring point after the angle is and Then, get the shaft l turned The position of the measuring point after the angle is and Finally, the unit position vector is calculated and The measurement process is always performed sequentially from the root member to the leaf member.
  • the invariant of the fixed axis is determined by the laser track ball fixed at the end of the robot arm.
  • Each joint is rotated 3 times, and 3 points are measured to obtain two vectors, or when two trackballs at the end are tracked respectively, two laser trackballs are rotated.
  • Each joint is rotated once to obtain two vectors, and then determined by precise measurement.
  • the fixed shaft is invariant, and the measurement process is always performed sequentially from the root member to the leaf member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Manipulator (AREA)

Abstract

一种基于轴不变量的多轴机器人结构参数精测方法,建立多轴机器人系统,多轴机器人系统包含杆件序列与关节序列,将树链中的关节序列转换成对应的轴序列及其父轴序列,轴序列的轴为平动轴或转动轴;使用轴集合来对应描述该多轴机器人系统,以自然坐标系为基础,自然关节空间是以自然坐标系统为参考,自然坐标系统的原点位于关节轴线且在系统复位时坐标系方向一致;通过轴不变量与轴上原点的位置矢量构成固定轴不变量;应用激光跟踪仪或其他测量设备测量杆件上的测点,测量过程总是由根杆件至叶杆件依次进行,保证建模的准确性。

Description

基于轴不变量的多轴机器人结构参数精测方法 技术领域
本发明涉及一种多轴机器人结构参数精测方法,属于机器人技术领域。
背景技术
多轴系统建模需要实现系统拓扑、坐标系、结构参量及质惯量的完全参数化,才能保证系统实现的准确性、可靠性及实时性。完全参数化的运动学及动力学模型是机器智能的重要方面,也是系统适应性及继承性的基础。对于多轴机器人系统,在机加工及装配过程中会不可避免地导致设计结构参数存在误差,因此需要解决多轴机器人系统的工程结构参数(Engineering Structure Parameters)精确测量的问题。
发明内容
本发明所要解决的技术问题是提供一种基于轴不变量的多轴多轴机器人结构参数精测方法,避免以笛卡尔直角坐标系为参考导致的多轴机器人结构参数测量误差过大问题。
为解决上述技术问题,本发明采用以下技术方案:
一种基于轴不变量的多轴机器人结构参数精测方法,其特征是,
建立多轴机器人系统D={T,A,B,K,F,NT},多轴机器人系统包含杆件序列与关节序列,将树链中的关节序列转换成对应的轴序列及其父轴序列,所述轴序列的轴为平动轴或转动轴;
使用轴集合来对应描述所述多轴机器人系统,以自然坐标系为基础,自然关节空间是以自然坐标系统F为参考,自然坐标系统F的原点位于关节轴线且在系统复位时坐标系方向一致;
其中:
Figure PCTCN2018112641-appb-000001
为有向Span树,A为轴序列,F为杆件参考系序列,B为杆件体序列,K为运动副类型序列,NT为约束轴的序列即非树;F为笛卡尔直角坐标系序列。
Figure PCTCN2018112641-appb-000002
为取轴序列
Figure PCTCN2018112641-appb-000003
的成员;转动副R,棱柱副P,螺旋副H,接触副O;
通过轴不变量与轴上原点的位置矢量构成固定轴不变量,多轴系统结构参数为固定轴不变量
Figure PCTCN2018112641-appb-000004
构型空间表示为
Figure PCTCN2018112641-appb-000005
其中,运动副
Figure PCTCN2018112641-appb-000006
-沿轴
Figure PCTCN2018112641-appb-000007
的线位置,
Figure PCTCN2018112641-appb-000008
-绕轴
Figure PCTCN2018112641-appb-000009
的角位置;关节变量q l
Figure PCTCN2018112641-appb-000010
为零位时由原点
Figure PCTCN2018112641-appb-000011
至原点O l的平动矢量;
应用激光跟踪仪或其他测量设备测量杆件l上的测点l S′及l S,测量过程总是由根杆件至叶杆件依次进行;
应用激光跟踪仪或其他测量设备测量机械臂末端点确定各轴固定轴不变量,测量过程总是由根杆件至叶杆件依次进行。
测量步骤包括
首先,获得杆件l转动
Figure PCTCN2018112641-appb-000012
角度后的测点位置为
Figure PCTCN2018112641-appb-000013
Figure PCTCN2018112641-appb-000014
然后,获得杆件l转动
Figure PCTCN2018112641-appb-000015
角度后的测点位置为
Figure PCTCN2018112641-appb-000016
Figure PCTCN2018112641-appb-000017
最后,计算得到单位位置矢量
Figure PCTCN2018112641-appb-000018
Figure PCTCN2018112641-appb-000019
当系统处于零位时,固定轴不变量
Figure PCTCN2018112641-appb-000020
由激光跟踪仪或3D坐标机测量得到。
Figure PCTCN2018112641-appb-000021
为零位时由原点
Figure PCTCN2018112641-appb-000022
至原点O l的平动矢量,且记
Figure PCTCN2018112641-appb-000023
表示位置结构参数;相对公共参考系F [i]进行固定轴不变量的测量;
将测量棱镜与被测杆件l固结,通过激光跟踪仪i跟踪测量棱镜中心l S的位置,得到对应的位置矢量
Figure PCTCN2018112641-appb-000024
从而,获得与被测杆件l固结的单位矢量
Figure PCTCN2018112641-appb-000025
轴不变量
Figure PCTCN2018112641-appb-000026
的计算步骤为:
首先,应用欧拉四元数公式
Figure PCTCN2018112641-appb-000027
确定欧拉四元数中的
Figure PCTCN2018112641-appb-000028
Figure PCTCN2018112641-appb-000029
其次,将欧拉四元数乘法运算用其共轭矩阵运算替代,得
Figure PCTCN2018112641-appb-000030
接着,根据
Figure PCTCN2018112641-appb-000031
代入式
Figure PCTCN2018112641-appb-000032
Figure PCTCN2018112641-appb-000033
最后,由双矢量姿态式,得
Figure PCTCN2018112641-appb-000034
双矢量姿态式的确定过程为:
由初始单位矢量
Figure PCTCN2018112641-appb-000035
至目标单位矢量
Figure PCTCN2018112641-appb-000036
的姿态,等价于绕轴
Figure PCTCN2018112641-appb-000037
转动角度
Figure PCTCN2018112641-appb-000038
其中:
Figure PCTCN2018112641-appb-000039
则有双矢量姿态式为:
Figure PCTCN2018112641-appb-000040
由上式得
Figure PCTCN2018112641-appb-000041
其中:
Figure PCTCN2018112641-appb-000042
||用于防止数值计算时的溢出。
确定固定轴不变量原点过程为:
将测点l S′及l S的中点
Figure PCTCN2018112641-appb-000043
至轴
Figure PCTCN2018112641-appb-000044
作垂线得到的交点定义为轴
Figure PCTCN2018112641-appb-000045
的固定点O l。S'、S、S *为杆件l中的点。则有
Figure PCTCN2018112641-appb-000046
Figure PCTCN2018112641-appb-000047
由(18)得
Figure PCTCN2018112641-appb-000048
上式中,旋转变换阵
Figure PCTCN2018112641-appb-000049
由式(19)得
Figure PCTCN2018112641-appb-000050
考虑固定点O l是中点
Figure PCTCN2018112641-appb-000051
的投影,即有
Figure PCTCN2018112641-appb-000052
Figure PCTCN2018112641-appb-000053
及式(20)得
Figure PCTCN2018112641-appb-000054
将式(21)代入式(19)得 ir l
Figure PCTCN2018112641-appb-000055
Figure PCTCN2018112641-appb-000056
由上可知,条件
Figure PCTCN2018112641-appb-000057
比正交基e l更容易满足。该方法有助于精确测量包含加工及装配误差的轴不变量。
工程测量时,由系统根部杆件开始,直至所有的叶;每测量一个杆件后,即将其制动;选定所有杆件被制动后的状态为零位状态,由关节传感器测量的关节变量记为
Figure PCTCN2018112641-appb-000058
称为机械零位;且有
Figure PCTCN2018112641-appb-000059
至此,获得了系统结构参数固定轴不变量
Figure PCTCN2018112641-appb-000060
及机械零位
Figure PCTCN2018112641-appb-000061
将多轴系统控制量记为
Figure PCTCN2018112641-appb-000062
同时,以非自然坐标系为参考的关节变量存在参考零位
Figure PCTCN2018112641-appb-000063
关节变量q l与控制量q Δ、机械零位
Figure PCTCN2018112641-appb-000064
及参考零位
Figure PCTCN2018112641-appb-000065
关系如下
Figure PCTCN2018112641-appb-000066
应用激光跟踪仪或其他测量设备测量机械臂末端点确定各轴固定轴不变量:
通过固定在机械臂末端的激光跟踪球确定固定轴不变量,当末端一个跟踪球时,每个关节转3次,测量3个点,得到两个矢量,或者末端两个跟踪球时,分别跟踪两个激光跟踪球,每个关节转动一次,得到两个矢量,然后利用精测方法确定固定轴不变量。
本发明所达到的有益效果:
本方法的方法,以自然坐标系为基础,在工程上可以精确测量固定轴不变量
Figure PCTCN2018112641-appb-000067
可以达到关节的重复精度,避免了以笛卡尔直角坐标系为参考导致的结构参数测量误差过大问题,为精密多轴机器人系统的研制奠定了基础。
本发明提出并证明了基于轴不变量的多轴系统结构参数精密测量方法,特征在于:直接应用激光跟踪仪或其他测量设备精密测量获得的基于固定轴不变量的结构参数,保证建模的准确性。
基于轴不变量的多轴系统运动学统一了四维复数及四元数的经典运动学原理;提高了多轴系统实时运动学系统的紧凑性;从而,提升了运动学系统的计算效能。
附图说明
图1自然坐标系与轴链;
图2固定轴不变量;
图3径向投影及自然零位示意图;
图4定轴转动示意图;
图5轴不变量精测原理图;
图6固定轴不变量的原点确定示意图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
定义1自然坐标轴:称与运动轴或测量轴共轴的,具有固定原点的单位参考轴为自然坐标轴,亦称为自然参考轴。
定义2自然坐标系:如图1所示,若多轴系统D处于零位,所有笛卡尔体坐标系方向一致,且体坐标系原点位于运动轴的轴线上,则该坐标系统为自然坐标系统,简称自然坐标系。
自然坐标系优点在于:(1)坐标系统易确定;(2)零位时的关节变量为零;(3)零位时的系统姿态一致;(4)不易引入测量累积误差。
由定义2可知,在系统处于零位时,所有杆件的自然坐标系与底座或世界系的方向一致。系统处于零位即
Figure PCTCN2018112641-appb-000068
时,自然坐标系
Figure PCTCN2018112641-appb-000069
绕轴矢量
Figure PCTCN2018112641-appb-000070
转动角度
Figure PCTCN2018112641-appb-000071
Figure PCTCN2018112641-appb-000072
转至F [l]
Figure PCTCN2018112641-appb-000073
Figure PCTCN2018112641-appb-000074
下的坐标矢量与
Figure PCTCN2018112641-appb-000075
在F [l]下的坐标矢量
Figure PCTCN2018112641-appb-000076
恒等,即有
Figure PCTCN2018112641-appb-000077
由上式知,
Figure PCTCN2018112641-appb-000078
Figure PCTCN2018112641-appb-000079
不依赖于相邻的坐标系
Figure PCTCN2018112641-appb-000080
及F [l];故称
Figure PCTCN2018112641-appb-000081
Figure PCTCN2018112641-appb-000082
为轴不变量。在不强调不变性时,可以称之为坐标轴矢量(简称轴矢量)。
Figure PCTCN2018112641-appb-000083
Figure PCTCN2018112641-appb-000084
表征的是体
Figure PCTCN2018112641-appb-000085
与体l共有的参考单位坐标矢量,与参考点
Figure PCTCN2018112641-appb-000086
及O l无关。体
Figure PCTCN2018112641-appb-000087
与体l即为杆件或轴。
轴不变量与坐标轴具有本质区别:
(1)坐标轴是具有零位及单位刻度的参考方向,可以描述沿该方向平动的位置,但不能完整描述绕该方向的转动角度,因为坐标轴自身不具有径向参考方向,即不存在表征转动的零位。在实际应用时,需要补充该轴的径向参考。例如:在笛卡尔系F [l]中,绕lx转动,需以ly或lz为参考零位。坐标轴自身是1D的,3个正交的1D参考轴构成3D的笛卡尔标架。
(2)轴不变量是3D的空间单位参考轴,其自身就是一个标架。其自身具有径向参考轴,即参考零位。空间坐标轴及其自身的径向参考轴可以确定笛卡尔标架。空间坐标轴可以反映运动轴及测量轴的三个基本参考属性。
已有文献将无链指标的轴矢量记为
Figure PCTCN2018112641-appb-000088
并称之为欧拉轴(Euler Axis),相应的关节角称为欧拉角(Euler Angle)。本申请之所以不再沿用欧拉轴,而称之为轴不变量,是因为轴不变量具有以下属性:
【1】给定旋转变换阵
Figure PCTCN2018112641-appb-000089
因其是实矩阵,其模是单位的,故其有一个实特征值λ 1及两个互为共轭的复特征值λ 2=e 及λ 3=e -iφ;其中:i为纯虚数。因此,|λ 1|·||λ 2||·||λ 3||=1,得λ 1=1。轴矢量
Figure PCTCN2018112641-appb-000090
是实特征值λ 1=1对应的特征矢量,是不变量;
【2】是3D参考轴,不仅具有轴向参考方向,而且具有径向参考零位,将在3.3.1节予以阐述。
【3】在自然坐标系下:
Figure PCTCN2018112641-appb-000091
即轴不变量
Figure PCTCN2018112641-appb-000092
是非常特殊的矢量,它对时间的导数也具有不变性,且有非常优良的数学操作性能;
对轴不变量而言,其绝对导数就是其相对导数。因轴不变量是具有不变性的自然参考轴,故其绝对导数恒为零矢量。因此,轴不变量具有对时间微分的不变性。有:
Figure PCTCN2018112641-appb-000093
【4】在自然坐标系统中,通过轴矢量
Figure PCTCN2018112641-appb-000094
及关节变量
Figure PCTCN2018112641-appb-000095
可以直接描述旋转坐标阵
Figure PCTCN2018112641-appb-000096
没有必要为除根之外的杆件建立各自的体系。同时,以唯一需要定义的根坐标系为参考,可以提高系统结构参数的测量精度;
【5】应用轴矢量
Figure PCTCN2018112641-appb-000097
的优良操作,将建立包含拓扑结构、坐标系、极性、结构参量及力学参量的完全参数化的统一的多轴系统运动学及动力学模型。
因基矢量e l是与F [l]固结的任一矢量,基矢量
Figure PCTCN2018112641-appb-000098
是与
Figure PCTCN2018112641-appb-000099
固结的任一矢量,又
Figure PCTCN2018112641-appb-000100
是F [l]
Figure PCTCN2018112641-appb-000101
共有的单位矢量,故
Figure PCTCN2018112641-appb-000102
是F [l]
Figure PCTCN2018112641-appb-000103
共有的基矢量。因此,轴不变量
Figure PCTCN2018112641-appb-000104
是F [l]
Figure PCTCN2018112641-appb-000105
共有的参考基。轴不变量是参数化的自然坐标基,是多轴系统的基元。固定轴不变量的平动与转动与其固结的坐标系的平动与转动等价。
在系统处于零位时,以自然坐标系为参考,测量得到坐标轴矢量
Figure PCTCN2018112641-appb-000106
在运动副
Figure PCTCN2018112641-appb-000107
运动时,轴矢量
Figure PCTCN2018112641-appb-000108
是不变量;轴矢量
Figure PCTCN2018112641-appb-000109
及关节变量
Figure PCTCN2018112641-appb-000110
唯一确定运动副
Figure PCTCN2018112641-appb-000111
的转动关系。
因此,应用自然坐标系统,当系统处于零位时,只需确定一个公共的参考系,而不必为系统中每一杆件确定各自的体坐标系,因为它们由轴不变量及自然坐标唯一确定。当进行系统分析时,除底座系外,与杆件固结的其它自然坐标系只发生在概念上,而与实际的测量无关。自然坐标系统对于多轴系统(MAS)理论分析及工程作用在于:
(1)系统的结构参数测量需要以统一的参考系测量;否则,不仅工程测量过程烦琐,而且引入不同的体系会引入更大的测量误差。
(2)应用自然坐标系统,除根杆件外,其它杆件的自然坐标系统由结构参量及关节变量自然确定,有助于MAS系统的运动学与动力学分析。
(3)在工程上,可以应用激光跟踪仪等光学测量设备,实现对固定轴不变量的精确测量。
(4)由于运动副R及P、螺旋副H、接触副O是圆柱副C的特例,可以应用圆柱副简化MAS运动学及动力学分析。
定义3不变量:称不依赖于一组坐标系进行度量的量为不变量。
定义4转动坐标矢量:绕坐标轴矢量
Figure PCTCN2018112641-appb-000112
转动到角位置
Figure PCTCN2018112641-appb-000113
的坐标矢量
Figure PCTCN2018112641-appb-000114
Figure PCTCN2018112641-appb-000115
定义5平动坐标矢量:沿坐标轴矢量
Figure PCTCN2018112641-appb-000116
平动到线位置
Figure PCTCN2018112641-appb-000117
的坐标矢量
Figure PCTCN2018112641-appb-000118
Figure PCTCN2018112641-appb-000119
定义6自然坐标:以自然坐标轴矢量为参考方向,相对系统零位的角位置或线位置,记为q l,称为自然坐标;称与自然坐标一一映射的量为关节变量;其中:
Figure PCTCN2018112641-appb-000120
定义7机械零位:对于运动副
Figure PCTCN2018112641-appb-000121
在初始时刻t 0时,关节绝对编码器的零位
Figure PCTCN2018112641-appb-000122
不一定为零,该零位称为机械零位;
故关节
Figure PCTCN2018112641-appb-000123
的控制量
Figure PCTCN2018112641-appb-000124
Figure PCTCN2018112641-appb-000125
定义8自然运动矢量:将由自然坐标轴矢量
Figure PCTCN2018112641-appb-000126
及自然坐标q l确定的矢量
Figure PCTCN2018112641-appb-000127
称为自然运动矢量。其中:
Figure PCTCN2018112641-appb-000128
自然运动矢量实现了轴平动与转动的统一表达。将由自然坐标轴矢量及关节确定的矢量,例如
Figure PCTCN2018112641-appb-000129
称为自由运动矢量,亦称为自由螺旋。显然,轴矢量
Figure PCTCN2018112641-appb-000130
是特定的自由螺旋。
定义9关节空间:以关节自然坐标q l表示的空间称为关节空间。
定义10位形空间:称表达位置及姿态(简称位姿)的笛卡尔空间为位形空间,是双矢量空间或6D空间。
定义11自然关节空间:以自然坐标系为参考,通过关节变量
Figure PCTCN2018112641-appb-000131
表示,在系统零位时必有
Figure PCTCN2018112641-appb-000132
的关节空间,称为自然关节空间。
如图2所示,给定链节
Figure PCTCN2018112641-appb-000133
原点O l受位置矢量
Figure PCTCN2018112641-appb-000134
约束的轴矢量
Figure PCTCN2018112641-appb-000135
为固定轴矢量,记为
Figure PCTCN2018112641-appb-000136
其中:
Figure PCTCN2018112641-appb-000137
轴矢量
Figure PCTCN2018112641-appb-000138
是关节自然坐标的自然参考轴。因
Figure PCTCN2018112641-appb-000139
是轴不变量,故称
Figure PCTCN2018112641-appb-000140
为固定轴不变量,它表征了运动副
Figure PCTCN2018112641-appb-000141
的结构关系,即确定了自然坐标轴。固定轴不变量
Figure PCTCN2018112641-appb-000142
是链节
Figure PCTCN2018112641-appb-000143
结构参数的自然描述。
定义12自然坐标轴空间:以固定轴不变量作为自然参考轴,以对应的自然坐标表示的空间称为自然坐标轴空间,简称自然轴空间。它是具有1个自由度的3D空间。
如图2所示,
Figure PCTCN2018112641-appb-000144
Figure PCTCN2018112641-appb-000145
不因杆件Ω l的运动而改变,是不变的结构参考量。
Figure PCTCN2018112641-appb-000146
确定了轴l相对于轴
Figure PCTCN2018112641-appb-000147
的五个结构参数;与关节变量q l一起,完整地表达了杆件Ω l的6D位形。给定
Figure PCTCN2018112641-appb-000148
时,杆件固结的自然坐标系可由结构参数
Figure PCTCN2018112641-appb-000149
及关节变量
Figure PCTCN2018112641-appb-000150
唯一确定。称轴不变量
Figure PCTCN2018112641-appb-000151
固定轴不变量
Figure PCTCN2018112641-appb-000152
关节变量
Figure PCTCN2018112641-appb-000153
Figure PCTCN2018112641-appb-000154
为自然不变量。显然,由固定轴不变量
Figure PCTCN2018112641-appb-000155
及关节变量
Figure PCTCN2018112641-appb-000156
构成的关节自然不变量
Figure PCTCN2018112641-appb-000157
与由坐标系
Figure PCTCN2018112641-appb-000158
至F [l]确定的空间位形
Figure PCTCN2018112641-appb-000159
具有一一映射关系,即
Figure PCTCN2018112641-appb-000160
给定多轴系统D={T,A,B,K,F,NT},在系统零位时,只要建立底座系或惯性系,以及各轴上的参考点O l,其它杆件坐标系也自然确定。本质上,只需要确定底座系或惯性系。
给定一个由运动副连接的具有闭链的结构简图,可以选定回路中任一个运动副,将组成该运动副的定子与动子分割开来;从而,获得一个无回路的树型结构,称之为Span树。T表示带方向的span树,以描述树链运动的拓扑关系。
I为结构参数;A为轴序列,F为杆件参考系序列,B为杆件体序列,K为运动副类型序列,NT为约束轴的序列即非树。
Figure PCTCN2018112641-appb-000161
为取轴序列
Figure PCTCN2018112641-appb-000162
的成员。转动副R,棱柱副P,螺旋副H,接触副O是圆柱副C的特例。
描述运动链的基本拓扑符号及操作是构成运动链拓扑符号系统的基础,定义如下:
【1】运动链由偏序集合(]标识。
【2】A [l]为取轴序列A的成员;因轴名l具有唯一的编号对应于A [l]的序号,故A [l]计算复杂度为O(1)。
【3】
Figure PCTCN2018112641-appb-000163
为取轴l的父轴;轴
Figure PCTCN2018112641-appb-000164
的计算复杂度为O(1)。计算复杂度O()表示计算过程的操作次数,通常指浮点乘与加的次数。以浮点乘与加的次数表达计算复杂度非常烦琐,故常采用算法循环过程中的主要操作次数;比如:关节位姿、速度、加速度等操作的次数。
【4】
Figure PCTCN2018112641-appb-000165
为取轴序列
Figure PCTCN2018112641-appb-000166
的成员;
Figure PCTCN2018112641-appb-000167
计算复杂度为O(1)。
【5】 ll k为取由轴l至轴k的运动链,输出表示为
Figure PCTCN2018112641-appb-000168
Figure PCTCN2018112641-appb-000169
基数记为| ll k|。 ll k执行过程:执行
Figure PCTCN2018112641-appb-000170
Figure PCTCN2018112641-appb-000171
则执行
Figure PCTCN2018112641-appb-000172
否则,结束。 ll k计算复杂度为O(| ll k|)。
【6】 ll为取轴l的子。该操作表示在
Figure PCTCN2018112641-appb-000173
中找到成员l的地址k;从而,获得轴l的子A [k]。因
Figure PCTCN2018112641-appb-000174
不具有偏序结构,故 ll的计算复杂度为
Figure PCTCN2018112641-appb-000175
【7】 lL表示获得由轴l及其子树构成的闭子树,
Figure PCTCN2018112641-appb-000176
为不含l的子树;递归执行 ll,计算复杂度为
Figure PCTCN2018112641-appb-000177
【8】支路、子树及非树弧的增加与删除操作也是必要的组成部分;从而,通过动态Span树及动态图描述可变拓扑结构。在支路 ll k中,若
Figure PCTCN2018112641-appb-000178
则记
Figure PCTCN2018112641-appb-000179
Figure PCTCN2018112641-appb-000180
Figure PCTCN2018112641-appb-000181
表示在支路中取成员m的子。
定义以下表达式或表达形式:
轴与杆件具有一一对应性;轴间的属性量
Figure PCTCN2018112641-appb-000182
及杆件间的属性量
Figure PCTCN2018112641-appb-000183
具有偏序性。
约定:“□”表示属性占位;若属性p或P是关于位置的,则
Figure PCTCN2018112641-appb-000184
应理解为坐标系
Figure PCTCN2018112641-appb-000185
的原点至F [l]的原点;若属性p或P是关于方向的,则
Figure PCTCN2018112641-appb-000186
应理解为坐标系
Figure PCTCN2018112641-appb-000187
至F [l]
Figure PCTCN2018112641-appb-000188
Figure PCTCN2018112641-appb-000189
应分别理解为关于时间t的函数
Figure PCTCN2018112641-appb-000190
Figure PCTCN2018112641-appb-000191
Figure PCTCN2018112641-appb-000192
Figure PCTCN2018112641-appb-000193
是t 0时刻的常数或常数阵列。但是正体的
Figure PCTCN2018112641-appb-000194
Figure PCTCN2018112641-appb-000195
应视为常数或常数阵列。
本申请中约定:在运动链符号演算系统中,具有偏序的属性变量或常量,在名称上包含表示偏序的指标;要么包含左上角及右下角指标,要么包含右上角及右下角指标;它们的方向总是由左上角指标至右下角指标,或由右上角指标至右下角指标,本申请中为叙述简便,有时省略方向的描述,即使省略,本领域技术人员通过符号表达式也可以知道,本申请中采用的各参数,对于某种属性符,它们的方向总是由偏序指标的左上角指标至右下角指标,或由右上角指标至右下角指标。例如:
Figure PCTCN2018112641-appb-000196
可简述为(表示由k至l)平动矢量;
Figure PCTCN2018112641-appb-000197
表示(由k至l的)线位置; kr l表示(由k至l的)平动矢量;其中:r表示“平动”属性符,其余属性符对应为:属性符φ表示“转动”;属性符Q表示“旋转变换矩阵”;属性符l表示“运动链”;属性符u表示“单位矢量”;属性符ω表示“角速度”;角标为i表示惯性坐标系或大地坐标系;其他角标可以为其他字母,也可以为数字。
本申请的符号规范与约定是根据运动链的偏序性、链节是运动链的基本单位这两个原则确定的,反映了运动链的本质特征。链指标表示的是连接关系,右上指标表征参考系。采用这种符号表达简洁、准确,便于交流与书面表达。同时,它们是结构化的符号系统,包含了组成各属性量的要素及关系,便于计算机处理,为计算机自动建模奠定基础。指标的含义需要通过属性符的背景即上下文进行理解;比如:若属性符是平动类型的,则左上角指标表示坐标系的原点及方向;若属性符是转动类型的,则左上角指标表示坐标系的方向。
(1)l S-杆件l中的点S;而S表示空间中的一点S。
(2)
Figure PCTCN2018112641-appb-000198
-杆件k的原点O k至杆件l的原点O l的平动矢量;
kr l
Figure PCTCN2018112641-appb-000199
在自然坐标系F [k]下的坐标矢量,即由k至l的坐标矢量;
(3)
Figure PCTCN2018112641-appb-000200
-原点O k至点l S的平动矢量;
Figure PCTCN2018112641-appb-000201
Figure PCTCN2018112641-appb-000202
在F [k]下的坐标矢量;
(4)
Figure PCTCN2018112641-appb-000203
-原点O k至点S的平动矢量;
kr S
Figure PCTCN2018112641-appb-000204
在F [k]下的坐标矢量;
(5)
Figure PCTCN2018112641-appb-000205
-连接杆件
Figure PCTCN2018112641-appb-000206
及杆件l的运动副;
Figure PCTCN2018112641-appb-000207
-运动副
Figure PCTCN2018112641-appb-000208
的轴矢量;
Figure PCTCN2018112641-appb-000209
Figure PCTCN2018112641-appb-000210
Figure PCTCN2018112641-appb-000211
分别在
Figure PCTCN2018112641-appb-000212
及F [l]下的坐标矢量;
Figure PCTCN2018112641-appb-000213
是轴不变量,为一结构常数;
Figure PCTCN2018112641-appb-000214
为转动矢量,转动矢量/角矢量
Figure PCTCN2018112641-appb-000215
是自由矢量,即该矢量可自由平移;
(6)
Figure PCTCN2018112641-appb-000216
-沿轴
Figure PCTCN2018112641-appb-000217
的线位置(平动位置),
Figure PCTCN2018112641-appb-000218
-绕轴
Figure PCTCN2018112641-appb-000219
的角位置,即关节角、关节变量,为标量;
(7)左下角指标为0时,表示机械零位;如:
Figure PCTCN2018112641-appb-000220
-平动轴
Figure PCTCN2018112641-appb-000221
的机械零位,
Figure PCTCN2018112641-appb-000222
-转动轴
Figure PCTCN2018112641-appb-000223
的机械零位;
(8)0-三维零矩阵;1-三维单位矩阵;
(9)约定:“\”表示续行符;“□”表示属性占位;则
幂符
Figure PCTCN2018112641-appb-000224
表示□的x次幂;右上角角标∧或
Figure PCTCN2018112641-appb-000225
表示分隔符;如:
Figure PCTCN2018112641-appb-000226
Figure PCTCN2018112641-appb-000227
Figure PCTCN2018112641-appb-000228
的x次幂。
[□] Τ表示□的转置,表示对集合转置,不对成员执行转置;如:
Figure PCTCN2018112641-appb-000229
|□为投影符,表示矢量或二阶张量对参考基的投影矢量或投影序列,即坐标矢量或坐标阵列,投影即是点积运算“·”;如:位置矢量
Figure PCTCN2018112641-appb-000230
在坐标系F [k]中的投影矢量记为
Figure PCTCN2018112641-appb-000231
Figure PCTCN2018112641-appb-000232
为叉乘符;如:
Figure PCTCN2018112641-appb-000233
是轴不变量
Figure PCTCN2018112641-appb-000234
的叉乘矩阵;给定任一矢量
Figure PCTCN2018112641-appb-000235
的叉乘矩阵为
Figure PCTCN2018112641-appb-000236
叉乘矩阵是二阶张量。
叉乘符运算的优先级高于投影符 |□的优先级。投影符 |□的优先级高于成员访问符□ [□]或□ [□],成员访问符□ [□]优先级高于幂符
Figure PCTCN2018112641-appb-000237
(11)单位矢量在大地坐标系的投影矢量
Figure PCTCN2018112641-appb-000238
单位零位矢量
Figure PCTCN2018112641-appb-000239
(11)
Figure PCTCN2018112641-appb-000240
-零位时由原点
Figure PCTCN2018112641-appb-000241
至原点O l的平动矢量,且记
Figure PCTCN2018112641-appb-000242
表示位置结构参数。
(12) iQ l,相对绝对空间的旋转变换阵;
(13)以自然坐标轴矢量为参考方向,相对系统零位的角位置或线位置,记为q l,称为自然坐标;关节变量
Figure PCTCN2018112641-appb-000243
自然关节坐标为φ l
(14)对于一给定有序的集合r=[1,4,3,2] T,记r [x]表示取集合r的第x行元素。常记[x]、[y]、[z]及[w]表示取第1、2、3及4列元素。
(15) il j表示由i到j的运动链; ll k为取由轴l至轴k的运动链;
给定运动链
Figure PCTCN2018112641-appb-000244
若n表示笛卡尔直角系,则称
Figure PCTCN2018112641-appb-000245
为笛卡尔轴链;若n表示自然参考轴,则称
Figure PCTCN2018112641-appb-000246
为自然轴链。
(16)Rodrigues四元数表达形式:
Figure PCTCN2018112641-appb-000247
欧拉四元数表达形式:
Figure PCTCN2018112641-appb-000248
不变量的四元数(也称为轴四元数)表达形式
Figure PCTCN2018112641-appb-000249
1.固定轴不变量的精确测量原理
因为多轴系统的机加工及装配过程(Machining and Assembly Processes)会不可避免地导致设计结构参数(Design Structure Parameters)存在误差,所以需要解决多轴系统的工程结构参数(Engineering Structure Parameters)精确测量的问题。下面,阐述应用自动激光跟踪仪(Automatic Laser Tracking System)精确测量多轴系统的工程结构参数的方法。
在相邻自然坐标系下,相邻杆件l和
Figure PCTCN2018112641-appb-000250
的轴矢量具有相同的坐标;另一方面,轴矢量
Figure PCTCN2018112641-appb-000251
由原点
Figure PCTCN2018112641-appb-000252
指向
Figure PCTCN2018112641-appb-000253
的外侧,轴矢量
Figure PCTCN2018112641-appb-000254
由原点O l指向O l外侧,它们具有相同的坐标,即轴不变量
Figure PCTCN2018112641-appb-000255
具有全序关系,它的正序与逆序无区别。因此
Figure PCTCN2018112641-appb-000256
在多轴系统理论中,因轴矢量
Figure PCTCN2018112641-appb-000257
用作关节执行器及传感器的参考轴,是系统参考规范,故式
Figure PCTCN2018112641-appb-000258
恒成立,即轴矢量
Figure PCTCN2018112641-appb-000259
是不变量。
2.基于轴不变量的零位轴系
如图3所示,给定运动副
Figure PCTCN2018112641-appb-000260
的轴矢量
Figure PCTCN2018112641-appb-000261
及具有单位长度的零位(Zero position)矢量
Figure PCTCN2018112641-appb-000262
且S位于单位球面上;称轴矢量
Figure PCTCN2018112641-appb-000263
向零位矢量
Figure PCTCN2018112641-appb-000264
方向转动90°后的单位矢量为自然零轴(Natural zero axis)矢量,记为
Figure PCTCN2018112641-appb-000265
由轴矢量
Figure PCTCN2018112641-appb-000266
及自然零轴
Figure PCTCN2018112641-appb-000267
按右手系可以确定自然径向轴(Radial axis)矢量
Figure PCTCN2018112641-appb-000268
将系统初始时刻的自然零轴
Figure PCTCN2018112641-appb-000269
及径向轴
Figure PCTCN2018112641-appb-000270
分别记为
Figure PCTCN2018112641-appb-000271
Figure PCTCN2018112641-appb-000272
并分别称为系统零位轴矢量及系统零位径向轴矢量。
则有:零位矢量
Figure PCTCN2018112641-appb-000273
对轴矢量
Figure PCTCN2018112641-appb-000274
投影标量即坐标为
Figure PCTCN2018112641-appb-000275
零位矢量
Figure PCTCN2018112641-appb-000276
对轴矢量
Figure PCTCN2018112641-appb-000277
投影矢量为
Figure PCTCN2018112641-appb-000278
零位矢量
Figure PCTCN2018112641-appb-000279
对零位轴矢量
Figure PCTCN2018112641-appb-000280
投影矢量为
Figure PCTCN2018112641-appb-000281
故得零位矢量
Figure PCTCN2018112641-appb-000282
的径向投影变换
Figure PCTCN2018112641-appb-000283
及系统零位投影变换
Figure PCTCN2018112641-appb-000284
分别为
Figure PCTCN2018112641-appb-000285
Figure PCTCN2018112641-appb-000286
轴矢量
Figure PCTCN2018112641-appb-000287
Figure PCTCN2018112641-appb-000288
的矩矢量(Moment Vector)为
Figure PCTCN2018112641-appb-000289
零位矢量
Figure PCTCN2018112641-appb-000290
表达为
Figure PCTCN2018112641-appb-000291
3.基于轴不变量的定轴转动
如图4所示,给定轴矢量
Figure PCTCN2018112641-appb-000292
及与其固结的单位矢量
Figure PCTCN2018112641-appb-000293
在转动前,对于单位矢量
Figure PCTCN2018112641-appb-000294
Figure PCTCN2018112641-appb-000295
对系统零位轴
Figure PCTCN2018112641-appb-000296
的投影矢量为
Figure PCTCN2018112641-appb-000297
对系统径向轴
Figure PCTCN2018112641-appb-000298
的矩矢量为
Figure PCTCN2018112641-appb-000299
径向矢量为
Figure PCTCN2018112641-appb-000300
轴矢量
Figure PCTCN2018112641-appb-000301
相对于杆件
Figure PCTCN2018112641-appb-000302
及Ω l或自然坐标系
Figure PCTCN2018112641-appb-000303
及F [l]是固定不变的,故称该转动为定轴转动。单位矢量
Figure PCTCN2018112641-appb-000304
绕轴
Figure PCTCN2018112641-appb-000305
转动
Figure PCTCN2018112641-appb-000306
后,转动后的零位矢量
Figure PCTCN2018112641-appb-000307
对系统零位轴
Figure PCTCN2018112641-appb-000308
的投影矢量为
Figure PCTCN2018112641-appb-000309
转动后的零位矢量
Figure PCTCN2018112641-appb-000310
对系统径向轴
Figure PCTCN2018112641-appb-000311
的矩矢量为
Figure PCTCN2018112641-appb-000312
轴向分量为
Figure PCTCN2018112641-appb-000313
故得具有链指标的Rodrigues矢量方程
Figure PCTCN2018112641-appb-000314
因矢量
Figure PCTCN2018112641-appb-000315
是任意的且
Figure PCTCN2018112641-appb-000316
得具有链指标的Rodrigues转动方程
Figure PCTCN2018112641-appb-000317
Figure PCTCN2018112641-appb-000318
由式(4),得
Figure PCTCN2018112641-appb-000319
Figure PCTCN2018112641-appb-000320
即坐标系
Figure PCTCN2018112641-appb-000321
与F [l]的方向一致,由式(4)可知:反对称部分
Figure PCTCN2018112641-appb-000322
必有
Figure PCTCN2018112641-appb-000323
因此,系统零位是自然坐标系
Figure PCTCN2018112641-appb-000324
与F [l]重合的充分必要条件,即初始时刻的自然坐标系方向一致是系统零位定义的前提条件。利用自然坐标系可以很方便地分析MAS系统运动学和动力学。
当给定角度
Figure PCTCN2018112641-appb-000325
后,其正、余弦
Figure PCTCN2018112641-appb-000326
及其半角的正、余弦S l、C l均是常数;为方便表达,记
Figure PCTCN2018112641-appb-000327
显然:
Figure PCTCN2018112641-appb-000328
是自然轴
Figure PCTCN2018112641-appb-000329
上的坐标,
Figure PCTCN2018112641-appb-000330
是系统零位轴
Figure PCTCN2018112641-appb-000331
上的坐标。固结于体自然坐标系F [l]的单位矢量
Figure PCTCN2018112641-appb-000332
Figure PCTCN2018112641-appb-000333
一一映射,即等价。自然零位轴及自然坐标轴分别是四维复数空间的实轴及三个虚轴。式(4)中,右式前两项是关于角
Figure PCTCN2018112641-appb-000334
的对称矩阵,故有
Figure PCTCN2018112641-appb-000335
最后一项是关于角度
Figure PCTCN2018112641-appb-000336
的反对称矩阵,故有
Figure PCTCN2018112641-appb-000337
因此,
Figure PCTCN2018112641-appb-000338
Figure PCTCN2018112641-appb-000339
Figure PCTCN2018112641-appb-000340
唯一确定,即
Figure PCTCN2018112641-appb-000341
由矢量
Figure PCTCN2018112641-appb-000342
及标量
Figure PCTCN2018112641-appb-000343
唯一确定。
式(4)中任意项的链序保持一致。由式(4)得
Figure PCTCN2018112641-appb-000344
同时,由式(4)得
Figure PCTCN2018112641-appb-000345
Figure PCTCN2018112641-appb-000346
式(7)表明:一方面,在相邻自然坐标系下,相邻杆件l和
Figure PCTCN2018112641-appb-000347
的轴矢量具有相同的坐标;另一方面,轴矢量
Figure PCTCN2018112641-appb-000348
由原点
Figure PCTCN2018112641-appb-000349
指向
Figure PCTCN2018112641-appb-000350
的外侧,轴矢量
Figure PCTCN2018112641-appb-000351
由O l指向O l外侧,它们具有相同的坐标,即轴不变量
Figure PCTCN2018112641-appb-000352
具有全序关系,它的正序与逆序无区别。因此
Figure PCTCN2018112641-appb-000353
Figure PCTCN2018112641-appb-000354
由式(7)得
Figure PCTCN2018112641-appb-000355
将之代入式(4)得
Figure PCTCN2018112641-appb-000356
即有
Figure PCTCN2018112641-appb-000357
由式(6)及式(9)可知:对轴矢量
Figure PCTCN2018112641-appb-000358
数值取负与对关节角
Figure PCTCN2018112641-appb-000359
取逆序都可得到
Figure PCTCN2018112641-appb-000360
的逆。轴矢量
Figure PCTCN2018112641-appb-000361
是自由矢量,其方向总由坐标系原点
Figure PCTCN2018112641-appb-000362
指向
Figure PCTCN2018112641-appb-000363
的外侧;显然,数值取负与拓扑(连接)次序取反是两个不同的概念。在多轴系统理论中,因轴矢量
Figure PCTCN2018112641-appb-000364
用作关节执行器及传感器的参考轴,是系统参考规范,故式
Figure PCTCN2018112641-appb-000365
恒成立,即轴矢量
Figure PCTCN2018112641-appb-000366
是不变量。
4.定轴转动的幂零多项式
根据式(4)建立多重线性方程:
Figure PCTCN2018112641-appb-000367
式(10)是关于
Figure PCTCN2018112641-appb-000368
Figure PCTCN2018112641-appb-000369
的多重线性方程,是轴不变量
Figure PCTCN2018112641-appb-000370
的二阶多项式。给定自然零位矢量
Figure PCTCN2018112641-appb-000371
作为
Figure PCTCN2018112641-appb-000372
的零位参考,则
Figure PCTCN2018112641-appb-000373
Figure PCTCN2018112641-appb-000374
分别表示零位矢量及径向矢量。式(10)即为
Figure PCTCN2018112641-appb-000375
对称部分
Figure PCTCN2018112641-appb-000376
表示零位轴张量,反对称部分
Figure PCTCN2018112641-appb-000377
表示径向轴张量,分别与轴向外积张量
Figure PCTCN2018112641-appb-000378
正交,从而确定三维自然轴空间;式(10)仅含一个正弦及余弦运算、6个积运算及6个和运算,计算复杂度低;同时,通过轴不变量
Figure PCTCN2018112641-appb-000379
及关节变量
Figure PCTCN2018112641-appb-000380
实现了坐标系及极性的参数化。
轴矢量
Figure PCTCN2018112641-appb-000381
具有二阶幂零特性,
Figure PCTCN2018112641-appb-000382
为一阶径向变换或一阶矩变换,具有反对称性;相应地,
Figure PCTCN2018112641-appb-000383
Figure PCTCN2018112641-appb-000384
分别为二阶及三阶径向变换;
Figure PCTCN2018112641-appb-000385
具有周期性。
5.固定轴不变量的精确测量方法
多轴系统D={T,A,B,K,F,NT}的自然关节空间是以自然坐标系统F为参考的,自然坐标系统F的原点位于关节轴线且在系统复位时坐标系方向一致。
其中:
Figure PCTCN2018112641-appb-000386
为有向Span树,A为轴序列,F为杆件参考系序列,B为杆件体序列,K为运动副类型序列,NT为约束轴的序列即非树。F为笛卡尔直角坐标系序列。
Figure PCTCN2018112641-appb-000387
为取轴序列
Figure PCTCN2018112641-appb-000388
的成员。转动副R,棱柱副P,螺旋副H,接触副O是圆柱副C的特例。
多轴系统结构参数为
Figure PCTCN2018112641-appb-000389
构型空间表示为
Figure PCTCN2018112641-appb-000390
其中,运动副
Figure PCTCN2018112641-appb-000391
关节转动角度矢量
Figure PCTCN2018112641-appb-000392
位置矢量;关节变量q l
Figure PCTCN2018112641-appb-000393
为零位时由原点
Figure PCTCN2018112641-appb-000394
至原点O l的平动矢量;
固定轴不变量的测量如图5所示,应用激光跟踪仪测量杆件l上的测点l S′及l S。首先,获得轴l转动
Figure PCTCN2018112641-appb-000395
角度后的测点位置为
Figure PCTCN2018112641-appb-000396
Figure PCTCN2018112641-appb-000397
然后,获得轴l转动
Figure PCTCN2018112641-appb-000398
角度后的测点位置为
Figure PCTCN2018112641-appb-000399
Figure PCTCN2018112641-appb-000400
最后,计算得到单位位置矢量
Figure PCTCN2018112641-appb-000401
Figure PCTCN2018112641-appb-000402
测量过程总是由根杆件至叶杆件依次进行。
当系统处于零位时,固定轴不变量
Figure PCTCN2018112641-appb-000403
可由激光跟踪仪或3D坐标机测量得到。
Figure PCTCN2018112641-appb-000404
为零位时由原点
Figure PCTCN2018112641-appb-000405
至原点O l的平动矢量,且记
Figure PCTCN2018112641-appb-000406
表示位置结构参数。相对公共参考系F [i]进行固定轴不变量的测量,可以消除测量误差的累积效应。为考虑加工及装配误差,经常将测量棱镜与被测杆件l固结,通过激光跟踪仪i跟踪测量棱镜中心l S的位置,得到对应的位置矢量
Figure PCTCN2018112641-appb-000407
从而,获得与被测杆件l固结的单位矢量
Figure PCTCN2018112641-appb-000408
定义欧拉四元数:
Figure PCTCN2018112641-appb-000409
设定:
Figure PCTCN2018112641-appb-000410
Figure PCTCN2018112641-appb-000411
为Euler-Rodrigues四元数或欧拉四元数;显然,它是模为1的四元数,又称为规范四元数。
由于四元数乘法运算可用其共轭矩阵运算替代,故有
Figure PCTCN2018112641-appb-000412
基于双矢量的定姿四元数确定:
由初始单位矢量
Figure PCTCN2018112641-appb-000413
至目标单位矢量
Figure PCTCN2018112641-appb-000414
的姿态,等价于绕轴
Figure PCTCN2018112641-appb-000415
转动角度
Figure PCTCN2018112641-appb-000416
其中:
Figure PCTCN2018112641-appb-000417
则有双矢量姿态(Double Vector Attitude)确定过程:
Figure PCTCN2018112641-appb-000418
由式(14)得
Figure PCTCN2018112641-appb-000419
由式(12),得
Figure PCTCN2018112641-appb-000420
其中:||用于防止数值计算时的溢出。由式(16)可知
Figure PCTCN2018112641-appb-000421
在许多软件(例如Coin3D)中,双矢量定姿算法对用户来说非常不方便,因为它们要求初始矢量至目标矢量的角度范围仅为[0,π)。由双矢量姿态确定过程表明:欧拉四元数本质上统一(Unify)了双矢量叉乘与点乘运算,表达了覆盖(-π,π]的整周(Complete Cycle)转动。
轴不变量
Figure PCTCN2018112641-appb-000422
计算过程:
首先,应用式(12),确定
Figure PCTCN2018112641-appb-000423
Figure PCTCN2018112641-appb-000424
其次,因
Figure PCTCN2018112641-appb-000425
为已知量,应用式(13)得
Figure PCTCN2018112641-appb-000426
接着,将
Figure PCTCN2018112641-appb-000427
代入式(16),得
Figure PCTCN2018112641-appb-000428
最后,由式(14),得
Figure PCTCN2018112641-appb-000429
如图6所示,将测点l S′及l S的中点
Figure PCTCN2018112641-appb-000430
至轴
Figure PCTCN2018112641-appb-000431
作垂线得到的交点定义为轴
Figure PCTCN2018112641-appb-000432
的固定点O l。S'、S、S *为杆件l中的点。
则有
Figure PCTCN2018112641-appb-000433
Figure PCTCN2018112641-appb-000434
由(18)得
Figure PCTCN2018112641-appb-000435
上式中,旋转变换阵
Figure PCTCN2018112641-appb-000436
由式(19)得
Figure PCTCN2018112641-appb-000437
考虑固定点O l是中点
Figure PCTCN2018112641-appb-000438
的投影,即有
Figure PCTCN2018112641-appb-000439
由式(10)及式(20)得
Figure PCTCN2018112641-appb-000440
将式(21)代入式(19)得 ir l
Figure PCTCN2018112641-appb-000441
Figure PCTCN2018112641-appb-000442
由上可知,条件
Figure PCTCN2018112641-appb-000443
比正交基e l更容易满足。该方法有助于精确测量包含加工及装配误差的轴不变量。
在工程测量时,通常由系统根部杆件开始,直至所有的叶;每测量一个杆件后,即可将之制动。选定所有杆件被制动后的状态为零位状态,由关节传感器测量的关节变量记为
Figure PCTCN2018112641-appb-000444
称为机械零位。且有
Figure PCTCN2018112641-appb-000445
在工程测量时,也可以应用激光跟踪仪或其他测量设备测量机械臂末端点确定各轴固定轴不变通过固定在机械臂末端的激光跟踪球确定固定轴不变量,当末端一个跟踪球时,每个关节转3次,测量3个点,得到两个矢量,或者末端两个跟踪球时,分别跟踪两个激光跟踪球,每个关节转动一次,得到两个矢量,然后利用精测方法确定固定轴不变量,测量过程总是由根杆件至叶杆件依次进行。
至此,获得了系统结构参数
Figure PCTCN2018112641-appb-000446
及机械零位
Figure PCTCN2018112641-appb-000447
将多轴系统控制量记为
Figure PCTCN2018112641-appb-000448
同时,以非自然坐标系为参考的关节变量存在参考零位
Figure PCTCN2018112641-appb-000449
式(11)中的关节变量q l与控制量q Δ、机械零位
Figure PCTCN2018112641-appb-000450
及参考零位
Figure PCTCN2018112641-appb-000451
关系如下
Figure PCTCN2018112641-appb-000452
多轴系统正运动学计算:给定结构参数
Figure PCTCN2018112641-appb-000453
关节变量q l、关节速度
Figure PCTCN2018112641-appb-000454
及关节加速度
Figure PCTCN2018112641-appb-000455
完成期望的位形、速度、加速度及偏速度的计算。
由上可知,以自然坐标系为基础,工程上可以精确测量固定轴不变量
Figure PCTCN2018112641-appb-000456
可以达到关节的重复精度,避免了以笛卡尔直角坐标系为参考导致的结构参数测量误差过大问题,为精 密多轴系统的研制奠定了基础。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (9)

  1. 一种基于轴不变量的多轴机器人结构参数精测方法,其特征是,
    建立多轴机器人系统D={T,A,B,K,F,NT},多轴机器人系统包含杆件序列与关节序列,将树链中的关节序列转换成对应的轴序列及其父轴序列,所述轴序列的轴为平动轴或转动轴;
    使用轴集合来对应描述所述多轴机器人系统,以自然坐标系为基础,自然关节空间是以自然坐标系统F为参考,自然坐标系统F的原点位于关节轴线且在系统复位时坐标系方向一致;
    其中:
    Figure PCTCN2018112641-appb-100001
    为有向Span树,A为轴序列,F为杆件参考系序列,B为杆件体序列,K为运动副类型序列,NT为约束轴的序列即非树;F为笛卡尔直角坐标系序列。
    Figure PCTCN2018112641-appb-100002
    为取轴序列
    Figure PCTCN2018112641-appb-100003
    的成员;转动副R,棱柱副P,螺旋副H,接触副O;
    通过轴不变量与轴上原点的位置矢量构成固定轴不变量,多轴系统结构参数为固定轴不变量
    Figure PCTCN2018112641-appb-100004
    构型空间表示为
    Figure PCTCN2018112641-appb-100005
    其中,运动副
    Figure PCTCN2018112641-appb-100006
    -沿轴
    Figure PCTCN2018112641-appb-100007
    的线位置,
    Figure PCTCN2018112641-appb-100008
    -绕轴
    Figure PCTCN2018112641-appb-100009
    的角位置;关节变量q l
    Figure PCTCN2018112641-appb-100010
    为零位时由原点
    Figure PCTCN2018112641-appb-100011
    至原点O l的平动矢量;
    应用激光跟踪仪或其他测量设备测量杆件l上的测点l S′及l S,测量过程总是由根杆件至叶杆件依次进行;
    应用激光跟踪仪或其他测量设备测量机械臂末端点确定各轴固定轴不变量,测量过程总是由根杆件至叶杆件依次进行。
  2. 根据权利要求1所述的基于轴不变量的多轴机器人结构参数精测方法,其特征是,
    测量步骤包括
    首先,获得杆件l转动
    Figure PCTCN2018112641-appb-100012
    角度后的测点位置为
    Figure PCTCN2018112641-appb-100013
    Figure PCTCN2018112641-appb-100014
    然后,获得杆件l转动
    Figure PCTCN2018112641-appb-100015
    角度后的测点位置为
    Figure PCTCN2018112641-appb-100016
    Figure PCTCN2018112641-appb-100017
    最后,计算得到单位位置矢量
    Figure PCTCN2018112641-appb-100018
    Figure PCTCN2018112641-appb-100019
  3. 根据权利要求1所述的基于轴不变量的多轴机器人结构参数精测方法,其特征是,
    当系统处于零位时,固定轴不变量
    Figure PCTCN2018112641-appb-100020
    由激光跟踪仪或3D坐标机测量得到。
  4. 根据权利要求3所述的基于轴不变量的多轴机器人结构参数精测方法,其特征是,
    Figure PCTCN2018112641-appb-100021
    为零位时由原点
    Figure PCTCN2018112641-appb-100022
    至原点O l的平动矢量,且记
    Figure PCTCN2018112641-appb-100023
    表示位置结构参数;相对公共参考系F [i]进行固定轴不变量的测量;
    将测量棱镜与被测杆件l固结,通过激光跟踪仪i跟踪测量棱镜中心l S的位置,得到对应的位置矢量
    Figure PCTCN2018112641-appb-100024
    从而,获得与被测杆件l固结的单位矢量
    Figure PCTCN2018112641-appb-100025
  5. 根据权利要求1所述的基于轴不变量的多轴机器人结构参数精测方法,其特征是,
    轴不变量
    Figure PCTCN2018112641-appb-100026
    的计算步骤为:
    首先,应用欧拉四元数公式
    Figure PCTCN2018112641-appb-100027
    确定欧拉四元数中的
    Figure PCTCN2018112641-appb-100028
    Figure PCTCN2018112641-appb-100029
    其次,将欧拉四元数乘法运算用其共轭矩阵运算替代,得
    Figure PCTCN2018112641-appb-100030
    接着,根据
    Figure PCTCN2018112641-appb-100031
    代入式
    Figure PCTCN2018112641-appb-100032
    Figure PCTCN2018112641-appb-100033
    最后,由双矢量姿态式,得
    Figure PCTCN2018112641-appb-100034
  6. 根据权利要求5所述的基于轴不变量的多轴机器人结构参数精测方法,其特征是,
    双矢量姿态式的确定过程为:
    由初始单位矢量
    Figure PCTCN2018112641-appb-100035
    至目标单位矢量
    Figure PCTCN2018112641-appb-100036
    的姿态,等价于绕轴
    Figure PCTCN2018112641-appb-100037
    转动角度
    Figure PCTCN2018112641-appb-100038
    其中:
    Figure PCTCN2018112641-appb-100039
    则有双矢量姿态式为:
    Figure PCTCN2018112641-appb-100040
    由上式得
    Figure PCTCN2018112641-appb-100041
    其中:
    Figure PCTCN2018112641-appb-100042
    ||用于防止数值计算时的溢出。
  7. 根据权利要求4所述的基于轴不变量的多轴机器人结构参数精测方法,其特征是,
    确定固定轴不变量原点过程为:
    将测点l S′及l S的中点
    Figure PCTCN2018112641-appb-100043
    至轴
    Figure PCTCN2018112641-appb-100044
    作垂线得到的交点定义为轴
    Figure PCTCN2018112641-appb-100045
    的固定点O l。S'、S、S *为杆件l中的点。则有
    Figure PCTCN2018112641-appb-100046
    Figure PCTCN2018112641-appb-100047
    由(18)得
    Figure PCTCN2018112641-appb-100048
    上式中,旋转变换阵
    Figure PCTCN2018112641-appb-100049
    由式(19)得
    Figure PCTCN2018112641-appb-100050
    考虑固定点O l是中点
    Figure PCTCN2018112641-appb-100051
    的投影,即有
    Figure PCTCN2018112641-appb-100052
    Figure PCTCN2018112641-appb-100053
    及式(20)得
    Figure PCTCN2018112641-appb-100054
    将式(21)代入式(19)得 ir l
    Figure PCTCN2018112641-appb-100055
    Figure PCTCN2018112641-appb-100056
    由上可知,条件
    Figure PCTCN2018112641-appb-100057
    比正交基e l更容易满足。该方法有助于精确测量包含加工及装配误差的轴不变量。
  8. 根据权利要求1所述的基于轴不变量的多轴机器人结构参数精测方法,其特征是,
    工程测量时,由系统根部杆件开始,直至所有的叶;每测量一个杆件后,即将其制动;选定所有杆件被制动后的状态为零位状态,由关节传感器测量的关节变量记为
    Figure PCTCN2018112641-appb-100058
    称为机械零位;且有
    Figure PCTCN2018112641-appb-100059
    至此,获得了系统结构参数固定轴不变量
    Figure PCTCN2018112641-appb-100060
    及机械零位
    Figure PCTCN2018112641-appb-100061
    将多轴系统控制量记为
    Figure PCTCN2018112641-appb-100062
    同时,以非自然坐标系为参考的关节变量存在参考零位
    Figure PCTCN2018112641-appb-100063
    关节变量q l与控制量q Δ、机械零位
    Figure PCTCN2018112641-appb-100064
    及参考零位
    Figure PCTCN2018112641-appb-100065
    关系如下
    Figure PCTCN2018112641-appb-100066
  9. 根据权利要求1所述的基于轴不变量的多轴机器人结构参数精测方法,其特征是,
    应用激光跟踪仪或其他测量设备测量机械臂末端点确定各轴固定轴不变量:
    通过固定在机械臂末端的激光跟踪球确定固定轴不变量,当末端一个跟踪球时,每个关节转3次,测量3个点,得到两个矢量,或者末端两个跟踪球时,分别跟踪两个激光跟踪球,每个关节转动一次,得到两个矢量,然后利用精测方法确定固定轴不变量。
PCT/CN2018/112641 2018-08-16 2018-10-30 基于轴不变量的多轴机器人结构参数精测方法 WO2020034402A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810933375.1A CN108927825B (zh) 2018-08-16 2018-08-16 基于轴不变量的多轴机器人结构参数精测方法
CN201810933375.1 2018-08-16

Publications (1)

Publication Number Publication Date
WO2020034402A1 true WO2020034402A1 (zh) 2020-02-20

Family

ID=64446053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112641 WO2020034402A1 (zh) 2018-08-16 2018-10-30 基于轴不变量的多轴机器人结构参数精测方法

Country Status (2)

Country Link
CN (1) CN108927825B (zh)
WO (1) WO2020034402A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2669257A1 (fr) * 1990-11-21 1992-05-22 Renault Automatique Procede d'etalonnage d'un robot.
US5907229A (en) * 1995-03-30 1999-05-25 Asea Brown Boveri Ab Method and device for calibration of movement axes of an industrial robot
US20100168915A1 (en) * 2008-12-18 2010-07-01 Denso Wave Incorporated Method and apparatus for calibrating position and attitude of arm tip of robot
WO2015070010A1 (en) * 2013-11-08 2015-05-14 Board Of Trustees Of Michigan State University Calibration system and method for calibrating industrial robot
CN105415396A (zh) * 2015-12-18 2016-03-23 青岛海蓝康复器械有限公司 一种关节级联系统的运动参数检测方法及关节级联系统
CN106514716A (zh) * 2016-11-14 2017-03-22 固高科技(深圳)有限公司 机器人标定系统、距离测量装置及标定方法
CN106799745A (zh) * 2017-01-17 2017-06-06 北京航空航天大学 一种基于协同克里金的工业机械臂精度标定方法
CN107972071A (zh) * 2017-12-05 2018-05-01 华中科技大学 一种基于末端点平面约束的工业机器人连杆参数标定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004272783A (ja) * 2003-03-11 2004-09-30 Nissan Motor Co Ltd ラダーシーケンス回路の作成方法
CN103170979B (zh) * 2013-02-06 2016-07-06 华南理工大学 基于惯性测量仪的在线机器人参数辨识方法
CN104772773B (zh) * 2015-05-08 2016-08-17 首都师范大学 一种机械臂运动学形式化分析方法
CN104858870A (zh) * 2015-05-15 2015-08-26 江南大学 基于末端编号靶球的工业机器人测量方法
CN106393174B (zh) * 2016-10-09 2018-10-26 华中科技大学 一种利用球杆仪标定机器人结构参数的方法
CN107443382B (zh) * 2017-09-12 2020-09-22 清华大学 工业机器人结构参数误差辨识与补偿方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2669257A1 (fr) * 1990-11-21 1992-05-22 Renault Automatique Procede d'etalonnage d'un robot.
US5907229A (en) * 1995-03-30 1999-05-25 Asea Brown Boveri Ab Method and device for calibration of movement axes of an industrial robot
US20100168915A1 (en) * 2008-12-18 2010-07-01 Denso Wave Incorporated Method and apparatus for calibrating position and attitude of arm tip of robot
WO2015070010A1 (en) * 2013-11-08 2015-05-14 Board Of Trustees Of Michigan State University Calibration system and method for calibrating industrial robot
CN105415396A (zh) * 2015-12-18 2016-03-23 青岛海蓝康复器械有限公司 一种关节级联系统的运动参数检测方法及关节级联系统
CN106514716A (zh) * 2016-11-14 2017-03-22 固高科技(深圳)有限公司 机器人标定系统、距离测量装置及标定方法
CN106799745A (zh) * 2017-01-17 2017-06-06 北京航空航天大学 一种基于协同克里金的工业机械臂精度标定方法
CN107972071A (zh) * 2017-12-05 2018-05-01 华中科技大学 一种基于末端点平面约束的工业机器人连杆参数标定方法

Also Published As

Publication number Publication date
CN108927825A (zh) 2018-12-04
CN108927825B (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
US11491649B2 (en) Axis-invariant based multi-axis robot kinematics modeling method
US20200055192A1 (en) Axis-Invariant based Multi-axis robot inverse kinematics modeling and solving method
CN107984472B (zh) 一种用于冗余度机械臂运动规划的变参神经求解器设计方法
WO2020034422A1 (zh) 一种基于轴不变量的多轴机器人系统正运动学建模与解算方法
WO2022135011A1 (zh) 合质心状态获取方法、装置、仿人机器人和可读存储介质
CN113580135B (zh) 一种有偏置七轴机器人实时逆解算法
CN114216456A (zh) 一种基于imu与机器人本体参数融合的姿态测量方法
AlBeladi et al. Vision-based shape reconstruction of soft continuum arms using a geometric strain parametrization
WO2020034415A1 (zh) 基于轴不变量的通用6r机械臂逆解建模与解算方法
WO2020034402A1 (zh) 基于轴不变量的多轴机器人结构参数精测方法
WO2020034403A1 (zh) 基于轴不变量的多轴机器人正运动学计算方法
WO2020034417A1 (zh) 基于轴不变量多轴机器人d-h系及d-h参数确定方法
WO2020034405A1 (zh) 基于轴不变量的树链机器人动力学建模与解算方法
WO2020034407A1 (zh) 基于轴不变量的通用3r机械臂逆解建模与解算方法
CN114833828B (zh) 二自由度系统的惯性参数辨识方法、设备和介质
WO2020034416A1 (zh) 基于轴不变量的通用7r机械臂逆解建模与解算方法
WO2020034418A1 (zh) 基于轴不变量及dh参数1r/2r/3r逆解建模方法
WO2020034404A1 (zh) 基于轴不变量的非理想关节机器人动力学建模与解算方法
WO2020034399A1 (zh) 基于轴不变量的闭链机器人动力学建模与解算方法
Stölzle et al. Modelling handed shearing auxetics: Selective piecewise constant strain kinematics and dynamic simulation
CN106600641B (zh) 基于多特征融合的嵌入式视觉伺服控制方法
CN108803350B (zh) 基于轴不变量的动基座多轴机器人动力学建模与解算方法
CN117901094A (zh) 关节的力矩补偿方法、装置、机器人关节及存储介质
Yuanshuai et al. Research on Automatic Attitude Detection of Underactuated Planar Flexible Manipulator
Wei et al. Configuration design and performance analysis of a force feedback operating rod based on 3-RRR spherical parallel mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930019

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18930019

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/08/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18930019

Country of ref document: EP

Kind code of ref document: A1