EP2469100A1 - Groupe motocompresseur à accouplement torsible placé dans un arbre creux du compresseur - Google Patents

Groupe motocompresseur à accouplement torsible placé dans un arbre creux du compresseur Download PDF

Info

Publication number
EP2469100A1
EP2469100A1 EP11194395A EP11194395A EP2469100A1 EP 2469100 A1 EP2469100 A1 EP 2469100A1 EP 11194395 A EP11194395 A EP 11194395A EP 11194395 A EP11194395 A EP 11194395A EP 2469100 A1 EP2469100 A1 EP 2469100A1
Authority
EP
European Patent Office
Prior art keywords
main shaft
motor
compressor
shaft
unit according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11194395A
Other languages
German (de)
English (en)
Other versions
EP2469100B1 (fr
Inventor
Thomas Alban
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermodyn SAS
Original Assignee
Thermodyn SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermodyn SAS filed Critical Thermodyn SAS
Publication of EP2469100A1 publication Critical patent/EP2469100A1/fr
Application granted granted Critical
Publication of EP2469100B1 publication Critical patent/EP2469100B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/053Shafts
    • F04D29/054Arrangements for joining or assembling shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/0405Shafts or bearings, or assemblies thereof joining shafts, e.g. rigid couplings, quill shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/043Shafts
    • F04D29/044Arrangements for joining or assembling shafts

Definitions

  • the invention relates to turbochargers or motocompressors, and in particular integrated motor compressor units.
  • An integrated compressor unit comprises a sealed casing in which are placed an electric motor and a compressor unit, for example multi-stage, which comprises several compression vane wheels carried by a driven shaft driven by the rotor of the motor.
  • the flexible couplings used which are generally of membrane type, increase the axial size of the motor-compressor unit (typical of the order of 35 to 40 cm compared to a rigid coupling with flanges), and represent a zone of weakness. because they can for example be subjected only to tensile or compressive stresses, in the axial direction, limited.
  • the object of the invention is to provide an integrated compact turbocharger unit in the axial direction, whose axial stiffness allows to use only one axial abutment without limitation of axial forces applied, the architecture of the motor-generating group generating a risk reduced gas leakage, and allowing easy disassembly for maintenance operations.
  • the motor-compressor unit comprises a motor and a compressor mounted in a gas-tight common housing to be compressed.
  • the motor comprises a rotor rotatably connected with a rotor of the compressor.
  • the compressor rotor has a main shaft and a connecting shaft coaxial with the main shaft.
  • the connecting shaft is disposed at least partly within the main shaft so as to be radially spaced from the main shaft, and has a coupling zone with the main shaft.
  • the motor-compressor unit is a centrifugal motor-compressor unit. Centrifugal compression stages are supported by the main shaft.
  • the motor-compressor unit comprises at least two bearings supporting the main shaft, the connecting shaft extending beyond one of the bearings, that is to say through the bearing .
  • the connecting shaft extends beyond a bearing supporting the main shaft, and also beyond one or more stages of compression, that is to say beyond one or more rows of blades, the compressor. According to a preferred embodiment, the connecting shaft extends beyond all the compression stages of the main shaft.
  • the motor-compressor unit preferably comprises at least two bearings supporting a shaft of the motor rotor, two bearings supporting the main shaft of the compressor, and comprises a single axial abutment, arranged either on the shaft of the motor rotor, or on the shaft main.
  • the flywheel of the axial stop may be placed axially between the coupling zone (including around the coupling zone), and the vanes of the main shaft.
  • the compressor has no axial stop, an axial abutment being connected to the rotor of the motor.
  • the motor-compressor unit comprises dismountable fixing means capable of securing, at the level of the coupling zone, both axially and in rotation, the connecting shaft and the main shaft of the compressor.
  • the removable fastening means are configured to be able to be detached from an axial end of the casing.
  • an axial thrust wheel is assembled around a portion of the main shaft traversed by the removable fixing means.
  • the motor-compressor unit comprises an axial abutment comprising a monobloc flywheel with a portion of the main shaft.
  • the motor-compressor unit comprises a low pressure gas inlet and a high pressure gas outlet axially closer to the engine than the low pressure inlet, and the radial space separating the main shaft and the connecting shaft is of a width capable of allowing a flow spontaneous gas leaving the engine to the low-pressure inlet zone.
  • the main shaft comprises one or more radial orifices connecting the outside of the main shaft and the radial space.
  • the main shaft comprises at least a first radial orifice or a first group of radial orifices joining the radial space, this or these openings opening upstream of a row of blades.
  • the first radial orifice or the first group of radial orifices opens out between the coupling zone and the first compression stage, which is the row of blades furthest from the engine.
  • the first radial orifice or the first group of radial orifices may in particular open between the abutment and the first compression stage.
  • the main shaft also comprises at least one second radial orifice or a second group of radial orifices opening between an axial balancing piston and a radial bearing, which is the radial bearing closest to the engine and supporting the shaft. main.
  • the casing of the motor-compressor unit does not have radial openings provided specifically to allow the connection between the different shafts to be made.
  • the casing of the motor-compressor unit may have, as the only radial openings, only inlet and outlet openings of the gases to be compressed, that is to say an uncompressed gas inlet, a compressed gas outlet, and possible gas intake for recirculation of a secondary gas stream in particular to optimize the cooling of the engine.
  • the connecting shaft is rigidly connected to the main shaft in the coupling zone.
  • a damping device is provided between the connecting shaft and the main shaft.
  • the common axis of rotation of the motor 3 and the compressor 2 is marked as the x-x 'axis.
  • the compressor 2 and the motor 3 are arranged inside a common housing 4.
  • the housing 4 may for example be in the form of a generally cylindrical body 8, sealed at its ends by two covers 9, 10 respectively located at the near end of the engine and at the near end of the compressor, and maintained for example by bolting on the body 8.
  • the motor and the compressor are therefore arranged in the gas treated by the motor-compressor unit.
  • the rotor 38 of the compressor 2 comprises in particular a main shaft 11, one or more rows of blade wheels (or compression wheels) 12, 13, 14 mounted on the main shaft 11, and a connecting shaft 21 arranged in part to inside the main shaft, and connected to both the rotor (39) of the engine and the main shaft (11.)
  • the rows of paddle wheels 12, 13, 14 are mounted on the main shaft 11 of the compressor 2 at increasing distances from a end of the main shaft 11 of the compressor 2, which is here the end opposite the motor 3. It is understood that the compressor 2 may include any number of rows of blades, which can also point to the motor. Between two rows of impeller wheels of the main shaft 11 of the compressor 2 is interposed a row of stator blades of the compressor 2, not shown in the figure to lighten the representation.
  • the stator vanes are integral with a cartridge (not shown) surrounding the main shaft 11, and point radially towards the main shaft 11.
  • the main shaft 11 is supported radially by two bearings 16 and 17 located respectively on the motor side 3 and on the opposite side to the motor 3.
  • the rotor 39 of the motor 3 is carried by a motor shaft 20 which is supported radially by two bearings 18 and 19.
  • the bearings 16, 17, 18, 19 are preferably bearings that do not require a supply of lubricating liquid. For this purpose, it is possible, for example, to use bearings of the active magnetic type, or gas bearings.
  • the cartridge and the bearings 16, 17 of the compressor which are integral with the casing 4 during the operation of the compressor, can be unlocked from the casing during maintenance operations, in order to exit axially, through the end of the casing corresponding to the cover 10. , the stator cartridge assembly, bearings 16, 17 and rotor (carried by the shaft 11), of the compressor 2.
  • the gas that the compressor 2 has to compress is fed through a gas inlet 5 upstream of the first row of blades 12. After having crossed the successive rows of blades 12, 13, 14, it comes out of the compressor by a gas outlet port 6.
  • a cooling pipe 7 withdraws partially compressed gas downstream of the first row of blades 12, and brings the gas-to the engine 3 to cool the latter .
  • the sampling can be done downstream of another vane row or downstream of the outlet orifice 6, if the temperature allows it.
  • the main shaft 11 is hollowed in its central part, that is to say in the vicinity of its axis, between an open end facing the motor 3, and a coupling zone 15 of the main shaft 11, at which it is integral with the connecting shaft 21.
  • the main shaft 11 is also recessed at its center on an axial portion situated between its end opposite the motor 3 and the coupling zone 15.
  • the coupling zone 15 is located between the bearings 16 and 17 supporting the main shaft 11, and more specifically, between the set of blades carried by the main shaft 11, and the bearing 17 arranged on the opposite side to the engine 3 by compared to this game of blades.
  • the recess passing through the main shaft 11 on either side of the coupling zone 15 is a cylindrical recess of revolution centered on the x-x 'axis of rotation of the motor 3 and the compressor 2.
  • the connecting shaft 21 extends at least partly inside the main shaft 11.
  • the connecting shaft 21 has a section smaller than that of the central recess of the main shaft 11, and extends to the coupling zone 15 of the main shaft 11.
  • a radial space 37 is thus formed between the main shaft 11 and the connecting shaft 21.
  • the connecting shaft 21 provides the coupling between the main shaft 11 and the shaft 20 of the motor rotor.
  • the driving shaft 20 is rigidly assembled, for example by flanges 22, to the connecting shaft 21.
  • the connecting shaft 21 is secured, by its end opposite the motor 3, to the coupling zone 15.
  • the connecting shaft 21 is preferably made of a material of high yield strength. It is thus able to withstand the torsional stress of the engine on a reduced section, and thanks to this reduced section, can be assembled inside the main shaft 11 while leaving the radial space 37. According to the variants of embodiment it is possible to use a connecting shaft whose external diameter is less than half the outer diameter of the drive shaft 20.
  • This reduced section also allows, between the two ends of the connecting shaft 21, to remain in a resilient bending deformation domain despite permanent angular or lateral misalignments between the main shaft and the shaft engine. This flexibility also makes it possible to filter the bending vibrations between the main shaft and the motor shaft. Furthermore, the reduced section of the connecting shaft allows a gradation of the forces transmitted during sudden changes in the torque transmitted by the motor, or the resistive torque exerted by the compressor.
  • the connecting shaft 21 has a central portion 27 whose section is substantially constant between the assembly flange 22, and the end secured to the coupling zone 15 of the main shaft 11. At the end of the integral end of the coupling zone 15, removable fixing means ensure the coupling between this connecting shaft 21 and the main shaft 11.
  • the connecting shaft 21 has a grooved zone 23, whose grooves, formed on its outer circumference, are complementary grooves formed recessed on the coupling zone 15 of the main shaft 11 .
  • the connecting shaft 21 is continued by a threaded portion 24 of lower section than that of the corrugated portion 23.
  • This threaded portion passes through an orifice 25 of corresponding diameter, formed in the coupling zone 15.
  • a nut 26 is screwed onto the threaded portion 24, on the side of the coupling zone 15 which is opposite the body 27 of the connecting shaft 21.
  • the connecting shaft 21 is thus, at the level of the coupling zone 15, integral both in rotation and in axial displacement, with the main shaft 11.
  • connection obtained by means of the connecting shaft 21 between the drive shaft 20 and the main shaft 11, is rigid in the axial direction.
  • a single axial abutment 28 which cooperates with axial bearings 40, maintains the axial line of trees.
  • the axial abutment 28 is also preferably of the type that does not require the supply of lubricating liquid, for example an active magnetic type stop.
  • the abutment 28 comprises an abutment wheel 29 shrunk around the coupling zone 15, and attached to the main shaft 11.
  • the figure 2 illustrates a second embodiment of the invention.
  • the same elements being then designated by the same references.
  • the provisions of the engine 3, the compressor 2, the inlet 5 at low pressure of the gases to be compressed and the outlet 6 of the compressed gases are similar to those of the figure 1 .
  • a single axial abutment 30 is also provided for the axial retention of the motor 3 and the compressor 2, this axial abutment being this time placed between the bearings 18 and 19 supporting the rotor of the motor 3.
  • the compressor 2 is therefore without stop.
  • Another solution not shown but advantageous may be to place the stop at the end of the motor rotor (39) after the bearing (18).
  • the figure 3 is a simplified partial section of a compressor belonging to a motor-compressor unit according to a third embodiment of the invention.
  • an axial balancing piston 31 comprising a rotatable portion 32, and facing a fixed piston portion 33 integral with the stator cartridge (not shown).
  • the rotating part 32 and the fixed part 33 are separated by a narrow gap 34, acting as a labyrinth seal, through which flows a leakage current of the high-pressure gas contained upstream (with respect to the flow direction of the gases). in the compressor 2) of the piston.
  • the gas inlet port 5 is further away from the engine 3 than the compressed gas outlet port 6, which itself is a little further away from the engine (3) than the piston 31.
  • the radial space 37 separating the main shaft 11 from the connecting shaft 21, extends from the open end on the motor side of the shaft 11, beyond the bearing 16, the piston 31 and the set of vanes of the main shaft 11.
  • the main shaft 11 is here made in several sections, namely a first axial section 11a comprising the coupling zone 15, and a second section 11b which is traversed right through by the central recess of the main shaft 11, and who wears all the blades.
  • the two sections are connected by a flange system 34a and 34b, the flange 34a being integral with a flywheel 29 forming part of the axial stop of the motor-compressor unit.
  • the embodiment in several parts of the main shaft 11 allows to choose the most suitable manufacturing techniques for each of the constituent elements.
  • this decoupling makes it possible to integrate the stop wheel 29 in a monobloc manner with the section 11a, which would be much more complicated if the connecting shaft 11 was made in one piece.
  • stop wheel 29 is made in the form of a separate disc, clamped between the two sections 11a and 11b.
  • a first orifice or group of orifices 35 is formed in the low-pressure zone situated upstream (with respect to the flow of gases in the compressor 2) of the row of blades 12, in the axial vicinity of the orifice of FIG. gas inlet 5.
  • a second orifice or group of orifices 36 is formed in the main shaft 11, between the piston 31 and the magnetic bearing 16.
  • This or these orifices 36 associated with the radial space 37 allow channeling towards the inside of the main shaft 11, on the one hand the gases having leaked through the labyrinth 34, and on the other hand, a flow of gas having passed through the magnetic bearing 16 from the end of the main shaft 11 situated on the side of the 3.
  • the dimensions of the orifices 35, 36 and the radial width of the space 37 are chosen so as to allow a spontaneous flow of the gases coming from the engine or the gases collected by the orifice 36.
  • the orifices 35 formed in the low pressure zone can bring back in this low pressure zone, from the open end of the main shaft 11, on the one hand hot gases from the flow of gas used to cool the engine 3, and secondly, the gases collected by the orifice 36 for returning the gases of the piston 31.
  • the gases heated by the engine 3 then mix with the gases entering the turbocharger through the orifice 5, "thinner Thus the calories removed from the engine 3 in the gas stream to be compressed.
  • the main shaft 11 thus becomes an integral part of the cooling circuitry of the motor-compressor unit.
  • the object of the invention is not limited to the examples described and can be broken down into numerous variants.
  • the bearing 16 from which the flow of gas is captured by channeling it through the orifice 36 can be a magnetic bearing or a gas bearing.
  • the motor-compressor unit according to the invention makes it possible to have a flexible coupling between the motor and the compressor whose rigidity and axial compactness are improved.
  • the motor-compressor unit according to the invention also makes it possible to simplify the architecture of the motor-compressor unit, especially at the level of the pipes and cooling circuits. The overall tightness of the compressor is improved as well as its ease of maintenance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Un groupe motocompresseur (1) comprend un moteur (3) et un compresseur (2) montés dans un carter (4) commun étanche au gaz à comprimer. Le moteur (3) comprend un rotor (39) lié en rotation avec un rotor (38) du compresseur (2). Le rotor (38) du compresseur comporte un arbre principal (11) et un arbre de liaison (21) coaxial avec l'arbre principal, l'arbre de liaison étant disposé au moins en partie à l'intérieur de l'arbre principal (11) de manière à être radialement espacé de l'arbre principal (11) et comportant une zone de couplage (15) avec l'arbre principal (11).

Description

  • L'invention concerne les turbocompresseurs ou motocompresseurs, et en particulier les groupes motocompresseurs intégrés. Un groupe motocompresseur intégré comporte un carter étanche dans lequel sont placés un moteur électrique et un groupe compresseur, par exemple à plusieurs étages, qui comporte plusieurs roues à aube de compression portées par un arbre mené entraîné par le rotor du moteur.
  • Il a d'abord été proposé de coupler l'arbre mené et le rotor au moyen d'un accouplement rigide, des paliers étant prévus pour supporter les extrémités de la ligne d'arbre du groupe motocompresseur ainsi que sa portion médiane.
  • Cependant, une telle structure nécessite à l'assemblage un alignement parfait du rotor et de l'arbre mené. Il a ainsi été proposé de coupler le rotor et l'arbre mené au moyen d'un accouplement flexible, afin de s'affranchir des problèmes d'alignement. En outre, cette solution permet au rotor et à l'arbre mené de conserver des comportements vibratoires qui leur sont propres, dans la mesure où ils restent mécaniquement découplés. On pourra à cet égard se référer au document WO 2004/083644 qui décrit un tel agencement. Afin de sortir le compresseur du carter pour des opérations de maintenance, il est nécessaire d'accéder aux organes d'accouplement flexibles par des ouvertures radiales du carter. Or, ces ouvertures radiales, même si elles sont munies de trappes d'accès étanches, peuvent être sources de fuites du gaz contenu dans le carter.
  • Lorsque le gaz à comprimer est combustible, ces fuites peuvent générer, par mélange avec l'air ambiant, une atmosphère explosive. Les exigences d'étanchéité de tels turbocompresseurs sont donc soumises à une réglementation très stricte, contraignant la conception de tels motocompresseurs.
  • En outre, les accouplements flexibles utilisés, qui sont généralement de type à membrane, augmentent l'encombrement axial du groupe motocompresseur (typique de l'ordre de 35 à 40cm par rapport à un accouplement rigide à brides), et représentent une zone de fragilité car ils ne peuvent par exemple être soumis qu'à des contraintes de traction ou compression, dans la direction axiale, limitées.
  • Afin de permettre des efforts axiaux importants sur les arbres, l'utilisation de tels accouplements flexibles implique donc au moins une butée axiale au niveau du rotor du moteur, et une autre butée axiale solidaire de l'arbre mené.
  • Le but de l'invention est de proposer un groupe turbocompresseur intégré compact dans le sens axial, dont la rigidité axiale permet de n'utiliser qu'une seule butée axiale sans limitation des efforts axiaux appliqués, l'architecture du groupe motocompresseur générant un risque de fuites gazeuses réduit, et permettant un démontage aisé en vue des opérations de maintenance.
  • A cette fin, le groupe motocompresseur comprend un moteur et un compresseur montés dans un carter commun étanche au gaz à comprimer. Le moteur comprend un rotor lié en rotation avec un rotor du compresseur. Le rotor du compresseur comporte un arbre principal et un arbre de liaison coaxial avec l'arbre principal. L'arbre de liaison est disposé au moins en partie à l'intérieur de l'arbre principal de manière à être radialement espacé de l'arbre principal, et comporte une zone de couplage avec l'arbre principal.
  • Dans un mode de mise en oeuvre, le groupe motocompresseur est un groupe motocompresseur centrifuge. Les étages de compression centrifuges sont supportés par l'arbre principal.
  • Selon une autre caractéristique de l'invention, le groupe motocompresseur comprend au moins deux palier supportant l'arbre principal, l'arbre de liaison s'étendant au delà de l'un des paliers, c'est-à-dire traversant le palier.
  • Avantageusement, l'arbre de liaison s'étend au-delà d'un palier supportant l'arbre principal, et également au-delà d'un ou plusieurs étages de compression, c'est-à-dire au-delà d'une ou plusieurs rangées d'aubes, du compresseur. Selon un mode de réalisation préférentiel, l'arbre de liaison s'étend au-delà de l'ensemble des étages de compression de l'arbre principal.
  • Le groupe motocompresseur comporte de préférence au moins deux paliers supportant un arbre du rotor du moteur, deux paliers supportant l'arbre principal du compresseur, et comporte une seule butée axiale, disposée soit sur l'arbre du rotor moteur, soit sur l'arbre principal.
  • Le volant de la butée axiale peut être placé axialement entre la zone de couplage (y compris autour de la zone de couplage), et les aubes de l'arbre principal.
  • Selon un autre mode de réalisation, le compresseur est dépourvu de butée axiale, une butée axiale étant liée au rotor du moteur.
  • De manière préférentielle, le groupe motocompresseur comporte des moyens de fixation démontables aptes à solidariser au niveau de la zone de couplage, à la fois axialement et en rotation, l'arbre de liaison et l'arbre principal du compresseur.
  • Avantageusement, les moyens de fixation démontables sont configurés pour pouvoir être désolidarisés à partir d'une extrémité axiale du carter.
  • Selon un mode de réalisation préféré, un volant de butée axiale est assemblé autour d'une portion de l'arbre principal traversée par les moyens de fixation démontables.
  • Selon un mode de réalisation avantageux, le groupe motocompresseur comprend une butée axiale comprenant un volant monobloc avec une portion de l'arbre principal.
  • Selon un mode de réalisation préféré, le groupe motocompresseur comporte une entrée de gaz à basse pression et une sortie de gaz à haute pression plus proche axialement du moteur que l'entrée à basse pression, et l'espace radial séparant l'arbre principal et l'arbre de liaison est de largeur apte à permettre un écoulement spontané des gaz sortant du moteur vers la zone d'entrée à basse pression.
  • Avantageusement, l'arbre principal comporte un ou plusieurs orifices radiaux reliant l'extérieur de l'arbre principal et l'espace radial.
  • Avantageusement, l'arbre principal comporte au moins un premier orifice radial ou un premier groupe d'orifices radiaux rejoignant l'espace radial, ce ou ces orifices débouchant à l'amont d'une rangée d'aubes.
  • Selon un mode de réalisation préféré, le premier orifice radial ou le premier groupe d'orifices radiaux débouche entre la zone de couplage et le premier étage de compression, qui est la rangée d'aubes la plus éloignée du moteur.
  • Dans ce mode de réalisation préféré, le premier orifice radial ou le premier groupe d'orifices radiaux peut en particulier déboucher entre la butée et le premier étage de compression.
  • Avantageusement, l'arbre principal comporte également au moins un second orifice radial ou un second groupe d'orifices radiaux débouchant entre un piston d'équilibrage axial et un palier radial, qui est le palier radial le plus proche du moteur et soutenant l'arbre principal.
  • Selon un mode de réalisation préféré, le carter du groupe motocompresseur ne présente pas d'ouvertures radiales prévues spécifiquement pour permettre d'assurer la liaison entre les différents arbres
  • En particulier, le carter du groupe motocompresseur peut ne présenter comme seules ouvertures radiales, que des ouvertures d'entrée et de sortie des gaz à comprimer, c'est-à-dire une entrée de gaz non comprimé, une sortie de gaz comprimé, et d'éventuelles prises de gaz servant à une recirculation d'un flux secondaire de gaz permettant en particulier d'optimiser le refroidissement du moteur.
  • Selon un premier mode de réalisation, l'arbre de liaison est lié rigidement à l'arbre principal dans la zone de couplage. Suivant un second mode de réalisation, un dispositif amortisseur est ménagé entre l'arbre de liaison et l'arbre principal.
  • D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :
    • la figure 1 illustre un schéma de principe général d'un groupe motocompresseur selon l'invention,
    • la figure 2 représente un autre mode de réalisation d'un groupe motocompresseur selon l'invention,
    • la figure 3 représente une vue de détail d'un troisième mode de réalisation d'un groupe motocompresseur selon l'invention.
  • Tel qu'illustré sur la figure 1, le groupe motocompresseur, désigné par la référence générale 1 comprend un compresseur 2 entraîné en rotation par un moteur électrique 3. L'axe de rotation commun du moteur 3 et du compresseur 2 est repéré comme l'axe x-x'. Le compresseur 2 et le moteur 3 sont disposés à l'intérieur d'un carter commun 4. Le carter 4 peut par exemple se présenter sous forme d'un corps globalement cylindrique 8, fermé de manière étanche à ses extrémités par deux couvercles 9, 10 situés respectivement à l'extrémité proche du moteur et à l'extrémité proche du compresseur, et maintenus par exemple par boulonnage sur le corps 8.
  • Le moteur et le compresseur sont donc disposés dans le gaz traité par le groupe motocompresseur.
  • Pour simplifier la représentation, seule la partie rotorique du compresseur 2 est représentée sur les figures. Le rotor 38 du compresseur 2 comprend notamment un arbre principal 11, une ou plusieurs rangées de roues à aube (ou roues de compression) 12, 13, 14 montées sur l'arbre principal 11, et un arbre de liaison 21 disposé en partie à l'intérieur de l'arbre principal, et lié à la fois au rotor (39) du moteur et à l'arbre principal (11.)
  • Les rangées de roues à aube 12, 13, 14 sont montées sur l'arbre principal 11 du compresseur 2 à des distances croissantes d'une extrémité de l'arbre principal 11 du compresseur 2, qui est ici l'extrémité opposée au moteur 3. Il est bien entendu que le compresseur 2 peut comporter un nombre quelconque de rangées d'aubes, pouvant par ailleurs pointer vers le moteur. Entre deux rangées de roues à aubes de l'arbre principal 11 du compresseur 2, est intercalée une rangée d'aubes statoriques du compresseur 2, non représentée sur la figure pour alléger la représentation. Les aubes statoriques sont solidaires d'une cartouche (non représentée) entourant l'arbre principal 11, et pointent radialement vers l'arbre principal 11.
  • L'arbre principal 11 est supporté radialement par deux paliers 16 et 17 situés respectivement du côté du moteur 3 et du côté opposé au moteur 3. Le rotor 39 du moteur 3 est porté par un arbre moteur 20 qui est supporté radialement par deux paliers 18 et 19. Les paliers 16, 17, 18, 19 sont de préférence des paliers ne nécessitant pas d'alimentation en liquide de lubrification. On peut, à cet effet, par exemple utiliser des paliers de type magnétique actif, ou des paliers à gaz.
  • La cartouche et les paliers 16, 17 du compresseur, qui sont solidaires du carter 4 pendant le fonctionnement du compresseur, peuvent être déverrouillées du carter lors d'opérations de maintenance, afin de sortir axialement, par l'extrémité du carter correspondant au couvercle 10, l'ensemble cartouche statorique, paliers 16, 17 et rotor (porté par l'arbre 11), du compresseur 2.
  • Le gaz que le compresseur 2 doit comprimer est amené par un orifice d'admission de gaz 5 en amont de la première rangée d'aubes 12. Après avoir franchi les rangées d'aubes successives 12, 13, 14, il ressort du compresseur par un orifice de sortie de gaz 6. Afin de refroidir le moteur 3, une conduite de refroidissement 7 prélève du gaz partiellement comprimé en aval de la première rangée d'aubes 12, et amène ce gaz-vers le moteur 3 afin de refroidir ce dernier. Le prélèvement peut se faire en aval d'une autre rangée d'aubage ou bien en aval de l'orifice de sortie 6, si la température le permet.
  • L'arbre principal 11 est évidé en sa partie centrale, c'est-à-dire au voisinage de son axe, entre une extrémité ouverte faisant face au moteur 3, et une zone de couplage 15 de l'arbre principal 11, au niveau de laquelle il est solidaire avec l'arbre de liaison 21. Dans le mode de réalisation de la figure 1, l'arbre principal 11 est également évidé en son centre sur une portion axiale située entre son extrémité opposée au moteur 3 et la zone de couplage 15.
  • La zone de couplage 15 se trouve entre les paliers 16 et 17 supportant l'arbre principal 11, et plus précisément, entre le jeu d'aubes porté par l'arbre principal 11, et le palier 17 disposé du côté opposé au moteur 3 par rapport à ce jeu d'aubes.
  • L'évidement qui traverse l'arbre principal 11 de part et d'autre de la zone de couplage 15 est un évidement cylindrique de révolution centré sur l'axe x-x' de rotation du moteur 3 et du compresseur 2.
  • Comme on le voit, l'arbre de liaison 21 s'étend au moins en partie à l'intérieur de l'arbre principal 11. En particulier, l'arbre de liaison 21 présente une section inférieure à celle de l'évidement central de l'arbre principal 11, et s'étend jusqu'à la zone de couplage 15 de l'arbre principal 11. Un espace radial 37 est ainsi ménagé entre l'arbre principal 11 et l'arbre de liaison 21.
  • Par ailleurs, l'arbre de liaison 21 assure le couplage entre l'arbre principal 11 et l'arbre 20 du rotor du moteur. L'arbre moteur 20 est assemblé de manière rigide, par exemple par des brides 22, à l'arbre de liaison 21. L'arbre de liaison 21 est solidaire, par son extrémité opposée au moteur 3, de la zone de couplage 15. L'arbre de liaison 21 est de préférence réalisé dans un matériau à haute limite d'élasticité. Il est ainsi apte à supporter la contrainte de torsion du moteur sur une section réduite, et grâce à cette section réduite, peut être assemblé à l'intérieur de l'arbre principal 11 en ménageant l'espace radial 37. Suivant les variantes de réalisation, on peut utiliser un arbre de liaison dont le diamètre extérieur est inférieur à la moitié du diamètre extérieur de l'arbre moteur 20.
  • Cette section réduite permet également, entre les deux extrémités de l'arbre de liaison 21, de rester dans un domaine élastique de déformation de flexion malgré des désalignements angulaires ou latéraux permanents entre l'arbre principal et l'arbre moteur. Cette flexibilité permet en outre de filtrer les vibrations de flexion entre l'arbre principal et l'arbre moteur. Par ailleurs, la section réduite de l'arbre de liaison permet une gradation des efforts transmis lors de changements brusques du couple transmis par le moteur, ou du couple résistif exercé par le compresseur.
  • L'arbre de liaison 21 présente une portion centrale 27 dont la section est sensiblement constante entre la bride d'assemblage 22, et l'extrémité solidaire de la zone de couplage 15 de l'arbre principal 11. Au niveau de l'extrémité solidaire de la zone de couplage 15, des moyens de fixation démontables assurent le couplage entre cet arbre de liaison 21 et l'arbre principal 11.
  • Dans un mode de réalisation particulier illustré ici, l'arbre de liaison 21 présente une zone cannelée 23, dont les cannelures, ménagées sur sa circonférence extérieure, sont complémentaires de cannelures ménagées en creux sur la zone de couplage 15 de l'arbre principal 11.
  • Au-delà de sa portion cannelée 23, l'arbre de liaison 21 se poursuit par une portion filetée 24 de section inférieure à celle de la portion cannelée 23. Cette portion filetée traverse un orifice 25 de diamètre correspondant, ménagé dans la zone de couplage 15. Un écrou 26 est vissé sur la portion filetée 24, du côté de la zone de couplage 15 qui est opposé au corps 27 de l'arbre de liaison 21.
  • L'arbre de liaison 21 est ainsi, au niveau de la zone de couplage 15, solidaire à la fois en rotation et en déplacement axial, avec l'arbre principal 11.
  • Lors d'opérations de maintenance, afin de sortir le compresseur 2 du carter 4, il suffit de démonter le couvercle d'extrémité 10, de dévisser l'écrou 26, de désolidariser du carter la cartouche statorique et les paliers 16,17, et d'extraire axialement le compresseur 2 par l'ouverture de couvercle 10. Aucun orifice radial dans le carter n'est nécessaire pour désolidariser le moteur 3 et le compresseur 2. Les orifices 5 d'admission de gaz et 6 de sortie de gaz ainsi que les orifices correspondant à la conduite de refroidissement 7, sont les seuls orifices radiaux ménagés dans le carter 4 du groupe motocompresseur. On limite ainsi le risque de fuite et de génération d'atmosphères explosives aux alentours du compresseur. Des ouvertures radiales limitées pourront toutefois être aménagées afin de désolidariser l'arbre moteur 20 et l'arbre de liaison 37 au niveau de la bride 22.
  • La liaison obtenue au moyen de l'arbre de liaison 21 entre l'arbre moteur 20 et l'arbre principal 11, est rigide dans le sens axial.
  • Une butée axiale 28 unique, qui coopère avec des paliers axiaux 40, assure le maintien axial de la ligne d'arbres. La butée axiale 28 est également, de préférence, du type ne nécessitant pas l'alimentation en liquide de lubrification, par exemple est une butée de type magnétique actif.
  • Dans le mode de réalisation de la figure 1, la butée 28 comprend un volant de butée 29 fretté autour de la zone de couplage 15, et attaché à l'arbre principal 11. La zone de couplage 15, bien que traversée par la portion filetée 24 de l'arbre de liaison 21, est ici la zone radialement la plus rigide de l'arbre principal 11, puisque cet arbre 15 est évidé sur une section plus importante que l'orifice 25 de part et d'autre de la zone de couplage 15.
  • La figure 2 illustre un second mode de réalisation de l'invention. On retrouve sur la figure 2 des éléments communs à la figure 1, les mêmes éléments étant alors désignés par les mêmes références. Les dispositions du moteur 3, du compresseur 2, de l'entrée 5 à basse pression des gaz à comprimer et de la sortie 6 des gaz comprimés sont similaires à celles de la figure 1.
  • Sur le mode de réalisation de la figure 2, une seule butée axiale 30 est également prévue pour le maintien axial du moteur 3 et du compresseur 2, cette butée axiale 30 étant cette fois placée entre les paliers 18 et 19 supportant le rotor du moteur 3. Dans le mode de réalisation de la figure 2, le compresseur 2 est donc dépourvu de butée. Une autre solution non représentée mais avantageuse pourra consister à placer la butée à l'extrémité du rotor moteur (39) après le palier (18).
  • La figure 3 est une coupe partielle simplifiée d'un compresseur appartenant à un groupe motocompresseur selon un troisième mode de réalisation de l'invention. On retrouve sur la figure 3 des références commune aux figures 1 et 2, les mêmes éléments étant alors désignés par les mêmes références. On retrouve notamment sur la figure 3 l'arbre de liaison 21, le corps de l'arbre de liaison 27, la portion cannelée 23 de l'arbre de liaison, sa portion filetée 24, et l'écrou de maintien 26.
  • On distingue également sur la figure 3 un piston d'équilibrage axial 31, comprenant une partie rotative 32, et faisant face à une partie fixe de piston 33 solidaire de la cartouche statorique (non représentée). La partie rotative 32 et la partie fixe 33 sont séparées par un intervalle étroit 34, faisant office de joint labyrinthe, par lequel s'écoule un courant de fuite du gaz à haute pression contenu en amont (par rapport au sens d'écoulement des gaz dans le compresseur 2) du piston.
  • Dans le mode de réalisation de la figure 3, l'orifice 5 d'entrée de gaz est plus éloigné du moteur 3 que l'orifice 6 de sortie des gaz comprimés, qui est lui-même un peu plus éloigné du moteur (3) que le piston 31. L'espace radial 37 séparant l'arbre principal 11 de l'arbre de liaison 21, s'étend à partir de l'extrémité ouverte côté moteur de l'arbre 11, au-delà du palier 16, du piston 31 et de l'ensemble des aubes de l'arbre principal 11.
  • L'arbre principal 11 est ici réalisé en plusieurs tronçons, soit un premier tronçon axial 11a comprenant la zone de couplage 15, et un deuxième tronçon 11b qui est traversé de part en part par l'évidement central de l'arbre principal 11, et qui porte toutes les aubes. Les deux tronçons sont reliés par un système de bride 34a et 34b, la bride 34a étant monobloc avec un volant 29 faisant partie de la butée axiale du groupe motocompresseur.
  • La réalisation en plusieurs parties de l'arbre principal 11 permet de choisir les techniques de fabrication les plus adaptées pour chacun des éléments constitutifs. En outre, ce découplage permet d'intégrer le volant de butée 29 de manière monobloc avec le tronçon 11a, ce qui s'avérerait nettement plus compliqué si l'arbre de liaison 11 était réalisé d'une seule pièce.
  • On peut également envisager des variantes de réalisation où le volant de butée 29 serait réalisé sous forme d'un disque séparé, bridé entre les deux tronçons 11a et 11b.
  • On peut voir sur la figure 3, des orifices radiaux ménagés dans le tronçon 11b de l'arbre principal. Un premier orifice ou groupe d'orifices 35 est ménagé dans la zone basse pression située en amont (par rapport à l'écoulement des gaz dans le compresseur 2) de la rangée d'aubes 12, au voisinage axial de l'orifice d'entrée de gaz 5.
  • Un second orifice ou groupe d'orifices 36 est ménagé dans l'arbre principal 11, entre le piston 31 et le palier magnétique 16. Ce ou ces orifices 36 associés à l'espace radial 37, permettent de canaliser vers l'intérieur de l'arbre principal 11, d'une part les gaz ayant fuit par le labyrinthe 34, et d'autre part, un flux de gaz ayant traversé le palier magnétique 16 à partir de l'extrémité de l'arbre principal 11 situé du côté du moteur 3. Les dimensions des orifices 35, 36 et la largeur radiale de l'espace 37 sont choisis de manière à permettre un écoulement spontané des gaz issus du moteur ou des gaz collecté par l'orifice 36.
  • Le ou les orifices 35 ménagés dans la zone basse pression permettent de ramener dans cette zone basse pression, à partir de l'extrémité ouverte de l'arbre principal 11, d'une part des gaz chauds issus du flux de gaz ayant servi à refroidir le moteur 3, et d'autre part, les gaz collectés par l'orifice 36 de retour des gaz du piston 31. Les gaz échauffés par le moteur 3 se mélangent alors aux gaz entrant dans le turbocompresseur par l'orifice 5, « diluant » ainsi les calories évacuées du moteur 3 dans le flux de gaz à comprimer.
  • L'arbre principal 11 devient de la sorte une partie intégrante de la circuiterie de refroidissement du groupe motocompresseur.
  • L'objet de l'invention ne se limite pas aux exemples décrits et peut se décliner en de nombreuses variantes. On peut par exemple envisager de placer la butée axiale entre les paliers 16 et 19, soit sur l'arbre moteur 20, soit sur l'arbre de liaison 21, soit encore entre les brides 22 reliant les deux arbres. On peut également envisager de placer la butée axiale à la fois à l'extérieur des paliers du moteur et à l'extérieur des paliers du compresseur, c'est à dire à gauche du palier 18 ou à droite du palier 17 de la figure 1. On peut envisager d'utiliser plusieurs butées axiales. Le palier 16 dont on capte le flux de gaz en le canalisant à l'aide de l'orifice 36 peut être un palier magnétique ou un palier à gaz.
  • On peut envisager de placer la zone de couplage 15 à l'extrémité de l'arbre principal 11 et/ou de la positionner au-delà du palier extrémal 17 de soutien de l'arbre principal 11. On peut également concevoir un arbre principal 11 dont la zone de couplage serait plus proche du moteur qu'une partie des aubes. On peut envisager d'insérer l'arbre de liaison 21 non pas dans un arbre creux 11 du compresseur mais dans un arbre creux 20 du rotor du moteur 3.
  • Bien que l'invention soit appliquée de manière préférentielle à de compresseurs centrifuges, elle pourrait également être appliquée à des compresseurs axiaux.
  • Le groupe motocompresseur selon l'invention permet de disposer d'un accouplement flexible entre moteur et compresseur dont la rigidité et la compacité axiale sont améliorées. Le groupe motocompresseur selon l'invention permet également de simplifier l'architecture du groupe motocompresseur notamment au niveau des canalisations et circuits de refroidissement. L'étanchéité globale du compresseur est améliorée ainsi que sa facilité de maintenance.
  • Liste des références
  • 1
    Groupe motocompresseur
    2
    Compresseur
    3
    Moteur
    4
    Carter
    5
    Orifice d'admission de gaz
    6
    Orifice de sortie de gaz
    7
    Conduite de refroidissement
    8
    Corps cylindrique
    9
    Couvercle d'extrémité
    10
    Couvercle d'extrémité
    11
    Arbre principal
    12, 13, 14
    Rangées d'aubes
    15
    Zone de couplage
    16, 17
    Paliers du compresseur
    18, 19
    Paliers du rotor du moteur
    20
    Arbre moteur
    21
    Arbre de liaison
    22
    Bride
    23
    Portion cannelée
    24
    Portion filetée
    25
    Orifice
    26
    Ecrou
    27
    Corps de l'arbre de liaison
    28
    Butée axiale
    29
    Volant de butée axiale
    30
    Butée axiale
    31
    Piston d'équilibrage axial
    32
    Partie rotative de piston
    33
    Partie fixe de piston
    34a
    Bride
    34b
    Bride
    35
    Orifice de retour des gaz de refroidissement du moteur
    36
    Orifice de retour des fuites du piston
    37
    espace radial entre l'arbre principal 11 et l'arbre de liaison 21.
    38
    Rotor du compresseur
    39
    Rotor du moteur
    40
    Paliers de butée axiale
    x-x'
    Axe de rotation commun du moteur et du compresseur

Claims (14)

  1. Groupe motocompresseur (1) comprenant un moteur (3) et un compresseur (2) montés dans un carter (4) commun étanche au gaz à comprimer, le moteur (3) comprenant un rotor (39) lié en rotation avec un rotor (38) du compresseur (2), caractérisé en ce que le rotor (38) du compresseur comporte un arbre principal (11) et un arbre de liaison (21) coaxial avec l'arbre principal, l'arbre de liaison étant disposé au moins en partie à l'intérieur de l'arbre principal (11) de manière à être radialement espacé de l'arbre principal (11) et comportant une zone de couplage (15) avec l'arbre principal (11).
  2. Groupe motocompresseur suivant la revendication 1, comprenant un moteur et deux compresseurs, placés axialement de part et d'autre du moteur, l'ensemble étant monté dans un carter commun étanche au gaz à comprimer, le moteur comprenant un rotor lié en rotation avec chacun des rotors des compresseurs, chaque rotor de compresseur comportant un arbre principal et un arbre de liaison coaxial avec l'arbre principal, l'arbre de liaison étant disposé au moins en partie à l'intérieur de l'arbre principal de manière à être radialement espacé de l'arbre principal et comportant une zone de couplage avec l'arbre principal.
  3. Groupe motocompresseur suivant les revendications 1 ou 2, comprenant au moins deux palier (16, 17) supportant l'arbre principal (11), l'arbre de liaison s'étendant au delà d'un des paliers (16).
  4. Groupe motocompresseur suivant l'une des revendications précédentes, comportant deux paliers (18, 19) supportant le rotor (39) du moteur (3), au moins deux paliers (16, 17) supportant l'arbre principal (11) du compresseur (2), et comportant une seule butée axiale (28, 30), disposée soit sur l'arbre (20) du rotor (39) du moteur, soit sur l'arbre principal (11).
  5. Groupe motocompresseur suivant l'une quelconque des revendications précédentes, comportant des moyens de fixation démontables (23, 24, 25, 26) aptes à solidariser à la fois axialement et en rotation, l'arbre de liaison (21) et l'arbre principal (11) du compresseur (2) au niveau de la zone de couplage (15).
  6. Groupe motocompresseur suivant la revendication 5, dans lequel les moyens de fixation démontables (23, 24, 25, 26) sont configurés pour pouvoir être désolidarisés à partir d'une extrémité (10) axiale du carter (4).
  7. Groupe motocompresseur suivant l'une des revendications 5 ou 6, comprenant un volant (29) de butée axiale (28) assemblé autour d'une portion (15) de l'arbre principal traversée par les moyens de fixation démontables (24, 25).
  8. Groupe motocompresseur suivant la revendication 4, comprenant une butée axiale comprenant un volant (29) monobloc avec une portion (11a) de l'arbre principal (11).
  9. Groupe motocompresseur suivant l'une quelconque des revendications précédentes, comportant une entrée de gaz à basse pression (5) et une sortie de gaz à haute pression (6) plus proche axialement du moteur (3) que l'entrée à basse pression (5), dans lequel l'espace radial (37) séparant l'arbre principal (11) et l'arbre de liaison (21) est de largeur apte à permettre un écoulement spontané des gaz sortant du moteur (3) vers la zone d'entrée à basse pression (5).
  10. Groupe motocompresseur suivant la revendication 9, dans lequel l'arbre principal comporte un ou plusieurs orifices radiaux (35, 36) reliant l'extérieur de l'arbre principal (11) et l'espace radial (37).
  11. Groupe motocompresseur suivant la revendication 10, dans lequel l'arbre principal (11) comporte au moins un orifice radial (35) rejoignant l'espace radial (37) et débouchant à l'amont d'une rangée d'aubes (12, 13 ou 14) du compresseur (2).
  12. Groupe motocompresseur suivant les revendications 10 ou 11, dans lequel l'arbre principal (11) comporte au moins un second orifice radial (36) débouchant entre un piston d'équilibrage axial (31) et un palier radial (16), qui est le palier radial le plus proche du moteur (3) et soutenant l'arbre principal (11).
  13. Groupe motocompresseur suivant l'une quelconque des revendications précédentes, ne présentant pas d'ouvertures radiales dans le carter (4), prévues spécifiquement pour permettre d'assurer la liaison entre les différents arbres.
  14. Groupe motocompresseur suivant l'une quelconque des revendications précédentes, comportant un dispositif amortisseur entre l'arbre de liaison (21) et l'arbre principal (11).
EP11194395.7A 2010-12-22 2011-12-19 Groupe motocompresseur à accouplement torsible placé dans un arbre creux du compresseur Active EP2469100B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1061068A FR2969722B1 (fr) 2010-12-22 2010-12-22 Groupe motocompresseur a accouplement torsible place dans un arbre creux du compresseur

Publications (2)

Publication Number Publication Date
EP2469100A1 true EP2469100A1 (fr) 2012-06-27
EP2469100B1 EP2469100B1 (fr) 2015-08-12

Family

ID=44305073

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11194395.7A Active EP2469100B1 (fr) 2010-12-22 2011-12-19 Groupe motocompresseur à accouplement torsible placé dans un arbre creux du compresseur

Country Status (3)

Country Link
US (1) US9222481B2 (fr)
EP (1) EP2469100B1 (fr)
FR (1) FR2969722B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170012A1 (fr) * 2015-04-21 2016-10-27 Nuovo Pignone Tecnologie Srl Turbomachine intégrée comprenant un dispositif de blocage axial
WO2017207411A1 (fr) * 2016-06-03 2017-12-07 Vetco Gray Scandinavia As Compresseur modulaire à paliers à gaz et système pour élever la pression dans le gaz de production
CN110023628A (zh) * 2016-11-28 2019-07-16 诺沃皮尼奥内技术股份有限公司 涡轮压缩机以及操作涡轮压缩机的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014197343A1 (fr) * 2013-06-06 2014-12-11 Dresser-Rand Company Compresseur comprenant un arbre creux
EP2853749A1 (fr) * 2013-09-25 2015-04-01 Siemens Aktiengesellschaft Machine à énergie fluide, procédé pour fonctionner
FR3011291B1 (fr) * 2013-10-02 2015-10-16 Thermodyn Turbomachine a accouplement torsible integre a au moins un arbre menant et/ou mene
FR3027070B1 (fr) * 2014-10-09 2019-08-02 Cryostar Sas Turbomachine tournant a des vitesses elevees
ITUB20154122A1 (it) * 2015-10-01 2017-04-01 Thermodyn Sas Sistema ausiliario di supporto di un albero di una turbomacchina e turbomacchina dotata di tale sistema
CN109654035B (zh) * 2019-02-15 2024-02-13 河北工程大学 一种多盘均载承载器
EP3726081B1 (fr) 2019-04-16 2023-10-25 GE Energy Power Conversion Technology Ltd Système mécanique et motocompresseur associé

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294027A (en) * 1963-03-29 1966-12-27 Neu Sa Centrifugal pump impeller
US5616973A (en) 1994-06-29 1997-04-01 Yeomans Chicago Corporation Pump motor housing with improved cooling means
EP1273757A1 (fr) * 2000-05-10 2003-01-08 General Motors Corporation Rotor d'un turbocompresseur avec joints coniques
US20040179961A1 (en) * 2003-03-10 2004-09-16 Jean-Marc Pugnet Integrated compressor unit
EP1074746B1 (fr) 1999-07-16 2005-05-18 Man Turbo Ag Turbo-compresseur
EP1069313B1 (fr) 1999-07-16 2005-09-14 Man Turbo Ag Turbo-compresseur
EP1482179B1 (fr) 2003-07-05 2006-12-13 MAN TURBO AG Schweiz Dispositif de compression et méthode de son opération
US20070018516A1 (en) 2005-07-25 2007-01-25 Hamilton Sundstrand Internal thermal management for motor driven machinery
EP1830070A2 (fr) 2006-02-17 2007-09-05 Nuovo Pignone S.P.A. Compresseur à moteur
EP1392981B1 (fr) 2001-06-05 2008-07-09 Siemens Aktiengesellschaft Unite compresseur comprenant un compresseur centrifuge et un moteur electrique
EP1251624B1 (fr) 2001-04-20 2009-01-21 Converteam Ltd Refroidissement d'un enroulement d'entrefer de machine électrique
WO2009115389A1 (fr) 2008-03-19 2009-09-24 Siemens Aktiengesellschaft Unité de compresseur
US7633193B2 (en) 2007-01-17 2009-12-15 Honeywell International Inc. Thermal and secondary flow management of electrically driven compressors
WO2010018171A1 (fr) 2008-08-13 2010-02-18 Siemens Aktiengesellschaft Machine à énergie hydraulique ou pneumatique
GB2469217A (en) * 2007-10-30 2010-10-06 Richard Julius Gozdawa Vertical multi-stage gas compressor
EP2295811A1 (fr) 2009-07-10 2011-03-16 Nuovo Pignone S.p.A. Unité de compression à haute pression pour un fluide de process dans une installation industrielle et méthode de fonctionnement de cette installation
US7923871B2 (en) 2006-03-31 2011-04-12 Siemens Aktiengesellschaft Electrical machine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2434979A (en) * 1945-05-21 1948-01-27 Jacosen Mfg Company Motor drive for centrifugal pumps
US2766695A (en) * 1953-09-25 1956-10-16 Charmilles Sa Ateliers Motor-pump unit
US2958292A (en) * 1956-10-22 1960-11-01 Allis Chalmers Mfg Co Canned motor
US3195466A (en) * 1959-05-25 1965-07-20 Porter Co Inc H K Electric motor construction
US3031973A (en) * 1959-11-30 1962-05-01 Kramer Herman Centrifugal pump with canned motor
US3267868A (en) * 1963-11-13 1966-08-23 Barnes Mfg Co Electric motor with plural cooling paths through the shaft
GB1441257A (en) * 1972-09-23 1976-06-30 Weir Pumps Ltd Fluid pumps
US3918852A (en) * 1974-06-24 1975-11-11 James Coolidge Carter Pump
USRE34276E (en) * 1986-12-19 1993-06-08 Allied-Signal Inc. Turbocharger bearing and lubrication system
EP1353041A1 (fr) 2002-04-12 2003-10-15 ABB Turbo Systems AG Turbocompresseur avec moyens sur l'arbre pour le confinement axial dudit arbre en cas d'éclatement de la roue de compresseur
US7520720B2 (en) * 2004-07-28 2009-04-21 Sta-Rite Industries, Llc Pump
CN101379298B (zh) * 2006-02-03 2011-01-26 西门子公司 压缩机单元

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294027A (en) * 1963-03-29 1966-12-27 Neu Sa Centrifugal pump impeller
US5616973A (en) 1994-06-29 1997-04-01 Yeomans Chicago Corporation Pump motor housing with improved cooling means
EP1074746B1 (fr) 1999-07-16 2005-05-18 Man Turbo Ag Turbo-compresseur
EP1069313B1 (fr) 1999-07-16 2005-09-14 Man Turbo Ag Turbo-compresseur
EP1273757A1 (fr) * 2000-05-10 2003-01-08 General Motors Corporation Rotor d'un turbocompresseur avec joints coniques
EP1251624B1 (fr) 2001-04-20 2009-01-21 Converteam Ltd Refroidissement d'un enroulement d'entrefer de machine électrique
EP1392981B1 (fr) 2001-06-05 2008-07-09 Siemens Aktiengesellschaft Unite compresseur comprenant un compresseur centrifuge et un moteur electrique
US20040179961A1 (en) * 2003-03-10 2004-09-16 Jean-Marc Pugnet Integrated compressor unit
WO2004083644A1 (fr) 2003-03-10 2004-09-30 Thermodyn Groupe compresseur centrifuge
EP1482179B1 (fr) 2003-07-05 2006-12-13 MAN TURBO AG Schweiz Dispositif de compression et méthode de son opération
US20070018516A1 (en) 2005-07-25 2007-01-25 Hamilton Sundstrand Internal thermal management for motor driven machinery
EP1830070A2 (fr) 2006-02-17 2007-09-05 Nuovo Pignone S.P.A. Compresseur à moteur
US7923871B2 (en) 2006-03-31 2011-04-12 Siemens Aktiengesellschaft Electrical machine
US7633193B2 (en) 2007-01-17 2009-12-15 Honeywell International Inc. Thermal and secondary flow management of electrically driven compressors
GB2469217A (en) * 2007-10-30 2010-10-06 Richard Julius Gozdawa Vertical multi-stage gas compressor
WO2009115389A1 (fr) 2008-03-19 2009-09-24 Siemens Aktiengesellschaft Unité de compresseur
WO2010018171A1 (fr) 2008-08-13 2010-02-18 Siemens Aktiengesellschaft Machine à énergie hydraulique ou pneumatique
EP2295811A1 (fr) 2009-07-10 2011-03-16 Nuovo Pignone S.p.A. Unité de compression à haute pression pour un fluide de process dans une installation industrielle et méthode de fonctionnement de cette installation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016170012A1 (fr) * 2015-04-21 2016-10-27 Nuovo Pignone Tecnologie Srl Turbomachine intégrée comprenant un dispositif de blocage axial
US10697421B2 (en) 2015-04-21 2020-06-30 Nuovo Pignone Srl Integrated turbomachine with an axial locking device
WO2017207411A1 (fr) * 2016-06-03 2017-12-07 Vetco Gray Scandinavia As Compresseur modulaire à paliers à gaz et système pour élever la pression dans le gaz de production
US11098726B2 (en) 2016-06-03 2021-08-24 Vetco Gray Scandinavia As Modular compressor with gas bearings and system for raising the pressure in production gas
CN110023628A (zh) * 2016-11-28 2019-07-16 诺沃皮尼奥内技术股份有限公司 涡轮压缩机以及操作涡轮压缩机的方法

Also Published As

Publication number Publication date
CN102606493A (zh) 2012-07-25
US9222481B2 (en) 2015-12-29
US20120164005A1 (en) 2012-06-28
EP2469100B1 (fr) 2015-08-12
FR2969722B1 (fr) 2013-01-04
FR2969722A1 (fr) 2012-06-29

Similar Documents

Publication Publication Date Title
EP2469100B1 (fr) Groupe motocompresseur à accouplement torsible placé dans un arbre creux du compresseur
EP1247012B1 (fr) Turbocompresseur a ailettes coulissantes avec surfaces aerodynamiques et ecran thermique combines et dispositif d'actionnement axial decouple
EP1577495B1 (fr) Palier à roulement de turbomachine à encombrement réduit
CA2634986C (fr) Montage d'un arbre dans un palier avec un ecrou auto extracteur
EP2526301B1 (fr) Liaison diffuseur-redresseur pour un compresseur centrifuge
FR2944558A1 (fr) Moteur a turbine a gaz double corps pourvu d'un palier de turbine bp supplementaire.
CA2472934C (fr) Liaison amelioree entre disques aubages sur la ligne rotor d'un compresseur
WO2013004964A1 (fr) Dispositif d'arbre d'entraînement d'une turbomachine
EP2553222A2 (fr) Tube de degazage d'un turboreacteur, procede de montage d'un tel tube et turboreacteur avec un tel tube
EP3863928B1 (fr) Turbomachine comportant des moyens de suspension
WO2015110751A1 (fr) Disque de rotor a dispositif de prélèvement d'air centripète, compresseur comportant ledit disque et turbomachine avec un tel compresseur
FR2856440A1 (fr) Compresseur de turbomachine et roue dudit compresseur
CA2647139C (fr) Montage des tubes de pressurisation d'une enceinte interne dans une turbomachine
EP3011157B1 (fr) Boitier d'accessoires de turbomachine equipe d'une pompe centrifuge
FR2958322A1 (fr) Rotor de moteur a turbine a gaz comprenant un tambour de rotor et une couronne de rotor
EP0433168B1 (fr) Carter de turbomachine à retention axiale renforcée
EP1939459A1 (fr) Système de raccordement avec mâchoires de deux viroles, notamment d'un compresseur
CA2763525C (fr) Turbine basse pression
FR2980538A1 (fr) Groupe moto-compresseur a cartouche amovible
EP2631490B1 (fr) Roue à aubes radiale avec couronne de base radialement libre
EP1473462B1 (fr) Groupe compresseur à montage en cartouche
EP3921922B1 (fr) Dispositif de compression d'un fluide entraine par une machine electrique avec arbre de compression traversant le rotor
FR2970735A1 (fr) Ensemble de sondes pour moteur a turbine et procede d'assemblage
EP4034752B1 (fr) Ensemble pour une turbomachine
EP4441341A1 (fr) Bras de servitude pour un carter d'échappement d'une turbomachine

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17P Request for examination filed

Effective date: 20121023

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150324

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 742414

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011018633

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER AND CIE S.A., CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 742414

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150812

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151112

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151212

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011018633

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151219

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111219

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151219

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20170710

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150812

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221122

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 13

Ref country code: DE

Payment date: 20231121

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 13