WO2020030267A1 - Capteur de mesure conductométrique du co2 dissous dans un liquide - Google Patents

Capteur de mesure conductométrique du co2 dissous dans un liquide Download PDF

Info

Publication number
WO2020030267A1
WO2020030267A1 PCT/EP2018/071548 EP2018071548W WO2020030267A1 WO 2020030267 A1 WO2020030267 A1 WO 2020030267A1 EP 2018071548 W EP2018071548 W EP 2018071548W WO 2020030267 A1 WO2020030267 A1 WO 2020030267A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
sensor
liquid
electrodes
membrane
Prior art date
Application number
PCT/EP2018/071548
Other languages
German (de)
English (en)
Inventor
Günter Fafilek
Martin Joksch
Stefan WIBIHAL
Johannes Österreicher
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2018/071548 priority Critical patent/WO2020030267A1/fr
Publication of WO2020030267A1 publication Critical patent/WO2020030267A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/07Construction of measuring vessels; Electrodes therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/004CO or CO2

Definitions

  • the invention relates to a sensor for measuring the CO 2 (carbon dioxide) dissolved in a liquid, the
  • Severinghaus electrodes membrane-based sensors for C02 have long been known, such as so-called Severinghaus electrodes.
  • the Severinghaus electrode is a pH electrode, which is preceded by a measuring chamber with a buffer. About a gas permeable
  • Membrane penetrates C02 from the liquid to be measured
  • the pH in the buffer then depends on the concentration of CO 2 in the liquid to be measured.
  • a corresponding electrical potential difference is established between the measuring electrode and the reference electrode, which is potentiometric, that is to say avoiding a
  • Concentration of the C02 and the measurement signal an electrical voltage.
  • the potentiometric measurement requires a time-delayed response to changes in the C02 content of the liquids examined.
  • Optical methods are also known for measuring pH changes, for example colorimetrically or by means of fluorescence.
  • the starting point is a sensor for measuring the in a
  • Liquid dissolved C02 wherein the sensor comprises at least
  • each electrode has an end section which is connected to the
  • End sections of the two electrodes are filled with liquid, while a space that connects to the end sections on the side of the end sections facing away from the membrane cannot be filled with liquid.
  • the detection volume is in the height direction through the Height of the end sections of the electrodes specified. This height is much less than the height of the detection volume of a Severinghaus electrode. Because in the Severinghaus electrode, the measuring electrode is rod-shaped and in the height direction
  • the end of the measuring electrode is at a distance from the membrane that is a multiple of the diameter of the measuring electrode.
  • the lower detection volume of the sensor according to the invention results in a shorter one
  • the liquid that is between the end portions of the two electrodes is - immediately after
  • End sections of the two electrodes is at least partially filled with a porous solid as a storage layer.
  • the electrode according to the invention can be particularly simple
  • the end section has at least one branch and at least one branch of an end section of an electrode is at least partially arranged between two branches of the end section of the other electrode.
  • the area of the end sections of the electrodes which is effective for the measurement can thus be enlarged.
  • the mutual distance between the branches advantageously corresponds to a fraction of the length of that section of one
  • the ratio of the distance to the length of that section of the branch can advantageously be in the
  • the end section is in each case comb-shaped with a number of n branches and (n-1) branches of one end section of an electrode are each arranged between two branches of the end section of the other electrode.
  • branches it can be provided that at least one branch, in particular (n-1) branches, one
  • an inner branch projects at least two thirds of its length between the two neighboring branches of the other electrode.
  • One of the outer branches of an electrode always has only one adjacent branch of the other electrode and then also overlaps with this by more than two thirds of its length.
  • the end sections on the side facing away from the membrane rest on a carrier made of an electrically insulating material, a solid. This serves the one hand
  • the space between the end sections of the two electrodes is limited in this way, so that, viewed in the vertical direction, the liquid can only extend from the membrane to this support, so the volume of the liquid can be kept very low.
  • the sensor according to the invention can be used to measure the
  • the C02 concentration can be determined.
  • the CO 2 concentration can be measured with the sensor according to the invention, in particular if the measured values of the
  • Conductivity measurement can be output as measured values of the C02 concentration.
  • Electrodes can be detected more quickly than using potentiometry.
  • the conductivity measurement is advantageously carried out using alternating current. In principle, however, a conductivity measurement with direct current would also be possible.
  • Fig. 1 shows a longitudinal section through an inventive
  • Fig. 2 is a detailed view of Fig. 1 in the area of
  • FIG. 3 shows a top view of the electrodes from FIG. 1.
  • Fig. 1 shows a sensor according to the invention, the sensor is partially shown in longitudinal section on the left.
  • the sensor comprises two electrodes 3, 4, which are surrounded by an electrically insulating jacket 2, here cylindrical, which is not permeable to gases and liquids.
  • the height direction of the sensor runs normal to the surface of the membrane 1, that is to say from left to right in FIG. 1, the transverse direction of the sensor runs perpendicularly in FIG. 1.
  • Each electrode 3, 4 has an end section 5, 6 which bears on the membrane 1.
  • the end sections 5, 6 are like this
  • End sections 5, 6 and the membrane 1 can occur. On the other side of the membrane, the end sections 5, 6 abut an electrically insulating carrier 8.
  • the end sections 5, 6 are designed such that no liquid can pass between the end sections 5, 6 and the carrier 8 in the height direction of the sensor. Only the gap 9 between the
  • End sections 5, 6 of the two electrodes are filled with liquid, while a space which adjoins the end sections on the side of the end sections 5, 6 facing away from the membrane 1 cannot be filled with liquid.
  • Electrodes 3, 4 can optionally be at least partially filled with a porous solid as a storage layer in order to further reduce the volume available to the liquid and thus to reduce the response time for changes in the CO 2 content.
  • the detection volume in The height direction is therefore predetermined by the height of the end sections 5, 6 of the electrodes 3, 4.
  • the membrane 1 can be attached to the jacket 2 by means of an O-ring
  • the membrane 1 can be a Teflon membrane, for example.
  • the membrane 1 is flush with the end face of the jacket 2.
  • Electrodes 3, 4 can be seen better.
  • Each end section 5, 6 has branches, so that a branch of an end section
  • an electrode 5 of an electrode 3 is at least partially arranged between two branches of the end section 6 of the other electrode 4.
  • the membrane 1 is held at its edge between the carrier 8 and the jacket 2, in particular clamped.
  • the membrane 1 does not extend to the inner end face of the carrier 8, while according to FIG. 1 the membrane 1 extends to the inner end face of the carrier 8 and even beyond.
  • End section 5, 6 is comb-shaped and has four branches 7, which here run parallel to one another.
  • Three branches 7 of one end section 5, 6 each protrude between two branches 7 of the other end section 6, 5, in each case more than two thirds of the length of the branch 7.
  • the branches 7 of both end sections 5, 6 are here parallel to one another. The mutual distance of the branches 7, where they are in their longitudinal direction with the branches 7 of the other end section 5,
  • the mutual spacing of the branches 7 corresponds to a fraction of the length of that section of a branch 7 where adjacent branches 7 run parallel to one another (overlap one another).
  • the ratio of distance to length of that section of branch 7 is here, for example, about 1: 5.
  • a measuring device for conductivity measurement can be connected to the electrode connections 10. If the sensor with the membrane 1 is immersed in a liquid to be measured, a change in the CO 2 content in the liquid to be measured outside of the sensor causes one
  • Resistance its reciprocal value, the conductivity, can be determined and the current C02 content can be determined by calibrating the measuring device beforehand.
  • the space 9 between the end sections 5, 6 of the two electrodes 3, 4 can be partial, or as here
  • the storage layer here has the same height as the electrodes 3, 4 and fills the entire space 9. The volume of the liquid is therefore as small as possible. It would also be conceivable that the storage layer is less high than the electrodes 3, 4.
  • the storage layer continues to fill the space 9 completely in the transverse direction of the sensor, but not in the vertical direction, so that the volume for the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

L'invention concerne un capteur de mesure conductométrique du CO2 dissous dans un liquide. Le capteur comprend au moins • - deux électrodes (3, 4) ainsi que • - une enveloppe (2) non perméable aux gaz et aux liquides, • - une membrane (1) perméable au CO2, raccordée à l'enveloppe (2) et formant avec l'enveloppe un espace intérieur qui entoure les électrodes (3, 4). Afin de permettre un temps de réponse plus rapide du capteur, chaque électrode (3, 4) comporte une portion d'extrémité (5, 6) qui prend appui sur la membrane (1). L'espace intermédiaire (9) ménagé entre les portions d'extrémité (5, 6) des deux électrodes (3, 4) est rempli de liquide, tandis qu'un espace, qui se raccorde aux portions d'extrémité du côté des portions d'extrémité (5, 6) à l'opposé de la membrane, ne peut pas être rempli de liquide.
PCT/EP2018/071548 2018-08-08 2018-08-08 Capteur de mesure conductométrique du co2 dissous dans un liquide WO2020030267A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/071548 WO2020030267A1 (fr) 2018-08-08 2018-08-08 Capteur de mesure conductométrique du co2 dissous dans un liquide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/071548 WO2020030267A1 (fr) 2018-08-08 2018-08-08 Capteur de mesure conductométrique du co2 dissous dans un liquide

Publications (1)

Publication Number Publication Date
WO2020030267A1 true WO2020030267A1 (fr) 2020-02-13

Family

ID=63405160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/071548 WO2020030267A1 (fr) 2018-08-08 2018-08-08 Capteur de mesure conductométrique du co2 dissous dans un liquide

Country Status (1)

Country Link
WO (1) WO2020030267A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2926138A1 (de) * 1979-06-28 1981-01-08 Siemens Ag Einrichtung zur kontinuierlichen messung des gehalts an geloestem kohlendioxyd in fluessigkeiten
JPS5766348A (en) * 1980-10-09 1982-04-22 Nippon Bio:Kk Measuring method and device for carbonic acid gas partial pressure
GB2096324A (en) * 1981-04-08 1982-10-13 Nat Res Dev Conductimetric gas sensor
US20090004061A1 (en) * 2007-06-28 2009-01-01 Shimadzu Corporation Apparatus for measurement of total organic carbon content

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2926138A1 (de) * 1979-06-28 1981-01-08 Siemens Ag Einrichtung zur kontinuierlichen messung des gehalts an geloestem kohlendioxyd in fluessigkeiten
JPS5766348A (en) * 1980-10-09 1982-04-22 Nippon Bio:Kk Measuring method and device for carbonic acid gas partial pressure
GB2096324A (en) * 1981-04-08 1982-10-13 Nat Res Dev Conductimetric gas sensor
US20090004061A1 (en) * 2007-06-28 2009-01-01 Shimadzu Corporation Apparatus for measurement of total organic carbon content

Similar Documents

Publication Publication Date Title
WO2010072510A1 (fr) Électrode sélective d'ions
DE3010632A1 (de) Polarographischer messfuehler fuer die bestimmung des sauerstoffgehalts in gasen
EP3299807B1 (fr) Dispositif de détection de composés organiques
DE2201412A1 (de) Messgeraet zur elektrochemischen Gasanalyse
EP0740149B1 (fr) Capteur électrochimique
DE102005026306B4 (de) Gassensor
DE102019120446A1 (de) Verfahren zur Korrektur von zwei Messwerten von jeweils verschiedener Analysenmessgeräte sowie Messstelle zum Ausführen des Verfahrens
EP2647988A2 (fr) Procédé et dispositif de mesure de la teneur en oxygène ou de la pression partielle d'oxygène dans un gaz de mesure
DE102014109995A1 (de) Referenzelektrodenanordnung für elektrochemischen Sensor und elektrochemischer Sensor
WO2020030267A1 (fr) Capteur de mesure conductométrique du co2 dissous dans un liquide
DE19828093C2 (de) Einrichtung zum Messen physikalischer Größen von ein- oder mehrkomponentigen Flüssigkeiten
DE4036633C2 (de) Befeuchteter, hochempfindlicher Sauerstoffdetektor
WO2007048679A1 (fr) Capteur pour mesurer la concentration d'un composant gazeux dans un melange gazeux
DE4445262C2 (de) Sauerstoffsensor mit hoher Permeabilitätsrate
EP0780685A1 (fr) Capteur ampérométrique à deux électrodes, en particulier pour le peroxyde d'hydrogène
DE2454339A1 (de) Vorrichtung zur relativen messung der konzentration einer probe in einem fluid
EP2372353B1 (fr) Dispositif de mesure comprenant un résonateur pour des mesures acoustiques et électrochimiques
DE2024008C3 (de) Durchfluß-Oetektorzelle für coulometrische Analyse
EP1957970B1 (fr) Dispositif de mesure du potentiel d'ecoulement de fibres et de particules dans des suspensions
DE102018208482A1 (de) Potentiometrische Messkette und Verfahren zur pH-Wert-Bestimmung
DE3814735A1 (de) Potentiometrischer sensor zur bestimmung des sauerstoff-partialdrucks
EP2154523B1 (fr) Chaîne de mesure du pH potentiométrique à une tige et procédé de surveillance continue du niveau de remplissage
DE1598225B2 (de) Verfahren zur kontinuierlichen elektrochemischen bestimmung der konzentration von fluor und fluorwasserstoffsaeure in einer atmosphaere
DE2603507C3 (de) Durchflußzelle zur kontinuierlichen Messung von Ionenaktivitäten
DE3931971C2 (de) Vorrichtung zur Aufbereitung von flüssigen Analysenproben

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18759860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18759860

Country of ref document: EP

Kind code of ref document: A1