WO2020030373A1 - Turbomachine à étages multiples - Google Patents

Turbomachine à étages multiples Download PDF

Info

Publication number
WO2020030373A1
WO2020030373A1 PCT/EP2019/068567 EP2019068567W WO2020030373A1 WO 2020030373 A1 WO2020030373 A1 WO 2020030373A1 EP 2019068567 W EP2019068567 W EP 2019068567W WO 2020030373 A1 WO2020030373 A1 WO 2020030373A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
casing
wheel
shaft
radial wheels
Prior art date
Application number
PCT/EP2019/068567
Other languages
English (en)
Inventor
Jacques BOIGEY
Original Assignee
Cryostar Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cryostar Sas filed Critical Cryostar Sas
Priority to JP2021504241A priority Critical patent/JP7394830B2/ja
Priority to US17/264,946 priority patent/US11982281B2/en
Priority to KR1020217002796A priority patent/KR20210040054A/ko
Priority to CN201980047348.7A priority patent/CN112424477B/zh
Priority to EP19737111.5A priority patent/EP3833872A1/fr
Publication of WO2020030373A1 publication Critical patent/WO2020030373A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • F04D13/0633Details of the bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0646Units comprising pumps and their driving means the pump being electrically driven the hollow pump or motor shaft being the conduit for the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/12Combinations of two or more pumps
    • F04D13/14Combinations of two or more pumps the pumps being all of centrifugal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/162Double suction pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/043Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • F04D29/0473Bearings hydrostatic; hydrodynamic for radial pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/424Double entry casings

Definitions

  • the present invention relates to a multi-stage turbomachine. It relates more particularly to the structure of such a machine.
  • a turbomachine can comprise several compression stages or several expansion stages or alternatively at the same time one or more compression stage (s) associated with one or more expansion stage (s).
  • compressor-turbine type machine also called a compander (word obtained from the English words compressor for compressor and expander for turbine or expander), in which there is one or more centrifugal compressor (s) ( s) and one or more turbine (s).
  • s centrifugal compressor
  • turbine turbine
  • gearbox gearbox
  • Such a machine makes it possible to obtain excellent performance for the treatment of fluids. It is modular and the same machine can work with one or more fluids: it is for example possible to recover the energy contained in a fluid to transmit it to another fluid.
  • the object of the present invention is therefore to provide a multi-stage turbomachine which, like the companders, can treat different fluids - for example a gas and a liquid - which do not have all the aforementioned drawbacks.
  • the new turbomachine will preferably have a more compact structure.
  • This turbomachine for equivalent performance, will also be preferably lighter than a compander.
  • this turbomachine will operate without oil.
  • the present invention provides a multi-stage turbomachine comprising a central part having at least two bearings from which extends at least on one side a shaft guided by said bearings and on which are cantilevered two radial wheels.
  • the two radial wheels are separated from one another by a watertight bulkhead, and each of the two radial wheels is mounted in its casing, each casing having a clean fluid inlet and a clean fluid outlet.
  • This structure makes it possible to obtain a turbomachine comparable to a compander with four stages with a smaller footprint while allowing to work with several fluids (at least two fluids since at least two casings each have their own inlet and outlet, that is to say not common with another floor.
  • the two radial wheels mounted on the same overhang are for example mounted back to back.
  • One wheel is fed on one side and the other on the opposite side.
  • the watertight partition may form a wall common to each of the two housings.
  • the bulkhead advantageously has thermal insulation.
  • a multi-stage turbomachine as described above is intended to be used in a thermodynamic process.
  • the central part also includes an electric group chosen from all electric motors and electric generators.
  • the casing corresponding to the distal wheel has a proximal part common with the casing of the proximal wheel and a distal part fixed to the casing of the proximal wheel.
  • a multi-stage turbomachine as described above can comprise on either side of its central part a set of two radial wheels separated from each other by a watertight bulkhead , and for each set each of the radial wheels is mounted in its casing, each casing having a clean fluid inlet and a clean fluid outlet.
  • FIG. 1 is a cross-sectional view of a multi-stage turbomachine
  • FIG. 2 is a partial cross-section view on an enlarged scale of an alternative embodiment of the turbomachine of FIG. 1.
  • FIG. 1 there is a turbomachine with four independent stages.
  • An electric group 2 which can be a motor or a generator, is placed in the central position. It is crossed by a shaft 4 supported by bearings 6 and having overhanging shaft ends. Each end of the shaft has two radial wheels.
  • the electrical group 2 is mounted in a housing 8.
  • a magnet 10 is firetté on the shaft 4 and forms the rotor of the electrical group 2.
  • a stator 12, separated from the rotor by an air gap and having windings, is mounted fixed in the box 8.
  • a connection box 14 makes it possible to electrically connect the electrical group 2.
  • the housing 8 is closed on each side by a cover 16 which incorporates a bearing 6 which is here a hydrodynamic bearing.
  • the housing 8 incorporates an oil collector 18.
  • seals 22 are provided inside each cover 16.
  • the bearings 6 of the shaft 4 are thus integrated into the covers 16.
  • the parts of the shaft 4 extending outside the housing 8 (or more precisely of its covers 16) are arranged in overhang relative to the support of this tree 4.
  • a first compressor is mounted adjacent to the cover 16 situated on the right in FIG. 1.
  • This compressor comprises a first compressor wheel 22 and a first compression body in several parts.
  • the first compressor wheel 22 is mounted on the shaft 4 and driven by it.
  • the fluid enters the first compressor wheel 22 in an axial direction (given by the axis of the shaft 4), from left to right in FIG. 1.
  • the shaft 4 has a section of so-called polygonal shape at the level of the first compressor wheel 22.
  • the section of the shaft 4 is here of triangular shape (with faces slightly convex and rounded tops).
  • the first compression body guides the fluid supplying the first compressor wheel 22 upstream and downstream of the latter.
  • a casing 24 has an inlet 24a which channels the fluid supplying the first compressor wheel 22 in a radial direction as well as an outlet 24b which guides the compressed fluid downstream of the first compressor wheel 22.
  • the casing 24 is fixed to a support 26 mounted on the corresponding cover 16. This support 26 has an inner wall which also participates in guiding the fluid to lead it to the first compressor wheel 22.
  • a sealing part 28 is disposed between the support 26 and the shaft 4 to seal the compressor. In the illustrated embodiment, the sealing piece 28 has a labyrinth on the side of the shaft 4.
  • a deflector 30 provides the fluid guidance upstream of the first compressor wheel 22 and opposite it .
  • a transverse wall 32 separates the first compressor from a second compressor.
  • This second compressor has a second compressor wheel 34 as well as a compression body also in several pieces.
  • the transverse wall 32 extends perpendicular to the axis of the shaft 4. It has an annular shape and houses in its center a sealing device 36. At this level, the shaft 4 also has a polygonal (triangular) section. To make the seal, a ring having an inner surface matching the polygonal shape of the shaft 4 and a circular cylindrical outer surface is placed around the shaft 4. The seal is then for example produced on said ring by a system sealing labyrinth.
  • the transverse wall 32 has a face receiving the rear face of the first compressor wheel 22 and a face receiving the rear face of the second compressor wheel 34.
  • the rear face of a wheel is its face of larger diameter.
  • the two compressor wheels (first compressor wheel 22 and second compressor wheel 34) are thus mounted back-to-back.
  • Each face of the transverse wall 32 has a housing for receiving the rear face of the wheel. corresponding compressor. Beyond this housing, each face of the transverse wall 32 forms a wall for the diffuser of the corresponding compressor.
  • the casing 24 is configured on the rear side of the first compressor wheel 22 to receive the transverse wall 32. It has for this purpose a hollow housing, preferably with a shoulder 38, to receive the transverse wall 32.
  • the housing at the bottom which takes place the transverse wall 32 is closed by a plate 40 carrying an inlet pipe 42 of fluid and an outlet pipe 44.
  • the plate 40 is fixed on the casing 24.
  • the inlet manifold 42 is positioned in the central position and it guides fluid towards the second compressor wheel 34 so that this fluid is oriented axially, pointing towards FIG. 1, for the second compressor wheel 34 on the right, from right to left.
  • a guide 46 guides the fluid to the second compressor wheel 34 and in this wheel.
  • the compressed fluid is guided by a diffuser 48 (and by the transverse plate 32).
  • the second compressor wheel 34 is also mounted on a section of the shaft 4 having a polygonal section. Note, however, that the second compressor wheel 34 is mounted on a section of dimensions ("diameter") less than the section of the shaft 4 receiving the first compressor wheel 22.
  • a screw 50 comes to fix the second compressor wheel 34 at the end of the shaft 4. By this fixing, the various elements arranged on the shaft 4 are secured by stacking, such as the sealing devices and the first compressor wheel 22.
  • the two compression bodies are both nested one in the other, with common elements, and at the same time independent since two distinct fluid circuits are created.
  • Figure 2 illustrates an alternative embodiment of Figure 1. It uses the references of Figure 1 to designate similar parts.
  • a bearing which in this example is also a hydrodynamic bearing but which could be of any other type, “classic” with bearings or magnetic, air , .
  • the compressor body corresponding to the first compressor wheel or proximal wheel is of suitable shape and has a housing for partially receiving the compressor body corresponding to the second compressor wheel.
  • the cover 16 and the support 26 in FIG. 1 are both grouped in a single piece on which the casing 24 is mounted.
  • the structure of the hydrodynamic bearing and of the seal is reviewed.
  • the sealing part therefore has a different shape.
  • the embodiment of Figure 2 corresponds for example to a turbomachine intended to work with two fluids at very different temperatures.
  • the pressure in the second compression body in this other embodiment is relatively high. Therefore, the plate 40 closing this body and separating it from the outside is domed. The fluid supply is then adapted.
  • the embodiments described above therefore have multi-stage turbomachines, said stages possibly being independent of each other.
  • Figure 1 illustrates a four-stage machine which is symmetrical. This symmetry is only illustrative. There can be two distinct sets on either side of the central part of the machine.
  • the turbomachine proposed here has a single shaft and no gearbox. It can thus have a limited footprint compared to a “compander” type machine described in the preamble. The number of bearings and seals to achieve is reduced compared to a "compander”.
  • the turbomachine in its version proposed with four stages (one could have for example only two or three stages, that is to say two stages on one side and one or zero on the other) or on the contrary more floors.
  • the proposed turbomachine may also include one or more expansion wheels (and not only compression stages). It then takes place in a thermodynamic installation. It can be a motor if a motor is arranged in the central part, or alternatively generator if a generator is provided in the central part. It can also be an exchange between fluids, one or more regulators then transmitting energy to one or more compressors via the central shaft. For a machine with four stages, one can thus have several configurations depending on whether one has compressors or expansion turbines (or “expanders"). We can thus have the following configurations with a motor:
  • each time at least on one side of the central part, an assembly of two radial wheels, preferably mounted back-to-back, on the same overhang of a common shaft, a sealing device between the two radial wheels.
  • the compression or expansion bodies corresponding to these two radial wheels are produced so that each can receive a different fluid.
  • Each body thus has an inlet and an outlet for fluid and there are two completely separate circuits, the inlet and outlet of one body and the inlet and outlet of the other body.
  • the radial wheels shown are mounted on the shaft by zones of the “polygon” type.
  • other assemblies are possible: keys, teeth, Hirth type teeth, etc.
  • the outermost wheel is preferably, but not necessarily, mounted on a smaller shaft section.
  • An assembly on two identical sections can also be envisaged.
  • the wheels are assembled using any means: support washers, sockets, labyrinth seal or other, ....
  • the compression or expansion body corresponding to the outermost wheel, or distal wheel is preferably fixed to the body (compression or expansion) corresponding to the innermost wheel. Thermal insulation can be provided between the two bodies.
  • the present invention is not limited to the embodiments described above and to the variants envisaged. It also relates to alternative embodiments within the reach of the skilled person within the scope of the claims below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)

Abstract

Cette turbomachine à étages multiples comporte : - une partie centrale (2) présentant au moins deux paliers (6) à partir de laquelle s'étend au moins d'un côté un arbre (4) guidé par lesdits paliers (6) et sur lequel sont montées en porte à faux deux roues radiales (22, 34), les deux roues radiales (22, 34) sont séparées l'une de l'autre par une cloison étanche (32), et chacune des deux roues radiales (22, 34) est montée dans son carter (24, 32, 40), chaque carter présentant une entrée de fluide (24a, 42) propre et une sortie de fluide (24b, 44) propre.

Description

Turbomachine à étages multiples
La présente invention concerne une turbomachine à étages multiples. Elle concerne plus particulièrement la structure d’une telle machine.
Une turbomachine peut comporter plusieurs étages de compression ou plusieurs étages de détente ou bien encore à la fois un ou plusieurs étage(s) de compression associé(s) à un ou plusieurs étage(s) de détente.
Il est notamment connu d’avoir une machine de type compresseur-turbine, appelée aussi compander (mot obtenu à partir des mots anglais compressor pour compresseur et expander pour turbine ou détendeur), dans laquelle on trouve un ou plusieurs compresseur(s) centrifuge(s) et une ou plusieurs turbine(s). Ces divers étages sont reliés mécaniquement à un moteur commun (éventuellement une génératrice commune) par l'intermédiaire d'un ensemble d'engrenages appelé boite de vitesses (ou son équivalent anglais, gearbox).
Une telle machine permet d’obtenir d’excellentes performances pour le traitement de fluides. Elle est modulaire et une même machine peut travailler avec un ou plusieurs fluides : il est par exemple possible de récupérer de l’énergie contenue dans un fluide pour la transmettre à un autre fluide.
Un inconvénient toutefois des companders connus est leur encombrement au sol qui est relativement important.
Un autre inconvénient des companders connus est leur structure qui impose d’avoir un nombre de paliers important. Il y a en effet un palier pour chaque roue de turbine ou compresseur ainsi que quatre paliers pour le moteur et la boite de vitesses. Cette structure présente également plusieurs arbres qu’il faut étancher. Tout ceci fait que la turbomachine obtenue est relativement lourde.
Enfin du fait de la présence de la boite de vitesses, il est le plus souvent nécessaire d’avoir de l’huile pour lubrifier ladite boite de vitesses. Pour certaines applications, il est préférable de ne pas avoir d’huile et la présence de la boite de vitesses est alors un inconvénient.
La présente invention a alors pour but de fournir une turbomachine à étages multiples pouvant, comme les companders, traiter des fluides différents -par exemple un gaz et un liquide- ne présentant pas tous les inconvénients précités.
Ainsi, la nouvelle turbomachine présentera de préférence une structure plus compacte. Cette turbomachine, pour des performances équivalentes, sera aussi de préférence plus légère qu’un compander. Avantageusement, cette turbomachine fonctionnera sans huile.
A cet effet, la présente invention propose une turbomachine à étages multiples comportant une partie centrale présentant au moins deux paliers à partir de laquelle s’étend au moins d’un côté un arbre guidé par lesdits paliers et sur lequel sont montées en porte à faux deux roues radiales.
Selon la présente invention, les deux roues radiales sont séparées l’une de l’autre par une cloison étanche, et chacune des deux roues radiales est montée dans son carter, chaque carter présentant une entrée de fluide propre et une sortie de fluide propre.
Cette structure permet d’obtenir une turbomachine comparable à un compander avec quatre étages avec un encombrement moindre tout en permettant de travailler avec plusieurs fluides (au moins deux fluides puisqu’ au moins deux carters ont chacun une entrée et une sortie qui leur sont propres, c’est-à-dire non commune avec un autre étage.
Pour faciliter l’alimentation des deux roues radiales et avoir une structure compacte, les deux roues radiales montées sur un même porte à faux sont par exemple montées dos à dos. Ainsi une roue est alimentée d’un côté et l’autre du côté opposé.
Pour limiter le nombre de pièces et avoir une structure compacter, on peut prévoir que la cloison étanche forme une paroi commune à chacun des deux carters.
Pour permettre d’utiliser des fluides à des températures sensiblement différentes, la cloison étanche présente avantageusement une isolation thermique.
Une turbomachine à étages multiples telle que décrite ci-dessus est destinée à être utilisée au sein d’un process thermodynamique. Pour une meilleure maîtrise de ce process, on prévoit avantageusement que la partie centrale comporte en outre un groupe électrique choisi dans l’ensemble des moteurs électriques et des générateurs électriques.
Selon une forme de réalisation avantageuse, le carter correspondant à la roue distale comporte une partie proximale commune avec le carter de la roue proximale et une partie distale fixée sur le carter de la roue proximale.
Pour obtenir une structure équivalente à un compander, une turbomachine à étages multiples telle que décrite ci-dessus peut comporter de part et d’autre de sa partie centrale un ensemble de deux roues radiales séparées l’une de l’autre par une cloison étanche, et pour chaque ensemble chacune des roues radiales est montée dans son carter, chaque carter présentant une entrée de fluide propre et une sortie de fluide propre.
Des détails et avantages de la présente invention apparaîtront mieux de la description qui suit, faite en référence au dessin schématique annexé sur lequel :
La figure 1 est une vue en coupe transversale d’une turbomachine à étages multiples, et
La figure 2 est une vue en coupe transversale partielle à échelle agrandie d’une variante de réalisation de la turbomachine de la figure 1.
Dans la forme de réalisation illustrée sur la figure 1 , on a une turbomachine à quatre étages indépendants. La structure globale de cette machine est décrite ci-après. Un groupe électrique 2, qui peut être un moteur ou une génératrice, est disposé en position centrale. Il est traversé par un arbre 4 supporté par des paliers 6 et présentant des extrémités d’arbre en porte à faux. Chaque extrémité d’arbre porte deux roues radiales.
Le groupe électrique 2 est monté dans un boîtier 8. Un aimant 10 est firetté sur l’arbre 4 et forme le rotor du groupe électrique 2. Un stator 12, séparé du rotor par un entrefer et présentant des bobinages, est monté fixe dans le boîtier 8. Une boite de connexion 14 permet de relier électriquement le groupe électrique 2.
Le boîtier 8 est fermé de chaque côté par un couvercle 16 qui intègre un palier 6 qui est ici un palier hydrodynamique. Le boîtier 8 intègre un collecteur d’huile 18. Pour éviter toute migration d’huile vers le groupe électrique 2, des joints 22 sont prévus à l’intérieur de chaque couvercle 16.
Les paliers 6 de l’arbre 4 sont ainsi intégrés dans les couvercles 16. Les parties de l’arbre 4 s’étendant à l’extérieur du boîtier 8 (ou plus précisément de ses couvercles 16) sont disposées en porte-à-faux par rapport au support de cet arbre 4.
On remarque sur la figure 1 que les deux ensembles de roues radiales disposés de part et d’autre du groupe électrique 2 sont symétriques. Ainsi, dans la description qui suit, un seul ensemble, celui de droite sur la figure 1 , sera décrit.
Un premier compresseur est monté adjacent au couvercle 16 situé à droite sur la figure 1. Ce compresseur comporte une première roue de compresseur 22 et un premier corps de compression en plusieurs pièces.
La première roue de compresseur 22 est montée sur l’arbre 4 et entraînée par celui-ci. Le fluide (en phase gazeuse ou liquide) entre dans la première roue de compresseur 22 selon une direction axiale (donnée par l’axe de l’arbre 4), de la gauche vers la droite sur la figure 1. Dans la forme de réalisation préférée illustrée sur la figure 1, l’arbre 4 présente une section de forme dite polygonale au niveau de la première roue de compresseur 22. La section de l’arbre 4 est ici de forme triangulaire (avec des faces légèrement convexes et des sommets arrondis).
Le premier corps de compression guide le fluide alimentant la première roue de compresseur 22 en amont et en aval de celle-ci. Un carter 24 présente une entrée 24a qui canalise le fluide alimentant la première roue de compresseur 22 selon une direction radiale ainsi qu’une sortie 24b qui guide le fluide comprimé en aval de la première roue de compresseur 22. Le carter 24 est fixé sur un support 26 monté sur le couvercle 16 correspondant. Ce support 26 présente une paroi intérieure qui participe également au guidage du fluide pour le conduire vers la première roue de compresseur 22. Une pièce d’étanchéité 28 est disposée entre le support 26 et l’arbre 4 pour réaliser l’étanchéité du compresseur. Dans la forme de réalisation illustrée, la pièce d’étanchéité 28 présente un labyrinthe du côté de l’arbre 4. Du côté de l’intérieur du carter 24, la pièce d’étanchéité assure le guidage du fluide pour le faire passer d’une direction radiale vers sa direction axiale pour alimenter la première roue de compresseur 22. Enfin, à l’intérieur du carter 24, un déflecteur 30 assure le guidage du fluide en amont de la première roue de compresseur 22 et en face de celle-ci.
Après la première roue de compresseur 22, c’est-à-dire en s’éloignant de la partie centrale de la turbomachine qui intègre le groupe électrique 2, une paroi transversale 32 vient séparer le premier compresseur d’un second compresseur. Ce second compresseur comporte une seconde roue de compresseur 34 ainsi qu’un corps de compression également en plusieurs pièces.
La paroi transversale 32, comme suggéré par son nom, s’étend perpendiculairement à l’axe de l’arbre 4. Elle présente une forme annulaire et loge en son centre un dispositif d’étanchéité 36. A ce niveau, l’arbre 4 présente également une section de forme polygonale (triangulaire). Pour réaliser l’étanchéité, une bague présentant une surface intérieure épousant la forme polygonale de l’arbre 4 et une surface extérieure cylindrique circulaire est placée autour de l’arbre 4. L’étanchéité est alors par exemple réalisée sur ladite bague par un système d’étanchéité à labyrinthe.
La paroi transversale 32 présente une face recevant la face arrière de la première roue de compresseur 22 et une face recevant la face arrière de la seconde roue de compresseur 34. On appelle ici face arrière d’une roue sa face de plus grand diamètre. Comme on peut le voir ici, les deux roues de compresseur (première roue de compresseur 22 et seconde roue de compresseur 34) sont ainsi montées dos-à-dos. Chaque face de la paroi transversale 32 présente un logement pour recevoir la face arrière de la roue de compresseur correspondante. Au-delà de ce logement, chaque face de la paroi transversale 32 forme une paroi pour le diffuseur du compresseur correspondant.
Le carter 24 est configuré du côté arrière de la première roue de compresseur 22 pour recevoir la paroi transversale 32. Il présente à cet effet un logement en creux, de préférence avec un épaulement 38, pour recevoir la paroi transversale 32. Le logement au fond duquel vient prendre place la paroi transversale 32 est fermé par une plaque 40 portant une tubulure d’arrivée 42 de fluide et une tubulure de sortie 44. La plaque 40 est fixée sur le carter 24.
La tubulure d’arrivée 42 est disposée en position centrale et elle guide du fluide vers la seconde roue de compresseur 34 de telle sorte que ce fluide soit orienté axialement en se dirigeant sur la figure 1, pour la seconde roue de compresseur 34 de droite, de la droite vers la gauche. À l’intérieur du logement, un guide 46 assure le guidage du fluide vers la seconde roue de compresseur 34 et dans cette roue. En sortie de roue, le fluide comprimé est guidé par un diffuseur 48 (et par la plaque transversale 32).
La seconde roue de compresseur 34 est elle aussi montée sur un tronçon de l’arbre 4 présentant une section polygonale. On remarque toutefois que la seconde roue de compresseur 34 est montée sur un tronçon de dimensions (« diamètre ») moindre que le tronçon de l’arbre 4 recevant la première roue de compresseur 22. Une vis 50 vient fixer la seconde roue de compresseur 34 en bout d’arbre 4. Par cette fixation, on assure par empilage la fixation des divers éléments disposés sur l’arbre 4, tels les dispositifs d’étanchéité et la première roue de compresseur 22.
On remarque ici que les deux corps de compression sont à la fois imbriqués l’un dans l’autre, avec des éléments communs, et à la fois indépendants puisque deux circuits de fluide distincts sont créés.
On réalise de la sorte deux étages entièrement indépendants l’un de l’autre sur une même extrémité d’arbre d’une turbomachine.
La figure 2 illustre une variante de réalisation de la figure 1. Elle reprend les références de la figure 1 pour désigner des pièces similaires. On retrouve ici deux roues radiales séparées par une cloison et montées dos à dos, les deux roues étant montées sur un même porte à faux d’un arbre. On retrouve aussi sur la figure 2, qui est une coupe partielle à échelle agrandie, un palier (qui est dans cet exemple aussi un palier hydrodynamique mais qui pourrait être de tout autre type, « classique » avec des roulements ou bien magnétique, à air, ...). En outre, le corps de compresseur correspondant à la première roue de compresseur ou roue proximale (la plus proche du palier) est de forme adaptée et présente un logement pour recevoir partiellement le corps de compresseur correspondant à la seconde roue de compresseur. Dans la suite, seules les différences entre la forme de réalisation de la figure 2 et celle de la figure 1 seront mises en avant.
Du côté de la partie centrale, le couvercle 16 et le support 26 de la figure 1 sont tous deux regroupés en une seule pièce sur laquelle est monté le carter 24. La structure du palier hydrodynamique et de l’étanchéité est revue. La pièce d’étanchéité présente de ce fait une forme différente.
La forme de réalisation de la figure 2 correspond par exemple à une turbomachine destinée à travailler avec deux fluides à des températures très différentes. On reconnaît alors une couche isolante 52 qui est disposée dans le second corps de compression en regard du premier corps de compression. On peut ici par exemple comprimer un fluide cryogénique et un autre fluide à température « normale », par exemple proche de la température ambiante.
La pression dans le second corps de compression dans cette autre forme de réalisation est relativement élevée. De ce fait, la plaque 40 fermant ce corps et le séparant de l’extérieur est de forme bombée. L’alimentation en fluide est alors adaptée.
Les formes de réalisation décrites ci-dessus présentent donc des turbomachines à étages multiples, lesdits étages pouvant être indépendants les uns des autres.
La figure 1 illustre une machine à quatre étages qui est symétrique. Cette symétrie est uniquement illustrative. On peut avoir deux ensembles bien distincts de part et d’autre de la partie centrale de la machine.
La turbomachine proposée ici présente un seul arbre et aucune boite de vitesses (gearbox). Elle peut ainsi présenter une empreinte au sol limitée par rapport à une machine de type « compander » décrite au préambule. Le nombre de paliers et d’étanchéités à réaliser est réduit par rapport à un « compander ».
La turbomachine, dans sa version proposée à quatre étages (on pourrait n’avoir par exemple que deux ou trois étages, c’est-à-dire deux étages d’un côté et un ou zéro de l’autre) ou bien au contraire un plus grand nombre d’étages.
La turbomachine proposée peut aussi comporter une ou plusieurs roues de détente (et pas uniquement des étages de compression). Elle vient alors prendre place dans une installation thermodynamique. Elle peut être motrice dans le cas où un moteur est disposé dans la partie centrale, ou bien génératrice si un générateur est prévu en partie centrale. Il peut aussi s’agir aussi d’un échange entre fluides, un ou plusieurs détendeurs transmettant alors de l’énergie à un ou plusieurs compresseurs par l’intermédiaire de l’arbre central. Pour une machine à quatre étages, on peut avoir ainsi plusieurs configurations selon que l’on ait des compresseurs ou des turbines de détente (ou « expandeurs »). On peut ainsi avoir les configurations suivantes avec un moteur :
Turbine-turbine/moteur/compresseur-compresseur
Turbine-turbine/moteur/turbine-compresseur
Turbine-turbine/moteur/compresseur-turbine
Turbine-compresseur/moteur/compresseur-compresseur
Turbine-compresseur/moteur/turbine-compresseur
Turbine-compresseur/moteur/compresseur-turbine
Compresseur-turbine/moteur/compresseur-compresseur
Compresseur-turbine/moteur/turbine-compresseur
Compresseur-turbine/moteur/compresseur-turbine
Compresseur-turbine/moteur/turbine-turbine
Compresseur-compresseur/moteur/compresseur-compresseur
De même avec un générateur en partie centrale, on peut avoir toutes les combinaisons possibles de turbine et compresseur de part et d’autre du générateur (sauf avoir uniquement des compresseurs qui ne peuvent alors pas entraîner le générateur).
De même toutes les combinaisons de turbines et de compresseurs (sauf uniquement des turbines ou uniquement des compresseurs) peuvent être envisagées sans groupe électrique en partie centrale pour réaliser des échanges énergétiques entre fluides uniquement par l’intermédiaire de l’arbre central.
On retrouve à chaque fois, au moins d’un côté de la partie centrale, un assemblage de deux roues radiales, de préférence montées dos-à-dos, sur un même porte à faux d’un arbre commun, un dispositif d’étanchéité entre les deux roues radiales. Les corps de compression ou d’expansion correspondant à ces deux roues radiales sont réalisés de manière à pouvoir recevoir chacun un fluide différent. Chaque corps présente ainsi une entrée et une sortie de fluide et on a deux circuits totalement distincts l’entrée et la sortie d’un corps et l’entrée et la sortie de l’autre corps.
Dans la description purement descriptive et non limitative, les roues radiales montrées sont montées sur l’arbre par des zones de type « polygone ». Bien entendu, d’autres montages sont possibles : clavettes, dentures, denture de type Hirth, etc.
La roue la plus à l’extérieur est de préférence, mais pas forcément, montée sur une section d’arbre de plus petite section. Un montage sur deux sections identiques peut aussi être envisagé. Le montage des roues se fait à l’aide de tout moyens : rondelles d’appui, douilles, étanchéité à labyrinthe ou autres, ... .
Le corps de compression ou d’expansion correspondant à la roue la plus extérieure, ou roue distale, est de préférence fixé sur le corps (de compression ou d’expansion) correspondant à la roue la plus intérieure. Une isolation thermique peut être prévue entre les deux corps.
La présente invention ne se limite pas aux formes de réalisation décrites ci- dessus et aux variantes envisagées. Elle concerne également les variantes de réalisation à la portée de l’homme du métier dans le cadre des revendications ci-après.

Claims

REVENDICATIONS
1. Turbomachine à étages multiples comportant une partie centrale (2) présentant au moins deux paliers (6) à partir de laquelle s’étend au moins d’un côté un arbre (4) guidé par lesdits paliers (6) et sur lequel sont montées en porte à faux deux roues radiales (22, 34),
caractérisée en ce que les deux roues radiales (22, 34) sont séparées l’une de l’autre par une cloison étanche (32), et
en ce que chacune des deux roues radiales (22, 34), est montée dans son carter (24, 32, 40), chaque carter présentant une entrée de fluide (24a, 42) propre et une sortie de fluide (24b, 44) propre.
2. Turbomachine à étages multiples selon la revendication 1 , caractérisée en ce que les deux roues radiales (22, 34), montées sur un même porte à faux sont montées dos à dos.
3. Turbomachine à étages multiples selon l'une des revendications 1 ou 2, caractérisée en ce que la cloison étanche (32) forme une paroi commune à chacun des deux carters (24, 32, 40).
4. Turbomachine à étages multiples selon l'une des revendications 1 à 3, caractérisée en ce que la cloison étanche (32) présente une isolation thermique (52).
5. Turbomachine à étages multiples selon l'une des revendications 1 à 4, caractérisée en ce que la partie centrale (2) comporte en outre un groupe électrique choisi dans l’ensemble des moteurs électriques et des générateurs électriques.
6. Turbomachine à étages multiples selon l'une des revendications 1 à 5, caractérisée en ce que le carter (32, 40) correspondant à la roue distale (34) comporte une partie proximale (32) commune avec le carter de la roue proximale (22) et une partie distale (40) fixée sur le carter (24) de la roue proximale (22).
7. Turbomachine à étages multiples selon l'une des revendications 1 à 6, caractérisée en ce qu’elle comporte de part et d’autre de sa partie centrale (2) un ensemble de deux roues radiales (22, 34), séparées l’une de l’autre par une cloison étanche (32), et en ce que pour chaque ensemble chacune des roues radiales (22, 34), est montée dans son carter (24, 32, 40), chaque carter présentant une entrée de fluide (24a, 42) propre et une sortie de fluide (24b, 44) propre.
PCT/EP2019/068567 2018-08-07 2019-07-10 Turbomachine à étages multiples WO2020030373A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021504241A JP7394830B2 (ja) 2018-08-07 2019-07-10 多段ターボ機械
US17/264,946 US11982281B2 (en) 2018-08-07 2019-07-10 Multi-stage turbomachine
KR1020217002796A KR20210040054A (ko) 2018-08-07 2019-07-10 다단 터보기계
CN201980047348.7A CN112424477B (zh) 2018-08-07 2019-07-10 多级涡轮机
EP19737111.5A EP3833872A1 (fr) 2018-08-07 2019-07-10 Turbomachine à étages multiples

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857360A FR3084919B1 (fr) 2018-08-07 2018-08-07 Turbomachine a etages multiples
FR1857360 2018-08-07

Publications (1)

Publication Number Publication Date
WO2020030373A1 true WO2020030373A1 (fr) 2020-02-13

Family

ID=65494226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/068567 WO2020030373A1 (fr) 2018-08-07 2019-07-10 Turbomachine à étages multiples

Country Status (7)

Country Link
US (1) US11982281B2 (fr)
EP (1) EP3833872A1 (fr)
JP (1) JP7394830B2 (fr)
KR (1) KR20210040054A (fr)
CN (1) CN112424477B (fr)
FR (1) FR3084919B1 (fr)
WO (1) WO2020030373A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1122375B (de) * 1960-05-10 1962-01-18 Paul Bungartz Mehrstufige Kreiselpumpe mit fliegend angeordneten Laufraedern
US5599164A (en) * 1995-04-03 1997-02-04 Murray; William E. Centrifugal process pump with booster impeller
CN2606202Y (zh) * 2003-03-10 2004-03-10 宜兴市宙斯泵业有限公司 一种改进的双级离心泵
JP2012251528A (ja) * 2011-06-07 2012-12-20 Daikin Industries Ltd 多段遠心圧縮機
EP3249234A1 (fr) * 2016-05-22 2017-11-29 Honeywell International Inc. Turbocompresseur avec compresseur à deux étages en série entraîné par turbine à gaz d'échappement et moteur électrique

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398853B1 (en) * 1998-12-16 2002-06-04 Quest Air Gases Inc. Gas separation with split stream centrifugal turbomachinery
US6725643B1 (en) * 2001-06-19 2004-04-27 Marius Paul High efficiency gas turbine power generator systems
KR100414110B1 (ko) * 2001-09-25 2004-01-07 엘지전자 주식회사 터보 압축기의 베어링 냉각구조
US6792755B2 (en) * 2002-07-30 2004-09-21 Honeywell International Inc. High-pressure ratio turbocharger
JP4278931B2 (ja) * 2002-07-31 2009-06-17 日本電産シバウラ株式会社 リバーシブルポンプ及び食器洗い機
JP2007177695A (ja) * 2005-12-28 2007-07-12 Ishikawajima Harima Heavy Ind Co Ltd ターボ圧縮機
EP1908872A1 (fr) * 2006-10-02 2008-04-09 Falmer Investments Limited soufflante pour une machine de traitment de textiles
US7856834B2 (en) * 2008-02-20 2010-12-28 Trane International Inc. Centrifugal compressor assembly and method
DE102008057472B4 (de) * 2008-11-14 2011-07-14 Atlas Copco Energas GmbH, 50999 Mehrstufiger Radial-Turboverdichter
GB2465279B (en) * 2008-11-15 2014-09-24 Cummins Turbo Tech Ltd Turbomachine
US7946118B2 (en) * 2009-04-02 2011-05-24 EcoMotors International Cooling an electrically controlled turbocharger
DE102009046940B4 (de) * 2009-11-20 2014-06-18 Mtu Friedrichshafen Gmbh Mehrstufige Aufladegruppe, Aufladesystem und Brennkraftmaschine, jeweils mit der mehrstufigen Aufladegruppe
US20120114463A1 (en) * 2010-11-04 2012-05-10 Hamilton Sundstrand Corporation Motor driven cabin air compressor with variable diffuser
CN103518049B (zh) * 2011-05-10 2017-05-17 博格华纳公司 排气涡轮增压器及其轴承壳体
CN102720692B (zh) * 2012-05-07 2015-04-15 康跃科技股份有限公司 双驱并联顺序增压压气机
GB2506970B (en) * 2012-08-24 2020-12-30 Borgwarner Inc A shield and coolant guide for an electric machine
US9657744B2 (en) * 2013-02-13 2017-05-23 Dresser-Rand Company Midspan active magnetic bearing
JP6215248B2 (ja) * 2015-03-18 2017-10-18 株式会社豊田自動織機 ターボチャージャ
FR3037110B1 (fr) * 2015-06-05 2019-11-01 Danfoss A/S Compresseur frigorifique centrifuge
US9816512B2 (en) * 2015-07-15 2017-11-14 Borgwarner Inc. Separated opposed flow single coupling compressor stage
US10718346B2 (en) * 2015-12-21 2020-07-21 General Electric Company Apparatus for pressurizing a fluid within a turbomachine and method of operating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1122375B (de) * 1960-05-10 1962-01-18 Paul Bungartz Mehrstufige Kreiselpumpe mit fliegend angeordneten Laufraedern
US5599164A (en) * 1995-04-03 1997-02-04 Murray; William E. Centrifugal process pump with booster impeller
CN2606202Y (zh) * 2003-03-10 2004-03-10 宜兴市宙斯泵业有限公司 一种改进的双级离心泵
JP2012251528A (ja) * 2011-06-07 2012-12-20 Daikin Industries Ltd 多段遠心圧縮機
EP3249234A1 (fr) * 2016-05-22 2017-11-29 Honeywell International Inc. Turbocompresseur avec compresseur à deux étages en série entraîné par turbine à gaz d'échappement et moteur électrique

Also Published As

Publication number Publication date
FR3084919B1 (fr) 2020-12-11
US11982281B2 (en) 2024-05-14
US20230340959A1 (en) 2023-10-26
JP7394830B2 (ja) 2023-12-08
EP3833872A1 (fr) 2021-06-16
KR20210040054A (ko) 2021-04-12
FR3084919A1 (fr) 2020-02-14
CN112424477B (zh) 2023-09-08
JP2021532302A (ja) 2021-11-25
CN112424477A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
EP3155234B1 (fr) Turbomachine comprenant un systeme d'entrainement d'un equipement tel qu'un boitier d'accessoires
EP3137741B1 (fr) Turbomachine d'aéronef a prélèvement de puissance mécanique amélioré
CA2634986C (fr) Montage d'un arbre dans un palier avec un ecrou auto extracteur
FR2915523A1 (fr) Dispositif de production d'energie electrique dans un moteur a turbine a gaz a double corps
WO2004083644A1 (fr) Groupe compresseur centrifuge
FR2893086A1 (fr) Machine thermique a haut rendement
EP2576995B1 (fr) Boite d'engrenages dans une turbomachine
EP2469100A1 (fr) Groupe motocompresseur à accouplement torsible placé dans un arbre creux du compresseur
WO2016059346A1 (fr) Support d'équipement d'une turbomachine comprenant un réducteur magnétique
EP3735379A1 (fr) Turbopropulseur comprenant une generatrice d'electricite integree
EP0374020B1 (fr) Ensemble structural compact d'alimentation d'un moteur-fusée en ergols à haute pression
WO2020030373A1 (fr) Turbomachine à étages multiples
EP3999729B1 (fr) Réducteur à train épicycloïdal pour une turbomachine
EP3999730B1 (fr) Réducteur à train épicycloïdal pour une turbomachine
EP1473462B1 (fr) Groupe compresseur à montage en cartouche
EP4267839A1 (fr) Module de turbomachine equipe d'une machine electrique et turbomachine equipee d'un tel module
EP4343133A1 (fr) Boitier d'accessoires compact comportant une machine electrique integree
EP3346132A1 (fr) Groupe de lubrification pour turbomachine d'aéronef et comprenant une dynamo-pompe
FR3125568A1 (fr) Pivot pour réducteur mécanique de turbomachine
FR3135755A1 (fr) Boitier de relais d’accessoires pour une turbomachine
FR3110939A1 (fr) Turbomachine equipee de machines electriques accouplees a une surface d’accouplement
FR2489428A1 (fr) Moteur hydraulique et generatrice entrainee par un tel moteur pour la production d'electricite dans un aeronef

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19737111

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504241

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019737111

Country of ref document: EP

Effective date: 20210309