WO2020031477A1 - 車載光ネットワーク - Google Patents
車載光ネットワーク Download PDFInfo
- Publication number
- WO2020031477A1 WO2020031477A1 PCT/JP2019/021921 JP2019021921W WO2020031477A1 WO 2020031477 A1 WO2020031477 A1 WO 2020031477A1 JP 2019021921 W JP2019021921 W JP 2019021921W WO 2020031477 A1 WO2020031477 A1 WO 2020031477A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- optical
- information
- gateway
- master
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 213
- 238000012545 processing Methods 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims description 22
- 238000012546 transfer Methods 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 27
- 238000005516 engineering process Methods 0.000 description 14
- 238000004891 communication Methods 0.000 description 9
- 239000013307 optical fiber Substances 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
- H04B10/275—Ring-type networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/40—Bus networks
- H04L12/40006—Architecture of a communication node
- H04L12/40013—Details regarding a bus controller
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
- G02F1/0155—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the optical absorption
- G02F1/0157—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the optical absorption using electro-absorption effects, e.g. Franz-Keldysh [FK] effect or quantum confined stark effect [QCSE]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
- H04B10/275—Ring-type networks
- H04B10/2755—Ring-type networks with a headend
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0278—WDM optical network architectures
- H04J14/0283—WDM ring architectures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/46—Interconnection of networks
- H04L12/4604—LAN interconnection over a backbone network, e.g. Internet, Frame Relay
- H04L12/462—LAN interconnection over a bridge based backbone
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0066—Provisions for optical burst or packet networks
Definitions
- the present invention relates to an optical network system. More specifically, the present invention relates to an optical network system for short-range information communication in which control information is transmitted by an electric signal and information is transmitted by an optical signal.
- FIG. 1 is a conceptual diagram of a vehicle-mounted network.
- the conventional optical communication technology is directly applied to the in-vehicle network, and it is difficult to solve the power consumption and the delay time and to reduce the cost. Therefore, it is desired to provide an in-vehicle optical backbone network having a large capacity, low delay, low power consumption, low noise, and low cost by using a new optical communication system.
- FIG. 2 shows a basic network configuration in which an electric cable is replaced with an optical fiber (Non-Patent Document 1).
- FIG. 2 is a conceptual diagram illustrating an example of an in-vehicle optical network using an electric switch.
- FIG. 2A shows a star type
- FIG. 2B shows a ring type.
- GW gateway device
- FIG. 3 is a conceptual diagram illustrating an example of an all-optical vehicle-mounted optical network.
- FIG. 3A shows an example using an optical splitter
- FIG. 3B shows an example using an optical switch.
- the method using an optical splitter in Fig. 3 (a) is a diversion of the PON technology of the access network.
- the optical signal is split by the optical splitter and distributed to all GWs. At this time, a signal that matches the address of the GW is captured, but all signals that do not match are discarded.
- data is sent from the GW to the master, data is sequentially transferred from the GW so that optical signals from the GW do not collide with each other.
- the optical signal is transmitted not in a continuous signal but in the form of a burst optical packet. Therefore, on the receiving side of the master, an expensive optical burst receiver capable of instantaneously recovering the clock is required.
- Non-Patent Document 3 a method using a wavelength routing method of switching an optical path according to an optical wavelength has been proposed.
- Non-Patent Document 3 it is necessary to equip a large number of lasers with different wavelengths or a high-speed tunable laser, which causes a significant cost increase.
- the purpose of the new optical communication system is to provide a new optical network that can be used as an in-vehicle optical backbone network with high capacity, low delay, low power consumption, low noise, and low cost.
- the present invention combines a C-plane of electricity and a D-plane of light to form an optical network with one light source, thereby achieving higher capacity and higher capacity than the conventionally proposed on-board network system (electric and optical). It is based on the basic concept that it is possible to provide an optical network that is extremely excellent in low delay and low power consumption.
- the present invention includes an extension of this basic concept. This technology can be applied as a new short-range large-capacity optical communication system not only for vehicles such as automobiles, but also for various vehicles such as airplanes, ships, and trains.
- the first invention in this specification relates to the optical network system 1.
- the optical network system 1 includes a (first) master unit 3, a plurality of gateway units 5a, 5b, 5c connected to the (second) master unit 3, and a (third) plurality of gateway units 5a, 5b, 5c and an electronic control unit 7 connected thereto.
- the master unit 3 includes a light source 11, a signal processing unit 13, a network control unit 15, and a light receiving element 17.
- the signal processing unit 13 controls the light source 11 to generate an optical signal including an information portion read by any gateway unit and a continuous light portion written by any gateway unit.
- the network control unit 15 specifies one of the gateway units and generates an electric signal regarding whether to read or write information mounted on the optical signal from the light source.
- Each gateway unit 5a, 5b, 5c reads out information included in the corresponding optical signal based on information on whether to read or write information included in the electrical signal when specified by the electrical signal, In addition to writing information in the continuous light portion, information is exchanged with the electronic control unit 7.
- the light receiving element 17 reads out the information written in the continuous light portion by any of the gateways.
- the master section 3 further includes a master control section 19.
- the master control unit 19 has a reference signal source that oscillates a reference signal, and a multiplier that multiplies the frequency of the reference signal from the reference signal source and outputs a multiplied signal.
- the master control unit 19 generates a signal having two or more types of frequencies using the reference signal source and the multiplier, and drives the signal processing unit 13 and the network control unit 15 with the generated signals of different frequencies.
- the gateway units 5a, 5b, 5c If not specified by the electrical signal, pass the optical signal corresponding to the electrical signal, If specified by an electrical signal and the electrical signal includes a command related to reading information, the optical signal corresponding to the electrical signal is read, If specified by an electrical signal, and the command related to writing information to the electrical signal is included, the information is written to the continuous light portion of the optical signal corresponding to the electrical signal.
- the gateway units 5a, 5b, 5c If not specified by the electrical signal, pass the optical signal corresponding to the electrical signal, If specified by an electrical signal and the electrical signal includes a command related to reading information, the optical signal corresponding to the electrical signal is read, If specified by an electrical signal, and the command related to writing information to the electrical signal is included, the information is written to the continuous light portion of the optical signal corresponding to the electrical signal.
- the gateway units 5a, 5b, 5c If not specified by the electrical signal, pass the optical signal corresponding to the electrical signal, If specified by an electrical signal and the electrical signal includes a command related to
- the optical network system 1 is as follows.
- the light source 11 is a multi-wavelength light source.
- each of the plurality of gateway units 5a, 5b, 5c receives an optical signal of any wavelength among optical signals of a plurality of wavelengths from the multi-wavelength light source.
- the following invention of this specification relates to an information control method.
- This method uses, for example, the optical network system 1 described above.
- This method includes, for example, an optical signal generating step, an electric signal generating step, a signal receiving step, an electric signal analyzing step, an optical signal reading step, an optical signal writing step, an electronic control unit control step, and an optical signal analyzing step.
- the signal processing unit 13 of the master unit 3 controls the light source 11 to generate an information portion read by one of the plurality of gateway units and a continuous light portion written by one of the gateway units. This is a step of generating an optical signal including the optical signal.
- the electric signal generation step is a step in which the network control unit 15 of the master unit 3 specifies one of the gateway units and generates an electric signal regarding whether to read or write information mounted on the optical signal from the light source. .
- the signal receiving step is a step in which the gateway units 5a, 5b, 5c receive an optical signal and an electric signal.
- the gateway units 5a, 5b, and 5c analyze the received electric signals to determine whether or not they are designated. Or a step of analyzing information on whether to write.
- the optical signal reading step is a step in which the gateway units 5a, 5b, 5c read information included in the optical signal corresponding to the received electric signal when the gateway unit 5a, 5b, 5c specifies the self and includes information regarding reading in the electric signal. It is.
- the gateway units 5a, 5b, and 5c specify information of themselves and include information on writing to the electric signal
- the continuous light portion included in the optical signal corresponding to the received electric signal is used. This is the step of writing information to the device.
- the electronic control unit control step is a step in which the gateway units 5a, 5b, 5c exchange information with the electronic control unit 7.
- the optical signal analysis step is a step in which the light receiving element 17 of the master unit 3 reads out information written in the continuous light portion by any of the gateways.
- Preferred aspects of this information control method are as follows. That is, the master control unit 19 of the master unit 3 Using the reference signal source and the multiplier, a signal having two or more types of frequencies is generated, and the signal processing unit 13 and the network control unit 15 are driven by the generated signals having different frequencies.
- the present invention basically combines an electric C-plane and an optical D-plane to form an optical network with a single light source, thereby making it possible to compare the conventional network system (vehicle and electric) proposed in a vehicle.
- FIG. 1 is a conceptual diagram of a vehicle-mounted network.
- FIG. 2 is a conceptual diagram illustrating an example of an in-vehicle optical network using an electric switch.
- FIG. 2A shows a star type
- FIG. 2B shows a ring type.
- FIG. 3 is a conceptual diagram illustrating an example of an all-optical vehicle-mounted optical network.
- FIG. 3A shows an example using an optical splitter
- FIG. 3B shows an example using an optical switch.
- FIG. 4 is a diagram for explaining a basic configuration of the optical network system.
- FIG. 4A is a conceptual diagram illustrating a basic configuration example of an optical network system.
- FIG. 4B is a conceptual diagram for explaining the operation principle.
- FIG. 5 is a conceptual diagram showing an example of an interface in the gateway.
- FIG. 5 is a conceptual diagram showing an example of an interface in the gateway.
- FIG. 5A shows an electro-absorption type interface device
- FIG. 5B shows a Fabry-Perot interference type interface device
- FIG. 6 is a conceptual diagram for explaining an operation example of the interface.
- FIG. 7 is a conceptual diagram illustrating a multi-wavelength optical network system.
- FIG. 7A is a conceptual diagram showing a physical configuration of the multi-wavelength optical network system
- FIG. 7B is a diagram for explaining a logical configuration of the multi-wavelength optical network system.
- FIG. 8 is a conceptual diagram illustrating an example of a device operating at a specific wavelength.
- FIG. 8A shows a combination of the electroabsorption device of FIG. 5A and a ring resonator for a wavelength selector.
- FIG. 8A shows a combination of the electroabsorption device of FIG. 5A and a ring resonator for a wavelength selector.
- FIG. 8B shows a Fabry-Perot interference device of FIG. 5B with a band-pass filter attached.
- FIG. 9 is a conceptual diagram showing a network configuration example of a star topology.
- FIG. 9A shows an example for a single wavelength
- FIG. 9B shows an example for a plurality of wavelengths.
- FIG. 4 is a diagram for explaining a basic configuration of the optical network system.
- FIG. 4A is a conceptual diagram illustrating a basic configuration example of an optical network system.
- FIG. 4B is a conceptual diagram for explaining the operation principle.
- the example shown in FIG. 4 is an in-vehicle optical network system.
- this concept can be used for other mobile-mounted optical network systems and near-field optical network systems.
- the optical network system 1 includes a (first) master unit 3, a plurality of gateway units 5a, 5b, 5c, 5d, 5e connected to the (second) master unit 3, and a (third) plurality of gateway units. And an electronic control unit 7 connected to each of 5a, 5b, 5c.
- the master unit 3 includes a light source (LD) 11, a signal processing unit (processor) 13, a network control unit (c-plane) 15, and a light receiving element (PD) 17.
- the light source (LD) need only be arranged on the master.
- An interface (IF) device is arranged in each gateway unit (GW). For example, in a ring-type configuration, each GW is connected by an optical fiber to form a high-speed loop-shaped optical data plane (D-plane).
- the signal processing unit 13 controls the light source 11 and generates an optical signal including information portions 31a and 31b read by one of the gateway units and continuous light portions 33a and 33b written by one of the gateway units.
- the network control unit (c-plane) 15 designates one of the gateway units (address units 25a and 25b) and a read / write signal (Listen) regarding whether to read or write information mounted on the optical signal from the light source. / Talk) to generate an electrical signal including 21 and 23.
- Each gateway unit 5a, 5b, 5c reads out information included in the corresponding optical signal based on information on whether to read or write information included in the electrical signal when specified by the electrical signal, In addition to writing information in the continuous light portion, information is exchanged with the electronic control unit 7.
- the light receiving element 17 reads out the information written in the continuous light portion by any of the gateways.
- the master section 3 further includes a master control section 19.
- the master control unit 19 has a reference signal source that oscillates a reference signal, and a multiplier that multiplies the frequency of the reference signal from the reference signal source and outputs a multiplied signal.
- the master control unit 19 generates a signal having two or more types of frequencies using the reference signal source and the multiplier, and drives the signal processing unit 13 and the network control unit 15 with the generated signals of different frequencies. Since the master control unit 19 drives the signal processing unit 13 and the network control unit 15, the optical signal output from the light source 11 and the electric signal output from the network control unit (c-plane) 15 are synchronized. Have been.
- the multiplier is a device that outputs a signal having a frequency that is a constant multiple of the input reference signal.
- Gateway section The plurality of gateway sections 5a, 5b, 5c, 5d, 5e are connected to the master section 3.
- a plurality of gateways 5a, 5b, 5c, 5d, and 5e are continuously present on an optical propagation path that exits from the master unit 3 and returns to the master unit 3.
- each of the gateways 5a, 5b, 5c, 5d, and 5e also exists on the electric wiring that exits from the master unit 3 and returns to the master unit 3.
- the gateway unit serves as a relay point for transmitting information from the master unit 3 to various devices and transmitting information from various devices and sensors to the master unit 3.
- each gateway is connected to various groups such as a safety system, a control system, an information system, and a body control system via an electronic control unit (ECU).
- ECU electronice control unit
- safety systems are in-vehicle cameras, radars, etc. (FlexRay)
- examples of control systems are engines, brakes, etc. (CAN14a)
- examples of information systems are car navigation, video, audio, etc. (MOST).
- An example of the body control system is a window, a mirror, or the like (LIN14b).
- the electronic control unit 7 is connected to each of the plurality of gateway units 5a, 5b, 5c, and transmits a control signal from the master unit 3 to various devices. Information from various devices is transmitted to the master unit 3 via the electronic control unit 7.
- the master and the electronic control units (ECUs) in all GWs are electrically connected by a low-speed control plane (C-plane). Depending on the address sent from the master and the Listen / Talk flag, any GW is controlled. GW receives data (Listen), and which GW transmits data (Talk).
- C-plane low-speed control plane
- the entire network operates at a fixed time frame cycle, and the GW specified on the C-plane executes the operation of reading or writing the data of the next frame based on the Listen / Talk flag. That is, when data is transmitted from the master to the GW, the data is transmitted on the light by the master, and the designated GW is set to the reverse bias based on the Listen flag, and the data is read. Conversely, when transmitting data from the GW to the master, the master transmits a CW light frame of a constant intensity, the specified GW modulates the data to CW light immediately after the Talk flag, and the frame is again stored in the master. Received by the PD.
- C-plane the important role of C-plane is to distribute universal clocks.
- a reference oscillator is provided only in the master, and the frequency of the oscillator is multiplied to a required frequency to generate C-plane and D-plane signals.
- All GWs always receive a signal from the master through the C-plane, and can extract a common clock therefrom.
- Each GW transmits and receives an optical signal on the D-plane by using the common clock signal without having its own oscillator. Therefore, the optical signals sent from each GW to the master all have the same frequency (bit synchronization), and the master uses the clock signal held by itself without extracting the clock again with the burst receiver. Can easily be received.
- the master unit 3 controls the light source (LD) 11 by controlling the signal processing unit (processor) 13 so that optical signals (for example, modulation signals) 31a and 31b carrying various kinds of information and continuous light portions 33a and 33b for writing. Output.
- the signal processing unit (processor) 13 controls the network control unit (c-plane) 15 so that the address signals 25a and 25b specifying the gateway and the gateway specified by the address signal are added to the optical signal.
- An electrical signal including a Listen signal 21 relating to reading out the received information 31a, 31b or a Talk signal 23 relating to writing information in the continuous light portions 33a, 33b of the optical signal is generated and transmitted to the gateway through an electric line.
- the optical signal and the electric signal are synchronized.
- the first gateway 5a performs O / E conversion of the optical signal via the interface 12, and transmits the optical signal to the electronic control unit 7. Further, the electric signal from the electronic control unit 7 may be E / O converted by the interface 12, for example. For example, the electronic control unit 7 analyzes the electric signal, and if the address 25a is the first gateway, analyzes the next read / write signal. As a result, when the read signal (Listen signal) is met, the corresponding optical signal 31a is read. Then, the electronic control unit 7 controls various control devices CAN 14a such as an engine and a brake according to the read optical signal 31a.
- the address information specifies a gateway other than the first gateway, for example, the optical signal is passed as it is, and the optical signal is transmitted to the next gateway.
- the electrical signal is a signal indicating writing (Talk signal 23)
- the information output from the various devices 14a is written to the corresponding continuous light portion 33a according to the control signal of the electronic control unit 7.
- the gateway units 5a, 5b, 5c are not specified by the electric signal, the optical signal corresponding to the electric signal is passed.
- the gateway units 5a, 5b, and 5c are specified by the electric signal and the electric signal includes a command related to reading information
- the gateway unit 5a, 5b, or 5c reads an optical signal corresponding to the electric signal.
- the gateway units 5a, 5b, 5c are specified by an electric signal and a command related to writing information in the electric signal is included, the information is included in the continuous light portion of the optical signal corresponding to the electric signal.
- FIG. 5 is a conceptual diagram showing an example of an interface in the gateway.
- FIG. 5A shows an electro-absorption type interface device
- FIG. 5B shows a Fabry-Perot interference type interface device.
- FIG. 6 is a conceptual diagram for explaining an operation example of the interface.
- the electroabsorption type device transmits light as it is (in a transparent state) when no bias is applied.
- an electroabsorption type device functions as a light receiving element in a reverse bias state. That is, optical information can be read by applying a reverse bias.
- the electro-absorption type device functions as a modulator by modulating a voltage (in a state where a bias is applied). For this reason, the electroabsorption-type device can superimpose a modulation signal on continuous light, and thus can carry information on an optical signal.
- interfaces are polarization-independent IF devices, such as an electroabsorption device (generally called an Electro-Absorption Modulator: EAM) or Fabry-Perot interference with an active layer sandwiched between two reflecting mirrors Mold devices can be used.
- FIG. 5 is a conceptual diagram of an electroabsorption type device and a Fabry-Perot interference type device. These devices are transparent in an unbiased state where no voltage is applied, and light passes through with little loss. In a state in which these devices are reverse-biased, input light is absorbed and output as an electric signal, so that these devices operate as light receiving elements (PD). Furthermore, when voltage modulation is applied with a high-speed electrical signal, absorption and transmission are repeated, and these devices operate as optical modulators. That is, these devices can output a modulated optical signal with respect to continuous light.
- PD light receiving elements
- the light source 11 is a multi-wavelength light source.
- the multi-wavelength light source may have one light source and a multi-wavelength device (for example, an optical comb sending device), or may have a plurality of light sources (eg, LEDs).
- each of the plurality of gateway units 5a, 5b, 5c receives an optical signal of any wavelength among optical signals of a plurality of wavelengths from the multi-wavelength light source.
- FIG. 7 is a conceptual diagram illustrating a multi-wavelength optical network system.
- FIG. 7A is a conceptual diagram showing a physical configuration of the multi-wavelength optical network system
- FIG. 7B is a diagram for explaining a logical configuration of the multi-wavelength optical network system.
- light from the light sources 11a, 11b, 11c, and 11d having four wavelengths is multiplexed by a multiplexer (combiner) 35a and output as an optical signal.
- Each gateway responds only to light of a specific wavelength and transmits light of other wavelengths. As shown in FIG.
- each gateway since each gateway transmits and receives information only by light of a specific wavelength, even if all the gateways are physically connected by one waveguide, the logical Functionally, it functions as if an optical network exists for each wavelength. That is, if a multi-wavelength light source is used, this optical network system functions as an optical network having a plurality of logical layers 41, 43, 45, and 47 corresponding to the light ⁇ 1, ⁇ 2, ⁇ 3, and ⁇ 4 of each wavelength. It will be.
- This method uses, for example, the optical network system 1 described above.
- This method includes, for example, an optical signal generating step, an electric signal generating step, a signal receiving step, an electric signal analyzing step, an optical signal reading step, an optical signal writing step, an electronic control unit control step, and an optical signal analyzing step.
- the signal processing unit 13 of the master unit 3 controls the light source 11 to generate an information portion read by one of the plurality of gateway units and a continuous light portion written by one of the gateway units.
- This is a step of generating an optical signal including the optical signal.
- An example of the optical signal is shown in FIG. 4B, and the optical signal includes information portions 31a and 31b and continuous optical portions 33a and 33b.
- the continuous light portion preferably has a constant light intensity.
- the electric signal generation step is a step in which the network control unit 15 of the master unit 3 specifies one of the gateway units and generates an electric signal regarding whether to read or write information mounted on the optical signal from the light source. .
- An example of the electric signal is shown in FIG.
- the address portions 25a and 25b of the electric signal are portions that specify the gateway unit.
- the Listen signal 21 and the Talk signal 23 of the electric signals are electric signals relating to reading or writing of information mounted on the optical signal.
- the signal receiving step is a step in which the gateway units 5a, 5b, 5c receive an optical signal and an electric signal.
- the interface device 12 of the gateway unit 5 receives the optical signal, converts it into an electric signal, and transmits it to the electronic control unit 7.
- the gateway unit 5 receives the electric signal and transmits it to the electronic control unit 7.
- the gateway units 5a, 5b, and 5c analyze the received electric signals to determine whether or not they are designated. Or a step of analyzing information on whether to write.
- the electronic control unit 7 receives the optical signal converted into the electric signal and the electric signal. Then, it analyzes the address signal of the electric signal and analyzes whether or not it has been designated.
- the optical signal reading step is a step in which the gateway units 5a, 5b, 5c read information included in the optical signal corresponding to the received electric signal when the gateway unit 5a, 5b, 5c specifies the self and includes information regarding reading in the electric signal. It is.
- the electronic control unit 7 reads out the information 31a corresponding to the Listen signal 21 included in the corresponding optical signal by using the interface device 12.
- the interface device 12 transmits the read information to the electronic control unit 7.
- the electronic control unit 7 controls various devices 14a connected to the electronic control unit 7 according to the read information.
- the gateway units 5a, 5b, and 5c specify information of themselves and include information on writing to the electric signal
- the continuous light portion included in the optical signal corresponding to the received electric signal is used. This is the step of writing information to the device.
- the electronic control unit 7 controls the interface device 12 to function as, for example, a modulator, and puts various types of information on the corresponding continuous light portion 33a.
- the electronic control unit control step is a step in which the gateway units 5a, 5b, 5c exchange information with the electronic control unit 7.
- the optical signal analysis step is a step in which the light receiving element 17 of the master unit 3 reads out information written in the continuous light portion by any of the gateways.
- a certain gateway unit writes information to a continuous light portion included in an optical signal corresponding to the received electric signal.
- the electronic control unit 7 controls the interface device 12 to function as, for example, a modulator, and puts various kinds of information on the corresponding continuous light portion 33a.
- the portion of the optical signal on which various information is added as a modulation signal (original portion which was originally the continuous light portion 33a) is received by the light receiving element 17, and the light receiving element 17 analyzes information such as the modulation signal.
- Preferred aspects of this information control method are as follows. That is, the master control unit 19 of the master unit 3 Using the reference signal source and the multiplier, a signal having two or more types of frequencies is generated, and the signal processing unit 13 and the network control unit 15 are driven by the generated signals having different frequencies.
- a laser is arranged only in a master, and a low-speed electric C-plane for addressing and network control and a high-speed optical D-plane for transferring large-capacity data are arranged in parallel. It is an unprecedented new optical network for short-range communication, and has many advantages as follows.
- a system using a low-power-consumption optical transceiver consumes a large amount of current because it is necessary to continuously send a dummy signal even when there is no data to be transferred.
- this optical network system can greatly reduce the number of such optical transceivers.
- the IF device used for the GW is a voltage-controlled device with low power consumption, and does not consume power in a standby state (no bias) when no address is specified. Also, for a certain time frame, only the addressed IF among the multiple IF devices is operating (possibly functioning as a PD or a modulator), that is, multiple GWs are connected.
- the power consumption is equivalent to the power consumption of one optical transceiver (LD + PD) and one IF device, and extremely low power consumption operation is possible.
- WDM wavelength division multiplexing
- the number of LDs / PDs in the master increases in proportion to the number of wavelengths, but the GW can operate with one IF device regardless of the number of wavelengths, as described later, so cost and power consumption are extremely low. It does not increase.
- Synchronous System In this optical network system, a reference oscillator is provided only in the master, and a common clock signal is distributed to all GWs by an electric C-plane. Therefore, the entire system operates in a completely synchronized state, and the master and GW can transmit and receive optical signals without using expensive optical burst receivers.
- Reliability / Maintenance Lasers are current-controlled devices that convert injected current into light, and have a certain lifetime.
- the IF device shown in FIG. 5 is a voltage-controlled device in which almost no current flows, and generally has an extremely long life. Therefore, the life of this system, in which the optical transceiver in the GW is replaced with an IF device, is improved. Further, when the LD breaks down, in the present invention, only the LD in the master device needs to be replaced, so that the maintainability is greatly improved. Further, in a network using an electric switch or an optical switch, if any switch fails, the entire network may be stopped. On the other hand, the IF device becomes transparent when a failure occurs, and the light is transmitted as it is, so that only the sub-network connected to the GW stops, and the entire network does not stop.
- FIG. 8 is a conceptual diagram illustrating an example of a device operating at a specific wavelength.
- FIG. 8A shows a combination of the electroabsorption device of FIG.
- FIG. 8B shows a Fabry-Perot interference device of FIG. 5B with a band-pass filter attached. At this time, only a specific wavelength passes through the band-pass filter, enters the Fabry-Perot interference device, and light of other wavelengths is reflected by the band-pass filter with almost no loss.
- the operation of the electroabsorption device or Fabry-Perot interference device is the same as described above.
- this optical network system is converted to WDM, only the master light source needs to be multi-wavelength in the D-plane, and the IF device in the GW is a single device regardless of the number of wavelengths. Further, in the C-plane, a single C-plane may be provided regardless of the number of wavelengths as described above, and the operation principle of the entire network is the same as described above. However, in this case, it is necessary to specify the address of the GW corresponding to each wavelength for one time frame. Further, at this time, as shown in FIG. 7, the physical configuration is a single ring network, but the logical configuration is a form in which a plurality of wavelength layers are overlaid. Since these wavelength layers can be operated independently, it is possible to configure a flexible network according to functions and requirements by freely setting the operation speed and transfer protocol for each wavelength.
- FIG. 9 is a conceptual diagram illustrating a network configuration example of a star topology.
- FIG. 9A shows an example for a single wavelength
- FIG. 9B shows an example for a plurality of wavelengths.
- the optical signal transmitted from the master is split by the optical splitter and sent to the master again via some GWs.
- signals from a plurality of GWs can be received at the same time, and the network throughput increases.
- the wavelength-division multiplexed optical signal transmitted from the master is demultiplexed for each wavelength by the optical demultiplexing circuit, passed through a plurality of GWs, multiplexed again by the optical multiplexing circuit, and sent to the master.
- the band on the transmission side of the master also increases, so that more GWs can be inserted.
- the most basic device shown in FIG. 5 can be used as the IF device.
- the present invention can be used in the field of short-range optical information communication such as an in-vehicle optical network. Further, the present invention can be applied as a new short-range large-capacity optical communication system in various vehicles such as airplanes, ships, and trains as well as vehicles such as automobiles.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Electromagnetism (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Small-Scale Networks (AREA)
Abstract
【解決課題】 大容量・低遅延・低消費電力・低雑音・低コストである車載光バックボーンネットワークとして用いることができる新たな光ネットワークを提供する。 【解決手段】 信号処理部13が,光源11を制御し,いずれかのゲートウェイ部5aが読み出す情報部分と,書き込む連続光部分を含む光信号を生成し,ネットワーク制御部15は,いずれかのゲートウェイ部5aを指定するとともに光信号に搭載された情報を読み出すか又は書き込むかに関する電気信号を生成し,それぞれのゲートウェイ部5aは,電気信号により指定された場合,電気信号に含まれた情報を読み出すか又は書き込むかに関する情報に基づいて,対応する光信号に含まれる情報を読み出すか又は連続光部分に情報を書き込むとともに,電子制御ユニット7と情報の授受を行う光ネットワークシステム。
Description
本発明は,光ネットワークシステムに関する。より詳しく説明すると,制御情報を電気信号により伝達し,情報を光信号により伝達する,近距離型情報通信用の光ネットワークシステムに関する。
現在,自動車技術は100年に一度の技術革新の時代を迎えており,急速な電子化が進められている。これまでは,自動車に要求される様々な機能(安全系・制御系・情報系・ボディー系など)に対し,異なる方式で最適化された車載NW (CAN, LIN, FlexRay, MOST等)が開発され,それらは繋がることなく独立に機能していた。
さらに将来に向けた自動車技術としては,5G高速無線技術を用いてあらゆるモノと車を繋げるコネクテッド(Connected)技術や,AI技術・センシング技術を搭載した自律的自動運転技術,そして4k/8k映像など様々な情報を車内で楽しむインフォテイメント(Infotainment)技術などの研究開発が進められている。ところがこのような技術を実現するには,車の各部品を制御する電子制御ユニット(ECU)の数が大幅に増大(現在の約100個から将来は約1000個)すると考えられる。さらに,これまで機能ごとに独立に存在していた複数のネットワークを一つに統合し,車全体を制御するための大容量バックボーンネットワークが不可欠となる。図1は,車載ネットワークの概念図である。
現在その実現に向けて,通信の分野で確立され安価な部品が入手可能なイーサネット(登録商標)の技術を用いた車載用バックボーンネットワークの研究が盛んに行われている。しかし,安価なUTPケーブルを用いた電気配線のネットワークでは,高速・大容量化が困難であり,さらに遅延時間・消費電力・ハーネス重量・電磁波干渉雑音が増加するなど,多くの問題に直面している。
これら様々な問題の解決策として期待されるのが,光ファイバを用いた光ネットワーク技術の導入であり,様々な研究開発が進められている。電気ケーブルを光ファイバに置き換えることにより,高速・大容量化が容易に実現され,ハーネス重量や電磁波干渉雑音の低減には,大きな効果がある。
しかし,このような方法は,従来の光通信技術をそのまま車載ネットワークに適用するものであり,消費電力や遅延時間の解決や低コスト化が困難である。
そこで,新たな光通信方式を用いることで,大容量・低遅延・低消費電力・低雑音・低コストである車載光バックボーンネットワークを提供することが望まれる。
これら様々な問題の解決策として期待されるのが,光ファイバを用いた光ネットワーク技術の導入であり,様々な研究開発が進められている。電気ケーブルを光ファイバに置き換えることにより,高速・大容量化が容易に実現され,ハーネス重量や電磁波干渉雑音の低減には,大きな効果がある。
しかし,このような方法は,従来の光通信技術をそのまま車載ネットワークに適用するものであり,消費電力や遅延時間の解決や低コスト化が困難である。
そこで,新たな光通信方式を用いることで,大容量・低遅延・低消費電力・低雑音・低コストである車載光バックボーンネットワークを提供することが望まれる。
電気ケーブルを光ファイバに置き換えた基本的なネットワーク構成を図2に示す(非特許文献1)。図2は,電気スイッチを用いた車載光ネットワークの例を示す概念図である。図2(a)は,スター型を示し,図2(b)はリング型を示す。マスター装置-電気スイッチ間およびゲートウェイ(Gateway)装置(以下GW)-電気スイッチ間では,光トランシーバによって電気信号から光信号に変換された後,光ファイバを介してデータ転送が行われる。この方法では,光ファイバを用いることで高速なデータ転送が可能になるが,多数の光トランシーバが必要となり,さらに受信側においてクロック信号が止まらないように,送るべきデータが無い時でも,常にダミー信号を送り続ける必要があるため,極めて無駄に電力を消費することとなる。さらに,電気スイッチでは,アドレス認識,衝突回避のためのバッファリング,および経路切り替え等の作業を行うが,安価なスイッチは速度が遅いため,遅延時間の問題が解消されない。
次に,電気スイッチの代わりに,光スプリッターや光スイッチを用いた方式を図3に示す(非特許文献2)。図3は,全光型の車載光ネットワークの例を示す概念図である。図3(a)は,光スプリッターを用いた例を示し,図3(b)は,光スイッチを用いた例を示す。これら光ネットワーク技術を導入した方法では,マスター-GW間で光のまま転送できるため,大幅な低遅延化が可能となり,光トランシーバの数も半減することが可能である。
図3(a)の光スプリッターを用いた方法は,アクセスネットワークのPONの技術を転用したものである。マスターからGWにデータ転送する場合,光信号は光スプリッターで分岐され,全てのGWに配信される。この時,GWのアドレスと一致した信号は取り込まれるが,不一致の信号は全て廃棄される。逆に,GWからマスターにデータを送る場合,GWからの光信号同士が衝突しないように,GWから順番にデータが転送される。この時光信号は,連続信号ではなく,バーストの光パケットの形態によって送信される。そのため,マスターの受信側では,瞬時にクロック再生が可能な高価な光バースト受信器が必要となる。
図3(b)の光スイッチを用いた方法では,電気スイッチに内蔵されていたアドレス認識器を別途用意する必要があり,さらに,バースト光パケットの形態でデータを転送する必要があるため,受信側では高価なバースト受信器が不可欠となり,大幅なコスト増大の要因となる。さらに,一部の光信号を分岐してアドレス認識器に送信する必要があるため,図に示すようなリング型ネットワーク形態をとる場合には,大幅な光損失を補うための光増幅器が必要となる。
その他,光波長によって光パスを切り替える波長ルーティング方式を利用した方法も提案されている(非特許文献3)。しかし,異なる波長の多数のレーザまたは高速な波長可変レーザを装備する必要があり,大幅なコスト増大の要因となる。
Shigeru Kobayashi et al., "Evaluation of Modal Power Distribution of Automotive Optical Gigabit Ethernet Connections," J. of Lightwave Technol., vol.35,no.17, p3664, 2017
Daniel Krous et al., "Replacement of the Controller Area Network (CAN) Protocol for Future Automotive Bus System Solutions by Substitution via Optical Networks," International Conference on Transparent Optical Networks (ICTON) 2016, Mo.D6.1
Mohammad S. Ab-Rahman et al., "A Novel Star Topology POF WDM System," IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA) 2011, p259
新たな光通信方式を用いることで,大容量・低遅延・低消費電力・低雑音・低コストである車載光バックボーンネットワークとして用いることができる新たな光ネットワークを提供することを目的とする。
本発明は,電気のC-planeと光のD-planeを融合し,一つの光源によって光ネットワークを構成することで,従来提案の車載用ネットワークシステム(電気および光)に比べ,大容量性・低遅延性・低消費電力性等において極めて優れた光ネットワークを提供できるという基本的概念に基づく。本発明は,この基本的概念を拡張したものも含む。この技術は,自動車などの車両のみならず飛行機・船舶・列車といった各種乗り物における新たな短距離大容量光通信システムとして適用されうる。
本明細書の最初の発明は,光ネットワークシステム1に関する。
この光ネットワークシステム1は,(第1)マスター部3と,(第2)マスター部3と接続された複数のゲートウェイ部5a,5b,5cと,(第3)複数のゲートウェイ部5a,5b,5cのそれぞれと接続された電子制御ユニット7とを含む。
この光ネットワークシステム1は,(第1)マスター部3と,(第2)マスター部3と接続された複数のゲートウェイ部5a,5b,5cと,(第3)複数のゲートウェイ部5a,5b,5cのそれぞれと接続された電子制御ユニット7とを含む。
マスター部3は,光源11と,信号処理部13と,ネットワーク制御部15と,受光素子17と,を有する。
信号処理部13は,光源11を制御し,いずれかのゲートウェイ部が読み出す情報部分と,いずれかのゲートウェイ部が書き込む連続光部分を含む光信号を生成する。
ネットワーク制御部15は,いずれかのゲートウェイ部を指定するとともに光源からの光信号に搭載された情報を読み出すか又は書き込むかに関する電気信号を生成する。
それぞれのゲートウェイ部5a,5b,5cは,電気信号により指定された場合,電気信号に含まれた情報を読み出すか又は書き込むかに関する情報に基づいて,対応する光信号に含まれる情報を読み出すか又は連続光部分に情報を書き込むとともに,電子制御ユニット7と情報の授受を行うものである。
受光素子17は,いずれかのゲートウェイが連続光部分に書き込んだ情報を読み出す。
この光ネットワークシステム1の好ましい態様のひとつは,以下のものである。
マスター部3は,さらにマスター制御部19を含む。
そして,マスター制御部19は,基準信号を発振する基準信号源と,基準信号源からの基準信号の周波数を逓倍し逓倍信号を出力する逓倍器と,を有する。
マスター制御部19は,基準信号源及び逓倍器を用いて,2種類以上の周波数を有する信号を生成し,生成した異なる周波数の信号により,信号処理部13とネットワーク制御部15とを駆動する。
マスター部3は,さらにマスター制御部19を含む。
そして,マスター制御部19は,基準信号を発振する基準信号源と,基準信号源からの基準信号の周波数を逓倍し逓倍信号を出力する逓倍器と,を有する。
マスター制御部19は,基準信号源及び逓倍器を用いて,2種類以上の周波数を有する信号を生成し,生成した異なる周波数の信号により,信号処理部13とネットワーク制御部15とを駆動する。
この光ネットワークシステム1の好ましい態様のひとつは,以下のものである。
ゲートウェイ部5a,5b,5cが,
電気信号により指定されない場合は,電気信号に対応する光信号を通過させ,
電気信号により指定された場合であって,電気信号に情報を読み出すことに関する指令が含まれるときは,電気信号に対応する光信号を読み出し,
電気信号により指定された場合であって,電気信号に情報を書き込むことに関する指令が含まれるときは,電気信号に対応する光信号の連続光部分に情報を書き込むものである,
光ネットワークシステム。
ゲートウェイ部5a,5b,5cが,
電気信号により指定されない場合は,電気信号に対応する光信号を通過させ,
電気信号により指定された場合であって,電気信号に情報を読み出すことに関する指令が含まれるときは,電気信号に対応する光信号を読み出し,
電気信号により指定された場合であって,電気信号に情報を書き込むことに関する指令が含まれるときは,電気信号に対応する光信号の連続光部分に情報を書き込むものである,
光ネットワークシステム。
この光ネットワークシステム1の好ましい態様のひとつは,以下のものである。
光源11が,多波長光源である。
そして,複数のゲートウェイ部5a,5b,5cのそれぞれは,多波長光源からの複数種類の波長の光信号のうち,いずれかの波長の光信号を受信する。
光源11が,多波長光源である。
そして,複数のゲートウェイ部5a,5b,5cのそれぞれは,多波長光源からの複数種類の波長の光信号のうち,いずれかの波長の光信号を受信する。
本明細書の次の発明は,情報制御方法に関する。この方法は,例えば,これまで説明した光ネットワークシステム1を用いる。
この方法は,例えば,光信号生成工程,電気信号生成工程,信号受信工程,電気信号解析工程,光信号読出工程,光信号書込工程,電子制御ユニット制御工程,光信号解析工程を含む。
この方法は,例えば,光信号生成工程,電気信号生成工程,信号受信工程,電気信号解析工程,光信号読出工程,光信号書込工程,電子制御ユニット制御工程,光信号解析工程を含む。
光信号生成工程は,マスター部3の信号処理部13が,光源11を制御し,複数のゲートウェイ部のうちいずれかのゲートウェイ部が読み出す情報部分と,いずれかのゲートウェイ部が書き込む連続光部分を含む光信号を生成する工程である。
電気信号生成工程は,マスター部3のネットワーク制御部15が,いずれかのゲートウェイ部を指定するとともに光源からの光信号に搭載された情報を読み出すか又は書き込むかに関する電気信号を生成する工程である。
信号受信工程は,ゲートウェイ部5a,5b,5cが,光信号及び電気信号を受信する工程である。
電気信号解析工程は,ゲートウェイ部5a,5b,5cが,受信した電気信号を解析し,自らが指定されたか否か解析するとともに,自らが指定された場合は,電気信号に含まれる,読み出すか又は書き込むかに関する情報を解析する工程である。
光信号読出工程は,ゲートウェイ部5a,5b,5cが,自らが指定され,電気信号に読み出すことに関する情報が含まれていた場合,受信した電気信号に対応する光信号に含まれる情報を読み出す工程である。
光信号書込工程は,ゲートウェイ部5a,5b,5cが,自らが指定され,電気信号に書き込むことに関する情報が含まれていた場合,受信した電気信号に対応する光信号に含まれる連続光部分に情報を書き込む工程である。
電子制御ユニット制御工程は,ゲートウェイ部5a,5b,5cが,電子制御ユニット7と情報の授受を行う工程である。
光信号解析工程は,マスター部3の受光素子17が,いずれかのゲートウェイが連続光部分に書き込んだ情報を読み出す工程である。
この情報制御方法の好ましい態様は,以下のものである。
つまり,マスター部3のマスター制御部19が,
基準信号源及び逓倍器を用いて,2種類以上の周波数を有する信号を生成し,生成した異なる周波数の信号により,信号処理部13とネットワーク制御部15とを駆動する。
つまり,マスター部3のマスター制御部19が,
基準信号源及び逓倍器を用いて,2種類以上の周波数を有する信号を生成し,生成した異なる周波数の信号により,信号処理部13とネットワーク制御部15とを駆動する。
本発明は,基本的には,電気のC-planeと光のD-planeを融合し,一つの光源によって光ネットワークを構成することで,従来提案の車載用ネットワークシステム(電気および光)に比べ,大容量性・低遅延性・低消費電力性等において極めて優れた光ネットワークを提供できる。
以下,図面を用いて本発明を実施するための形態について説明する。本発明は,以下に説明する形態に限定されるものではなく,以下の形態から当業者が自明な範囲で適宜修正したものも含む。
光ネットワークシステムの基本構成
図4は,光ネットワークシステムの基本構成を説明するための図である。図4(a)は,光ネットワークシステムの基本構成例を示す概念図である。図4(b)は,動作原理を説明するための概念図である。図4に示される例は,車載光ネットワークシステムである。もちろんこの概念を他の移動体搭載光ネットワークシステムや近距離光ネットワークシステムに用いることができる。
図4は,光ネットワークシステムの基本構成を説明するための図である。図4(a)は,光ネットワークシステムの基本構成例を示す概念図である。図4(b)は,動作原理を説明するための概念図である。図4に示される例は,車載光ネットワークシステムである。もちろんこの概念を他の移動体搭載光ネットワークシステムや近距離光ネットワークシステムに用いることができる。
この光ネットワークシステム1は,(第1)マスター部3と,(第2)マスター部3と接続された複数のゲートウェイ部5a,5b,5c,5d,5eと,(第3)複数のゲートウェイ部5a,5b,5cのそれぞれと接続された電子制御ユニット7とを含む。
マスター部3は,光源(LD)11と,信号処理部(プロセッサ)13と,ネットワーク制御部(c-プレーン)15と,受光素子(PD)17と,を有する。光源(LD)は,マスターにのみ配置されていればよい。そして,各ゲートウェイ部(GW)にはインターフェイス(IF)デバイスが配置されり。例えばリング型の構成では,各GWは光ファイバで接続され,高速なループ状の光のデータプレーン(D-プレーン)を形成する。
信号処理部13は,光源11を制御し,いずれかのゲートウェイ部が読み出す情報部分31a,31bと,いずれかのゲートウェイ部が書き込む連続光部分33a,33bを含む光信号を生成する。
ネットワーク制御部(c-プレーン)15は,いずれかのゲートウェイ部を指定する(アドレス部25a,25b)とともに光源からの光信号に搭載された情報を読み出すか又は書き込むかに関する読出し/書き出し信号(Listen/Talk)21,23を含む電気信号を生成する。
それぞれのゲートウェイ部5a,5b,5cは,電気信号により指定された場合,電気信号に含まれた情報を読み出すか又は書き込むかに関する情報に基づいて,対応する光信号に含まれる情報を読み出すか又は連続光部分に情報を書き込むとともに,電子制御ユニット7と情報の授受を行うものである。
受光素子17は,いずれかのゲートウェイが連続光部分に書き込んだ情報を読み出す。
この光ネットワークシステム1の好ましい態様のひとつは,以下のものである。
マスター部3は,さらにマスター制御部19を含む。
そして,マスター制御部19は,基準信号を発振する基準信号源と,基準信号源からの基準信号の周波数を逓倍し逓倍信号を出力する逓倍器と,を有する。
マスター制御部19は,基準信号源及び逓倍器を用いて,2種類以上の周波数を有する信号を生成し,生成した異なる周波数の信号により,信号処理部13とネットワーク制御部15とを駆動する。マスター制御部19が信号処理部13とネットワーク制御部15とを駆動するので,光源11から出力される光信号と,ネットワーク制御部(c-プレーン)15から出力される電気信号とは同期がとられている。逓倍器は,入力された基準信号の定数倍の周波数を有する信号を出力する装置である。
マスター部3は,さらにマスター制御部19を含む。
そして,マスター制御部19は,基準信号を発振する基準信号源と,基準信号源からの基準信号の周波数を逓倍し逓倍信号を出力する逓倍器と,を有する。
マスター制御部19は,基準信号源及び逓倍器を用いて,2種類以上の周波数を有する信号を生成し,生成した異なる周波数の信号により,信号処理部13とネットワーク制御部15とを駆動する。マスター制御部19が信号処理部13とネットワーク制御部15とを駆動するので,光源11から出力される光信号と,ネットワーク制御部(c-プレーン)15から出力される電気信号とは同期がとられている。逓倍器は,入力された基準信号の定数倍の周波数を有する信号を出力する装置である。
ゲートウェイ部
複数のゲートウェイ部5a,5b,5c,5d,5eは,マスター部3と接続されている。図4の例では,マスター部3から出てマスター部3へ戻る光伝搬路上に複数のゲートウェイ部5a,5b,5c,5d,5eが連続して存在している。もっとも,各ゲートウェイ部5a,5b,5c,5d,5eは,マスター部3から出てマスター部3へ戻る電気配線上にも存在している。ゲートウェイ部は,マスター部3からの情報を各種機器へ伝えるとともに,各種機器やセンサからの情報をマスター部3へ伝える中継点の役割を果たす部位である。例えば,ゲートウェイごとに,電子制御ユニット(ECU)を介して,安全系,制御系,情報系,ボディ制御系といった各種グループと接続されている。安全系の例は,車載カメラ,レーダなど(FlexRay)であり,制御系の例は,エンジン,ブレーキなど(CAN14a)であり,情報系の例は,カーナビゲーション,映像,音声など(MOST)であり,ボディ制御系の例は,ウィンドウ,ミラーなど(LIN14b)である。
複数のゲートウェイ部5a,5b,5c,5d,5eは,マスター部3と接続されている。図4の例では,マスター部3から出てマスター部3へ戻る光伝搬路上に複数のゲートウェイ部5a,5b,5c,5d,5eが連続して存在している。もっとも,各ゲートウェイ部5a,5b,5c,5d,5eは,マスター部3から出てマスター部3へ戻る電気配線上にも存在している。ゲートウェイ部は,マスター部3からの情報を各種機器へ伝えるとともに,各種機器やセンサからの情報をマスター部3へ伝える中継点の役割を果たす部位である。例えば,ゲートウェイごとに,電子制御ユニット(ECU)を介して,安全系,制御系,情報系,ボディ制御系といった各種グループと接続されている。安全系の例は,車載カメラ,レーダなど(FlexRay)であり,制御系の例は,エンジン,ブレーキなど(CAN14a)であり,情報系の例は,カーナビゲーション,映像,音声など(MOST)であり,ボディ制御系の例は,ウィンドウ,ミラーなど(LIN14b)である。
電子制御ユニット(ECU)
電子制御ユニット7は,複数のゲートウェイ部5a,5b,5cのそれぞれと接続されており,マスター部3からの制御信号を,各種機器へ伝える。また,各種機器からの情報は,電子制御ユニット7を介して,マスター部3へと伝えられる。
電子制御ユニット7は,複数のゲートウェイ部5a,5b,5cのそれぞれと接続されており,マスター部3からの制御信号を,各種機器へ伝える。また,各種機器からの情報は,電子制御ユニット7を介して,マスター部3へと伝えられる。
さらに,マスターと全てのGW内の電子制御ユニット(ECU)は,低速な制御プレーン(C-plane)によって電気的に接続されており,マスターから送られるアドレスとListen/Talkのフラグによって,どのGWがデータを受信するか(Listen),どのGWがデータを送信するか(Talk)が指定される。
このとき,ネットワーク全体は一定のタイムフレーム周期で動作し,C-plane上で指定されたGWが,Listen/Talkのフラグを基準に,次のフレームのデータを読み取る又は書き込む動作を実行する。すなわち,マスターからGWにデータを送るときは,マスターで光にデータをのせて送信し,指定されたGWがListenのフラグをもとに逆バイアスに設定され,データが読み取られる。逆にGWからマスターにデータを送信する場合は,マスターから一定強度のCW光のフレームを送信し,指定されたGWがTalkのフラグの直後にCW光にデータ変調し,そのフレームは再びマスター内のPDで受信される。
さらに,C-planeの重要な役割としては,ユニバーサルクロックの配信である。LDと同様に,基準となる発振器がマスターのみに装備されており,その発振器の周波数を必要な周波数に逓倍することで,C-planeおよびD-planeの信号を生成する。全てのGWは,常にC-planeを通じてマスターからの信号を受信しており,そこから共通のクロックを抽出することが可能である。各GWは,独自の発振器を保有することなく,その共通のクロック信号を用いて,D-plane上での光信号の送信および受信を行う。そのため,それぞれのGWからマスターに送られる光信号は,全て同一の周波数を持っており(ビット同期),マスターはバースト受信器で再度クロックを抽出することなく,自らが保有するクロック信号によって,それらの光信号を容易に受信することが可能となる。
次に,図4に示された光ネットワークシステムの動作例について説明する。
マスター部3は,信号処理部(プロセッサ)13は,光源(LD)11を制御して,各種情報を載せた光信号(例えば変調信号)31a,31bと,書き込み用の連続光部分33a,33bを出力させる。一方,信号処理部(プロセッサ)13は,ネットワーク制御部(c-プレーン)15を制御して,ゲートウェイを指定するアドレス信号25a,25bや,そのアドレス信号で指定されたゲートウェイが,光信号に乗せられた情報31a,31bを読み出すかことに関するListen信号21又は光信号の連続光部分33a,33bに情報を書き込むことに関するTalk信号23を含む電気信号生成し,電気回線を通じて,ゲートウェイに伝える。そして,光信号と電気信号とは同期がとられている。
マスター部3は,信号処理部(プロセッサ)13は,光源(LD)11を制御して,各種情報を載せた光信号(例えば変調信号)31a,31bと,書き込み用の連続光部分33a,33bを出力させる。一方,信号処理部(プロセッサ)13は,ネットワーク制御部(c-プレーン)15を制御して,ゲートウェイを指定するアドレス信号25a,25bや,そのアドレス信号で指定されたゲートウェイが,光信号に乗せられた情報31a,31bを読み出すかことに関するListen信号21又は光信号の連続光部分33a,33bに情報を書き込むことに関するTalk信号23を含む電気信号生成し,電気回線を通じて,ゲートウェイに伝える。そして,光信号と電気信号とは同期がとられている。
例えば第1のゲートウェイ5aは,インターフェイス12を介して,光信号をO/E変換し,電子制御ユニット7へ伝える。また,電子制御ユニット7からの電気信号は,例えば,インターフェイス12によりE/O変換されてもよい。例えば,電子制御ユニット7が,電気信号を解析し,アドレス25aが第1のゲートウェイである場合は,次の読出し/書き込み信号を解析する。その結果,読み出し信号(Listen信号)で会った場合は,それに対応する光信号31aを読み出す。そして,電子制御ユニット7は,読み出した光信号31aに従って,エンジン,ブレーキなどの各種制御機器CAN14aを制御する。一方,アドレス情報が第1のゲートウェイ以外のゲートウェイを指定するものであって場合は,例えば,光信号をそのまま素通りさせ,次のゲートウェイへと光信号を伝える。また,電気信号が書き込みを示す信号(Talk信号23)であった場合,に各種機器14aから出力された情報を電子制御ユニット7の制御信号に従い,対応する連続光部分33aに書き込む。
つまり,ゲートウェイ部5a,5b,5cが,電気信号により指定されない場合は,電気信号に対応する光信号を通過させる。一方,ゲートウェイ部5a,5b,5cが,電気信号により指定された場合であって,電気信号に情報を読み出すことに関する指令が含まれるときは,電気信号に対応する光信号を読み出す。また,ゲートウェイ部5a,5b,5cが,電気信号により指定された場合であって,電気信号に情報を書き込むことに関する指令が含まれるときは,電気信号に対応する光信号の連続光部分に情報を書き込む。
図5は,ゲートウェイ内のインターフェィスの例を示す概念図である。図5(a)は,電界吸収型のインターフェィスデバイスを示し,図5(b)はファブリペロ干渉型のインターフェィスデバイスを示す。図6は,インターフェィスの動作例を説明するための概念図である。電界吸収型のデバイスは,バイアスを印可しない状態では,光をそのまま通過させる(透明状態)。一方,電界吸収型のデバイスは,逆バイアス状態では,受光素子として機能する。つまり,逆バイアスを印可することで光情報を読み出すことができる。さらに,電界吸収型のデバイスは,電圧を変調する(バイアスを印可した状態)ことにより変調器として機能する。このため,電界吸収型のデバイスは,連続光に対し,変調信号を重畳でき,これにより情報を光信号に乗せることができる。
インターフェィス(IF)の例は,偏波無依存型のIFデバイスであり,電界吸収型デバイス(一般的にElectro-Absorption Modulator: EAMとよばれる)や二つの反射ミラーで活性層を挟んだファブリペロ干渉型デバイスを用いることができる。図5は,電界吸収型デバイスとファブリペロ干渉型デバイスの概念図である。これらのデバイスは,電圧を付加しない無バイアス状態では透明状態であり,光はほとんど損失することなく通過する。また,これらのデバイスに逆バイアスをかけた状態では,入力光は吸収され,電気信号として出力されるので,これらのデバイスは受光素子(PD)として動作する。さらに,高速な電気信号で電圧変調をかけると,吸収/透過を繰り返すので,これらのデバイスは光変調器として動作する。つまり,これらのデバイスは,連続光に対し,変調された光信号を出力できる。
多波長光ネットワークシステム
光源11が,多波長光源であることは,この光ネットワークシステムの好ましい例である。多波長光源は,1つの光源と,多波長装置(例えば光コム発送装置)とを有するものであってもよいし,複数の光源(LEDなど)を有する光源であってもよい。そして,複数のゲートウェイ部5a,5b,5cのそれぞれは,多波長光源からの複数種類の波長の光信号のうち,いずれかの波長の光信号を受信する。
光源11が,多波長光源であることは,この光ネットワークシステムの好ましい例である。多波長光源は,1つの光源と,多波長装置(例えば光コム発送装置)とを有するものであってもよいし,複数の光源(LEDなど)を有する光源であってもよい。そして,複数のゲートウェイ部5a,5b,5cのそれぞれは,多波長光源からの複数種類の波長の光信号のうち,いずれかの波長の光信号を受信する。
図7は,多波長光ネットワークシステムを説明するための概念図である。図7(a)は,多波長光ネットワークシステムの物理的構成を示す概念図であり,図7(b)は多波長光ネットワークシステムの論理的構成を説明するための図である。図7の例では,4種類の波長の光源11a,11b,11c,11dからの光がマルチプレクサ(合波器)35aにより合波され,光信号として出力される。各ゲートウェイは,特定の波長の光にのみ反応し,他の波長の光を透過させる。図7(b)に示される通り,それぞれのゲートウェイは,特定の波長の光のみにより情報の授受を行うため,物理的には1つの導波路により全てのゲートウェイが接続されていたとしても,論理的には波長ごとに光ネットワークが存在するかのように機能する。つまり,多波長光源を用いれば,この光ネットワークシステムは,各波長の光λ1,λ2,λ3,λ4に対応した,論理上複数の論理層41,43,45,47を有する光ネットワークとして機能することとなる。
本明細書の次の発明は,情報制御方法に関する。この方法は,例えば,これまで説明した光ネットワークシステム1を用いる。この方法は,例えば,光信号生成工程,電気信号生成工程,信号受信工程,電気信号解析工程,光信号読出工程,光信号書込工程,電子制御ユニット制御工程,光信号解析工程を含む。
光信号生成工程は,マスター部3の信号処理部13が,光源11を制御し,複数のゲートウェイ部のうちいずれかのゲートウェイ部が読み出す情報部分と,いずれかのゲートウェイ部が書き込む連続光部分を含む光信号を生成する工程である。光信号の例は図4(b)に示されており,光信号には情報部分31a,31bと,連続光部分33a,33bが含まれている。連続光部分は,光強度が一定であることが好ましい。
電気信号生成工程は,マスター部3のネットワーク制御部15が,いずれかのゲートウェイ部を指定するとともに光源からの光信号に搭載された情報を読み出すか又は書き込むかに関する電気信号を生成する工程である。電気信号の例は図4(b)に示されている。電気信号のアドレス部分25a,25bがゲートウェイ部を指定する部位である。一方,電気信号のListen信号21及びTalk信号23が光信号に搭載された情報を読み出すか又は書き込むかに関する電気信号である。
信号受信工程は,ゲートウェイ部5a,5b,5cが,光信号及び電気信号を受信する工程である。ゲートウェイ部5のインターフェイスデバイス12が,光信号を受信し,これを電気信号に変換して,電子制御ユニット7に伝える。一方,ゲートウェイ部5は,電気信号を受信し,電子制御ユニット7に伝える。
電気信号解析工程は,ゲートウェイ部5a,5b,5cが,受信した電気信号を解析し,自らが指定されたか否か解析するとともに,自らが指定された場合は,電気信号に含まれる,読み出すか又は書き込むかに関する情報を解析する工程である。上記の通り,電子制御ユニット7は,電気信号に変換された光信号と電気信号とを受け取る。そして,電気信号のアドレス信号を解析し,自らが指定されたか否か解析する。
光信号読出工程は,ゲートウェイ部5a,5b,5cが,自らが指定され,電気信号に読み出すことに関する情報が含まれていた場合,受信した電気信号に対応する光信号に含まれる情報を読み出す工程である。電子制御ユニット7は,電気信号にListen信号21が含まれている場合は,インターフェイスデバイス12を用いて,対応する光信号に含まれる,Listen信号21に対応した情報31aを読み出す。インターフェイスデバイス12は,読み出した情報を,電子制御ユニット7に伝える。電子制御ユニット7は,読み出した情報に従って,電子制御ユニット7と接続された各種機器14aを制御する。
光信号書込工程は,ゲートウェイ部5a,5b,5cが,自らが指定され,電気信号に書き込むことに関する情報が含まれていた場合,受信した電気信号に対応する光信号に含まれる連続光部分に情報を書き込む工程である。一方,電気信号にTalk信号23が含まれている場合,電子制御ユニット7は,インターフェイスデバイス12を制御して,例えば変調器として機能させ,対応する連続光部分33aに各種情報を載せる。
電子制御ユニット制御工程は,ゲートウェイ部5a,5b,5cが,電子制御ユニット7と情報の授受を行う工程である。
光信号解析工程は,マスター部3の受光素子17が,いずれかのゲートウェイが連続光部分に書き込んだ情報を読み出す工程である。光信号書込工程で,あるゲートウェイ部が,受信した電気信号に対応する光信号に含まれる連続光部分に情報を書き込む。例えば,電気信号にTalk信号23が含まれている場合,電子制御ユニット7は,インターフェイスデバイス12を制御して,例えば変調器として機能させ,対応する連続光部分33aに各種情報を載せる。変調信号などとして各種情報が乗せられた光信号の部分(もともとは連続光部分33aであった部分)は,受光素子17により受光され,受光素子17は,変調信号などの情報を解析する。
この情報制御方法の好ましい態様は,以下のものである。
つまり,マスター部3のマスター制御部19が,
基準信号源及び逓倍器を用いて,2種類以上の周波数を有する信号を生成し,生成した異なる周波数の信号により,信号処理部13とネットワーク制御部15とを駆動する。
つまり,マスター部3のマスター制御部19が,
基準信号源及び逓倍器を用いて,2種類以上の周波数を有する信号を生成し,生成した異なる周波数の信号により,信号処理部13とネットワーク制御部15とを駆動する。
この光ネットワークシステムは,マスターのみにレーザを配置し,さらにアドレス指定やネットワーク制御を行うための低速な電気のC-planeと大容量データを転送するための高速な光のD-planeとが並列に構成された,これまでにない新たな短距離通信用光ネットワークであり,以下の通り多くのメリットを有する。
低消費電力性
光トランシーバを用いたシステムは,転送すべきデータが無い時も常にダミー信号を送り続ける必要があるため,多くの電流を消費する。一方,この光ネットワークシステムは,このような光トランシーバの数を大幅に削減できる。一方,GWに用いられるIFデバイスは低消費電力な電圧制御型デバイスであり,さらにアドレス指定されない時は待機状態(無バイアス)で電力を消費することは無い。また,ある時間フレームに対しては,複数のIFデバイスの中のアドレス指定されたIFのみが動作しており(場合により,PDまたは変調器として機能する),すなわち,複数台のGWが接続された光ネットワークシステムにおいては,一つの光トランシーバ(LD+PD)と1つのIFデバイスが動作している消費電力に等価であり,極めて低消費電力動作が可能である。
光トランシーバを用いたシステムは,転送すべきデータが無い時も常にダミー信号を送り続ける必要があるため,多くの電流を消費する。一方,この光ネットワークシステムは,このような光トランシーバの数を大幅に削減できる。一方,GWに用いられるIFデバイスは低消費電力な電圧制御型デバイスであり,さらにアドレス指定されない時は待機状態(無バイアス)で電力を消費することは無い。また,ある時間フレームに対しては,複数のIFデバイスの中のアドレス指定されたIFのみが動作しており(場合により,PDまたは変調器として機能する),すなわち,複数台のGWが接続された光ネットワークシステムにおいては,一つの光トランシーバ(LD+PD)と1つのIFデバイスが動作している消費電力に等価であり,極めて低消費電力動作が可能である。
低遅延性
アドレス指定されないIFデバイスは透明状態であり,光信号は光のまま通過する。そのため,全てのマスターとGW間は,電気スイッチや光スイッチを介することなく,ポイントトゥーポイントで完全に光接続された状態であるので,極めて低遅延でのデータ転送が可能である。
アドレス指定されないIFデバイスは透明状態であり,光信号は光のまま通過する。そのため,全てのマスターとGW間は,電気スイッチや光スイッチを介することなく,ポイントトゥーポイントで完全に光接続された状態であるので,極めて低遅延でのデータ転送が可能である。
拡張性/大容量化
電気スイッチを用いたネットワークの場合,電気スイッチの入力ポート数でGWの数が制限される。本ネットワークの場合は,リング状の光配線の任意の場所にGWを追加拡張することが可能である。さらに,データの転送容量を増大させる方法として,波長分割多重(WDM)が用いられるが,従来の光トランシーバを用いた方法では,マスター及びGW内のLDおよびPDが波長の数に比例して増加するため,コストも消費電力も同様に増大する。本方法では,マスター内のLD/PD数は波長数に比例して増加するが,GWでは後述するように波長数に関係なく一つのIFデバイスで動作可能であるため,コストや消費電力があまり増大することは無い。
電気スイッチを用いたネットワークの場合,電気スイッチの入力ポート数でGWの数が制限される。本ネットワークの場合は,リング状の光配線の任意の場所にGWを追加拡張することが可能である。さらに,データの転送容量を増大させる方法として,波長分割多重(WDM)が用いられるが,従来の光トランシーバを用いた方法では,マスター及びGW内のLDおよびPDが波長の数に比例して増加するため,コストも消費電力も同様に増大する。本方法では,マスター内のLD/PD数は波長数に比例して増加するが,GWでは後述するように波長数に関係なく一つのIFデバイスで動作可能であるため,コストや消費電力があまり増大することは無い。
同期系システム
この光ネットワークシステムは,基準となる発振器がマスターのみに装備されており,電気のC-planeによって共通のクロック信号が全てのGWに配信されることとなる。そのため,システム全体が完全に同期した状態で動作しており,マスターおよびGWは高額な光バースト受信器を用いることなく,光信号の送信・受信が可能となる。
この光ネットワークシステムは,基準となる発振器がマスターのみに装備されており,電気のC-planeによって共通のクロック信号が全てのGWに配信されることとなる。そのため,システム全体が完全に同期した状態で動作しており,マスターおよびGWは高額な光バースト受信器を用いることなく,光信号の送信・受信が可能となる。
信頼性/メンテナンス性
レーザは注入された電流を光に変換する電流制御型デバイスであり,一定の寿命を有する。一方,図5で示したIFデバイスは,電流をほとんど流さない電圧制御型デバイスであり,一般的に極めて長い寿命を有する。そのため,GW内の光トランシーバをIFデバイスに置き換えた本システムの寿命は向上する。また,LDが故障した場合,本発明ではマスター装置内のLDのみを交換すればよいので,メンテナンス性が大幅に向上する。さらに,電気スイッチや光スイッチを用いたネットワークでは,どこかのスイッチが故障した場合,ネットワーク全体が停止する可能性がある。一方,IFデバイスは故障時に透明状態となり,光はそのまま透過するため,そのGWに接続されたサブネットワークのみが停止するのみで,ネットワーク全体が停止することはない。
レーザは注入された電流を光に変換する電流制御型デバイスであり,一定の寿命を有する。一方,図5で示したIFデバイスは,電流をほとんど流さない電圧制御型デバイスであり,一般的に極めて長い寿命を有する。そのため,GW内の光トランシーバをIFデバイスに置き換えた本システムの寿命は向上する。また,LDが故障した場合,本発明ではマスター装置内のLDのみを交換すればよいので,メンテナンス性が大幅に向上する。さらに,電気スイッチや光スイッチを用いたネットワークでは,どこかのスイッチが故障した場合,ネットワーク全体が停止する可能性がある。一方,IFデバイスは故障時に透明状態となり,光はそのまま透過するため,そのGWに接続されたサブネットワークのみが停止するのみで,ネットワーク全体が停止することはない。
波長分割多重
さらにGWの数やネットワーク全体の容量を増やしたい場合には,図7に示すように,波長分割多重技術(WDM)を用いることが効果的である。一般的には,波長の異なるレーザを並列に配置し,光合波回路を用いてそれらの光を合波し,1つの光ファイバに挿入する。受信側では,その逆に光分離回路を用いて,波長ごとに空間分離を行い,異なる受光素子で受信する。GW内のIFデバイスとしては,図8で示すような特定の波長のみに動作するデバイスを用いる。図8は,特定波長で動作するデバイスの例を示す概念図である。図8(a)は,図5(a)の電界吸収型デバイスと波長セレクタ用のリング共振器を組み合わせたものである。図では,λ1に共鳴するリング共振器が取り付けられており,λ1の光はEAM内に送り込まれるが,その他の波長の光はリング共振器をスルーして,そのまま出力側のファイバに送り込まれる。図8(b)は,図5(b)のファブリペロ干渉型デバイスにバンドパスフィルターを取り付けたものである。この時,特定の波長のみがバンドパスフィルターを通過し,ファブリペロ干渉型デバイスに入射され,その他の波長の光はバンドパスフィルターでほとんど損失無く反射される。電界吸収型デバイスやファブリペロ干渉型デバイスの動作は,前述と同様である。
さらにGWの数やネットワーク全体の容量を増やしたい場合には,図7に示すように,波長分割多重技術(WDM)を用いることが効果的である。一般的には,波長の異なるレーザを並列に配置し,光合波回路を用いてそれらの光を合波し,1つの光ファイバに挿入する。受信側では,その逆に光分離回路を用いて,波長ごとに空間分離を行い,異なる受光素子で受信する。GW内のIFデバイスとしては,図8で示すような特定の波長のみに動作するデバイスを用いる。図8は,特定波長で動作するデバイスの例を示す概念図である。図8(a)は,図5(a)の電界吸収型デバイスと波長セレクタ用のリング共振器を組み合わせたものである。図では,λ1に共鳴するリング共振器が取り付けられており,λ1の光はEAM内に送り込まれるが,その他の波長の光はリング共振器をスルーして,そのまま出力側のファイバに送り込まれる。図8(b)は,図5(b)のファブリペロ干渉型デバイスにバンドパスフィルターを取り付けたものである。この時,特定の波長のみがバンドパスフィルターを通過し,ファブリペロ干渉型デバイスに入射され,その他の波長の光はバンドパスフィルターでほとんど損失無く反射される。電界吸収型デバイスやファブリペロ干渉型デバイスの動作は,前述と同様である。
この光ネットワークシステムをWDM化した場合,D-planeにおいては,マスターの光源のみを多波長化すればよく,GW内のIFデバイスは波長数に関係なく単一のデバイスである。さらにC-planeにおいては,前述と同様に波長数に関係なく単一のC-planeを配備すればよく,ネットワーク全体の動作原理は前述と同様である。ただしこの場合,一つのタイムフレームに対し,各波長に対応したGWのアドレスを指定する必要がある。さらにこの時,図7に示すように,物理的構成は単一のリングネットワークであるが,論理的構成では複数の波長レイヤがオーバーレイした形となる。これら波長レイヤは独立に動作させることが可能であるため,波長ごとに動作速度や転送プロトコルを自由に設定することで,機能や要求条件に応じた柔軟なネットワークを構成することが可能となる
これまでは,リング構成のネットワークを説明したが,スター型トポロジーのネットワーク構成例を図9に示す。図9は,スター型トポロジーのネットワーク構成例を示す概念図である。図9(a)は単一波長の場合の例を示し,図9(b)は複数波長の場合の例を示す。単一波長の場合,マスターから送信された光信号は,光スプリッターによって分配され,いくつかのGWを経由して再びマスターに送られる。この時,マスター側の受信器を複数台にすることで,同時に複数のGWからの信号を受信可能となり,ネットワークのスループットは増大する。さらにWDM化する場合,マスターから送信された波長多重光信号は,光分離回路で波長ごとに分離され,それぞれ複数のGWを経由して,再び光合波回路で多重化され,マスターに送られる。この時,単一波長の場合に比べ,マスターの送信側の帯域も増加するため,より多くのGWを挿入することが可能となる。さらに,それぞれの光パスは波長ごとに分離されているため,IFデバイスとしては,図5で示した最も基本的なデバイスを用いることが可能となる。
この発明は,車載光ネットワークのような近距離光情報通信の分野で利用されうる。またこの発明は,自動車などの車両のみならず飛行機・船舶・列車といった各種乗り物における新たな短距離大容量光通信システムとして適用されうる。
1 光ネットワークシステム
3 マスター部
5a,5b,5c ゲートウェイ部
7 電子制御ユニット
11 光源
13 信号処理部
15 ネットワーク制御部
17 受光素子
3 マスター部
5a,5b,5c ゲートウェイ部
7 電子制御ユニット
11 光源
13 信号処理部
15 ネットワーク制御部
17 受光素子
Claims (6)
- マスター部(3)と,
前記マスター部(3)と接続された複数のゲートウェイ部(5a,5b,5c)と,
前記複数のゲートウェイ部(5a,5b,5c)のそれぞれと接続された電子制御ユニット(7)とを含む,
光ネットワークシステム(1)であって,
前記マスター部(3)は,
光源(11)と,信号処理部(13)と,ネットワーク制御部(15)と,受光素子(17)と,を有し,
前記信号処理部(13)は,
前記光源(11)を制御し,いずれかのゲートウェイ部が読み出す情報部分と,いずれかのゲートウェイ部が書き込む連続光部分を含む光信号を生成し,
前記ネットワーク制御部(15)は,
いずれかのゲートウェイ部を指定するとともに前記光源からの光信号に搭載された情報を読み出すか又は書き込むかに関する電気信号を生成し,
前記それぞれのゲートウェイ部(5a,5b,5c)は,
前記電気信号により指定された場合,前記電気信号に含まれた情報を読み出すか又は書き込むかに関する情報に基づいて,対応する前記光信号に含まれる情報を読み出すか又は前記連続光部分に情報を書き込むとともに,前記電子制御ユニット(7)と情報の授受を行うものであり,
前記受光素子(17)は,
前記いずれかのゲートウェイが前記連続光部分に書き込んだ情報を読み出す,
光ネットワークシステム。 - 請求項1に記載の光ネットワークシステムであって,
前記マスター部(3)は,さらにマスター制御部(19)を含み,
前記マスター制御部(19)は,
基準信号を発振する基準信号源と,前記基準信号源からの基準信号の周波数を逓倍し逓倍信号を出力する逓倍器(23)と,を有し,
前記基準信号源及び前記逓倍器を用いて,2種類以上の周波数を有する信号を生成し,生成した異なる周波数の信号により,前記信号処理部(13)と前記ネットワーク制御部(15)とを駆動する,
光ネットワークシステム。 - 請求項1に記載の光ネットワークシステムであって,
前記ゲートウェイ部(5a,5b,5c)は,
前記電気信号により指定されない場合は,前記電気信号に対応する前記光信号を通過させ,
前記電気信号により指定された場合であって,前記電気信号に情報を読み出すことに関する指令が含まれるときは,前記電気信号に対応する前記光信号を読み出し,
前記電気信号により指定された場合であって,前記電気信号に情報を書き込むことに関する指令が含まれるときは,前記電気信号に対応する前記光信号の連続光部分に情報を書き込むものである,
光ネットワークシステム。 - 請求項1に記載の光ネットワークシステムであって,
前記光源(11)は多波長光源であり,
前記複数のゲートウェイ部(5a,5b,5c)のそれぞれは,前記多波長光源からの複数種類の波長の光信号のうち,いずれかの波長の光信号を受信する,
光ネットワークシステム。 - 請求項1に記載の光ネットワークシステムであって,
マスター部(3)の信号処理部(13)が,
光源(11)を制御し,複数のゲートウェイ部のうちいずれかのゲートウェイ部が読み出す情報部分と,いずれかのゲートウェイ部が書き込む連続光部分を含む光信号を生成する工程と,
前記マスター部(3)のネットワーク制御部(15)が,
いずれかのゲートウェイ部を指定するとともに前記光源からの光信号に搭載された情報を読み出すか又は書き込むかに関する電気信号を生成する工程と,
前記ゲートウェイ部(5a,5b,5c)が,
前記光信号及び前記電気信号を受信する工程と,
前記ゲートウェイ部(5a,5b,5c)が前記電気信号により指定された場合,前記ゲートウェイ部(5a,5b,5c)が,
前記電気信号に含まれた情報を読み出すか又は書き込むかに関する情報に基づいて,対応する前記光信号に含まれる情報を読み出すか又は前記連続光部分に情報を書き込む工程と,
前記ゲートウェイ部(5a,5b,5c)が,
前記電子制御ユニット(7)と情報の授受を行う工程と,
前記マスター部(3)の受光素子(17)が,
前記いずれかのゲートウェイが前記連続光部分に書き込んだ情報を読み出す工程と
を含む,情報制御方法。 - 請求項5に記載の情報制御方法であって,
前記マスター部(3)のマスター制御部(19)が,
基準信号源及び逓倍器を用いて,2種類以上の周波数を有する信号を生成し,生成した異なる周波数の信号により,前記信号処理部(13)と前記ネットワーク制御部(15)とを駆動する,
情報制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19847819.0A EP3836491B1 (en) | 2018-08-09 | 2019-06-03 | In-vehicle optical network |
US17/267,002 US11271653B2 (en) | 2018-08-09 | 2019-06-03 | In-vehicle optical network |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018150918A JP7053028B2 (ja) | 2018-08-09 | 2018-08-09 | 車載光ネットワーク |
JP2018-150918 | 2018-08-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020031477A1 true WO2020031477A1 (ja) | 2020-02-13 |
Family
ID=69414728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/021921 WO2020031477A1 (ja) | 2018-08-09 | 2019-06-03 | 車載光ネットワーク |
Country Status (4)
Country | Link |
---|---|
US (1) | US11271653B2 (ja) |
EP (1) | EP3836491B1 (ja) |
JP (1) | JP7053028B2 (ja) |
WO (1) | WO2020031477A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113542346A (zh) * | 2020-04-22 | 2021-10-22 | 冯金特里公司 | 船载电信网络及包含这种电信网络的船舶 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11689386B2 (en) | 2019-08-01 | 2023-06-27 | Vulcan Technologies International Inc. | Intelligent controller and sensor network bus, system and method for controlling and operating an automated machine including a failover mechanism for multi-core architectures |
US11269316B2 (en) * | 2019-08-01 | 2022-03-08 | Vulcan Technologies Shanghai Co., Ltd. | Intelligent controller and sensor network bus, system and method including smart compliant actuator module |
US11809163B2 (en) | 2019-08-01 | 2023-11-07 | Vulcan Technologies Shanghai Co., Ltd. | Intelligent controller and sensor network bus, system and method including a message retransmission mechanism |
CN115278403A (zh) * | 2021-04-29 | 2022-11-01 | 华为技术有限公司 | 电交换集群系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07212347A (ja) * | 1994-01-26 | 1995-08-11 | Hitachi Ltd | 波長多重光通信システム |
JPH07250029A (ja) * | 1994-03-08 | 1995-09-26 | Nippon Telegr & Teleph Corp <Ntt> | 光ループ網伝送方式 |
JP2016019176A (ja) * | 2014-07-09 | 2016-02-01 | 株式会社日本自動車部品総合研究所 | 信号転送装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4930049A (en) * | 1988-12-27 | 1990-05-29 | General Electric Company | Optical multiplexed electrical distribution system particularly suited for vehicles |
DE4106726B4 (de) * | 1991-03-02 | 2007-03-22 | Daimlerchrysler Ag | Kommunikationsnetzwerk in Kraftfahrzeugen |
US8208811B2 (en) * | 2005-12-12 | 2012-06-26 | Verizon Business Global Llc | Network with sourceless clients |
CN116101188A (zh) * | 2016-06-24 | 2023-05-12 | 矢崎总业株式会社 | 车辆电路体 |
-
2018
- 2018-08-09 JP JP2018150918A patent/JP7053028B2/ja active Active
-
2019
- 2019-06-03 EP EP19847819.0A patent/EP3836491B1/en active Active
- 2019-06-03 WO PCT/JP2019/021921 patent/WO2020031477A1/ja unknown
- 2019-06-03 US US17/267,002 patent/US11271653B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07212347A (ja) * | 1994-01-26 | 1995-08-11 | Hitachi Ltd | 波長多重光通信システム |
JPH07250029A (ja) * | 1994-03-08 | 1995-09-26 | Nippon Telegr & Teleph Corp <Ntt> | 光ループ網伝送方式 |
JP2016019176A (ja) * | 2014-07-09 | 2016-02-01 | 株式会社日本自動車部品総合研究所 | 信号転送装置 |
Non-Patent Citations (3)
Title |
---|
DANIEL KROUS ET AL.: "Replacement of the Controller Area Network (CAN) Protocol for Future Automotive Bus System Solutions by Substitution via Optical Networks", INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON, 2016 |
MOHAMMAD S. AB-RAHMAN ET AL.: "A Novel Star Topology POF WDM System", IEEE SYMPOSIUM ON BUSINESS, ENGINEERING AND INDUSTRIAL APPLICATIONS (ISBEIA, 2011, pages 259, XP032028339, DOI: 10.1109/ISBEIA.2011.6088817 |
SHIGERU KOBAYASHI ET AL.: "Evaluation of Modal Power Distribution of Automotive Optical Gigabit Ethernet Connections", JOURNAL OF LIGHT WAVE TECHNOLOGY, vol. 35, no. 17, 2017, pages 3664, XP011657360, DOI: 10.1109/JLT.2017.2716981 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113542346A (zh) * | 2020-04-22 | 2021-10-22 | 冯金特里公司 | 船载电信网络及包含这种电信网络的船舶 |
EP3902160A1 (en) * | 2020-04-22 | 2021-10-27 | Fincantieri S.p.A. | Shipboard telecommunications network and ship comprising such telecommunications network |
Also Published As
Publication number | Publication date |
---|---|
US20210167855A1 (en) | 2021-06-03 |
EP3836491A4 (en) | 2022-04-06 |
US11271653B2 (en) | 2022-03-08 |
JP7053028B2 (ja) | 2022-04-12 |
EP3836491A1 (en) | 2021-06-16 |
EP3836491B1 (en) | 2023-11-08 |
JP2020027990A (ja) | 2020-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020031477A1 (ja) | 車載光ネットワーク | |
EP0668674B1 (en) | Optical wavelength division multiplexed network system | |
US6782210B1 (en) | Optical packet routing network system based on optical label switching technique | |
EP2420070B1 (en) | Optical path switching type optical signal transmission/reception apparatus and relevant optical signal transmission/reception method | |
CN109073828B (zh) | 具有集成在同一芯片上的光学分离器及调制器的光学互连件 | |
WO2015196437A1 (zh) | 访问内存的系统、装置及方法 | |
TW201526560A (zh) | 動態波長分配光路由及應用此光路由的終端裝置 | |
CN113556183B (zh) | 一种量子通信系统 | |
JP2006515134A (ja) | 非対称光ネットワークトラフィックフロー制御 | |
JP2009027421A (ja) | 光伝送システム | |
US7756419B2 (en) | Traffic signal node cross scheduling method and system | |
US7174104B2 (en) | Transmitting apparatus using multiple lambda source in WDM network | |
WO2016051442A1 (ja) | 光スイッチ経路選択システム及びこれを用いた情報通信装置 | |
JPH11122177A (ja) | 監視制御信号送信装置及び方法 | |
US20160365926A1 (en) | Datacenter Interconnection System | |
US20210288719A1 (en) | Optical Dispersion Compensator | |
WO2023105729A1 (ja) | 光経路切り替えシステム | |
JP2004112812A (ja) | 光通信用媒体変換器の電力供給装置及び電力供給方法 | |
CN114257329B (zh) | 光信号发射设备、光信号接收设备以及光信号传输系统 | |
CN114124227B (zh) | 一种光收发装置和光信号处理方法 | |
JPH09102991A (ja) | Add/drop方法と同期方法 | |
Mazurowski et al. | Deterministic digital WDM LAN for controlled configurations | |
KR100731978B1 (ko) | 파장분할 다중화 모스트 장치 및 이를 이용한 모스트네트워크 | |
Liang et al. | Intra-Vehicle Optical Networks | |
CN115694711A (zh) | 一种基于波分复用技术的机载组网及信号传输方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19847819 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019847819 Country of ref document: EP Effective date: 20210309 |