WO2023105729A1 - 光経路切り替えシステム - Google Patents

光経路切り替えシステム Download PDF

Info

Publication number
WO2023105729A1
WO2023105729A1 PCT/JP2021/045407 JP2021045407W WO2023105729A1 WO 2023105729 A1 WO2023105729 A1 WO 2023105729A1 JP 2021045407 W JP2021045407 W JP 2021045407W WO 2023105729 A1 WO2023105729 A1 WO 2023105729A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength
optical path
input
light
Prior art date
Application number
PCT/JP2021/045407
Other languages
English (en)
French (fr)
Inventor
悠太 上田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/045407 priority Critical patent/WO2023105729A1/ja
Priority to JP2023565819A priority patent/JPWO2023105729A1/ja
Publication of WO2023105729A1 publication Critical patent/WO2023105729A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking

Definitions

  • the present disclosure relates to an optical path switching system, and more particularly, to an optical path switching system that optically connects different nodes with a simple configuration.
  • Non-Patent Document 1 Optical communication technology has generally been applied to communication between nodes of several kilometers or more, such as submarine cable communication for long-distance transmission and fiber to the home for short distance transmission. In recent years, attempts have also been made to apply it to communication between servers in a data center. (See Non-Patent Document 1)
  • Non-Patent Document 2 In order to improve the efficiency of data transfer, there is a shift away from conventional computer design centered on the CPU to a so-called memory-centric computer architecture centered on memory in which the CPU and accelerators are connected to a large-scale memory. It is actively done. In the case of such a memory-centered computer architecture, high-speed, low-power communication between the CPU or accelerator and the memory is also important (see Non-Patent Document 2).
  • nodes In order to increase the speed of communication between the elements that make up a computer (hereafter referred to as nodes in this specification), multiple nodes such as CPUs, accelerators, and memories are implemented as densely as possible to achieve high-speed communication between nodes.
  • a common approach is to minimize the physical distance between the terminals to minimize the electrical signal loss for communication.
  • One of the major problems in replacing communication within a computer with light is the optical path switching of the optical communication network.
  • an optical switch in which MZI type switches are cascaded has the following problems. ⁇ The larger the scale of the switch, the more complicated the control circuit for controlling each MZI switch individually. ⁇ Because it is very difficult to buffer the optical signal, Requires complex scheduling algorithms to avoid signal collisions
  • Non-Patent Document 4 optical path control using a high-speed wavelength tunable light source and a wavelength router device (see Non-Patent Document 4) is also under study.
  • FIG. 1 is a diagram for explaining an outline of a wavelength router device.
  • the wavelength router device WR has input ports 1-8 and output ports 1-8.
  • An optical signal from a wavelength tunable light source (not shown) capable of switching wavelengths ⁇ 1 to ⁇ 8 at high speed is input to each of input ports 1 to 8 .
  • the wavelength routing function unit is composed of cascaded MZI switches, and routes optical signals input from input ports 1-8 to any one of output ports 1-8.
  • the eight wavelengths of the optical signal input from the input port 1 are indicated by ⁇ 1-1 to ⁇ 8-1
  • the eight wavelengths of the optical signal input from the input port 2 are indicated by ⁇ 1-2 to ⁇ 8- 2
  • the eight wavelengths of the optical signal input from the input port 8 are indicated as ⁇ 1-8 to ⁇ 8-8
  • optical signals of wavelengths ⁇ 1-1 to ⁇ 8-1 input from input port 1 are routed to output ports 1 to 8, respectively, and wavelengths ⁇ 1-8 to ⁇ 8 input from input port 8 are routed.
  • -8 optical signals are routed to output ports 8 to 1, respectively.
  • the wavelength routing function unit selects the wavelength of light so that the optical signal is output to the desired output port when the optical signal is input from the input port of the wavelength router device WR. .
  • the wavelength of the tunable light source can be accurately controlled, then it will be possible to autonomously control the path of the optical signal with a configuration that uses only passive optical circuits.
  • the wavelength tunable light source installed in a computer is a laser constructed using a semiconductor (hereafter referred to as a single conductor laser) due to its physical size requirements.
  • temperature control is required.
  • mounting a Peltier temperature control mechanism in each node means an increase in the cost and power consumption of each node.
  • the wavelength tunable light source corresponding to each node transmits an optical signal
  • information on the wavelength according to the destination and information on the timing of optical signal transmission are required.
  • An object of the present invention is to provide an optical path switching system capable of alleviating an increase in optical power consumption, an increase in power consumption, or a delay associated with transmission control.
  • one embodiment of the present disclosure provides an optical path switching system for switching optical paths formed between N nodes, where N is an integer of 2 or greater, and k is It is an integer of 1 or more and N or less, and the optical path switching system includes N wavelength tunable lasers (TL) capable of switching wavelengths in a time of 100 nanoseconds or less and outputting light, and optical paths between nodes.
  • N is an integer of 2 or greater
  • k is It is an integer of 1 or more and N or less
  • the optical path switching system includes N wavelength tunable lasers (TL) capable of switching wavelengths in a time of 100 nanoseconds or less and outputting light, and optical paths between nodes.
  • TL wavelength tunable lasers
  • a tunable laser control circuit for controlling switching of wavelengths of light output from the tunable lasers (TL) based on information about the optical signals associated with the N tunable lasers and the N tunable lasers; N optical transceivers (TR) connected via a first optical path (A), wherein the k-th optical transceiver (TR k ) of the N optical transceivers is , an optical modulator (OM k ) that converts an optical signal input using an electrical signal into an optical signal, and an optical receiver (OR k ) that converts the optical signal into an electrical signal, corresponding to the k-th node of N optical transceivers and N beam splitters (BS) for splitting input optical signals, which are connected to the N optical transceivers via N second optical paths (B) and N beam splitters connected to the tunable laser control circuit via N third optical paths (C k ), and N beam splitters and N fourth optical paths (D)
  • a wavelength router device having N input ports and N output ports
  • the light output from the k-th wavelength tunable laser (TL k ) out of the N wavelength tunable lasers is the k-th wavelength out of the N first optical paths (A).
  • a k the k-th optical transceiver
  • OM k optical modulator
  • the k-th beam splitter (BS k ) of the N beam splitters via the k-th optical path of the second optical path (B), and the k-th beam splitter (BS k ) is input to a wavelength tunable laser control circuit (TLC) via the k-th optical path (C k ) of the N third optical paths, and the split optical signal
  • TLC wavelength tunable laser control circuit
  • the other is input to N ports of the wavelength router (WR) via the k-th optical path (D k ) of the N fourth optical paths, and is routed in the wavelength router (WR) to form N optical paths.
  • FIG. 1 is a diagram for explaining an outline of a wavelength router device.
  • FIG. 2A is a diagram showing a schematic configuration of an optical path switching system according to one embodiment.
  • 2B is a diagram showing a schematic configuration of an optical transceiver TR k in FIG. 2A;
  • FIG. 3A is a diagram showing a state in which the wavelength of light output from the tunable laser TL 1 is ⁇ 1 .
  • FIG. 3B is a diagram showing the state when the wavelength of the light output from the wavelength tunable laser TL1 is changed to ⁇ 8 .
  • FIG. 4 is a diagram showing a schematic configuration of an optical transceiver TR k in the optical path switching system of one embodiment.
  • FIG. 5A is a diagram showing a schematic configuration of an optical path switching system in which circulators CR k of one embodiment are arranged.
  • FIG. 5B is a diagram showing a schematic configuration of the optical transceiver TR k in FIG. 5A.
  • FIG. 6A is a diagram showing a schematic configuration of an optical path switching system in which a mechanism (Mk) for tapping and monitoring light according to this embodiment is arranged.
  • FIG. 6B is a diagram showing a schematic configuration of the optical transceiver TR k in FIG. 6A.
  • Embodiment 1 The optical path switching system of Embodiment 1 will be described with reference to FIGS. 2A, 2B, 3A, and 3B.
  • N is an arbitrary integer of 2 or more
  • k is an integer of 1 or more and N or less.
  • the optical path switching system shown in FIG. 2A includes N tunable lasers TL, wavelength router devices WR, N optical transceivers TR, and N beam splitters BS.
  • the optical path switching system further comprises a tunable laser control circuit TLC for controlling the N tunable lasers TL.
  • the wavelength tunable laser TL k is a wavelength tunable laser that can switch wavelengths at a speed of 100 nanoseconds or less, and can selectively output light with wavelengths ⁇ 1 to ⁇ N .
  • the wavelength router device WR has N input ports, N output ports, and N ⁇ N channels connecting between the N input ports and the N output ports.
  • the wavelength router device WR may be configured using a cyclic array diffraction grating, or may be configured using a ring resonator.
  • the k-th input port from the top is simply indicated as input k, and similarly the k-th output port from the top is simply indicated as output k.
  • the optical transceiver TRk has the function of transmitting and receiving light.
  • FIG. 2B is a diagram showing a schematic configuration of the optical transceiver TRk .
  • the optical transceiver TR k has two input ports and one output port, and modulates light input from one input port (modulated light) with an electrical signal to generate an optical signal.
  • an optical modulator OM k that converts the signal into an electrical signal and outputs it from an output port
  • an optical receiver OR k that converts an optical signal input from the other input port into an electrical signal and outputs the electrical signal.
  • the other input port is hereinafter also referred to as a reception port.
  • the material and configuration of the optical modulator OMk do not matter.
  • a silicon Mach-Zehnder modulator or a compound semiconductor electro-absorption modulator can be used.
  • the wavelength tunable laser TL k and the optical transceiver TR k are connected by an optical path A k .
  • An optical path Bk connects between the optical transceiver TRk and the beam splitter BSk .
  • An optical path Ck connects between the beam splitter BS k and the wavelength tunable laser control circuit TLC, and an optical path Dk connects between the beam splitter BS k and the wavelength router device WR.
  • An optical path Ek connects between the wavelength router device WR and the optical transceiver TRk .
  • FIG. 3A the operation of the optical path switching system of this embodiment will be described with reference to FIG. 3A. Since the configuration of FIG. 3A is the same as the configuration described with reference to FIG. 2A, repeated description will be omitted.
  • node k comprises an optical transceiver TR k together with computer components such as a CPU, accelerator, or memory, and communicates with each other using optical signals.
  • the light output from the tunable laser TL k is input to one input port of the optical transceiver TR k mounted on the node k through the optical path A k .
  • Light input to the optical transceiver TR k passes through the optical modulator OM k of the optical transceiver TR k , is input to the optical path B k , and reaches the beam splitter BS k .
  • a part or all of the light reaching beam splitter BS k is input to wavelength tunable laser control circuit TLC through optical path C k . Also, part or all of the light reaching the beam splitter BS k is input to the wavelength router device WR through the optical path D k . In other words, part of the light reaching the beam splitter BSk is input to the wavelength tunable laser control circuit TLC through the optical path Ck , and the remaining part of the light is input to the wavelength router device WR through the optical path Dk . Alternatively, all of the light reaching the beam splitter BS k is input to the wavelength tunable laser control circuit TLC through the optical path C k or is input to the wavelength router device WR through the optical path D k .
  • the light input to the input port k of the wavelength router device WR is output from the output port k and passes through the optical path E k to the node k. input to the receive port of the optical transceiver TR k .
  • the light input to the optical transceiver TRk is input to the built-in optical receiver ORk .
  • the optical modulator OM 1 of the optical transceiver TR 1 of the node 1 outputs the partner with which communication is to be performed (that is, the node 8) and related information associated with the communication as an optical signal.
  • the optical modulator OM1 receives non-modulated light through the optical path A1 , and furthermore, the communication connection to the wavelength tunable laser control circuit TLC is established in advance through the optical paths B1 and C1 .
  • the light modulated by the optical modulator OM1 is input to the tunable laser control circuit TLC via the optical path B1 , the beam splitter BS1 , and the optical path C1 .
  • the tunable laser control circuit TLC changes the output wavelength of the tunable laser TL 1 from ⁇ 1 to ⁇ 8 according to the received signal (ie, request for communication from node 1 to node 8).
  • FIG. 3B is a diagram showing the state when the wavelength of the light output from the wavelength tunable laser TL1 is changed to ⁇ 8 .
  • the wavelength switching time of the wavelength tunable light source TL k should be 100 ns or less. This wavelength switching time is generally considered preferable when considering application of the optical path switching system of the present disclosure to high-speed communication between elements (that is, nodes) that constitute a computer. For example, it can be said that the wavelength switching time is preferably 100 nanoseconds or less in consideration of the occurrence frequency or granularity of bitstreams between nodes and the cost effectiveness of implementation.
  • the wavelength switching time of the wavelength tunable light source TL k is not limited to 100 ns or less, and can be any switching time required for any system to which the optical path switching system of the present disclosure is applied.
  • the light of wavelength ⁇ 8 is input to the optical modulator OM1 provided in the optical transceiver TR1 .
  • An optical signal that is output by modulating the light of wavelength ⁇ 8 (unmodulated light) so as to include necessary information in the optical modulator OM 1 passes through the optical path B 1 , the beam splitter BS 1 , and the optical path D 1 to the wavelength router WR. is entered in
  • the light of wavelength ⁇ 8 input to the wavelength router WR is input to the optical transceiver TR 8 (that is, node 8) corresponding to ⁇ 8 and received by the optical receiver OM 8 of the optical transceiver TR 8 . Thereby, communication between the node 1 and the node 8 is realized.
  • the present disclosure does not require each node to have a light source function whose oscillation wavelength is sensitive to environmental temperature. That is, since the temperature control function can be concentrated in one place, power consumption for light source temperature control can be saved.
  • wavelength tunable laser control circuit TLC In addition to centrally managing information on wavelengths corresponding to nodes in the wavelength tunable laser control circuit TLC, by arranging the wavelength tunable laser control circuit TLC near the wavelength tunable light source TRk , Electrical connection between the two (for example, high-speed transmission and reception of high-quality electrical signals for switching the wavelength of the wavelength-tunable light source TRk at high speed) is also facilitated.
  • Embodiment 2 In the output port 8 of the wavelength router device WR of the optical path switching system of Embodiment 1, when light from a node other than the node 1 is input, the optical reception of the optical transceiver TR 8 (that is, the node 8) is The receiver OR 8 will collectively receive optical signals of different wavelengths. That is, optical signals cannot be received accurately due to crosstalk.
  • the tunable laser control circuit TLC needs a mechanism for judging the presence or absence of conflict and resolving the conflict. Buffering function is required. Further, when the wavelength tunable laser control circuit TLC receives an optical signal modulated via a beam splitter (a data-carrying optical signal), the wavelength tunable light source TL is controlled by the wavelength tunable laser control circuit TLC as necessary.
  • the wavelength tunable laser control circuit TLC has a function of converting an optical signal into an electrical signal and buffering it, a delay occurs in communication at the node k (k ⁇ 1).
  • the wavelength itself of the light that reaches the node 8 indicates which laser the tunable laser TL of the transmission source corresponds to.
  • optical receiver OR 8 of the optical transceiver TR 8 is configured to receive light of different optical wavelengths, even if a plurality of optical signals with different wavelengths are input to the optical transceiver TR 8 , Optical signals can be received without crosstalk.
  • node 8 can communicate with all nodes k (k ⁇ 8) other than itself in parallel, the above-mentioned problem of crossed lines is resolved.
  • FIG. 4 is a diagram showing a schematic configuration of an optical transceiver TRk in the optical path switching system of this embodiment.
  • the optical transceiver TR k of FIG. 4 differs from the optical transceiver TR k of FIG. 2B in that the optical receiver OR k has a different configuration.
  • the optical receiver OR k of the optical transceiver TR k of FIG. 4 comprises a wavelength demultiplexer WD k and N photodetectors PD k connected to the output of the wavelength demultiplexer WD k .
  • the wavelength demultiplexer WDk typically has a configuration in which a photodetector PD is integrated at the end of each output of a wavelength filter such as a 1 ⁇ N-port array diffraction grating. than in other configurations.
  • one of the purposes of the present disclosure is to reduce the power consumption of each node .
  • athermal array gratings are already commercially available components.
  • the optical path switching system of the present disclosure includes a plurality of optical paths (optical paths A k , B k , C k , D k , E k ). It is possible to simplify the configuration of
  • FIG. 5A is a diagram showing a schematic configuration of an optical path switching system in which circulators CR k of this embodiment are arranged.
  • the circulator CR k is placed between the optical fibers connecting the tunable laser TL k and the optical transceiver TR k .
  • the circulator CR k has a first port connected with the tunable laser TL k , a second port connected with the optical transceiver TR k , and a third port connected with the beam splitter BS k .
  • the circulator CR k transmits light from the wavelength tunable laser TL k input through the first port to the second port connected to the optical transceiver TR k , and is input through the second port.
  • Light from optical transceiver TR k is transmitted to a third port connected to beam splitter BS k .
  • One optical fiber connecting the circulator CR k and the optical transceiver TR k propagates light in both directions, and can be associated with the optical path A k and the optical path B k . Thereby, wiring can be simplified.
  • the optical path from the tunable laser TL k to the circulator CR k and the optical path from the circulator CR k to the optical transceiver TR k are optical paths A k .
  • the optical path from the optical transceiver TRk to the circulator CRk becomes part of the optical path Bk .
  • the optical path from the circulator CR k to the beam splitter BS k becomes part of the optical path B k .
  • FIG. 5B is a diagram showing a schematic configuration of the optical transceiver TR k in the optical path switching system of this embodiment.
  • the optical transceiver TR k of FIG. 5B differs from the optical transceiver TR k of FIG. 2B in that it comprises a circulator CR k connected to the input and output of the optical modulator OM k .
  • the circulator CRk provided in the optical transceiver TRk is connected to a first port connected to the optical fibers forming the optical paths Ak and Bk and to the input of the optical modulator OMk . and a third port connected to the output of the optical modulator OMk .
  • the circulator CR k receives light from the tunable laser TL k through a first port to which an optical fiber (optical path A k ) is connected, and passes the light from the wavelength tunable laser TL k to a second port to which the input of the optical modulator OM k is connected. , and the light from the output of the optical modulator OM k input via the third port is transmitted to the first port to which the optical fiber (optical path B k ) is connected.
  • the configuration of a plurality of optical paths can also be achieved by using a multi-core fiber (multi-core fiber) having a plurality of cores. can be simplified.
  • the optical path Ak and the optical path Bk can be aggregated by a two-core fiber (a fiber having two cores), so only two fiber plugs are required for the optical transceiver TRk for the multi-core fiber and the optical path Ek .
  • optical path switching system of FIG . can be aggregated into fibers.
  • Optical paths B k to splitter BS k can be aggregated into one multimode optical fiber
  • optical path switching system of FIGS. 2A and 5A for the optical path E k as well, by using a multi-core fiber to connect the output port k of the wavelength router device WR and the optical transceiver TR k , a plurality of optical paths can be combined into one. of multimode optical fiber can be aggregated. Only one fiber plug is required for the optical transceiver TR k .
  • an optical path C k between the beam splitter BS k and the wavelength tunable laser control circuit TLC and an optical path D k between the beam splitter BS k and the wavelength router device WR are each connected to one multimode optical fiber. may be aggregated.
  • a tunable laser control circuit TLC of the present disclosure centrally manages or controls all tunable lasers TL k .
  • each optical transceiver TR k in the optical path switching system described with reference to FIGS . 2A and 5A is always tunable laser TL It means that the light from k is received.
  • the wavelength tunable laser TR k periodically modulates light with a frequency in a region that does not interfere with the modulated signal of the optical modulator OM k , and outputs the light as a synchronization signal . If there is provided a mechanism (Mk) for tapping a part of and monitoring the synchronization signal, it is possible to always synchronize the wavelength tunable laser TL k and the optical transceiver TR k .
  • FIG. 6A is a diagram showing a schematic configuration of an optical path switching system in which a mechanism Mk for tapping and monitoring light according to the present embodiment is arranged.
  • the configuration shown in FIG. 6A is substantially the same as the configuration shown in FIG. 5A.
  • FIG. 6A shows the frequency of the light supplied from the wavelength tunable laser control circuit TLC to the wavelength tunable laser TL k (the frequency of the synchronization signal) and the light from the wavelength tunable laser TL k input to the wavelength tunable laser TR k .
  • a sinusoidal shaped symbol is taught which indicates the frequency of (the frequency of the synchronization signal).
  • FIG. 6B is a diagram showing a schematic configuration of the optical transceiver TR k in FIG. 6A.
  • the optical transceiver TR k in FIG. 6B is arranged between an input port to which light from the wavelength tunable laser TL k is input via an optical path A k and an input of the optical modulator OM k . 2B in that it has a mechanism Mk for tapping and monitoring part of the light from the optical transceiver TRk in FIG. 2B. Feedback based on the results of monitoring in mechanism Mk may be provided to the tunable laser control circuit TLC using any communication scheme.
  • the wavelength tunable laser control circuit TLC centrally manages all the wavelength tunable lasers TL k . It is possible to keep synchronization between
  • node 8 can immediately receive the optical signal (supports bursts).
  • optical path switching system of the present disclosure it is possible to optically connect different nodes with a simple configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本開示の光経路切り替えシステムは、N個のノード間に形成される光経路を切り替えるためのものであり、波長を切り替えて光を出力することが可能なN個の波長可変レーザと、波長可変レーザを制御する波長可変レーザ制御回路と、N個のノードに対応し、N個の波長可変レーザと接続され、光変調器および光受信器を備えたN個の光トランシーバと、光トランシーバと接続され、入力された光信号を分岐するN個のビームスプリッタと、ビームスプリッタと接続され、N個の入力ポートおよびN個の出力ポートを有し、入力された光の波長および入力ポートの位置に応じて出力ポートの位置が異なる波長ルータ装置とを備える。

Description

光経路切り替えシステム
 本開示は、光経路切り替えシステム、より詳細には、異なるノード間を簡素な構成で光通信接続する光経路切り替えシステムに関する。
 光通信技術は長距離伝送では海底ケーブル通信や、近距離ではfiber to the homeなどの数km以上のノード間の通信への応用が一般的であった。また、近年においては、データセンタ内のサーバ間の通信などにも応用が試みられている。(非特許文献1参照)
 更には、データセンタを構成する個々のサーバ内にすら光通信技術を導入する試みもなされている。この背景には、サーバが処理するデータ量の急激な増加がある。膨大なデータ処理を効率よく実行するために、中央演算装置(CPU)ですべての計算を実施するのではなく、特定の計算に特化した計算回路(アクセラレータ)に分担させる手法が採られる。
 CPUの負担を軽減することで計算に必要とする低電力化や高速化が期待されている。ただしこのような手法を実現するには、CPUからアクセラレータへのデータ転送の時間を十分短く、かつ低消費電力で実施する必要がある。
 データ転送を効率化するために、従来のCPUを中心としたコンピュータ設計から、CPUやアクセラレータが大規模なメモリに接続される形態のメモリを中心とした、いわゆるメモリセントリックなコンピュータアーキテクチャの検討が盛んになされている。このようなメモリを中心としたコンピュータアーキテクチャの場合も、CPUやアクセラレータとメモリとの間の高速・低電力通信が重要となる(非特許文献2参照)。
 コンピュータを構成する要素(以下、本明細書においてノードと呼ぶ)間の通信を高速にするために、CPU、アクセラレータ、およびメモリなどの複数のノードを極力高密度に実装することで、各ノード間の物理的距離を最短化して通信のための電気信号損失を最小化する手法が一般的である。
 ただし、このような物理的距離を最短化する実装手法においては、集積できるノード数に空間的な制限があるだけでなく、複数のノードが高密度に実装された電子機器の局所発熱が問題となる。
 そこで、各ノード間の通信を電気から光に置き換えることでこの問題を解決する手法が盛んに検討されている。
 これは、従来の電気通信が伝送距離によって通信品質が大きく劣化する一方で光通信では通信品質の劣化が著しく小さいからである。
 すなわち、各ノード間の通信を電気から光に置き換えることにより、コンピュータを構成する各ノード間の物理的に距離に対する要件を緩和する事が可能となる。
 コンピュータ内の通信を光に置き換える際の大きな問題の1つは、その光通信網の光経路切り替えである。
 例えば従来は、多数のマッハツェンダ干渉計(MZI)型のスイッチをカスケード接続する事による大規模な光スイッチが報告されている(非特許文献3参照)。
 ただし、MZI型のスイッチをカスケード接続した光スイッチには、次のような問題がある。
・スイッチの規模が大規模になるほど各MZIスイッチを個別に制御するための制御回路が複雑化する
・光信号はバッファリングする事が非常に困難なため、異なる入力ポートから同一の出力ポートへ光信号が衝突する事を回避するための複雑なスケジューリングのアルゴリズムが必要となる
 上記の問題を解決するために、高速な波長可変光源と波長ルータ装置(非特許文献4参照)による光経路制御も検討されている。
 図1は、波長ルータ装置の概略を説明する図である。波長ルータ装置WRは、入力ポート1~8と出力ポート1~8を備えている。入力ポート1~8の各々には、波長λ~λを高速に切り替えることが可能な波長可変光源(不図示)からの光信号が入力される。波長ルーチング機能部は、カスケード接続されたMZIスイッチで構成され、入力ポート1~8から入力した光信号を出力ポート1~8のいずれかにルーチングする。図1において、入力ポート1から入力する光信号の8つの波長をλ1-1~λ8-1として示し、入力ポート2から入力する光信号の8つの波長をλ1-2~λ8-2として示し、入力ポート8から入力する光信号の8つの波長をλ1-8~λ8-8として示している。波長ルーチング機能部において、入力ポート1から入力する波長λ1-1~λ8-1の光信号は出力ポート1~8にそれぞれルーチングされ、入力ポート8から入力する波長λ1-8~λ8-8の光信号は出力ポート8~1にそれぞれルーチングされている。
 すなわち、図1に示す通り、波長ルーチング機能部は、波長ルータ装置WRのある入力ポートから光信号を入力する際に、所望の出力ポートに光信号が出力されるように光の波長を選択する。
 波長可変光源の波長さえ正確に制御できれば、それ以降は完全に受動光回路のみを用いた構成で自律的に光信号の経路を制御することが可能になる。
 ただし、この波長を用いる経路制御においても幾つかの課題がある。まず、波長可変光源の波長精度が課題となる。コンピュータ内に実装される波長可変光源はその物理的なサイズの要請から半導体を用いて構成されたレーザ(以下、単導体レーザ)となるが、半導体レーザは一般に環境温度による波長変動が大きく、ペルチェによる温度制御が必要となる。ここで、各ノードにペルチェの温調機構を実装する事は各ノードのコストの増大や消費電力の増大を意味する。
 また、各ノードに対応する波長可変光源が光信号を送信する際の、行先に応じた波長に関する情報や(上述の衝突の問題などから)光信号の送信のタイミングに関する情報が必要になる。
Ken-ichi Sato, "Realization and Application of Large-Scale Fast Optical Circuit Switch for Data Center Networking," J. Lightw. Technol., vol. 36, p.1411, 2018. Near Margalit, Chao Xiang, Steven M. Bowers, Alexis Bjorlin, Robert Blum, and John E. Bowers , "Perspective on the future of silicon photonics and electronics", Appl. Phys. Lett. 118, 220501 (2021) Ryotaro Konoike, Keijiro Suzuki, Shu Namiki, Hitoshi Kawashima, and Kazuhiro Ikeda, "Ultra-compact silicon photonics switch with high-density thermo-optic heaters," Opt. Express 27, 10332-10342 (2019) 原田啓司、小泓正博、原田秀丸、野口一人、"スター型WDMシステムの開発", NTT技術ジャーナル 2003.10, p.46
 本開示は、この問題に鑑みてなされたもので、その目的とするところは、波長可変光源と波長ルータ装置との組み合わせによる光経路切り替えシステムにおいて、各ノードに波長可変光源を実装する際のコストの増大、消費電力の増大、または、送信制御に付随する遅延を軽減できる光経路切り替えシステムを提供することにある。
 このような目的を達成するために、本開示の一実施形態は、N個のノード間に形成される光経路を切り替える光経路切り替えシステムであって、Nは2以上の整数であり、kは1以上N以下の整数であり、光経路切り替えシステムは、100ナノ秒以下の時間で波長を切り替えて光を出力することが可能なN個の波長可変レーザ(TL)と、ノード間の光経路に関連付けられた光信号についての情報に基づいて、波長可変レーザ(TL)が出力する光の波長の切り替えを制御する波長可変レーザ制御回路(TLC)と、N個の波長可変レーザとN個の第1の光路(A)を介して接続されたN個の光トランシーバ(TR)であって、N個の光トランシーバのうちの第kの光トランシーバ(TR)が、N個のノードのうちの第kのノードと対応し、電気信号を用いて入力された光を光信号に変換する光変調器(OM)と、光信号を電気信号に変換する光受信器(OR)とを備えている、N個の光トランシーバと、N個の光トランシーバとN個の第2の光路(B)を介して接続された、入力された光信号を分岐するN個のビームスプリッタ(BS)であって、N個の第3の光路(C)を介して波長可変レーザ制御回路と接続されたN個のビームスプリッタと、N個のビームスプリッタとN個の第4の光路(D)を介して接続された、入力された光の波長と入力ポートの位置に応じて出力ポートの位置が異なる、N個の入力ポートと、N個の出力ポートを有する波長ルータ装置(WR)であって、N個の出力ポートがN個の第5の光路(E)を介してN個の光トランシーバと接続された波長ルータ装置とを備える。
 上記光経路切り替えシステムにおいて、N個の波長可変レーザのうちの第kの波長可変レーザ(TL)から出力された光が、N個の第1の光路(A)のうちの第kの第1の光路(A)を介して、N個の光トランシーバのうちの第kの光トランシーバ(TR)に入力され、第kの光トランシーバの光変調器(OM)において光信号に変換された後に、第2の光路(B)のうちの第kの光路を介してN個のビームスプリッタのうちの第kのビームスプリッタ(BS)に入力され、第kのビームスプリッタ(BS)において分割された光信号の一方が、N個の第3の光路のうちの第kの光路(C)を介して波長可変レーザ制御回路(TLC)に入力され、分割された光信号の他方がN個の第4の光路のうちの第kの光路(D)を介して波長ルータ装置(WR)のN個のポートに入力され、波長ルータ装置(WR)においてルーチングされてN個の出力ポートのうちの第kの出力ポートから出力された光信号が、第5の光路のうちの第kの光路(E)を介して、N個の光トランシーバ(TR)のうちの第kの光トランシーバが備える光受信器(OR)に入力される。
図1は、波長ルータ装置の概略を説明する図である。 図2Aは、一実施形態の光経路切り替えシステムの概略構成を示す図である。 図2A中の光トランシーバTRの概略構成を示す図である。 図3Aは、波長可変レーザTLが出力する光の波長がλの状態を示す図である。 図3Bは、波長可変レーザTLが出力する光の波長がλに変わった際の状態を示す図である。 図4は、一実施形態の光経路切り替えシステムにおける光トランシーバTRの概略構成を示す図である。 図5Aは、一実施形態のサーキュレータCRを配置した光経路切り替えシステムの概略構成を示す図である。 図5Bは、図5A中の光トランシーバTRの概略構成を示す図である。 図6Aは、本実施形態の光をタップしてモニタする機構(Mk)を配置した光経路切り替えシステムの概略構成を示す図である。 図6Bは、図6A中の光トランシーバTRの概略構成を示す図である。
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。
(実施形態1)
 図2A、2B、3A、3Bを参照して実施形態1の光経路切り替えシステムを説明する。以下の説明において、Nを2以上の任意の整数とし、kを1以上N以下の整数とする。
 図2Aに示す光経路切り替えシステムは、N個の波長可変レーザTLと、波長ルータ装置WRと、N個の光トランシーバTRと、N個のビームスプリッタBSと、を備える。また、光経路切り替えシステムは、N個の波長可変レーザTLを制御する波長可変レーザ制御回路TLCをさらに備える。
 図2Aは、N=8の場合の光経路切り替えシステムを例示するが、本開示の要旨を逸脱しない限り、Nは他の値であってもよい。
 波長可変レーザTLは、100ナノ秒以下の速さで波長を切り替えることができる波長可変レーザであり、波長λからλの光を選択的に出力することができる。
 波長ルータ装置WRは、N個の入力ポートと、N個の出力ポートと、N個の入力ポートとN個の出力ポートとの間を接続するN×Nチャネルを有する。波長ルータ装置WRは、周回性アレー回折格子を用いて構成してもよく、リング共振器を用いて構成してもよい。図2Aにおいて、上からk番目の入力ポートを単に入力kと示し、同様に上からk番目の出力ポートを単に出力kと示している。
 光トランシーバTRは、光を送受信する機能を有する。図2Bは、光トランシーバTRの概略構成を示す図である。図2Bに示すように、光トランシーバTRは、2つの入力ポートと1つの出力ポートを有し、一方の入力ポートから入力された光(被変調光)を電気信号で変調することで光信号に変換して出力ポートから出力する光変調器OMと、もう一方の入力ポートから入力された光信号を電気信号に変換して出力する光受信器ORとを備える。以下、もう一方の入力ポートを受信ポートともいう。
 ここで光変調器OMの材料や構成は問わない。例えばシリコンによるマッハツェンダ変調器や化合物半導体による電界吸収型変調器を用いることができる。
 図2Aに示す様に、波長可変レーザTLと光トランシーバTRとの間が光路Aで接続される。光トランシーバTRとビームスプリッタBSとの間が光路Bで接続される。ビームスプリッタBSと波長可変レーザ制御回路TLCとの間が光路Cで接続されるとともに、ビームスプリッタBSと波長ルータ装置WRとの間が光路Dで接続される。波長ルータ装置WRと光トランシーバTRとの間が光路Eで接続される。
 本実施形態の光経路切り替えシステムは、初期状態として全ての波長可変レーザTLからそれぞれ波長λの光が送信されているとする。
 図3Aを参照して、本実施形態の光経路切り替えシステムの動作を説明する。図3Aの構成は、図2Aを参照して説明した構成と同じであるため、繰り返しの説明は省略する。図3Aでは特にk=1に関する光の経路を太線で示している。
 図3Aにおいて、ノードkは、CPU、アクセラレータ、またはメモリなどのコンピュータの構成要素とともに光トランシーバTRを備え、互いに光信号を用いて通信する。
 波長可変レーザTLから出力された光は光路Aを通じてノードkに実装されている光トランシーバTRの1つの入力ポートに入力される。
 光トランシーバTRに入力された光は、光トランシーバTRが有する光変調器OMを通過して、光路Bに入力されて、ビームスプリッタBSに達する。
 ビームスプリッタBSに達した光の一部または全ては、光路Cを通じて、波長可変レーザ制御回路TLCへ入力される。また、ビームスプリッタBSに達した光の一部または全ては、光路Dを通じて波長ルータ装置WRに入力される。換言すると、ビームスプリッタBSに達した光の一部は、光路Cを通じて波長可変レーザ制御回路TLCへ入力され、光の残りの一部は光路Dを通じて波長ルータ装置WRに入力される。あるいは、ビームスプリッタBSに達した光の全ては、光路Cを通じて波長可変レーザ制御回路TLCへ入力されるか、または光路Dを通じて波長ルータ装置WRに入力される。
 波長可変レーザTLから送信される波長λの光について考えているので、波長ルータ装置WRの入力ポートkに入力された光は、出力ポートkから出力されて光路Eを通じて、ノードkが有する光トランシーバTRの受信ポートに入力される。光トランシーバTRに入力された光は内蔵されている光受信器ORに入力される。
 従って、この状態においては光トランシーバTRから見ると自身の光変調器OMで変調した光信号について、再び自身の光受信器ORにて受信していることになる。
 ここでノードk=1がノードk=8と通信を行いたい場合を考える。まずノード1が備える光トランシーバTRが有する光変調器OMによって通信を実施したい相手(すなわちノード8)や通信に伴う関連情報を光信号として出力する。
 光変調器OMには光路Aを通じて非変調光が入力されており、さらに光路B、光路Cを通じて波長可変レーザ制御回路TLCまでの通信接続があらかじめ成立している点に注意する。
 光変調器OMで変調された光は、光路B、ビームスプリッタBS、光路Cを経由して波長可変レーザ制御回路TLCに入力される。
 波長可変レーザ制御回路TLCは、受信された信号(すなわちノード1からノード8への通信要求)によって波長可変レーザTLの出力波長をλからλに変更する。
 図3Bは、波長可変レーザTLが出力する光の波長がλに変わった際の状態を示す図である。
 波長可変光源TLの波長切り替え時間は100ナノ秒以下である必要がある。コンピュータを構成する要素(すなわちノード)間における高速な通信に本開示の光経路切り替えシステムを適用することを考慮した場合に、一般的に好ましいと考えらえる波長切り替え時間である。たとえば、ノード間のビットストリームの発現頻度または粒度や、実装における費用対効果を考慮した場合に、波長切り替え時間は、100ナノ秒以下が好ましいと言える。しかしながら、波長可変光源TLの波長切り替え時間は、100ナノ秒以下に限定されず、本開示の光経路切り替えシステムを適用する任意のシステムに要求される任意の切り替え時間とすることができる。
 これによって光トランシーバTRが備える光変調器OMに波長λの光が入力されることになる。
 光変調器OMにおいて波長λの光(非変調光)を必要な情報を含むように変調して出力される光信号が、光路B、ビームスプリッタBS、光路Dを通じて波長ルータWRに入力される。
 波長ルータWRに入力された波長λの光はλに対応する光トランシーバTR(すなわちノード8)に入力され、光トランシーバTRが有する光受信器OMにより受信される。これにより、ノード1とノード8との間の通信が実現される。
 本開示は、発振波長が環境温度に敏感な光源機能を各ノードに持たせる必要が無い。すなわち温調機能を一か所に集中できるため、光源温調の消費電力を節約できる。
 また、ノードと対応する波長の情報についても波長可変レーザ制御回路TLCにおいて一元的に管理されていることに加えて、波長可変レーザ制御回路TLCを波長可変光源TRの近くに配置することで、両者の電気的接続(たとえば波長可変光源TRの波長を高速に切り替える高速な電気信号の品質な送受信)も容易になる。
 さらに、トランシーバTR(すなわちノードk)が追加・変更されても光経路切り替えシステムとして動作する事が可能であるため、保守性や拡張性が担保され得る。
(実施形態2)
 実施形態1の光経路切り替えシステムの波長ルータ装置WRの出力ポート8において、ノード1以外の他のノードからの光が入力されている場合は、光トランシーバTR(すなわちノード8)が有する光受信器ORは、異なる波長の光信号を一括で受けることになる。すなわち混線が生じるために光信号を正確に受信することができない。
 それを回避するためには、例えば図3Bを参照して説明した光経路切り替えシステムの状態の場合、波長可変光源TL以外のノード8にアクセスしている波長可変光源TL(k≠1)の出力をOFFにするなどの処置が必要になる。この時、出力をOFFに波長可変光源TL(k≠1)を用いて通信をノードk(k≠1)は通信が遮断された状態となる。これを実現するには、波長可変レーザ制御回路TLCに競合の有無を判定して競合を解決する機構が必要となり、さらに、競合する複数の要求を含む光信号の少なくとも一部を光電変換してバッファリングする機能が必要となる。また、波長可変レーザ制御回路TLCが、ビームスプリッタを介して変調された光信号(データ搬送する光信号)を受信する場合には、必要に応じて波長可変光源TLが波長可変レーザ制御回路TLCでバッファリングした電気信号で所望の波長の光を変調した光信号を出力するように構成する必要がある。波長可変レーザ制御回路TLCが光信号を電気信号に変更してバッファリングする機能を有していたとしても、ノードk(k≠1)の通信に遅延が生じる。
 この問題を解決するために、周回性アレー回折格子の性質に注目する。図3Bを参照して説明した光経路切り替えシステムの状態におけるノード8が有するTRに注目する。
 波長ルータ装置WRのN個の入力ポートに入力された光の全てが1つの出力ポート8に出力される事を考えた時に、N個の入力ポートに入力される光の波長は全て異なる事になる(図1の通り)。
 言い換えると、ノード8に達した光の波長自体がその送信元の波長可変レーザTLがどのレーザに該当するかを示している。
 つまり、光トランシーバTRが有する光受信器ORが、異なる光波長毎に光を受信できる構成が取られていれば、光トランシーバTRに波長の異なる複数の光信号が入力された場合でも混線なく光信号を受信できる。
 すなわち、ノード8は自身を除く全てのノードk(k≠8)と並行して通信を実施する事ができるため、上述の混線の問題は解消される。
 図4は、本実施形態の光経路切り替えシステムにおける光トランシーバTRの概略構成を示す図である。図4の光トランシーバTRは、光受信器ORの構成が異なる点で、図2Bの光トランシーバTRと相違する。図4の光トランシーバTRの光受信器ORは、波長分波器WDと、波長分波器WDの出力に接続されたN個のフォトディテクタPDとを備える。
 波長分波器WDは、典型的に1×Nポートのアレー回折格子などの波長フィルタの各出力の先にフォトディテクタPDが集積される構成となるが、波長フィルタとしてリング共振器などを用いた他の構成でもより。
 尚、前述したように、本開示の目的の1つは各ノードの消費電力の低減であるから、図4の波長分波器WDを構成する波長フィルタは、無温調動作(アサーマル)である事が望ましい。例えばアサーマルアレー回折格子は既に市販にて入手できる部品である。
(実施形態3)
 図2を参照して説明したように、本開示の光経路切り替えシステムは、複数の光路(光路A,B,C,D,E)を含むが、サーキュレータを用いることによって光路の構成を簡素化する事が可能である。
 図5Aは、本実施形態のサーキュレータCRを配置した光経路切り替えシステムの概略構成を示す図である。サーキュレータCRは、波長可変レーザTLと光トランシーバTRとを接続する光ファイバの間に配置されている。
 サーキュレータCRは、波長可変レーザTLと接続される第1のポートと、光トランシーバTRと接続される第2のポートと、ビームスプリッタBSと接続される第3のポートとを有する。サーキュレータCRは、第1のポートを介して入力される波長可変レーザTLからの光を光トランシーバTRが接続された第2のポートへ透過し、第2のポートを介して入力される光トランシーバTRからの光をビームスプリッタBSとが接続された第3のポートへ透過する。
 サーキュレータCRと光トランシーバTRとを接続する1つの光ファイバは、光を双方向に伝搬させることで、光路Aおよび光路Bに対応付けることができる。これにより、配線を簡略化することができる。
 図5Aに示すように、波長可変レーザTLからサーキュレータCRまでの光路およびサーキュレータCRから光トランシーバTRまでの光路が、光路Aとなる。光トランシーバTRからサーキュレータCRまでの光路が、光路Bの一部となる。さらに、サーキュレータCRからビームスプリッタBSまでの光路が、光路Bの一部となる。
 図5Bは、本実施形態の光経路切り替えシステムにおける光トランシーバTRの概略構成を示す図である。図5Bの光トランシーバTRは、光変調器OMの入力および出力と接続されたサーキュレータCRを備える点で、図2Bの光トランシーバTRと相違する。図5Bに示すように、光トランシーバTRが備えるサーキュレータCRは、光路Aおよび光路Bを構成する光ファイバと接続される第1のポートと、光変調器OMの入力と接続される第2のポートと、光変調器OMの出力と接続される第3のポートとを有する。サーキュレータCRは、光ファイバ(光路A)が接続された第1のポートを介して入力される波長可変レーザTLからの光を光変調器OMの入力が接続された第2のポートへ透過し、第3のポートを介して入力される光変調器OMの出力からの光を光ファイバ(光路B)が接続された第1のポートへ透過する。このように、光トランシーバTRの中にも光路A→光変調器OM→光路Bの順に光を透過させるサーキュレータCRTRを設置すれば光路Aと光路Bを1つのファイバに集約できる。
(実施形態4)
 本開示の光経路切り替えシステムにおいて、複数のコアを持つマルチコアファイバ(多芯線型のファイバ)を用いることでも、複数の光路(光路A,B,C,D,E)の構成を簡素化することができる。
 例えば光路Aと光路Bは2コアファイバ(2つのコアを有するファイバ)にて集約できるので光トランシーバTRのファイバプラグは当該のマルチコアファイバと光路Eと合わせて2つで済む。
 たとえば、図2Aの光経路切り替えシステムにおいて、波長可変レーザTLと光トランシーバTRとを接続するk本の単一のコアを有する光ファイバを、N個のコアを有する1本のマルチモード光ファイバに集約することができる。
 また、図5Aの光経路切り替えシステムにおいて、波長可変レーザTLからサーキュレータCRまでの光路A、サーキュレータCRから光トランシーバTRまでの光路Aと光路B、およびサーキュレータCRからビームスプリッタBSまでの光路Bを1本のマルチモード光ファイバに集約することができる
 更に図2Aおよび図5Aの光経路切り替えシステムにおいて、光路Eについても、波長ルータ装置WRの出力ポートkと光トランシーバTRとの接続に、マルチコアファイバを用いることで、複数の光路を1本のマルチモード光ファイバに集約することができ。光トランシーバTRのファイバプラグは1つで済むことになる。同様に、ビームスプリッタBSと波長可変レーザ制御回路TLCとの間の光路C、およびビームスプリッタBSと波長ルータ装置WRとの間の光路Dを、1本のマルチモード光ファイバにそれぞれ集約してもよい。
(実施形態5)
 本開示の波長可変レーザ制御回路TLCがすべての波長可変レーザTLを一元的に管理または制御している。
 さらに、図2Aおよび図5Aを参照して説明した光経路切り替えシステムにおける光トランシーバTRのすべてが光を出力していれば、各光トランシーバTRは、経路Aを通じて、常に波長可変レーザTLからの光を受信していることになる。
 そこで、波長可変レーザTRにおいて、光変調器OMの変調信号と干渉しない領域の周波数で周期的に変調した光を同期信号として出力するとともに、光トランシーバTRにおいて、光路Aからの光の一部をタップして同期信号をモニタする機構(Mk)が備わっていれば、波長可変レーザTLと光トランシーバTRを常に同期しておくことが可能となる。
 図6Aは、本実施形態の光をタップしてモニタする機構Mを配置した光経路切り替えシステムの概略構成を示す図である。図6Aに示す構成は、図5Aに示す構成と略同じである。図6Aには波長可変レーザ制御回路TLCから波長可変レーザTLに対して供給される光の周波数(同期信号の周波数)と、波長可変レーザTRに入力される波長可変レーザTLからの光の周波数(同期信号の周波数)を示す正弦波の形状のシンボルが教示されている。
 図6Bは、図6A中の光トランシーバTRの概略構成を示す図である。図6Bの光トランシーバTRは、光路Aを介して波長可変レーザTLからの光が入力する入力ポートと、光変調器OMの入力との間に配置され、波長可変レーザTLからの光の一部をタップしてモニタする機構Mを備える点で、図2Bの光トランシーバTRと相違する。機構Mにおけるモニタの結果に基づくフィードバックが、任意の通信方式用いて波長可変レーザ制御回路TLCに提供されてもよい。
 上述の通り、波長可変レーザ制御回路TLCがすべての波長可変レーザTLを一元的に管理していることから、すなわち上記の同期機構を用いれば波長可変レーザ制御回路TLCがすべての光トランシーバTR間の同期を保つことが可能になる。
 したがって、例えば図3Bを参照して説明したように、ノード8がノード1からの光信号を受信する場合においてもノード8は直ちに光信号を受信できる(バースト対応である)ことになる。
 本開示の光経路切り替えシステムによれば、異なるノード間を簡素な構成で光通信接続することが可能になる。

Claims (5)

  1.  N個のノード間に形成される光経路を切り替える光経路切り替えシステムであって、Nは2以上の整数であり、kは1以上N以下の整数であり、前記光経路切り替えシステムは、
     波長を切り替えて光を出力することが可能なN個の波長可変レーザと、
     前記ノード間の前記光経路に関連付けられた光信号についての情報に基づいて、前記波長可変レーザが出力する光の波長の切り替えを制御する波長可変レーザ制御回路と、
     前記N個の波長可変レーザとN個の第1の光路を介して接続されたN個の光トランシーバであって、前記N個の光トランシーバのうちの第kの光トランシーバが、
      前記N個のノードのうちの第kのノードと対応し、
      電気信号を用いて入力された光を光信号に変換する光変調器と、
      光信号を電気信号に変換する光受信器と
    を備えている、N個の光トランシーバと、
     前記N個の光トランシーバとN個の第2の光路を介して接続された、入力された光信号を分岐するN個のビームスプリッタであって、N個の第3の光路を介して前記波長可変レーザ制御回路と接続されたN個のビームスプリッタと、
     前記N個のビームスプリッタとN個の第4の光路を介して接続された、入力された光の波長と入力ポートの位置に応じて出力ポートの位置が異なる、N個の入力ポートと、N個の出力ポートを有する波長ルータ装置であって、前記N個の出力ポートがN個の第5の光路を介して前記N個の光トランシーバと接続された波長ルータ装置と
    を備え、
     前記N個の波長可変レーザのうちの第kの波長可変レーザから出力された光が、
      前記N個の第1の光路のうちの第kの第1の光路を介して、前記N個の光トランシーバのうちの第kの光トランシーバに入力され、
      前記第kの光トランシーバの前記光変調器において光信号に変換された後に、前記第2の光路のうちの第kの光路を介して前記N個のビームスプリッタのうちの第kのビームスプリッタに入力され、
     前記第kのビームスプリッタにおいて分割された前記光信号の一方が、前記N個の第3の光路のうちの第kの光路を介して前記波長可変レーザ制御回路に入力され、分割された前記光信号の他方が前記N個の第4の光路のうちの第kの光路を介して前記波長ルータ装置の前記N個のポートに入力され、
     前記波長ルータ装置においてルーチングされて前記N個の出力ポートのうちの第kの出力ポートから出力された前記光信号が、前記第5の光路のうちの第kの光路を介して、前記N個の光トランシーバのうちの第kの光トランシーバが備える前記光受信器に入力される
    ように構成された、光経路切り替えシステム。
  2.  前記第kの光トランシーバの前記光受信器が、
     入力される互いに波長の異なる複数の光信号を、波長ごとに受信するように構成されている、請求項1記載の光経路切り替えシステム。
  3.  前記第kの波長可変レーザと前記第kの光トランシーバとを接続する光ファイバと、
     前記光ファイバに接続されたサーキュレータであって、前記第kの波長可変レーザと接続される第1のポートと、前記第kの光トランシーバと接続される第2のポートと、前記第kのビームスプリッタと接続される第3のポートとを有するサーキュレータと
    をさらに備え、
     前記第1の光路の一部と前記第2の光路の一部が1つの前記光ファイバを共有しており、
     前記サーキュレータは、前記第1のポートから入力された光を前記第2のポートへ透過し、前記第2のポートから入力された光を前記第3のポートへ透過するように構成されている、請求項1記載の光経路切り替えシステム。
  4.  前記N個の第1の光路、前記N個の第2の光路、前記N個の第3の光路、前記N個の光路、または前記N個の光路のうちの1つまたは複数が、2つ以上のコアを有する1つの多芯線型のファイバにおいて集約されている、請求項1記載の光経路切り替えシステム。
  5.  前記波長可変レーザ制御回路は、
     前記波長可変レーザから出力される光が、前記光変調器における変調に用いる信号と干渉しない領域の周波数で変調されるように、前記波長可変レーザを制御し、これにより前記N個の光トランシーバが常に同期する、請求項1記載の光経路切り替えシステム。
PCT/JP2021/045407 2021-12-09 2021-12-09 光経路切り替えシステム WO2023105729A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/045407 WO2023105729A1 (ja) 2021-12-09 2021-12-09 光経路切り替えシステム
JP2023565819A JPWO2023105729A1 (ja) 2021-12-09 2021-12-09

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045407 WO2023105729A1 (ja) 2021-12-09 2021-12-09 光経路切り替えシステム

Publications (1)

Publication Number Publication Date
WO2023105729A1 true WO2023105729A1 (ja) 2023-06-15

Family

ID=86729935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045407 WO2023105729A1 (ja) 2021-12-09 2021-12-09 光経路切り替えシステム

Country Status (2)

Country Link
JP (1) JPWO2023105729A1 (ja)
WO (1) WO2023105729A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084228A (ja) * 2000-09-06 2002-03-22 Communication Research Laboratory 多波長ラベルを用いた光パケットルーティング方法とその装置、および多波長ラベルを用いた光パケットネットワーク
JP2002101432A (ja) * 2000-07-21 2002-04-05 Fujitsu Ltd 光スイッチ網、光クロスコネクト装置および光分岐・挿入装置
JP2002164847A (ja) * 2000-11-29 2002-06-07 Matsushita Electric Ind Co Ltd 光パケット経路切替装置、光送信装置、光パケット経路切替方式並びにこれらを用いた光通信システム
WO2017145886A1 (ja) * 2016-02-24 2017-08-31 国立研究開発法人産業技術総合研究所 非同期光スイッチ制御を可能とする光パススイッチシステムおよび光パス制御方法
WO2021131001A1 (ja) * 2019-12-26 2021-07-01 日本電信電話株式会社 光通信装置、光通信システム及び光通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101432A (ja) * 2000-07-21 2002-04-05 Fujitsu Ltd 光スイッチ網、光クロスコネクト装置および光分岐・挿入装置
JP2002084228A (ja) * 2000-09-06 2002-03-22 Communication Research Laboratory 多波長ラベルを用いた光パケットルーティング方法とその装置、および多波長ラベルを用いた光パケットネットワーク
JP2002164847A (ja) * 2000-11-29 2002-06-07 Matsushita Electric Ind Co Ltd 光パケット経路切替装置、光送信装置、光パケット経路切替方式並びにこれらを用いた光通信システム
WO2017145886A1 (ja) * 2016-02-24 2017-08-31 国立研究開発法人産業技術総合研究所 非同期光スイッチ制御を可能とする光パススイッチシステムおよび光パス制御方法
WO2021131001A1 (ja) * 2019-12-26 2021-07-01 日本電信電話株式会社 光通信装置、光通信システム及び光通信方法

Also Published As

Publication number Publication date
JPWO2023105729A1 (ja) 2023-06-15

Similar Documents

Publication Publication Date Title
CN107615139B (zh) 偏振无关反射式调制器
CN110603480B (zh) 偏振不敏感微环调制器
Rizzo et al. Massively scalable Kerr comb-driven silicon photonic link
US9641255B1 (en) Wavelength control of two-channel DEMUX/MUX in silicon photonics
US9829640B2 (en) Temperature insensitive DEMUX/MUX in silicon photonics
CN111181653B (zh) 波分复用偏振无关反射调制器
US9551838B2 (en) Optical bridge
US9225454B1 (en) Aggregation and de-agreggation of bandwidth within data centers using passive optical elements
JP7000439B2 (ja) 偏光無依存集積型光変調器
US10171171B2 (en) Method and system for selectable parallel optical fiber and wavelength division multiplexed operation
CN109073828B (zh) 具有集成在同一芯片上的光学分离器及调制器的光学互连件
Pitris et al. A 40 Gb/s chip-to-chip interconnect for 8-socket direct connectivity using integrated photonics
Mendinueta et al. Time-division packet spatial super-channel switching system with 53.3 Tb/s/port for converged inter/intradata center optical networks
US10230486B2 (en) Optical transceiver with common end module
WO2023105729A1 (ja) 光経路切り替えシステム
CN113872698B (zh) 低驱动电压多波长发射器及光学系统
Bergman et al. Bit-parallel wavelength links for high-performance computer networks
JP7438472B2 (ja) 光モジュールおよび光通信システム
US11943571B2 (en) Optical switch with all-optical memory buffer
Moralis-Pegios Silicon-based Photonic Integrated Circuits and High-Capacity Switching Systems for DataCenters Interconnects
Pitris Silicon photonics for routing and transceiver systems in WDM chip-to-chip optical interconnects
Gazman Silicon Photonic Subsystems for Inter-Chip Optical Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023565819

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE