WO2020034407A1 - 基于轴不变量的通用3r机械臂逆解建模与解算方法 - Google Patents

基于轴不变量的通用3r机械臂逆解建模与解算方法 Download PDF

Info

Publication number
WO2020034407A1
WO2020034407A1 PCT/CN2018/112705 CN2018112705W WO2020034407A1 WO 2020034407 A1 WO2020034407 A1 WO 2020034407A1 CN 2018112705 W CN2018112705 W CN 2018112705W WO 2020034407 A1 WO2020034407 A1 WO 2020034407A1
Authority
WO
WIPO (PCT)
Prior art keywords
determinant
matrix
axis
vector
equation
Prior art date
Application number
PCT/CN2018/112705
Other languages
English (en)
French (fr)
Inventor
居鹤华
石宝钱
Original Assignee
居鹤华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 居鹤华 filed Critical 居鹤华
Publication of WO2020034407A1 publication Critical patent/WO2020034407A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the invention relates to a multi-axis robot 3R manipulator inverse solution modeling and calculation method, and belongs to the field of robot technology.
  • a dynamic graph structure (Dynamic Graph Structure) can be used to dynamically build a directed Span tree based on the motion axis, which lays a foundation for the study of robot modeling and control of Variable Topology Structure.
  • a dynamic graph structure (Dynamic Graph Structure) can be used to dynamically build a directed Span tree based on the motion axis, which lays a foundation for the study of robot modeling and control of Variable Topology Structure.
  • the inverse solution of the position of the 3R manipulator refers to: given the structural parameters of the 3R manipulator and the expected position, calculate 3 joint variables to align the wrist position with the expected position.
  • the existing 3D manipulator position inverse solution method based on DH parameters has the following disadvantages: the process of establishing the DH system and DH parameters is unnatural, and the application is cumbersome; the singularity problem caused by the calculation method needs to be dealt with; the application is easy to introduce into the system Measurement error.
  • the principle of inverse solution of 3R manipulator based on D-H parameters is not universal, and it is difficult to generalize to solve the problem of inverse solution of general 6R manipulator.
  • the technical problem to be solved by the present invention is to provide a universal 3R manipulator inverse solution modeling and calculation method based on axis invariants, which can improve the absolute positioning accuracy of the manipulator; compared with the DH parameter, the solution process is universal and can be obtained The system is completely reversed.
  • the present invention adopts the following technical solutions:
  • a general inverse modeling and solving method of 3R manipulator based on axis invariants which is characterized by:
  • Ju-Gibbs or Ju-Gibbs gauge quaternion that is isomorphic to Euler quaternions is defined:
  • step [1] In step [1],
  • expression Represents the xth power of ⁇ ;
  • Delimiter I axis invariant Cross product matrix, member For members Same time replacement; 1 is the three-dimensional identity matrix; i Q n represents the attitude; Along the vector axis Line position Zero point from origin The translation vector to the origin O l ;
  • is the projection symbol, and i
  • is the ⁇ projection vector in the geodetic coordinate system.
  • step [2] the calculation formula of Dixon determinant based on the axis invariant is:
  • I the rotation transformation matrix
  • the coefficients of the combined variables are independent column vectors, so we choose Coefficients to form a square matrix
  • the remaining column vectors must be The columns are related;
  • I a Dixon matrix of size S ⁇ S, whose [i] [j] member is an N-th order polynomial of univariate ⁇ 1 .
  • step [2] the determinant formula of the block matrix is:
  • a square matrix of size (n + m) ⁇ (n + m) is M and a matrix of size n ⁇ n Is a sub-matrix consisting of the first n rows and any n columns of a square matrix M, a matrix of size m ⁇ m Is a sub-matrix consisting of the elements of m rows and the remaining m columns of the square matrix M;
  • step [2] perform the row staircase calculation principle on the determinant:
  • each term is an n-th order polynomial of ⁇ 1 ;
  • the original determinant can be transformed into an upper triangular determinant by elementary row transformation, and then the non-zero diagonal Multiply the line elements to get the polynomial expression of the determinant; the formula is 0, and all solutions of ⁇ 1 are obtained;
  • the specific method of row staging is to first sort the highest order of the first column of the determinant from high to low, and then perform a maximum of (S-1) ⁇ n elementary row transformation eliminations.
  • the determinant whose elements are not 0; the elementary row transformation and elimination of the cofactors in the first row and the first column of the determinant are solved successively and iteratively.
  • step [3] the steps of constructing Dixon polynomials for n “n-ary N-th order” polynomial systems are:
  • a determinant consisting of a position vector or a rotation vector represents the volume of the vector expansion space; in different Cartesian spaces, it has a volume invariance. among them:
  • Equation (28) n n-elements
  • Equation (116) is a 16th-order mononomial equation for ⁇ 1
  • Equation (5) is used to perform the determinant of quadratic block.
  • the method of the present invention proposes a general 3R attitude inverse solution method based on axis invariants.
  • Features are:
  • the axis invariant helps to improve the absolute positioning accuracy of the robotic arm; the range of joint variables covers a full week, eliminating the singularity caused by the DH calculation principle; compared with the DH parameters, the solution process is universal , You can get all the inverse solutions of the system.
  • Figure 3 is a schematic diagram of fixed axis rotation
  • Figure 4 shows the derived invariants of the axis invariants.
  • Natural coordinate axis The unit reference axis with a fixed origin that is coaxial with the motion axis or measurement axis is called the natural coordinate axis, also known as the natural reference axis.
  • Natural coordinate system As shown in Figure 1, if the multi-axis system D is at zero position, all Cartesian body coordinate systems have the same direction, and the origin of the body coordinate system is on the axis of the motion axis, then the coordinate system is a natural coordinate system. , Referred to as the natural coordinate system.
  • the advantages of the natural coordinate system are: (1) the coordinate system is easy to determine; (2) the joint variables at the zero position are zero; (3) the system attitude at the zero position is consistent; (4) it is not easy to introduce a measurement error.
  • the coordinate axis is a reference direction with a zero position and a unit scale. It can describe the position of translation in that direction, but it cannot fully describe the rotation angle around the direction, because the coordinate axis itself does not have a radial reference direction, that is There is a zero position that characterizes rotation. In practical applications, the radial reference of this shaft needs to be supplemented. For example: in Cartesian F [l] , to rotate around lx, you need to use ly or lz as the reference zero.
  • the coordinate axis itself is 1D, and three orthogonal 1D reference axes constitute a 3D Cartesian frame.
  • the axis invariant is a 3D spatial unit reference axis, which is itself a frame. It has its own radial reference axis, the reference mark.
  • the spatial coordinate axis and its own radial reference axis determine the Cartesian frame.
  • the spatial coordinate axis can reflect the three basic reference attributes of the motion axis and the measurement axis.
  • [2] is a 3D reference axis, which not only has an axial reference direction, but also has a radial reference zero position, which will be explained in section 3.3.1.
  • the axis invariant For axis invariants, its absolute derivative is its relative derivative. Since the axis invariant is a natural reference axis with invariance, its absolute derivative is always a zero vector. Therefore, the axis invariant is invariant to time differentiation. Have:
  • the basis vector e l is any vector consolidated with F [l] .
  • the basis vector With Any vector of consolidation, Is F [l] and Common unit vector, so Is F [l] and Shared basis vector. So the axis is invariant Is F [l] and Common reference base.
  • Axis invariants are parameterized natural coordinate bases and primitives for multi-axis systems. The translation and rotation of a fixed axis invariant are equivalent to the translation and rotation of a fixed coordinate system.
  • optical measurement equipment such as laser trackers can be applied to achieve accurate measurement of invariants of fixed axes.
  • the cylindrical pair can be applied to simplify the MAS kinematics and dynamics analysis.
  • Invariant A quantity that does not depend on a set of coordinate systems for measurement is called an invariant.
  • Natural coordinates take the natural coordinate axis vector as the reference direction, the angular position or line position relative to the zero position of the system, and record it as q l , which is called natural coordinates;
  • natural motion vector will be determined by the natural axis vector And the vector determined by natural coordinates q l Called the natural motion vector. among them:
  • the natural motion vector realizes the unified expression of axis translation and rotation.
  • a vector to be determined by the natural axis vector and the joint such as Called the free motion vector, also known as the free spiral.
  • the axis vector Is a specific free spiral.
  • joint space The space represented by the joint natural coordinates q l is called joint space.
  • the Cartesian space that expresses the position and pose (posture for short) is called a shape space, which is a double vector space or a 6D space.
  • Natural joint space using the natural coordinate system as a reference, through joint variables Means that there must be when the system is zero The joint space is called natural joint space.
  • Axis vector Is the natural reference axis of the natural coordinates of the joint. Because Is an axis invariant, so Is a fixed axis invariant, which characterizes the motion pair The structural relationship is determined by the natural coordinate axis. Fixed axis invariant Is a link Natural description of structural parameters.
  • Natural coordinate axis space The fixed axis invariant is used as the natural reference axis, and the space represented by the corresponding natural coordinate is called the natural coordinate axis space, which is referred to as the natural axis space. It is a 3D space with 1 degree of freedom.
  • any motion pair in the loop can be selected, and the stator and the mover constituting the motion pair can be separated; thus, a loop-free tree structure is obtained.
  • the Span tree represents a span tree with directions to describe the topological relationship of the tree chain movement.
  • I is a structural parameter; A is an axis sequence; F is a bar reference sequence; B is a bar body sequence; K is a motion pair type sequence; NT is a sequence of constrained axes, that is, a non-tree.
  • Axis sequence a member of.
  • Rotary pair R, prism pair P, spiral pair H, and contact pair O are special examples of cylindrical pair C.
  • the motion chain is identified by a partial order set ().
  • O () represents the number of operations in the calculation process, and usually refers to the number of floating-point multiplications and additions. It is very tedious to express the calculation complexity by the number of floating-point multiplication and addition. Therefore, the main operation times in the algorithm cycle are often used;
  • l l k is the kinematic chain from axis l to axis k, and the output is expressed as And
  • the cardinality is written as
  • l l k execution process execution If Then execute Otherwise, end.
  • the computational complexity of l l k is O (
  • l L means to obtain a closed subtree composed of axis l and its subtrees, Is a subtree without l; recursively execute l l with a computational complexity of
  • means attribute placeholder; if the attribute p or P is about position, then Should be understood as a coordinate system To the origin of F [l] ; if the attribute p or P is about direction, then Should be understood as a coordinate system To F [l] .
  • attribute variables or constants with partial order include the indicators indicating partial order in the name; either include the upper left corner and lower right corner indexes, or include the upper right corner and lower right corner indexes; Their directions are always from the upper left corner indicator to the lower right corner indicator, or from the upper right corner indicator to the lower right corner indicator.
  • the description of the direction is sometimes omitted. Even if omitted, those skilled in the art can also use symbolic expressions. It is known that, for each parameter used in this application, for a certain attribute symbol, their directions are always from the upper left corner index to the lower right corner index of the partial order index, or from the upper right corner index to the lower right corner index.
  • the symbol specifications and conventions in this application are determined based on the two principles of the partial order of the kinematic chain and the chain link being the basic unit of the kinematic chain, reflecting the essential characteristics of the kinematic chain.
  • the chain indicator represents the connection relationship, and the upper right indicator represents the reference system.
  • This symbolic expression is concise and accurate, which is convenient for communication and written expression.
  • they are structured symbol systems that contain the elements and relationships that make up each attribute quantity, which is convenient for computer processing and lays the foundation for computer automatic modeling.
  • the meaning of the indicator needs to be understood through the background of the attribute, that is, the context; for example: if the attribute is a translation type, the indicator at the upper left corner indicates the origin and direction of the coordinate system; if the attribute is a rotation type, the indicator at the top left The direction of the coordinate system.
  • the coordinate vector in the natural coordinate system F [k] that is, the coordinate vector from k to l;
  • rotation vector / angle vector I is a free vector, that is, the vector can be freely translated
  • the angular position that is, the joint angle and joint variables, are scalars
  • T means transpose of ⁇ , which means transpose the collection, and do not perform transpose on the members; for example:
  • Projection symbol ⁇ represents vector or tensor of second order group reference projection vector or projection sequence, i.e. the vector of coordinates or coordinate array, that is, the dot product projection "*"; as: position vector
  • the projection vector in the coordinate system F [k] is written as
  • Is a cross multiplier for example: Is axis invariant Cross product matrix; given any vector
  • the cross product matrix is
  • the cross product matrix is a second-order tensor.
  • i l j represents a kinematic chain from i to j
  • l l k is a kinematic chain from axis l to k
  • n represents the Cartesian Cartesian system, then Is a Cartesian axis chain; if n represents a natural reference axis, then For natural shaft chains.
  • Position vector The projection vector on the three Cartesian axes is definition Since the index of the upper left corner of l r lS indicates the reference frame, l r lS both indirectly represents the displacement vector It also directly represents the displacement coordinate vector, that is, it has the dual functions of vector and coordinate vector.
  • n> represents the full permutation of natural numbers [1: n], and there are n! Instances.
  • I [i1, ... in] represents the number of reverse order of the arrangement ⁇ i1, ... in>.
  • the calculation complexity of formula (1) is: n! Product of n times and n! Sub-addition has exponential complexity and can only be applied to determinants with smaller dimensions. For determinants with larger dimensions, Laplace formula is usually used for recursive operations. for Adjugate Matrix, then
  • Simpler algorithms usually use Gaussian elimination or LU decomposition, first transform the matrix into a triangular matrix or a product of triangular matrices by elementary transformation, and then calculate the determinant.
  • the above determinant calculation method for number fields is not applicable to high-dimensional polynomial matrices, and a determinant calculation method for block matrices needs to be introduced.
  • Computing the determinant of Vector Polynomial is a specific block matrix determinant calculation problem. It expresses the inherent relationship between vectors and determinants at the vector level.
  • the determinant calculation of the block matrix expresses the inherent laws of the block matrix and the determinant at the matrix level.
  • Equations (3) and (4) can be generalized to n-dimensional space.
  • a square matrix of size (n + m) ⁇ (n + m) is M and a matrix of size n ⁇ n Is a sub-matrix consisting of the first n rows and any n columns of a square matrix M, a matrix of size m ⁇ m Is a sub-matrix consisting of the elements of m rows and the remaining m columns of the square matrix M;
  • each term is an n-th order polynomial with respect to ⁇ 1 .
  • the original determinant can be changed to an upper triangular determinant through elementary row transformation, and then the nonzero diagonal elements are multiplied to obtain the determinant polynomial expression. This formula is 0, and all solutions of ⁇ 1 are obtained.
  • the specific method of row staging is to first sort the highest order of the first column of the determinant from high to low, and then perform a maximum of (S-1) ⁇ n elementary row transformation eliminations. Determinants whose elements are not zero. Then the elementary row transformation and elimination of the cofactors of the first row and the first column of the determinant are solved successively and iteratively.
  • N-th order polynomial system based on "N-carry word” N-th order polynomial system based on "N-carry word”.
  • n "n-ary first-order” polynomial power products Independent variables appear N times repeatedly, then n “n-ary N-th order” polynomial systems are obtained "N-ary N-th Order Polynomial System” and "n-bit N Carry Word” Isomorphism.
  • the first m of the auxiliary variable Y m are used to sequentially replace the m variables in the Original Variables X n , and "
  • a determinant consisting of a position vector or a rotation vector represents the volume of the vector expansion space; in different Cartesian spaces, it has a volume invariance. among them:
  • Equation (28) n n-elements
  • S ⁇ S a polynomial equation of x 1 cannot be established; at this time, S ⁇ S is transformed into a row-echelon matrix Ech ( S ⁇ S ); obtain the square matrix after calculating the product of the Pivot of the matrix That is, S ′ independent column vectors are selected from S ⁇ S.
  • n "n-ary N-th order" polynomial system The example (referred to as polynomial) is written as among them: And have according to Polynomials to determine Dixon matrices and separate variables and Select and Satisfy
  • Equation (32) is a polynomial equation of univariate x 1 ; n-1 unknowns are eliminated; thus, a feasible solution of univariate x 1 can be obtained. If x 1 is also satisfied
  • the steps are:
  • the formula is a four-order 1st-order polynomial system that meets the Dixon elimination conditions. From formula (19) and formula (22), we get
  • Axis vector Relative to rod And ⁇ l or natural coordinate system And F [l] is fixed, so this rotation is called fixed axis rotation.
  • the projection vector is Zero vector after rotation
  • the moment vector is
  • the axial component is Rodrigues vector equation with chain index
  • Equation (43) is about with Multivariable linear equation is an axis invariant Second-order polynomial. Given a natural zero vector As Zero reference, and Respectively the zero vector and the radial vector. Equation (43) is Symmetry Represents zero-axis tensor, antisymmetric part Represents the radial axial tensor, and the axial outer product tensor, respectively Orthogonal to determine the three-dimensional natural axis space; Equation (43) contains only one sine and cosine operation, 6 product operations, and 6 sum operations, and the computational complexity is low; And joint variables The coordinate system and polarity are parameterized.
  • Equation (43) can be expressed as
  • Ju-Gibbs quaternion a standardized Ju-Gibbs quaternion (referred to as the standard Ju-Gibbs quaternion, that is, a quaternion with a "label" of 1);
  • Non-standard that is, its standard part is not 1. From equation (53), we can know that only given axis l and The canonical Ju-Gibbs quaternion, and the two axes are orthogonal, Is the canonical quaternion.
  • I the rotation transformation matrix
  • the basic properties of the Dixon determinant of the radial invariant and the kinematic chain are proposed to lay the foundation for the inverse kinematic analysis of the robot based on the invariant of the axis.
  • the invariant of the axis is essentially different from the coordinate axis: the coordinate axis is a reference direction with a zero position and a unit scale. It does not have a radial reference direction, that is, there is no zero position that characterizes rotation. In actual application, the radial reference of the coordinate axis needs to be supplemented.
  • the coordinate axis itself is 1D, and three orthogonal coordinate axes constitute a 3D Cartesian frame; the axis invariant is a 3D space unit reference axis (referred to as a 3D reference axis), which has a radial reference zero.
  • the "3D reference axis" and its radial reference zero position can determine the corresponding Cartesian system.
  • the axis invariant based on the natural coordinate system can accurately reflect the three basic attributes of "coaxiality", "polarity” and “zero position" of the motion axis and the measurement axis.
  • the axis invariant is essentially different from the Euler axis: the directional cosine matrix (DCM) is a real matrix, the axis vector is the eigenvector corresponding to the eigenvalue 1 of the DCM, and is an invariant; the fixed axis invariant is the "3D reference axis ", Not only with the origin and axial direction, but also with the radial reference zero; in the natural coordinate system, the axis invariant does not depend on the adjacent consolidated natural coordinate system, that is, it has Variable natural coordinates; axis invariants have excellent mathematical operation functions such as nilpotency; in natural coordinate systems, DCM and reference polarities can be uniquely determined through axis invariants and joint coordinates; it is not necessary to establish for each member The respective systems can greatly simplify the modeling workload.
  • DCM directional cosine matrix
  • the fixed axis invariant is the "3D reference axis ", Not only with the origin and axial direction, but also with
  • measuring the axis invariants can improve the measurement accuracy of structural parameters.
  • iterative kinematics and dynamic equations including topological structure, coordinate system, polarity, structural parameters, and dynamic parameters can be established.
  • NP problems All problems that are not solvable in definite polynomial time are called NP problems.
  • the non-deterministic algorithm decomposes the problem into two stages: “guessing” and “verifying”: the “guessing” stage of the algorithm is non-deterministic, and the “verifying” stage of the algorithm is deterministic, and the correctness of the guessed solution is determined through verification. If it can be calculated in polynomial time, it is called a polynomial non-deterministic problem.
  • the elimination of multivariate polynomials is generally considered to be an NP problem. Usually applied Based on the elimination of multiple polynomials, we have to resort to heuristic "guessing” and “verification” to solve the problem.
  • Structural parameters and These are the structural parameters of the chain link l, which can be obtained by external measurement when the system is in the zero position. As shown in Fig. 4, the zero vector, the radial vector, and the axial vector are invariants independent of the rotation angle. The zero vector is a specific radial vector.
  • Any vector can be decomposed into zero vector and axial vector, so
  • Is the axis l and Common vertical line or common radial vector Is the axial vector of axis l. From equation (65), we can know that any structure parameter vector Can be decomposed into zero invariants independent of the coordinate system Axial invariant Their radial vectors are written as Structural parameter vector And axis invariants Uniquely determine the radial coordinate system, with 2 independent dimensions. If two axial invariants and Collinear
  • the axial invariant and the zero invariant shown in equation (66) are the decomposition of the natural parameter by the structural parameter vector.
  • the zero vector, radial vector, and axial vector derived from the axis invariant have the following relationships:
  • the equation (71) is called the inversion formula of the zero vector; the formula (72) is the interchange formula between the zero vector and the radial vector; and the formula (73) is called the radial vector invariance formula. From (65), (71) to (73),
  • (80) can be and Translates to about Of multiple linear types. Simultaneously, It has symmetry (rotation) for y l and ⁇ l . From equations (67), (74), and (75),
  • Equation (81) is derived from three independent structural parameters And a motion variable ⁇ l . From equation (81),
  • 0 solution.
  • Equation (116) is a 16th-order mononomial equation for ⁇ 1 .
  • Equation (4) transforms the determinant calculation of the vector polynomial into the determinant of three vectors, this step plays a decisive role; the axis invariant
  • the derived invariants are structural parameters, and the system equation is a vector algebraic equation about the vector of the structural parameter and the joint variable (scalar).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Complex Calculations (AREA)

Abstract

一种基于轴不变量的通用3R机械臂逆解建模与解算方法,应用n个n元N阶多项式的Dixon消元与求解原理,进行位姿逆解计算,根据机械臂n元3D矢量位姿方程,获得n个n元2阶多项式方程;应用基于轴不变量的Dixon行列式计算式及分块矩阵的行列式计算式简化行列式计算;应用n个n元N阶多项式的Dixon消元与求解原理完成位姿逆解计算,根据Dixon矩阵的行列式为0,得到一元高阶多项式方程,应用基于友阵的一元高阶多项式方程求解一元高阶多项式方程的解。上述方法可提高机械臂的绝对定位精度;与D-H参数相比,求解过程具有通用性,可以获得系统全部逆解。

Description

基于轴不变量的通用3R机械臂逆解建模与解算方法 技术领域
本发明涉及一种多轴机器人3R机械臂逆解建模与解算方法,属于机器人技术领域。
背景技术
自主机器人研究的一个重要方面是需要解决变拓扑结构机器人的运动学建模问题。在MAS中,具有动态的图结构(Dynamic Graph Structure),可以动态地建立基于运动轴的有向Span树,为研究可变拓扑结构(Variable Topology Structure)的机器人建模与控制奠定了基础。为此,需要提出基于轴不变量的通用机械臂逆解原理,既要建立包含坐标系、极性、结构参数、关节变量的完全参数化的正运动学模型,又要实时地计算位姿方程;一方面,可以提高机器人的自主性,另一方面,可以提高机器人位姿控制的绝对精度。
3R机械臂位置逆解是指:给定3R机械臂结构参数及期望位置,计算3个关节变量,使腕心位置与期望位置对齐。现有的基于D-H参数的3R机械臂位置逆解方法存在如下缺点:建立D-H系及D-H参数的过程不自然,应用繁琐;需要处理由计算方法导致的奇异性问题;在应用时,易引入系统测量误差。基于D-H参数的3R机械臂逆解原理不具有普适性,难以推广来解决通用6R机械臂的逆解问题。
发明内容
本发明所要解决的技术问题是提供一种基于轴不变量的通用3R机械臂逆解建模与解算方法,可提高机械臂的绝对定位精度;与D-H参数相比,求解过程具有通用性,可以获得系统全部逆解。
为解决上述技术问题,本发明采用以下技术方案:
一种基于轴不变量的通用3R机械臂逆解建模与解算方法,其特征是,
应用n个“n元N阶”多项式的Dixon消元与求解原理,进行位姿逆解计算,主要包括以下步骤:
【1】根据机械臂n元3D矢量位姿方程,获得n个“n元2阶”多项式方程;
【2】应用基于轴不变量的Dixon行列式计算式、分块矩阵的行列式计算式或对行列式进行行阶梯化计算式简化行列式计算;
【3】应用n个“n元N阶”多项式的Dixon消元与求解原理完成位姿逆解计算,其中:根据Dixon矩阵的行列式为0,得到一元高阶多项式方程,应用基于友阵的一元高阶多项式方程求解一元高阶多项式方程的解。
对于任意杆件
Figure PCTCN2018112705-appb-000001
定义与欧拉四元数同构的居-吉布斯即Ju-Gibbs规范四元数:
Figure PCTCN2018112705-appb-000002
其中:
Figure PCTCN2018112705-appb-000003
为Gibbs矢量;Gibbs共轭四元数为:
Figure PCTCN2018112705-appb-000004
其中:
Figure PCTCN2018112705-appb-000005
式中,
Figure PCTCN2018112705-appb-000006
为居-吉布斯规范四元数
Figure PCTCN2018112705-appb-000007
模的平方;表达形式幂符
Figure PCTCN2018112705-appb-000008
表示□的x次幂;右上角角标∧或
Figure PCTCN2018112705-appb-000009
表示分隔符;轴不变量
Figure PCTCN2018112705-appb-000010
是轴不变量
Figure PCTCN2018112705-appb-000011
的叉乘矩阵;
Figure PCTCN2018112705-appb-000012
是Gibbs矢量
Figure PCTCN2018112705-appb-000013
的叉乘矩阵;若用“□”表示属性占位,则式中的表达形式□ [□]表示成员访问符。
步骤【1】中,
对于轴链
Figure PCTCN2018112705-appb-000014
Figure PCTCN2018112705-appb-000015
建立规范的姿态方程为:
Figure PCTCN2018112705-appb-000016
建立规范的定位方程:
Figure PCTCN2018112705-appb-000017
式中,
Figure PCTCN2018112705-appb-000018
为任意杆件,表达形式
Figure PCTCN2018112705-appb-000019
表示□的x次幂;右上角角标∧或
Figure PCTCN2018112705-appb-000020
表示分隔符;
Figure PCTCN2018112705-appb-000021
是轴不变量
Figure PCTCN2018112705-appb-000022
的叉乘矩阵,杆件
Figure PCTCN2018112705-appb-000023
为杆件
Figure PCTCN2018112705-appb-000024
时同理替换;1为三维单位矩阵; iQ n表示姿态;
Figure PCTCN2018112705-appb-000025
为沿矢量轴
Figure PCTCN2018112705-appb-000026
的线位置;
Figure PCTCN2018112705-appb-000027
为零位时由原点
Figure PCTCN2018112705-appb-000028
至原点O l的平动矢量; |□为投影符, i|□为□在大地坐标系的投影矢量。
步骤【2】中,基于轴不变量的Dixon行列式计算式为:
根据运动链Dixon行列式性质有:
Figure PCTCN2018112705-appb-000029
并记:
Figure PCTCN2018112705-appb-000030
Figure PCTCN2018112705-appb-000031
式中,
Figure PCTCN2018112705-appb-000032
为旋转变换矩阵;
Figure PCTCN2018112705-appb-000033
表示用辅助变量y l的前l个依次替换原变量τ l中的l个变量,记“|”为替换操作符;
式(80)将
Figure PCTCN2018112705-appb-000034
Figure PCTCN2018112705-appb-000035
转化为关于
Figure PCTCN2018112705-appb-000036
的多重线性型;同时,
Figure PCTCN2018112705-appb-000037
对y l及τ l具有对称性;
由式(47)得3R运动学方程
Figure PCTCN2018112705-appb-000038
由式(90)得
Figure PCTCN2018112705-appb-000039
由(91)式得
Figure PCTCN2018112705-appb-000040
Figure PCTCN2018112705-appb-000041
则由式(51)及式得(93)
Figure PCTCN2018112705-appb-000042
由式(92)及式(93)得
Figure PCTCN2018112705-appb-000043
由式(95)得3R运动学多项式方程
Figure PCTCN2018112705-appb-000044
多项式系统F 3(Y 2|T 2),根据双线性型行列式通式
Figure PCTCN2018112705-appb-000045
则有
Figure PCTCN2018112705-appb-000046
其中:
Figure PCTCN2018112705-appb-000047
Figure PCTCN2018112705-appb-000048
Figure PCTCN2018112705-appb-000049
中组合变量系数为独立的列向量,故选取
Figure PCTCN2018112705-appb-000050
的系数来构成方阵
Figure PCTCN2018112705-appb-000051
剩余列向量一定与
Figure PCTCN2018112705-appb-000052
的各列相关;
由式(80)及式(93)得
Figure PCTCN2018112705-appb-000053
Figure PCTCN2018112705-appb-000054
Figure PCTCN2018112705-appb-000055
Figure PCTCN2018112705-appb-000056
分别表示轴2至轴3、轴3至轴3S的零位矢量、径向矢量及轴向矢量;
得简化的3元N阶Dixon行列式为
Figure PCTCN2018112705-appb-000057
式中,
Figure PCTCN2018112705-appb-000058
为大小为S×S的Dixon矩阵,其第[i][j]成员为单变量τ 1的N阶多项式。
步骤【2】中,分块矩阵的行列式计算式为:
若记大小为(n+m)·(n+m)的方阵为M,大小为n·n的矩阵
Figure PCTCN2018112705-appb-000059
是方阵M的前n行及任意n列元素构成的子矩阵,大小为m·m的矩阵
Figure PCTCN2018112705-appb-000060
是方阵M后m行及剩余m列元素构成的子矩阵;由升序排列的矩阵列序号构成的序列cn及cm是序列[1:m+n]的子集,[cn,cm]∈<1:n+m>,且有cm∪cn=[1:m+n];则方阵M行列式与分块矩阵
Figure PCTCN2018112705-appb-000061
Figure PCTCN2018112705-appb-000062
的行列式关系为
Figure PCTCN2018112705-appb-000063
步骤【2】中,对行列式进行行阶梯化计算原理:
对于S×S矩阵,其每一项是关于τ 1的n阶多项式;计算该矩阵的行列式时,可通过初等行变换将原行列式变为上三角行列式,再将非零的对角线元素相乘,得到行列式的多项式表达式;该式为0,得到τ 1的所有解;
行阶梯化的具体方法为,先对行列式第一列的最高阶次由高到低进行排序,再进行最多(S-1)×n次初等行变换消元,得到第一列只有第一个元素不为0的行列式;再对该行列式第1行及1列的余子式进行初等行变换消元,依次迭代求解。
步骤【3】中,n个“n元N阶”多项式系统的Dixon多项式构建步骤为:
引入辅助变量[y 2,y 3,…,y n],且有
Figure PCTCN2018112705-appb-000064
对于多元多重多项式
Figure PCTCN2018112705-appb-000065
用辅助变量Y m的前m个依次替换原变量X n中的m个变量,记“|”为替换操作符,得到增广的多项式
Figure PCTCN2018112705-appb-000066
Figure PCTCN2018112705-appb-000067
Figure PCTCN2018112705-appb-000068
其中:
Figure PCTCN2018112705-appb-000069
定义可分离组合变量
Figure PCTCN2018112705-appb-000070
Figure PCTCN2018112705-appb-000071
如下:
Figure PCTCN2018112705-appb-000072
由式(14)及式(15)知:替换式
Figure PCTCN2018112705-appb-000073
是关于
Figure PCTCN2018112705-appb-000074
Figure PCTCN2018112705-appb-000075
的双重线性型;相应地,用辅助变量替换的多项式系统记为
Figure PCTCN2018112705-appb-000076
给定n个“n元N阶”多项式系统
Figure PCTCN2018112705-appb-000077
定义其Dixon多项式为
Figure PCTCN2018112705-appb-000078
由式(17)得
Figure PCTCN2018112705-appb-000079
考虑式(13)及式(18)得该多项式的Dixon行列式
Figure PCTCN2018112705-appb-000080
在笛卡尔空间下,由位置矢量或转动矢量构成的行列式表示矢量张成空间的容积(Volume);在不同笛卡尔空间下具有容积的不变性。其中:
Figure PCTCN2018112705-appb-000081
给定n个“n元N阶”多项式系统F n(Y n-1|X n-1),n≥2;存在与消去变量x 2,…,x n无关的Dixon矩阵 SΘ S(x 1),其Dixon多项式
Figure PCTCN2018112705-appb-000082
表示为分离变量
Figure PCTCN2018112705-appb-000083
Figure PCTCN2018112705-appb-000084
的双重线性型:
Figure PCTCN2018112705-appb-000085
Figure PCTCN2018112705-appb-000086
Figure PCTCN2018112705-appb-000087
为大小为S×S的Dixon矩阵,其第[i][j]成员为单变量x 1的N阶多项式:
Figure PCTCN2018112705-appb-000088
其中:
Figure PCTCN2018112705-appb-000089
考虑式(22),若
Figure PCTCN2018112705-appb-000090
故得
Det( SΘ S(x 1))=0;        (28)
称式(28)中“n个n元”为Dixon消元的必要条件,从而获得可行解。
由式(28)、式(99)及式(100)得
Figure PCTCN2018112705-appb-000091
式(116)是关于τ 1的16阶单项式方程,应用式(5)进行二次分块的行列式计算。
本发明所达到的有益效果:
本发明的方法提出了基于轴不变量的通用3R姿态逆解方法。特征在于:
具有简洁、优雅的运动链符号系统,具有伪代码的功能,具有迭代式结构,保证系统实现的可靠性及机械化演算。
具有基于轴不变量的迭代式,保证计算的实时性;实现坐标系、极性及系统结构参量的完全参数化,基于轴不变量的可逆解运动学具有统一的表达及简洁的结构化层次模型,保证位姿分析逆解(Analytical Inverse Solution to Position and Attitude)的通用性。
直接应用激光跟踪仪精密测量获得的基于固定轴不变量的结构参数,保证位姿逆解的准确性;从而,使系统的绝对定位与定姿精度接近重复精度。
由于轴不变量可以精确测量,有助于提高机械臂的绝对定位精度;由于关节变量的范围覆盖完整的一周,消除了D-H计算原理导致的奇异性;与D-H参数相比,求解过程具有通用性,可以获得系统全部逆解。
附图说明
图1自然坐标系与轴链;
图2固定轴不变量;
图3为定轴转动示意图;
图4为轴不变量的导出不变量。
具体实施方式
下面对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
定义1自然坐标轴:称与运动轴或测量轴共轴的,具有固定原点的单位参考轴为自然坐标轴,亦称为自然参考轴。
定义2自然坐标系:如图1所示,若多轴系统D处于零位,所有笛卡尔体坐标系方向一致,且体坐标系原点位于运动轴的轴线上,则该坐标系统为自然坐标系统,简称自然坐标系。
自然坐标系优点在于:(1)坐标系统易确定;(2)零位时的关节变量为零;(3)零位时的系统姿态一致;(4)不易引入测量累积误差。
由定义2可知,在系统处于零位时,所有杆件的自然坐标系与底座或世界系的方向一致。系统处于零位即
Figure PCTCN2018112705-appb-000092
时,自然坐标系
Figure PCTCN2018112705-appb-000093
绕轴矢量
Figure PCTCN2018112705-appb-000094
转动角度
Figure PCTCN2018112705-appb-000095
Figure PCTCN2018112705-appb-000096
转至F [l]
Figure PCTCN2018112705-appb-000097
Figure PCTCN2018112705-appb-000098
下的坐标矢量与
Figure PCTCN2018112705-appb-000099
在F [l]下的坐标矢量
Figure PCTCN2018112705-appb-000100
恒等,即有
Figure PCTCN2018112705-appb-000101
由上式知,
Figure PCTCN2018112705-appb-000102
Figure PCTCN2018112705-appb-000103
不依赖于相邻的坐标系
Figure PCTCN2018112705-appb-000104
及F [l];故称
Figure PCTCN2018112705-appb-000105
Figure PCTCN2018112705-appb-000106
为轴不变量。在不强调不变性时,可以称之为坐标轴矢量(简称轴矢量)。
Figure PCTCN2018112705-appb-000107
Figure PCTCN2018112705-appb-000108
表征的是体
Figure PCTCN2018112705-appb-000109
与体l共有的参考单位坐标矢量,与参考点
Figure PCTCN2018112705-appb-000110
及O l无关。体
Figure PCTCN2018112705-appb-000111
与体l即为杆件或轴。
轴不变量与坐标轴具有本质区别:
(1)坐标轴是具有零位及单位刻度的参考方向,可以描述沿该方向平动的位置,但不能完整描述绕该方向的转动角度,因为坐标轴自身不具有径向参考方向,即不存在表征转动的零位。在实际应用时,需要补充该轴的径向参考。例如:在笛卡尔系F [l]中,绕lx转动,需以ly或lz为参考零位。坐标轴自身是1D的,3个正交的1D参考轴构成3D的笛卡尔标架。
(2)轴不变量是3D的空间单位参考轴,其自身就是一个标架。其自身具有径向参考轴,即参考零位。空间坐标轴及其自身的径向参考轴可以确定笛卡尔标架。空间坐标轴可以反映运动轴及测量轴的三个基本参考属性。
已有文献将无链指标的轴矢量记为
Figure PCTCN2018112705-appb-000112
并称之为欧拉轴(Euler Axis),相应的关节角称为欧拉角(Euler Angle)。本申请之所以不再沿用欧拉轴,而称之为轴不变量,是因为轴不变量具有以下属性:
【1】给定旋转变换阵
Figure PCTCN2018112705-appb-000113
因其是实矩阵,其模是单位的,故其有一个实特征值λ 1及两个互为共轭的复特征值λ 2=e 及λ 3=e -iφ;其中:i为纯虚数。因此,|λ 1|·||λ 2||·||λ 3||=1,得λ 1=1。轴矢量
Figure PCTCN2018112705-appb-000114
是实特征值λ 1=1对应的特征矢量,是不变量;
【2】是3D参考轴,不仅具有轴向参考方向,而且具有径向参考零位,将在3.3.1节予以阐述。
【3】在自然坐标系下:
Figure PCTCN2018112705-appb-000115
即轴不变量
Figure PCTCN2018112705-appb-000116
是非常特殊的矢量,它对时间的导数 也具有不变性,且有非常优良的数学操作性能;
对轴不变量而言,其绝对导数就是其相对导数。因轴不变量是具有不变性的自然参考轴,故其绝对导数恒为零矢量。因此,轴不变量具有对时间微分的不变性。有:
Figure PCTCN2018112705-appb-000117
【4】在自然坐标系统中,通过轴矢量
Figure PCTCN2018112705-appb-000118
及关节变量
Figure PCTCN2018112705-appb-000119
可以直接描述旋转坐标阵
Figure PCTCN2018112705-appb-000120
没有必要为除根之外的杆件建立各自的体系。同时,以唯一需要定义的根坐标系为参考,可以提高系统结构参数的测量精度;
【5】应用轴矢量
Figure PCTCN2018112705-appb-000121
的优良操作,将建立包含拓扑结构、坐标系、极性、结构参量及力学参量的完全参数化的统一的多轴系统运动学及动力学模型。
因基矢量e l是与F [l]固结的任一矢量,基矢量
Figure PCTCN2018112705-appb-000122
是与
Figure PCTCN2018112705-appb-000123
固结的任一矢量,又
Figure PCTCN2018112705-appb-000124
是F [l]
Figure PCTCN2018112705-appb-000125
共有的单位矢量,故
Figure PCTCN2018112705-appb-000126
是F [l]
Figure PCTCN2018112705-appb-000127
共有的基矢量。因此,轴不变量
Figure PCTCN2018112705-appb-000128
是F [l]
Figure PCTCN2018112705-appb-000129
共有的参考基。轴不变量是参数化的自然坐标基,是多轴系统的基元。固定轴不变量的平动与转动与其固结的坐标系的平动与转动等价。
在系统处于零位时,以自然坐标系为参考,测量得到坐标轴矢量
Figure PCTCN2018112705-appb-000130
在运动副
Figure PCTCN2018112705-appb-000131
运动时,轴矢量
Figure PCTCN2018112705-appb-000132
是不变量;轴矢量
Figure PCTCN2018112705-appb-000133
及关节变量
Figure PCTCN2018112705-appb-000134
唯一确定运动副
Figure PCTCN2018112705-appb-000135
的转动关系。
因此,应用自然坐标系统,当系统处于零位时,只需确定一个公共的参考系,而不必为系统中每一杆件确定各自的体坐标系,因为它们由轴不变量及自然坐标唯一确定。当进行系统分析时,除底座系外,与杆件固结的其它自然坐标系只发生在概念上,而与实际的测量无关。自然坐标系统对于多轴系统(MAS)理论分析及工程作用在于:
(1)系统的结构参数测量需要以统一的参考系测量;否则,不仅工程测量过程烦琐,而且引入不同的体系会引入更大的测量误差。
(2)应用自然坐标系统,除根杆件外,其它杆件的自然坐标系统由结构参量及关节变量自然确定,有助于MAS系统的运动学与动力学分析。
(3)在工程上,可以应用激光跟踪仪等光学测量设备,实现对固定轴不变量的精确测量。
(4)由于运动副R及P、螺旋副H、接触副O是圆柱副C的特例,可以应用圆柱副简化MAS运动学及动力学分析。
定义3不变量:称不依赖于一组坐标系进行度量的量为不变量。
定义4转动坐标矢量:绕坐标轴矢量
Figure PCTCN2018112705-appb-000136
转动到角位置
Figure PCTCN2018112705-appb-000137
的坐标矢量
Figure PCTCN2018112705-appb-000138
Figure PCTCN2018112705-appb-000139
定义5平动坐标矢量:沿坐标轴矢量
Figure PCTCN2018112705-appb-000140
平动到线位置
Figure PCTCN2018112705-appb-000141
的坐标矢量
Figure PCTCN2018112705-appb-000142
Figure PCTCN2018112705-appb-000143
定义6自然坐标:以自然坐标轴矢量为参考方向,相对系统零位的角位置或线位置,记为q l,称为自然坐标;称与自然坐标一一映射的量为关节变量;其中:
Figure PCTCN2018112705-appb-000144
定义7机械零位:对于运动副
Figure PCTCN2018112705-appb-000145
在初始时刻t 0时,关节绝对编码器的零位
Figure PCTCN2018112705-appb-000146
不一定为零,该零位称为机械零位;
故关节
Figure PCTCN2018112705-appb-000147
的控制量
Figure PCTCN2018112705-appb-000148
Figure PCTCN2018112705-appb-000149
定义8自然运动矢量:将由自然坐标轴矢量
Figure PCTCN2018112705-appb-000150
及自然坐标q l确定的矢量
Figure PCTCN2018112705-appb-000151
称为自然运动矢量。其中:
Figure PCTCN2018112705-appb-000152
自然运动矢量实现了轴平动与转动的统一表达。将由自然坐标轴矢量及关节确定的矢量,例如
Figure PCTCN2018112705-appb-000153
称为自由运动矢量,亦称为自由螺旋。显然,轴矢量
Figure PCTCN2018112705-appb-000154
是特定的自由螺旋。
定义9关节空间:以关节自然坐标q l表示的空间称为关节空间。
定义10位形空间:称表达位置及姿态(简称位姿)的笛卡尔空间为位形空间,是双矢量空间或6D空间。
定义11自然关节空间:以自然坐标系为参考,通过关节变量
Figure PCTCN2018112705-appb-000155
表示,在系统零位时必有
Figure PCTCN2018112705-appb-000156
的关节空间,称为自然关节空间。
如图2所示,给定链节
Figure PCTCN2018112705-appb-000157
原点O l受位置矢量
Figure PCTCN2018112705-appb-000158
约束的轴矢量
Figure PCTCN2018112705-appb-000159
为固定轴矢量,记为
Figure PCTCN2018112705-appb-000160
其中:
Figure PCTCN2018112705-appb-000161
轴矢量
Figure PCTCN2018112705-appb-000162
是关节自然坐标的自然参考轴。因
Figure PCTCN2018112705-appb-000163
是轴不变量,故称
Figure PCTCN2018112705-appb-000164
为固定轴不变量, 它表征了运动副
Figure PCTCN2018112705-appb-000165
的结构关系,即确定了自然坐标轴。固定轴不变量
Figure PCTCN2018112705-appb-000166
是链节
Figure PCTCN2018112705-appb-000167
结构参数的自然描述。
定义12自然坐标轴空间:以固定轴不变量作为自然参考轴,以对应的自然坐标表示的空间称为自然坐标轴空间,简称自然轴空间。它是具有1个自由度的3D空间。
如图2所示,
Figure PCTCN2018112705-appb-000168
Figure PCTCN2018112705-appb-000169
不因杆件Ω l的运动而改变,是不变的结构参考量。
Figure PCTCN2018112705-appb-000170
确定了轴l相对于轴
Figure PCTCN2018112705-appb-000171
的五个结构参数;与关节变量q l一起,完整地表达了杆件Ω l的6D位形。给定
Figure PCTCN2018112705-appb-000172
时,杆件固结的自然坐标系可由结构参数
Figure PCTCN2018112705-appb-000173
及关节变量
Figure PCTCN2018112705-appb-000174
唯一确定。称轴不变量
Figure PCTCN2018112705-appb-000175
固定轴不变量
Figure PCTCN2018112705-appb-000176
关节变量
Figure PCTCN2018112705-appb-000177
Figure PCTCN2018112705-appb-000178
为自然不变量。显然,由固定轴不变量
Figure PCTCN2018112705-appb-000179
及关节变量
Figure PCTCN2018112705-appb-000180
构成的关节自然不变量
Figure PCTCN2018112705-appb-000181
与由坐标系
Figure PCTCN2018112705-appb-000182
至F [l]确定的空间位形
Figure PCTCN2018112705-appb-000183
具有一一映射关系,即
Figure PCTCN2018112705-appb-000184
给定多轴系统D={T,A,B,K,F,NT},在系统零位时,只要建立底座系或惯性系,以及各轴上的参考点O l,其它杆件坐标系也自然确定。本质上,只需要确定底座系或惯性系。
给定一个由运动副连接的具有闭链的结构简图,可以选定回路中任一个运动副,将组成该运动副的定子与动子分割开来;从而,获得一个无回路的树型结构,称之为Span树。T表示带方向的span树,以描述树链运动的拓扑关系。
I为结构参数;A为轴序列,F为杆件参考系序列,B为杆件体序列,K为运动副类型序列,NT为约束轴的序列即非树。
Figure PCTCN2018112705-appb-000185
为取轴序列
Figure PCTCN2018112705-appb-000186
的成员。转动副R,棱柱副P,螺旋副H,接触副O是圆柱副C的特例。
描述运动链的基本拓扑符号及操作是构成运动链拓扑符号系统的基础,定义如下:
【1】运动链由偏序集合(]标识。
【2】A [l]为取轴序列A的成员;因轴名l具有唯一的编号对应于A [l]的序号,故A [l]计算复杂度为O(1)。
【3】
Figure PCTCN2018112705-appb-000187
为取轴l的父轴;轴
Figure PCTCN2018112705-appb-000188
的计算复杂度为O(1)。计算复杂度O()表示计算过程的操作次数,通常指浮点乘与加的次数。以浮点乘与加的次数表达计算复杂度非常烦琐,故常采用算法循环过程中的主要操作次数;比如:关节位姿、速度、加速度等操作的次数。
【4】
Figure PCTCN2018112705-appb-000189
为取轴序列
Figure PCTCN2018112705-appb-000190
的成员;
Figure PCTCN2018112705-appb-000191
计算复杂度为O(1)。
【5】 ll k为取由轴l至轴k的运动链,输出表示为
Figure PCTCN2018112705-appb-000192
Figure PCTCN2018112705-appb-000193
基数记为| ll k|。 ll k执行过程:执行
Figure PCTCN2018112705-appb-000194
Figure PCTCN2018112705-appb-000195
则执行
Figure PCTCN2018112705-appb-000196
否则,结束。 ll k计算复杂度为O(| ll k|)。
【6】 ll为取轴l的子。该操作表示在
Figure PCTCN2018112705-appb-000197
中找到成员l的地址k;从而,获得轴l的子A [k]。因
Figure PCTCN2018112705-appb-000198
不具有偏序结构,故 ll的计算复杂度为
Figure PCTCN2018112705-appb-000199
【7】 lL表示获得由轴l及其子树构成的闭子树,
Figure PCTCN2018112705-appb-000200
为不含l的子树;递归执行 ll,计算复杂度为
Figure PCTCN2018112705-appb-000201
【8】支路、子树及非树弧的增加与删除操作也是必要的组成部分;从而,通过动态Span树及动态图描述可变拓扑结构。在支路 ll k中,若
Figure PCTCN2018112705-appb-000202
则记
Figure PCTCN2018112705-appb-000203
Figure PCTCN2018112705-appb-000204
Figure PCTCN2018112705-appb-000205
表示在支路中取成员m的子。
定义以下表达式或表达形式:
轴与杆件具有一一对应性;轴间的属性量
Figure PCTCN2018112705-appb-000206
及杆件间的属性量
Figure PCTCN2018112705-appb-000207
具有偏序性。
约定:“□”表示属性占位;若属性p或P是关于位置的,则
Figure PCTCN2018112705-appb-000208
应理解为坐标系
Figure PCTCN2018112705-appb-000209
的原点至F [l]的原点;若属性p或P是关于方向的,则
Figure PCTCN2018112705-appb-000210
应理解为坐标系
Figure PCTCN2018112705-appb-000211
至F [l]
Figure PCTCN2018112705-appb-000212
Figure PCTCN2018112705-appb-000213
应分别理解为关于时间t的函数
Figure PCTCN2018112705-appb-000214
Figure PCTCN2018112705-appb-000215
Figure PCTCN2018112705-appb-000216
Figure PCTCN2018112705-appb-000217
是t 0时刻的常数或常数阵列。但是正体的
Figure PCTCN2018112705-appb-000218
Figure PCTCN2018112705-appb-000219
应视为常数或常数阵列。
本申请中约定:在运动链符号演算系统中,具有偏序的属性变量或常量,在名称上包含表示偏序的指标;要么包含左上角及右下角指标,要么包含右上角及右下角指标;它们的方向总是由左上角指标至右下角指标,或由右上角指标至右下角指标,本申请中为叙述简便,有时省略方向的描述,即使省略,本领域技术人员通过符号表达式也可以知道,本申请中采用的各参数,对于某种属性符,它们的方向总是由偏序指标的左上角指标至右下角指标,或由右上角指标至右下角指标。例如:
Figure PCTCN2018112705-appb-000220
可简述为(表示由k至l)平动矢量;
Figure PCTCN2018112705-appb-000221
表示(由k至l的)线位置; kr l表示(由k至l的)平动矢量;其中:r表示“平动”属性符,其余属性符对应为:属性符φ表示“转动”;属性符Q表示“旋转变换矩阵”;属性符l表示“运动链”;属性符u表示“单位矢量”;属性符w表示“角速度”;角标为i表示惯性坐标系或大地坐标系;其他角标可以为其他字母,也可以为数字。
本申请的符号规范与约定是根据运动链的偏序性、链节是运动链的基本单位这两个原则 确定的,反映了运动链的本质特征。链指标表示的是连接关系,右上指标表征参考系。采用这种符号表达简洁、准确,便于交流与书面表达。同时,它们是结构化的符号系统,包含了组成各属性量的要素及关系,便于计算机处理,为计算机自动建模奠定基础。指标的含义需要通过属性符的背景即上下文进行理解;比如:若属性符是平动类型的,则左上角指标表示坐标系的原点及方向;若属性符是转动类型的,则左上角指标表示坐标系的方向。
(1)l S-杆件l中的点S;而S表示空间中的一点S。
(2)
Figure PCTCN2018112705-appb-000222
-杆件k的原点O k至杆件l的原点O l的平动矢量;
Figure PCTCN2018112705-appb-000223
在自然坐标系F [k]下的坐标矢量,即由k至l的坐标矢量;
(3)
Figure PCTCN2018112705-appb-000224
-原点O k至点l S的平动矢量;
Figure PCTCN2018112705-appb-000225
在F [k]下的坐标矢量;
(4)
Figure PCTCN2018112705-appb-000226
-原点O k至点S的平动矢量;
Figure PCTCN2018112705-appb-000227
在F [k]下的坐标矢量;
(5)
Figure PCTCN2018112705-appb-000228
-连接杆件
Figure PCTCN2018112705-appb-000229
及杆件l的运动副;
Figure PCTCN2018112705-appb-000230
-运动副
Figure PCTCN2018112705-appb-000231
的轴矢量;
Figure PCTCN2018112705-appb-000232
Figure PCTCN2018112705-appb-000233
分别在
Figure PCTCN2018112705-appb-000234
及F [l]下的坐标矢量;
Figure PCTCN2018112705-appb-000235
是轴不变量,为一结构常数;
Figure PCTCN2018112705-appb-000236
为转动矢量,转动矢量/角矢量
Figure PCTCN2018112705-appb-000237
是自由矢量,即该矢量可自由平移;
(6)
Figure PCTCN2018112705-appb-000238
-沿轴
Figure PCTCN2018112705-appb-000239
的线位置(平动位置),
Figure PCTCN2018112705-appb-000240
-绕轴
Figure PCTCN2018112705-appb-000241
的角位置,即关节角、关节变量,为标量;
(7)左下角指标为0时,表示机械零位;如:
Figure PCTCN2018112705-appb-000242
-平动轴
Figure PCTCN2018112705-appb-000243
的机械零位,
Figure PCTCN2018112705-appb-000244
-转动轴
Figure PCTCN2018112705-appb-000245
的机械零位;
(8)0-三维零矩阵;1-三维单位矩阵;
(9)约定:“\”表示续行符;“□”表示属性占位;则
幂符
Figure PCTCN2018112705-appb-000246
表示□的x次幂;右上角角标∧或
Figure PCTCN2018112705-appb-000247
表示分隔符;如:
Figure PCTCN2018112705-appb-000248
Figure PCTCN2018112705-appb-000249
Figure PCTCN2018112705-appb-000250
的x次幂。
[□] T表示□的转置,表示对集合转置,不对成员执行转置;如:
Figure PCTCN2018112705-appb-000251
|□为投影符,表示矢量或二阶张量对参考基的投影矢量或投影序列,即坐标矢量或坐标阵列,投影即是点积运算“·”;如:位置矢量
Figure PCTCN2018112705-appb-000252
在坐标系F [k]中的投影矢量记为
Figure PCTCN2018112705-appb-000253
Figure PCTCN2018112705-appb-000254
为叉乘符;如:
Figure PCTCN2018112705-appb-000255
是轴不变量
Figure PCTCN2018112705-appb-000256
的叉乘矩阵;给定任一矢量
Figure PCTCN2018112705-appb-000257
的叉乘矩阵为
Figure PCTCN2018112705-appb-000258
叉乘矩阵是二阶张量。
叉乘符运算的优先级高于投影符 |□的优先级。投影符 |□的优先级高于成员访问符□ [□]或□ [□],成员访问符□ [□]优先级高于幂符
Figure PCTCN2018112705-appb-000259
(10)单位矢量在大地坐标系的投影矢量
Figure PCTCN2018112705-appb-000260
单位零位矢量
Figure PCTCN2018112705-appb-000261
(11)
Figure PCTCN2018112705-appb-000262
-零位时由原点
Figure PCTCN2018112705-appb-000263
至原点O l的平动矢量,且记
Figure PCTCN2018112705-appb-000264
表示位置结构参数。
(12) iQ l,相对绝对空间的旋转变换阵;
(13)以自然坐标轴矢量为参考方向,相对系统零位的角位置或线位置,记为q l,称为自然坐标;关节变量
Figure PCTCN2018112705-appb-000265
自然关节坐标为φ l
(14)对于一给定有序的集合r=[1,4,3,2] T,记r [x]表示取集合r的第x行元素。常记[x]、[y]、[z]及[w]表示取第1、2、3及4列元素。
(15) il j表示由i到j的运动链; ll k为取由轴l至轴k的运动链;
给定运动链
Figure PCTCN2018112705-appb-000266
若n表示笛卡尔直角系,则称
Figure PCTCN2018112705-appb-000267
为笛卡尔轴链;若n表示自然参考轴,则称
Figure PCTCN2018112705-appb-000268
为自然轴链。
(16)Rodrigues四元数表达形式:
Figure PCTCN2018112705-appb-000269
欧拉四元数表达形式:
Figure PCTCN2018112705-appb-000270
不变量的四元数(也称为轴四元数)表达形式
Figure PCTCN2018112705-appb-000271
如位置矢量
Figure PCTCN2018112705-appb-000272
在笛卡尔三个坐标轴上的投影矢量为
Figure PCTCN2018112705-appb-000273
定义
Figure PCTCN2018112705-appb-000274
由于 lr lS左上角指标指明了参考系, lr lS既间接表示了位移矢量
Figure PCTCN2018112705-appb-000275
又直接表示了位移坐标矢量,即具 有矢量及坐标矢量的双重作用。
分块矩阵的高维行列式计算:
记<1:n>表示自然数[1:n]的全排列,共有n!个实例。给定属于数域的大小为n×n的矩阵M,其j行i列元素记为
Figure PCTCN2018112705-appb-000276
根据行列式定义得
Figure PCTCN2018112705-appb-000277
其中:I[i1,…in]表示排列<i1,…in>的逆序个数。式(1)计算复杂度为:n!次n个数积及n!次加法,具有指数计算复杂度,只能适用于维度较小的行列式。对于维度较大的行列式,通常应用Laplace公式进行递规运算,记
Figure PCTCN2018112705-appb-000278
Figure PCTCN2018112705-appb-000279
的伴随矩阵(Adjugate Matrix),则有
Figure PCTCN2018112705-appb-000280
更简单的算法通常应用高斯消去法或LU分解法,先通过初等变换将矩阵变为三角阵或三角阵的乘积,后计算行列式。上述针对数域的行列式计算方法不适用于高维度的多项式矩阵,需要引入分块矩阵的行列式计算方法。计算矢量多项式(Vector Polynomial)的行列式是一个特定的分块矩阵行列式的计算问题,它在矢量层次上表达了矢量与行列式的内在联系。而分块矩阵行列式计算则从矩阵层次上表达分块矩阵与行列式的内在规律。
若给定矢量多项式
Figure PCTCN2018112705-appb-000281
其中:
Figure PCTCN2018112705-appb-000282
Figure PCTCN2018112705-appb-000283
为3D坐标矢量,
Figure PCTCN2018112705-appb-000284
为多项式变量序列;若约定
Figure PCTCN2018112705-appb-000285
则有
Figure PCTCN2018112705-appb-000286
式(3)及式(4)可以推广至n维空间。
实施例1
给定2个2维行矢量多项式
Figure PCTCN2018112705-appb-000287
Figure PCTCN2018112705-appb-000288
Figure PCTCN2018112705-appb-000289
一方面,由式(4)得
Figure PCTCN2018112705-appb-000290
另一方面,
Figure PCTCN2018112705-appb-000291
上面的结果验证了式(4)的正确性。
给出分块矩阵的行列式计算定理:
若记大小为(n+m)·(n+m)的方阵为M,大小为n·n的矩阵
Figure PCTCN2018112705-appb-000292
是方阵M的前n行及任意n列元素构成的子矩阵,大小为m·m的矩阵
Figure PCTCN2018112705-appb-000293
是方阵M后m行及剩余m列元素构成的子矩阵;由升序排列的矩阵列序号构成的序列cn及cm是序列[1:m+n]的子集,[cn,cm]∈<1:n+m>,且有cm∪cn=[1:m+n];则方阵M行列式与分块矩阵
Figure PCTCN2018112705-appb-000294
Figure PCTCN2018112705-appb-000295
的行列式关系为
Figure PCTCN2018112705-appb-000296
对行列式进行行阶梯化计算原理:
对于S×S矩阵,其每一项是关于τ 1的n阶多项式。计算该矩阵的行列式时,可通过初等行变换将原行列式变为上三角行列式,再将非零的对角线元素相乘,得到行列式的多项式表达式。该式为0,得到τ 1的所有解。
行阶梯化的具体方法为,先对行列式第一列的最高阶次由高到低进行排序,再进行最多(S-1)×n次初等行变换消元,得到第一列只有第一个元素不为0的行列式。再对该行列式第1行及1列的余子式进行初等行变换消元,依次迭代求解。
实施例2
通过矩阵的初等行变换,得到
Figure PCTCN2018112705-appb-000297
的行阶梯矩阵。
步骤为:rk代表第k行。得
Figure PCTCN2018112705-appb-000298
则得
Figure PCTCN2018112705-appb-000299
基于“N进位字”的N阶多项式系统:
若n个“n元1阶”多项式幂积
Figure PCTCN2018112705-appb-000300
中独立变量重复出现N次,则得到n个“n元N阶”多项式系统
Figure PCTCN2018112705-appb-000301
“n元N阶多项式系统”与“n位N进位字”
Figure PCTCN2018112705-appb-000302
同构。
Figure PCTCN2018112705-appb-000303
Figure PCTCN2018112705-appb-000304
Figure PCTCN2018112705-appb-000305
Figure PCTCN2018112705-appb-000306
n个“n元N阶”多项式系统的Dixon多项式:
引入辅助变量[y 2,y 3,…,y n],且有
Figure PCTCN2018112705-appb-000307
在多元多重多项式(8)中,用辅助变量Y m的前m个依次替换原变量(Original Variables)X n中的m个变量,记“|”为替换操作符,得到增广的(Extended)多项式
Figure PCTCN2018112705-appb-000308
Figure PCTCN2018112705-appb-000309
式中右上角标α、
Figure PCTCN2018112705-appb-000310
表示幂;
由式(6)及式(12)得
Figure PCTCN2018112705-appb-000311
其中:
Figure PCTCN2018112705-appb-000312
定义可分离组合变量
Figure PCTCN2018112705-appb-000313
Figure PCTCN2018112705-appb-000314
如下:
Figure PCTCN2018112705-appb-000315
由式(14)及式(15)可知:替换式
Figure PCTCN2018112705-appb-000316
是关于
Figure PCTCN2018112705-appb-000317
Figure PCTCN2018112705-appb-000318
的双重线性型。相应地,用辅助变量替换的多项式系统记为
Figure PCTCN2018112705-appb-000319
给定n个“n元N阶”多项式系统
Figure PCTCN2018112705-appb-000320
定义其Dixon多项式为
Figure PCTCN2018112705-appb-000321
由式(17)得
Figure PCTCN2018112705-appb-000322
式(15)中分离变量与文献不同:原变量X n-1被辅助变量Y n-1替换的次序不同,Dixon多项式也不同。考虑式(13)及式(18)得该多项式的Dixon行列式
Figure PCTCN2018112705-appb-000323
在笛卡尔空间下,由位置矢量或转动矢量构成的行列式表示矢量张成空间的容积(Volume);在不同笛卡尔空间下具有容积的不变性。其中:
Figure PCTCN2018112705-appb-000324
n个“n元N阶”多项式的Dixon行列式的阶次及替换变量项数分别为:
Figure PCTCN2018112705-appb-000325
n个“n元N阶”Dixon矩阵:
给定n个“n元N阶”多项式系统F n(Y n-1|X n-1),n≥2;存在与消去变量x 2,…,x n无关的Dixon矩阵 SΘ S(x 1),其Dixon多项式
Figure PCTCN2018112705-appb-000326
表示为分离变量
Figure PCTCN2018112705-appb-000327
Figure PCTCN2018112705-appb-000328
的双重线性型:
Figure PCTCN2018112705-appb-000329
Figure PCTCN2018112705-appb-000330
Figure PCTCN2018112705-appb-000331
为大小为S×S的Dixon矩阵,其第[i][j]成员为单变量x 1的N阶多项式:
Figure PCTCN2018112705-appb-000332
其中:
Figure PCTCN2018112705-appb-000333
Figure PCTCN2018112705-appb-000334
则有
Figure PCTCN2018112705-appb-000335
考虑式(22),若
Figure PCTCN2018112705-appb-000336
故得
Det( SΘ S(x 1))=0。      (28)
称式(28)中“n个n元”为Dixon消元的必要条件,从而获得可行解。若 SΘ S存在零行或零列向量,则无法建立x 1的多项式方程;此时,通过除标量积之外的初等变换,将 SΘ S变为行阶梯(Row Echelon)矩阵Ech( SΘ S);在计算该矩阵的杻轴(Pivot)的积之后得方阵
Figure PCTCN2018112705-appb-000337
即在 SΘ S中选取S′个独立的列向量。
任一个n个“n元N阶”多项式系统
Figure PCTCN2018112705-appb-000338
的实例(简称多项式)记为
Figure PCTCN2018112705-appb-000339
其中:
Figure PCTCN2018112705-appb-000340
且有
Figure PCTCN2018112705-appb-000341
根据
Figure PCTCN2018112705-appb-000342
的多项式确定Dixon矩阵、分离变量
Figure PCTCN2018112705-appb-000343
Figure PCTCN2018112705-appb-000344
选取
Figure PCTCN2018112705-appb-000345
Figure PCTCN2018112705-appb-000346
满足
Figure PCTCN2018112705-appb-000347
确定双线性型
Figure PCTCN2018112705-appb-000348
Figure PCTCN2018112705-appb-000349
其中:
Figure PCTCN2018112705-appb-000350
中与
Figure PCTCN2018112705-appb-000351
对应的各列线性独立。因
Figure PCTCN2018112705-appb-000352
由式(22)及式(25)得
Figure PCTCN2018112705-appb-000353
称其为结式或消去式。式(32)是单变量x 1的多项式方程;消去了n-1个未知量;从而,可以获得单变量x 1的可行解。若x 1同时满足
Figure PCTCN2018112705-appb-000354
则x 1为正确解。将已解的x 1代入式(34),因式(32)成立且
Figure PCTCN2018112705-appb-000355
任意,故得
Figure PCTCN2018112705-appb-000356
即有
Figure PCTCN2018112705-appb-000357
若有必要条件
Figure PCTCN2018112705-appb-000358
成立,解式(35),得被消去变量
Figure PCTCN2018112705-appb-000359
的解;否则,需要结合式(16)得到全部解。考虑式(25), 因式(22)两边的x 1阶次相等,故必有
Figure PCTCN2018112705-appb-000360
若同时满足
Figure PCTCN2018112705-appb-000361
则由式(35)能解得
Figure PCTCN2018112705-appb-000362
中n-1个互不相同的组合变量;从而,得到所有独立变量的解。
给定n个“n元N阶”多项式
Figure PCTCN2018112705-appb-000363
Dixon矩阵计算步骤如下:
①确定系统结构。方程数及独立变量数记为n;独立变量记为X n;多项式复合变量记为
Figure PCTCN2018112705-appb-000364
替换变量记为
Figure PCTCN2018112705-appb-000365
替换变量数为n-1;大小为S·S的Dixon矩阵记为
Figure PCTCN2018112705-appb-000366
其成员系数如式(24)所示,其中:S由式(32)确定;待消去变量为x 1
②由式(8)得
Figure PCTCN2018112705-appb-000367
Figure PCTCN2018112705-appb-000368
对应关系,表达式(11)中
Figure PCTCN2018112705-appb-000369
至多有S项。
③根据式(19)及Sarrus规则,计算Dixon(F n(Y n-1|X n-1));根据
Figure PCTCN2018112705-appb-000370
对应的N进位字运算结果,完成多项式合并。
④Dixon矩阵成员如式(32)所示,由式(32)计算Dixon矩阵 SΘ S的(n+1)·S 2个系数。
⑤当满足式(37)及式(38)直接解判别准则时,由式(34)及式(35)得全部数值解。
实施例3
对多项式系统(39)进行Dixon消元。
Figure PCTCN2018112705-appb-000371
步骤为:该式是4个“4元1阶”多项式系统,满足Dixon消元条件。由式(19)及式(22),得
Figure PCTCN2018112705-appb-000372
其中:
Figure PCTCN2018112705-appb-000373
由式(34)及式(40)得5个解:
Figure PCTCN2018112705-appb-000374
Figure PCTCN2018112705-appb-000375
Figure PCTCN2018112705-appb-000376
其中:
Figure PCTCN2018112705-appb-000377
不是该方程组的解。将其它解分别代入式(35)。当
Figure PCTCN2018112705-appb-000378
时,由式(35)得
Figure PCTCN2018112705-appb-000379
解得:τ 3=1,τ 4=-2。将
Figure PCTCN2018112705-appb-000380
τ 3及τ 4代入式(39)得τ 2=1。同样,可得其他三组解。显然,因变量不满足式(26),式(40)所示的Dixon矩阵不对称。该例表明Dixon行列式为零对于多重线性多项式系统是充分的。
基于轴不变量的定轴转动
如图3所示,给定轴矢量
Figure PCTCN2018112705-appb-000381
及与其固结的单位矢量
Figure PCTCN2018112705-appb-000382
在转动前,对于单位矢量
Figure PCTCN2018112705-appb-000383
Figure PCTCN2018112705-appb-000384
对系统零位轴
Figure PCTCN2018112705-appb-000385
的投影矢量为
Figure PCTCN2018112705-appb-000386
对系统径向轴
Figure PCTCN2018112705-appb-000387
的矩矢量为
Figure PCTCN2018112705-appb-000388
径向矢量为
Figure PCTCN2018112705-appb-000389
轴矢量
Figure PCTCN2018112705-appb-000390
相对于杆件
Figure PCTCN2018112705-appb-000391
及Ω l或自然坐标系
Figure PCTCN2018112705-appb-000392
及F [l]是固定不变的,故称该转动为定轴转动。单位矢量
Figure PCTCN2018112705-appb-000393
绕轴
Figure PCTCN2018112705-appb-000394
转动
Figure PCTCN2018112705-appb-000395
后,转动后的零位矢量
Figure PCTCN2018112705-appb-000396
对系统零位轴
Figure PCTCN2018112705-appb-000397
的投影矢量为
Figure PCTCN2018112705-appb-000398
转动后的零位矢量
Figure PCTCN2018112705-appb-000399
对系统径向轴
Figure PCTCN2018112705-appb-000400
的矩矢量为
Figure PCTCN2018112705-appb-000401
轴向分量为
Figure PCTCN2018112705-appb-000402
故得具有链指标的Rodrigues矢量方程
Figure PCTCN2018112705-appb-000403
因单位矢量
Figure PCTCN2018112705-appb-000404
是任意的且
Figure PCTCN2018112705-appb-000405
得具有链指标的Rodrigues转动方程
Figure PCTCN2018112705-appb-000406
Figure PCTCN2018112705-appb-000407
由式(42),得
Figure PCTCN2018112705-appb-000408
Figure PCTCN2018112705-appb-000409
即坐标系
Figure PCTCN2018112705-appb-000410
与F [l]的方向一致,由 式(42)可知:反对称部分
Figure PCTCN2018112705-appb-000411
必有
Figure PCTCN2018112705-appb-000412
因此,系统零位是自然坐标系
Figure PCTCN2018112705-appb-000413
与F [l]重合的充分必要条件,即初始时刻的自然坐标系方向一致是系统零位定义的前提条件。利用自然坐标系可以很方便地分析多轴系统运动学和动力学。
Figure PCTCN2018112705-appb-000414
式(43)是关于
Figure PCTCN2018112705-appb-000415
Figure PCTCN2018112705-appb-000416
的多重线性方程,是轴不变量
Figure PCTCN2018112705-appb-000417
的二阶多项式。给定自然零位矢量
Figure PCTCN2018112705-appb-000418
作为
Figure PCTCN2018112705-appb-000419
的零位参考,则
Figure PCTCN2018112705-appb-000420
Figure PCTCN2018112705-appb-000421
分别表示零位矢量及径向矢量。式(43)即为
Figure PCTCN2018112705-appb-000422
对称部分
Figure PCTCN2018112705-appb-000423
表示零位轴张量,反对称部分
Figure PCTCN2018112705-appb-000424
表示径向轴张量,分别与轴向外积张量
Figure PCTCN2018112705-appb-000425
正交,从而确定三维自然轴空间;式(43)仅含一个正弦及余弦运算、6个积运算及6个和运算,计算复杂度低;同时,通过轴不变量
Figure PCTCN2018112705-appb-000426
及关节变量
Figure PCTCN2018112705-appb-000427
实现了坐标系及极性的参数化。
对于轴链
Figure PCTCN2018112705-appb-000428
Figure PCTCN2018112705-appb-000429
由式(44)及式(43)得
Figure PCTCN2018112705-appb-000430
Figure PCTCN2018112705-appb-000431
Figure PCTCN2018112705-appb-000432
Figure PCTCN2018112705-appb-000433
的多重线性型,其中:l∈ il k。式(43)可表示为
Figure PCTCN2018112705-appb-000434
称(45)为改进的Cayley变换。即有
Figure PCTCN2018112705-appb-000435
由式(46)得规范的位置方程
Figure PCTCN2018112705-appb-000436
“居-吉布斯”四元数的确定:
对于任意杆件
Figure PCTCN2018112705-appb-000437
定义与欧拉四元数同构的“居-吉布斯”(Ju-Gibbs)规范四元数:
Figure PCTCN2018112705-appb-000438
其中:
Figure PCTCN2018112705-appb-000439
为Gibbs矢量。Gibbs共轭四元数为:
Figure PCTCN2018112705-appb-000440
其中:
Figure PCTCN2018112705-appb-000441
显然,
Figure PCTCN2018112705-appb-000442
Figure PCTCN2018112705-appb-000443
模的平方。因居-吉布斯四元数是四元数,故满足四元数乘法运算
Figure PCTCN2018112705-appb-000444
其中:
Figure PCTCN2018112705-appb-000445
由式(52)得
Figure PCTCN2018112705-appb-000446
习惯上,单关节及运动链的期望姿态以规范的Ju-Gibbs四元数(简称规范Ju-Gibbs四元数,即“标部”为1的四元数)表示;但是它们积运算通常是不规范的,即其标部不为1。由式(53)可知:只有给定轴l及
Figure PCTCN2018112705-appb-000447
的规范Ju-Gibbs四元数,且两轴正交,
Figure PCTCN2018112705-appb-000448
才为规范四元数。
由式(53)得
Figure PCTCN2018112705-appb-000449
由四维复数性质得
Figure PCTCN2018112705-appb-000450
Figure PCTCN2018112705-appb-000451
由式(52)得
Figure PCTCN2018112705-appb-000452
Figure PCTCN2018112705-appb-000453
为单位Ju-Gibbs四元数。
由式(48)至式(50)及式(55)得
Figure PCTCN2018112705-appb-000454
由式(50)、式(54)及式(57)得
Figure PCTCN2018112705-appb-000455
类DCM及性质:
对于轴链
Figure PCTCN2018112705-appb-000456
规范的姿态方程为:
Figure PCTCN2018112705-appb-000457
由式(59)得
Figure PCTCN2018112705-appb-000458
Figure PCTCN2018112705-appb-000459
式中,
Figure PCTCN2018112705-appb-000460
为旋转变换矩阵;
Figure PCTCN2018112705-appb-000461
表示用辅助变量y l的前l个依次替换原变量τ l中的l个变量,记“|”为替换操作符;
其中:
Figure PCTCN2018112705-appb-000462
由式(61)可知: iQ n
Figure PCTCN2018112705-appb-000463
是关于τ k的n重2阶多项式。由式(60)可知:因
Figure PCTCN2018112705-appb-000464
Figure PCTCN2018112705-appb-000465
类似,故称之为类DCM(DCM,方向余弦矩阵)。由式(62)得
Figure PCTCN2018112705-appb-000466
显然,类DCM可以通过Ju-Gibbs四元数表达。因此,式(59)姿态方程及式(47)位置方程是关于Ju-Gibbs四元数的表达式。
分块方阵的逆:
若给定可逆方阵K、B及C,其中B及C分别为l×l、c×c的方阵;A、D分别为l×c、c×l的矩阵,且
Figure PCTCN2018112705-appb-000467
则有
Figure PCTCN2018112705-appb-000468
基于轴不变量的Dixon行列式计算原理:
下面基于轴不变量,提出径向不变量及运动链的Dixon行列式基本性质,为基于轴不变量的机器人逆运动学分析奠定基础。
【1】轴不变量
首先,轴不变量与坐标轴具有本质区别:坐标轴是具有零位及单位刻度的参考方向,可以描述沿轴向平动的线位置,但不能完整描述绕轴向的角位置,因为坐标轴自身不具有径向 参考方向,即不存在表征转动的零位。在实际应用时,需要补充坐标轴的径向参考。坐标轴自身是1D的,3个正交的坐标轴构成3D的笛卡尔标架;轴不变量是3D空间单位参考轴(简称3D参考轴),具有径向参考零位。“3D参考轴”及其径向参考零位可以确定对应的笛卡尔系。以自然坐标系为基础的轴不变量可以准确地反映运动轴及测量轴的“共轴性”、“极性”与“零位”三个基本属性。
其次,轴不变量与欧拉轴具有本质的区别:方向余弦矩阵(DCM)是实矩阵,轴矢量是DCM的特征值1对应的特征矢量,是不变量;固定轴不变量是“3D参考轴”,不仅具有原点及轴向,也有径向参考零位;在自然坐标系下,轴不变量不依赖于相邻固结的自然坐标系,即在相邻固结的自然坐标系下具有不变的自然坐标;轴不变量具有幂零特性等优良的数学操作功能;在自然坐标系统中,通过轴不变量及关节坐标,可以唯一确定DCM及参考极性;没有必要为每一个杆件建立各自的体系,可以极大地简化建模的工作量。
同时,以唯一需要定义的笛卡尔直角坐标系为参考,测量轴不变量,可以提高结构参数的测量精度。基于轴不变量的优良操作及属性,可以建立包含拓扑结构、坐标系、极性、结构参量及动力学参量的迭代式的运动学及动力学方程。
由式(59)及式(47)可知:多轴系统的姿态及位置方程本质上是多元二阶多项式方程,其逆解本质上归结于多元二阶多项式的消元问题,包含Dixon矩阵及Dixon行列式计算的两个子问题。用式(47)的表达3R机械臂位置方程,是3个“3元2阶”多项式,应用Dixon消元方法计算逆解,有两个替换变量,在计算8×8的Dixon行列式时,最大可能的阶次为16。由式(4)可知:行列式计算是一个排列过程,面临着“组合爆炸”的难题。
所有的不在确定的多项式时间内可解的问题称为NP问题。非确定性算法将问题分解为“猜测”与“验证”两个阶段:算法的“猜测”阶段具有非确定性,算法的“验证”阶段具有确定性,通过验证来确定猜测的解是否正确。假如可以在多项式时间内计算出来,就称为多项式非确定性问题。多元多项式的消元通常被认为是NP问题。通常应用
Figure PCTCN2018112705-appb-000469
基进行多元多项式的消元,不得不求助于启发式的“猜测”与“验证”来解决问题。
【2】径向不变量
结构参数
Figure PCTCN2018112705-appb-000470
Figure PCTCN2018112705-appb-000471
是链节l的结构参量,在系统零位时,它们可以通过外部测量得到。如图4所示,零位矢量、径向矢量及轴向矢量是与转动角无关的不变量。其中,零位矢量是特定的径向矢量。
任一个矢量可以分解为零位矢量及轴向矢量,故有
Figure PCTCN2018112705-appb-000472
其中:
Figure PCTCN2018112705-appb-000473
Figure PCTCN2018112705-appb-000474
考虑链节
Figure PCTCN2018112705-appb-000475
其D-H参数有
Figure PCTCN2018112705-appb-000476
显然,
Figure PCTCN2018112705-appb-000477
是轴l及
Figure PCTCN2018112705-appb-000478
的公垂线或公共径向矢量,
Figure PCTCN2018112705-appb-000479
是轴l的轴向矢量。由式(65)可知:任一个结构参数矢量
Figure PCTCN2018112705-appb-000480
可分解为与坐标系为无关的零位不变量
Figure PCTCN2018112705-appb-000481
及轴向不变量
Figure PCTCN2018112705-appb-000482
它们的径向矢量记为
Figure PCTCN2018112705-appb-000483
结构参数矢量
Figure PCTCN2018112705-appb-000484
及轴不变量
Figure PCTCN2018112705-appb-000485
唯一确定径向坐标系,具有2个独立维度。若两个轴向不变量
Figure PCTCN2018112705-appb-000486
Figure PCTCN2018112705-appb-000487
共线,则记为
Figure PCTCN2018112705-appb-000488
若两个零位不变量
Figure PCTCN2018112705-appb-000489
Figure PCTCN2018112705-appb-000490
与任两个径向不变量
Figure PCTCN2018112705-appb-000491
Figure PCTCN2018112705-appb-000492
共面,则记为
Figure PCTCN2018112705-appb-000493
因此,称式(66)所示的轴向不变量及零位不变量是结构参数矢量对自然轴的分解。
由式(69)及式(70)可知:同一个轴的三个径向矢量的行列式为零;同一个轴的任意两个轴向矢量的行列式为零。可以用轴不变量及其导出的不变量来简化Dixon行列式计算。
由轴不变量导出的零位矢量、径向矢量及轴向矢量具有以下关系:
Figure PCTCN2018112705-appb-000494
Figure PCTCN2018112705-appb-000495
Figure PCTCN2018112705-appb-000496
称式(71)为零位矢量的反转公式;称式(72)为零位矢量与径向矢量的互换公式;称式(73)为径向矢量不变性公式。由式(65)、式(71)至式(73)得
Figure PCTCN2018112705-appb-000497
Figure PCTCN2018112705-appb-000498
由式(74)得
Figure PCTCN2018112705-appb-000499
Figure PCTCN2018112705-appb-000500
Figure PCTCN2018112705-appb-000501
的对称部分的结构常数,故称式(74)为矢量
Figure PCTCN2018112705-appb-000502
的对称分解式。因
Figure PCTCN2018112705-appb-000503
Figure PCTCN2018112705-appb-000504
的反对称部分的结构常数,故称式(75)为矢量
Figure PCTCN2018112705-appb-000505
的反对称分解式。称式(76)为归零等式。
【3】运动链Dixon行列式性质
定义
Figure PCTCN2018112705-appb-000506
由式(52)得
Figure PCTCN2018112705-appb-000507
其中:
Figure PCTCN2018112705-appb-000508
由式(62)及式(66)得
Figure PCTCN2018112705-appb-000509
由式(79)证得
Figure PCTCN2018112705-appb-000510
式(80)可以将
Figure PCTCN2018112705-appb-000511
Figure PCTCN2018112705-appb-000512
可以转化为关于
Figure PCTCN2018112705-appb-000513
的多重线性型。同时,
Figure PCTCN2018112705-appb-000514
对y l及τ l具有对称(轮换)性。由式(67)、式(74)及式(75)得
Figure PCTCN2018112705-appb-000515
式(81)由三个导出的独立结构参量
Figure PCTCN2018112705-appb-000516
及一个运动变量τ l构成。由式(81)得
Figure PCTCN2018112705-appb-000517
Figure PCTCN2018112705-appb-000518
由式(80)及式(83)得
Figure PCTCN2018112705-appb-000519
由式(80)及式(84)得
Figure PCTCN2018112705-appb-000520
基于轴不变量的Cayley变换
当给定角度
Figure PCTCN2018112705-appb-000521
后,其正、余弦及其半角的正、余弦均是常数;为方便表达,记
Figure PCTCN2018112705-appb-000522
由式(86)得
Figure PCTCN2018112705-appb-000523
定义
Figure PCTCN2018112705-appb-000524
故有
Figure PCTCN2018112705-appb-000525
Figure PCTCN2018112705-appb-000526
与径向矢量
Figure PCTCN2018112705-appb-000527
及切向矢量
Figure PCTCN2018112705-appb-000528
是线性关系,称
Figure PCTCN2018112705-appb-000529
为“Rodrigues线性不变量”。通常称
Figure PCTCN2018112705-appb-000530
Figure PCTCN2018112705-appb-000531
为Rodrigues或Gibbs矢量, 而将
Figure PCTCN2018112705-appb-000532
称为修改的Rodrigues参数(MRPs)
基于轴不变量的3R机械臂位置逆解方法
给定3R转动链
Figure PCTCN2018112705-appb-000533
及期望姿态
Figure PCTCN2018112705-appb-000534
轴不变量序列
Figure PCTCN2018112705-appb-000535
求关节变量序列
Figure PCTCN2018112705-appb-000536
这是3R姿态逆解问题。
【1】根据机械臂n元3D矢量位姿方程,获得n个“n元2阶”多项式方程。
由式(47)得3R运动学方程
Figure PCTCN2018112705-appb-000537
由式(90)得
Figure PCTCN2018112705-appb-000538
由式(91)得
Figure PCTCN2018112705-appb-000539
若记
Figure PCTCN2018112705-appb-000540
则由式(61)及式得(93)
Figure PCTCN2018112705-appb-000541
由式(92)及式(93)得
Figure PCTCN2018112705-appb-000542
下面,阐述3R机械臂运动学方程的Dixon行列式的结构模型及特点。
由式(95)得3R运动学多项式方程
Figure PCTCN2018112705-appb-000543
多项式系统F 3(Y 2|T 2),根据双线性型行列式通式
Figure PCTCN2018112705-appb-000544
则有
Figure PCTCN2018112705-appb-000545
其中:
Figure PCTCN2018112705-appb-000546
Figure PCTCN2018112705-appb-000547
由式(18)、式(95)及式(96)得
Figure PCTCN2018112705-appb-000548
由式(22)及式(101)可知式(99)成立。由式(80)及式(93)得
Figure PCTCN2018112705-appb-000549
Figure PCTCN2018112705-appb-000550
由式(93)、式(102)及式(103)得
Figure PCTCN2018112705-appb-000551
其中:应用式(85)计算
Figure PCTCN2018112705-appb-000552
显然,式(104)中的y 2阶次β2∈[0:3]及y 3阶次β3∈[0:1]。考虑式(101)后三项:
Figure PCTCN2018112705-appb-000553
中的y 2阶次β2∈[0:3]及y 3阶次β3∈[0:1];
Figure PCTCN2018112705-appb-000554
中的y 2阶次β2∈[0:2]及y 3阶次β3∈[0:1];
Figure PCTCN2018112705-appb-000555
中的y 2的阶次β2∈[0:3]及y 3的阶次β3∈[0:1]。由上可知:式(101)中的y 2阶次β2∈[0:3]及y 3的阶次β3∈[0:1]。故有S=8。
由式(93)、式(101)至式(104)可知:
Figure PCTCN2018112705-appb-000556
中组合变量系数为独立的列向量,故选取
Figure PCTCN2018112705-appb-000557
的系数来构成方阵
Figure PCTCN2018112705-appb-000558
剩余列向量一定与
Figure PCTCN2018112705-appb-000559
的各列相关。故式(100)成立。
【2】应用“基于轴不变量的Dixon行列式计算”方法,“分块矩阵的高维行列式计算”方法或者“对行列式进行行阶梯化计算”方法简化行列式计算。
根据运动链Dixon行列式性质,由式(80)及式(93)得
Figure PCTCN2018112705-appb-000560
Figure PCTCN2018112705-appb-000561
Figure PCTCN2018112705-appb-000562
其中:
Figure PCTCN2018112705-appb-000563
分别表示轴2至轴3、轴3至轴3S的零位矢量、径向矢量及轴向矢量。
由式(105)得
Figure PCTCN2018112705-appb-000564
由式(106)得
Figure PCTCN2018112705-appb-000565
由式(107)得
Figure PCTCN2018112705-appb-000566
由式(101)得
Figure PCTCN2018112705-appb-000567
将式(108)至式(110)代入式(111)得
Figure PCTCN2018112705-appb-000568
【3】应用n个“n元N阶”多项式的Dixon消元与求解原理完成位姿逆解计算,其中:根据Dixon矩阵的行列式为0,得到一元高阶多项式方程,应用基于友阵的一元高阶多项式方程求解一元高阶多项式方程的解。
一元n阶多项式p(x)=a 0+a 1x+…a n-1x n-1+x n具有n个解。若能找到一个矩阵A,满足|A-λ l·1 n|·v l=0,其中:l∈[1:n],λ l为该矩阵的特征值,v l为对应的特征矢量。若矩阵A的特征方程为
Figure PCTCN2018112705-appb-000569
则称该矩阵为多项式p(x)的友矩阵(Companion Matrix,简称友阵),因此,多项式方程p(λ l)=0的解为其友阵A的特征方程|A-λ l·1 n|=0的解。
若多项式p(x)的友阵为
Figure PCTCN2018112705-appb-000570
则由矩阵A的特征向量构成的矩阵为范德蒙德(Vandermonde)矩阵为
Figure PCTCN2018112705-appb-000571
且有
p(λ l)=|A-λ l·1 n|=0。        (115)
由式(28)、式(99)及式(100)得
Figure PCTCN2018112705-appb-000572
因S=8,应用式(1)计算
Figure PCTCN2018112705-appb-000573
的复杂度为8·8!=322560;而应用式(5)进行二次分块的行列式计算,其中:2·2分块矩阵计算复杂度为4!(2·2!+2·2!+1)/(2!2!)=30,4·4分块分矩阵计算复杂度为8!(30+30+1)/(4!4!)=4270。一般情况下,式(116)是关于τ 1的16阶单项式方程。
该方法的过程表明:整体与局部、复杂与简单是对立统一的;式(4)将矢量多项式的行列式计算转化为三个矢量的行列式,这一步骤起到了决定性的作用;轴不变量及其导出的不变量都是结构参量,系统方程是关于结构参数的矢量与关节变量(标量)的矢量代数方程。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (8)

  1. 一种基于轴不变量的通用3R机械臂逆解建模与解算方法,其特征是,
    应用n个“n元N阶”多项式的Dixon消元与求解原理,进行位姿逆解计算,主要包括以下步骤:
    【1】根据机械臂n元3D矢量位姿方程,获得n个“n元2阶”多项式方程;
    【2】应用基于轴不变量的Dixon行列式计算式、分块矩阵的行列式计算式或对行列式进行行阶梯化计算式简化行列式计算;
    【3】应用n个“n元N阶”多项式的Dixon消元与求解原理完成位姿逆解计算,其中:根据Dixon矩阵的行列式为0,得到一元高阶多项式方程,应用基于友阵的一元高阶多项式方程求解一元高阶多项式方程的解。
  2. 根据权利要求1所述的基于轴不变量的通用3R机械臂逆解建模与解算方法,其特征是,
    对于任意杆件
    Figure PCTCN2018112705-appb-100001
    定义与欧拉四元数同构的居-吉布斯即Ju-Gibbs规范四元数:
    Figure PCTCN2018112705-appb-100002
    其中:
    Figure PCTCN2018112705-appb-100003
    为Gibbs矢量;Gibbs共轭四元数为:
    Figure PCTCN2018112705-appb-100004
    其中:
    Figure PCTCN2018112705-appb-100005
    式中,
    Figure PCTCN2018112705-appb-100006
    为居-吉布斯规范四元数
    Figure PCTCN2018112705-appb-100007
    模的平方;表达形式幂符
    Figure PCTCN2018112705-appb-100008
    表示□的x次幂;右上角角标∧或
    Figure PCTCN2018112705-appb-100009
    表示分隔符;轴不变量
    Figure PCTCN2018112705-appb-100010
    是轴不变量
    Figure PCTCN2018112705-appb-100011
    的叉乘矩阵;
    Figure PCTCN2018112705-appb-100012
    是Gibbs矢量
    Figure PCTCN2018112705-appb-100013
    的叉乘矩阵;若用“□”表示属性占位,则式中的表达形式□ [□]表示成员访问符。
  3. 根据权利要求2所述的基于轴不变量的通用3R机械臂逆解建模与解算方法,其特征是,
    步骤【1】中,
    对于轴链
    Figure PCTCN2018112705-appb-100014
    Figure PCTCN2018112705-appb-100015
    建立规范的姿态方程为:
    Figure PCTCN2018112705-appb-100016
    建立规范的定位方程:
    Figure PCTCN2018112705-appb-100017
    式中,
    Figure PCTCN2018112705-appb-100018
    为任意杆件,表达形式
    Figure PCTCN2018112705-appb-100019
    表示□的x次幂;右上角角标∧或
    Figure PCTCN2018112705-appb-100020
    表示分隔符;
    Figure PCTCN2018112705-appb-100021
    是轴不变量
    Figure PCTCN2018112705-appb-100022
    的叉乘矩阵,杆件
    Figure PCTCN2018112705-appb-100023
    为杆件
    Figure PCTCN2018112705-appb-100024
    时同理替换;1为三维单位矩阵; iQ n表示姿态;
    Figure PCTCN2018112705-appb-100025
    为沿矢量轴
    Figure PCTCN2018112705-appb-100026
    的线位置;
    Figure PCTCN2018112705-appb-100027
    为零位时由原点
    Figure PCTCN2018112705-appb-100028
    至原点O l的平动矢量; |□为投影符, i|□为□在大地坐标系的投影矢量。
  4. 根据权利要求3所述的基于轴不变量的通用3R机械臂逆解建模与解算方法,其特征是,
    步骤【2】中,基于轴不变量的Dixon行列式计算式为:
    根据运动链Dixon行列式性质有:
    Figure PCTCN2018112705-appb-100029
    并记:
    Figure PCTCN2018112705-appb-100030
    Figure PCTCN2018112705-appb-100031
    式中,
    Figure PCTCN2018112705-appb-100032
    为旋转变换矩阵;
    Figure PCTCN2018112705-appb-100033
    表示用辅助变量y l的前l个依次替换原变量τ l中的l个变量,记“|”为替换操作符;
    式(80)将
    Figure PCTCN2018112705-appb-100034
    Figure PCTCN2018112705-appb-100035
    转化为关于
    Figure PCTCN2018112705-appb-100036
    的多重线性型;同时,
    Figure PCTCN2018112705-appb-100037
    对y l及τ l具有对称性;
    由式(47)得3R运动学方程
    Figure PCTCN2018112705-appb-100038
    由式(90)得
    Figure PCTCN2018112705-appb-100039
    由(91)式得
    Figure PCTCN2018112705-appb-100040
    Figure PCTCN2018112705-appb-100041
    则由式(51)及式得(93)
    Figure PCTCN2018112705-appb-100042
    由式(92)及式(93)得
    Figure PCTCN2018112705-appb-100043
    由式(95)得3R运动学多项式方程
    Figure PCTCN2018112705-appb-100044
    多项式系统F 3(Y 2|T 2),根据双线性型行列式通式
    Figure PCTCN2018112705-appb-100045
    则有
    Figure PCTCN2018112705-appb-100046
    其中:
    Figure PCTCN2018112705-appb-100047
    Figure PCTCN2018112705-appb-100048
    Figure PCTCN2018112705-appb-100049
    中组合变量系数为独立的列向量,故选取
    Figure PCTCN2018112705-appb-100050
    的系数来构成方阵
    Figure PCTCN2018112705-appb-100051
    剩余列向量一定与
    Figure PCTCN2018112705-appb-100052
    的各列相关;
    由式(80)及式(93)得
    Figure PCTCN2018112705-appb-100053
    Figure PCTCN2018112705-appb-100054
    Figure PCTCN2018112705-appb-100055
    Figure PCTCN2018112705-appb-100056
    分别表示轴2至轴3、轴3至轴3 S的零位矢量、径向矢量及轴向矢量;
    得简化的3元N阶Dixon行列式为
    Figure PCTCN2018112705-appb-100057
    式中,
    Figure PCTCN2018112705-appb-100058
    为大小为S×S的Dixon矩阵,其第[i][j]成员为单变量τ 1的N阶多项式。
  5. 根据权利要求4所述的基于轴不变量的通用3R机械臂逆解建模与解算方法,其特征是,
    步骤【2】中,分块矩阵的行列式计算式为:
    若记大小为(n+m)·(n+m)的方阵为M,大小为n·n的矩阵
    Figure PCTCN2018112705-appb-100059
    是方阵M的前n行及任意n列元素构成的子矩阵,大小为m·m的矩阵
    Figure PCTCN2018112705-appb-100060
    是方阵M后m行及剩余m列元素构成的子矩阵;由升序排列的矩阵列序号构成的序列cn及cm是序列[1:m+n]的子集,[cn,cm]∈<1:n+m>,且有cm∪cn=[1:m+n];则方阵M行列式与分块矩阵
    Figure PCTCN2018112705-appb-100061
    Figure PCTCN2018112705-appb-100062
    的行列式关系为
    Figure PCTCN2018112705-appb-100063
  6. 根据权利要求4所述的基于轴不变量的通用3R机械臂逆解建模与解算方法,其特征是,
    步骤【2】中,对行列式进行行阶梯化计算原理:
    对于S×S矩阵,其每一项是关于τ 1的n阶多项式;计算该矩阵的行列式时,可通过初等行变换将原行列式变为上三角行列式,再将非零的对角线元素相乘,得到行列式的多项式表达式;该式为0,得到τ 1的所有解;
    行阶梯化的具体方法为,先对行列式第一列的最高阶次由高到低进行排序,再进行最多(S-1)×n次初等行变换消元,得到第一列只有第一个元素不为0的行列式;再对该行列式第1行及1列的余子式进行初等行变换消元,依次迭代求解。
  7. 根据权利要求3所述的基于轴不变量的通用3R机械臂逆解建模与解算方法,其特征是,
    步骤【3】中,n个“n元N阶”多项式系统的Dixon多项式构建步骤为:
    引入辅助变量[y 2,y 3,…,y n],且有
    Figure PCTCN2018112705-appb-100064
    对于多元多重多项式
    Figure PCTCN2018112705-appb-100065
    用辅助变量Y m的前m个依次替换原变量X n中的m个变量,记“|”为替换操作符,得到增广的多项式
    Figure PCTCN2018112705-appb-100066
    Figure PCTCN2018112705-appb-100067
    Figure PCTCN2018112705-appb-100068
    其中:
    Figure PCTCN2018112705-appb-100069
    定义可分离组合变量
    Figure PCTCN2018112705-appb-100070
    Figure PCTCN2018112705-appb-100071
    如下:
    Figure PCTCN2018112705-appb-100072
    由式(14)及式(15)知:替换式
    Figure PCTCN2018112705-appb-100073
    是关于
    Figure PCTCN2018112705-appb-100074
    Figure PCTCN2018112705-appb-100075
    的双重线性型;相应地,用辅助变量替换的多项式系统记为
    Figure PCTCN2018112705-appb-100076
    给定n个“n元N阶”多项式系统
    Figure PCTCN2018112705-appb-100077
    定义其Dixon多项式为
    Figure PCTCN2018112705-appb-100078
    由式(17)得
    Figure PCTCN2018112705-appb-100079
    考虑式(13)及式(18)得该多项式的Dixon行列式
    Figure PCTCN2018112705-appb-100080
    在笛卡尔空间下,由位置矢量或转动矢量构成的行列式表示矢量张成空间的容积(Volume);在不同笛卡尔空间下具有容积的不变性;其中:
    Figure PCTCN2018112705-appb-100081
    给定n个“n元N阶”多项式系统F n(Y n-1|X n-1),n≥2;存在与消去变量x 2,…,x n无关的Dixon矩阵 SΘ S(x 1),其Dixon多项式
    Figure PCTCN2018112705-appb-100082
    表示为分离变量
    Figure PCTCN2018112705-appb-100083
    Figure PCTCN2018112705-appb-100084
    的双重线性型:
    Figure PCTCN2018112705-appb-100085
    α[l]∈[0,N·(n-l+1)-1],l∈[2:n];                 (23)
    Figure PCTCN2018112705-appb-100086
    为大小为S×S的Dixon矩阵,其第[i][j]成员为单变量x 1的N阶多项式:
    Figure PCTCN2018112705-appb-100087
    其中:
    Figure PCTCN2018112705-appb-100088
    考虑式(22),若
    Figure PCTCN2018112705-appb-100089
    故得
    Figure PCTCN2018112705-appb-100090
    称式(28)中“n个n元”为Dixon消元的必要条件,从而获得可行解。
  8. 根据权利要求4所述的基于轴不变量的通用3R机械臂逆解建模与解算方法,其特征是,
    由式(28)、式(99)及式(100)得
    Figure PCTCN2018112705-appb-100091
    式(116)是关于τ 1的16阶单项式方程,应用式(5)进行二次分块的行列式计算。
PCT/CN2018/112705 2018-08-16 2018-10-30 基于轴不变量的通用3r机械臂逆解建模与解算方法 WO2020034407A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810933468.4 2018-08-16
CN201810933468.4A CN108959828B (zh) 2018-08-16 2018-08-16 基于轴不变量的通用3r机械臂逆解建模与解算方法

Publications (1)

Publication Number Publication Date
WO2020034407A1 true WO2020034407A1 (zh) 2020-02-20

Family

ID=64469134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112705 WO2020034407A1 (zh) 2018-08-16 2018-10-30 基于轴不变量的通用3r机械臂逆解建模与解算方法

Country Status (2)

Country Link
CN (1) CN108959828B (zh)
WO (1) WO2020034407A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111967099B (zh) * 2020-07-20 2021-04-27 居鹤华 多自由度机械臂矢量多项式系统最优求解方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101648376A (zh) * 2009-09-11 2010-02-17 北京理工大学 控制机器人操作的方法和装置
US20120072022A1 (en) * 2010-09-20 2012-03-22 Samsung Electronics Co., Ltd. Robot and control method thereof
CN104772773A (zh) * 2015-05-08 2015-07-15 首都师范大学 一种机械臂运动学形式化分析方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101244561A (zh) * 2008-03-21 2008-08-20 哈尔滨工程大学 蒸汽发生器检修机械臂安装过程运动学逆解方法
CN103010491B (zh) * 2012-11-30 2015-04-22 北京控制工程研究所 一种气浮台抓捕试验机械臂控制方法
CN106055810A (zh) * 2016-06-07 2016-10-26 中国人民解放军国防科学技术大学 用于在轨快速抓捕的姿轨臂一体化运动规划方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101648376A (zh) * 2009-09-11 2010-02-17 北京理工大学 控制机器人操作的方法和装置
US20120072022A1 (en) * 2010-09-20 2012-03-22 Samsung Electronics Co., Ltd. Robot and control method thereof
CN104772773A (zh) * 2015-05-08 2015-07-15 首都师范大学 一种机械臂运动学形式化分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NI, ZHENSONG ET AL.: "General 6R Robot Inverse Solution Algorithm based on Quaternion Matrix and a Groebner Base", JOURNAL OF TSINGHUA UNIVERSITY - SCIENCE AND TECHNOLOGY, vol. 53, no. 5, 31 May 2013 (2013-05-31), pages 683 - 687, XP055685712, DOI: 10.4236/alamt.2018.81004 *

Also Published As

Publication number Publication date
CN108959828B (zh) 2019-12-06
CN108959828A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
CN108972558B (zh) 一种基于轴不变量的多轴机器人动力学建模方法
CN108942942B (zh) 一种基于轴不变量的多轴机器人逆运动学建模与解算方法
CN108983705B (zh) 一种基于轴不变量的多轴机器人系统正运动学建模与解算方法
Kukelova et al. A clever elimination strategy for efficient minimal solvers
WO2020034421A1 (zh) 一种基于轴不变量的多轴机器人系统建模与控制方法
Orekhov et al. Solving cosserat rod models via collocation and the magnus expansion
Wise et al. Certifiably optimal monocular hand-eye calibration
WO2020034415A1 (zh) 基于轴不变量的通用6r机械臂逆解建模与解算方法
WO2020034407A1 (zh) 基于轴不变量的通用3r机械臂逆解建模与解算方法
WO2020034416A1 (zh) 基于轴不变量的通用7r机械臂逆解建模与解算方法
WO2020034417A1 (zh) 基于轴不变量多轴机器人d-h系及d-h参数确定方法
CN108942943B (zh) 基于轴不变量的多轴机器人正运动学计算方法
WO2020034418A1 (zh) 基于轴不变量及dh参数1r/2r/3r逆解建模方法
WO2020034405A1 (zh) 基于轴不变量的树链机器人动力学建模与解算方法
WO2020034402A1 (zh) 基于轴不变量的多轴机器人结构参数精测方法
CN108959829B (zh) 基于轴不变量的非理想关节机器人动力学建模方法
Stölzle et al. Modelling handed shearing auxetics: Selective piecewise constant strain kinematics and dynamic simulation
CN111967099B (zh) 多自由度机械臂矢量多项式系统最优求解方法
CN109086544B (zh) 基于轴不变量的闭链机器人动力学建模与解算方法
Bobev et al. Wrapped M5-branes and AdS5 black holes
CN108803350B (zh) 基于轴不变量的动基座多轴机器人动力学建模与解算方法
Daney et al. Calibration of parallel robots: on the Elimination of Pose–Dependent Parameters
Boiadjiev et al. A Novel, Oriented to Graphs Model of Robot Arm Dynamics. Robotics 2021, 10, 128
Bayro-Corrochano et al. Analysis and computation of the intrinsic camera parameters
Bandyopadhyay et al. Analytical Determination of Principal Twists and Singular Directions in Robot Manipulators

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930160

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18930160

Country of ref document: EP

Kind code of ref document: A1