WO2020030066A1 - 自移动设备、自动工作系统及其控制方法 - Google Patents
自移动设备、自动工作系统及其控制方法 Download PDFInfo
- Publication number
- WO2020030066A1 WO2020030066A1 PCT/CN2019/099865 CN2019099865W WO2020030066A1 WO 2020030066 A1 WO2020030066 A1 WO 2020030066A1 CN 2019099865 W CN2019099865 W CN 2019099865W WO 2020030066 A1 WO2020030066 A1 WO 2020030066A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- boundary
- mobile device
- magnetic
- detection module
- module
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000001514 detection method Methods 0.000 claims abstract description 184
- 238000003032 molecular docking Methods 0.000 claims description 58
- 230000007717 exclusion Effects 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 10
- 244000025254 Cannabis sativa Species 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000009333 weeding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0259—Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
- G05D1/0263—Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic strips
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0259—Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
- G05D1/0261—Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using magnetic plots
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D34/00—Mowers; Mowing apparatus of harvesters
- A01D34/006—Control or measuring arrangements
- A01D34/008—Control or measuring arrangements for automated or remotely controlled operation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3804—Creation or updating of map data
- G01C21/3833—Creation or updating of map data characterised by the source of data
- G01C21/3837—Data obtained from a single source
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3804—Creation or updating of map data
- G01C21/3833—Creation or updating of map data characterised by the source of data
- G01C21/3844—Data obtained from position sensors only, e.g. from inertial navigation
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0214—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0225—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
- G05D1/0274—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/0278—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D2101/00—Lawn-mowers
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0257—Control of position or course in two dimensions specially adapted to land vehicles using a radar
Definitions
- the invention relates to an automatic work system, in particular to a system for controlling a mobile device to perform a work task in a work area.
- the invention relates to a control method of an automatic work system, in particular to a control method of controlling a mobile device to perform a work task in a work area.
- the invention relates to a self-mobile device, in particular to a self-mobile device that automatically performs work tasks in a work area.
- automatic charging technology has also been more and more widely used.
- an automatic walking device such as an intelligent lawn mower as an example
- the automatic walking device usually works in a certain work area, such as weeding or cleaning.
- the automatic walking device has a low battery, it will move to the charging station. And dock with the charging station to complete the charging.
- a boundary line is usually set in the working area of an automatic walking device, and the boundary line is connected to a charging station, so that the automatic walking device can accurately dock with the charging pole piece of the charging station and complete charging, but the boundary line
- the method of guiding the automatic walking device for charging and docking needs to keep the boundary line in an energized state and generate large power consumption, which does not meet the concept of energy conservation and environmental protection.
- self-moving equipment usually works in a restricted work area.
- the work area of a sweeping robot is usually restricted by a wall or the like, and self-moving equipment such as a smart lawn mower usually lays a circle of boundaries around the work area.
- the intelligent lawn mower detects the boundary of the work area by detecting the signal of the boundary line, so as to control itself to walk and work in the work area, but the installation of the embedded boundary line around the work area is not only troublesome, but also consumes It is time consuming and requires hours or even days of work depending on the size and complexity of the land. It can also cause damage to the surface of the working area such as lawns, soil, etc., and the damage to a certain boundary line is not easy to inspect and repair. More complicated and tedious.
- the invention proposes an automatic working system, which includes:
- a self-moving device moves and performs a work task within a work area defined by a boundary; a magnetic device is used to set the position in or near the boundary of the work area; the self-moving device includes a boundary recognition module, a magnetic signal detection module, and Control module
- the boundary recognition module is configured to identify a boundary of a work area
- the magnetic signal detection module is configured to detect a magnetic signal generated by a magnetic device to further identify a boundary of a work area and / or guide a mobile device;
- the control module controls the movement mode of the mobile device based on the recognition result of the boundary recognition module and / or the detection result of the magnetic signal detection module.
- the magnetic device includes a strip-shaped magnetic device.
- the boundary recognition module includes a position detection module, and the position detection module identifies a boundary of the work area based on a comparison between the detected current position of the mobile device and a preset map.
- the position detection module includes a satellite signal acquisition unit, and the satellite signal acquisition unit detects a current position of the mobile device based on the acquired satellite signal.
- the magnetic device is configured to be located near a boundary where a signal of a position detection module is unreliable, the magnetic signal detection module detects a magnetic signal to identify a boundary of a work area, and the control module is based on magnetic The detection result of the signal detection module controls the mobile device to move away from the boundary or move along the boundary.
- a setting position of the magnetic device is generated based on the preset map.
- the preset map is generated by the position detection module or obtained from the outside by the self-mobile device.
- the boundary recognition module includes a surface feature recognition module, and the surface feature recognition module recognizes a boundary of a work area based on a difference between a surface feature of a work area and a surface feature of a non-work area.
- the surface feature recognition module includes one or more of an image acquisition module, a capacitance detection module, a millimeter wave radar detection module, a multispectral detection module, and an infrared laser image detection module.
- the magnetic device is configured to be located near a boundary where the surface features of the working area and / or the surface features of the non-working area are unreliable, and the magnetic signal detection module detects the magnetic signals to identify the working area.
- the control module controls the mobile device to move away from or along the boundary based on the detection result of the magnetic signal detection module.
- the automatic working system further includes a docking station for docking from a mobile device, and the magnetic device is configured to be arranged at the docking station and is arranged in a direction in which the self-mobile device is docked with the docking station.
- the control module controls the mobile device to move along the magnetic device based on the magnetic signal detected by the magnetic signal detection module to guide the mobile device to move to the docking station.
- the magnetic device is disposed in an extended position of the docking station, and the control module controls the mobile device to move along the magnetic device to guide the mobile device to return to the docking station.
- the magnetic device is disposed on the docking station, and the control module controls the mobile device to move along the magnetic device to guide the mobile device to dock with the docking station.
- the docking station further includes a base, and the magnetic device is disposed on a central axis of the base.
- the working area includes a first working area and a second working area separated by at least one space
- the magnetic device is configured to be disposed in the space, indicating that the magnetic device can pass through the space from the first
- a working area enters the direction of the second working area
- the control module controls the mobile device to move along the magnetic device based on the magnetic signal detected by the magnetic signal detection module to guide the mobile device through the space from the The first work area enters the second work area.
- the self-moving device moves along the boundary of the first working area to detect the magnetic device.
- the magnetic device is configured to be disposed around a excluded area in the work area, and the control module controls a movement mode of the mobile device to be away from the excluded based on a magnetic signal detected by the magnetic detection device.
- Area or moving around the exclusion area the exclusion area includes an area within a work area that is prohibited from performing work tasks from a mobile device.
- the magnetic signal detection module includes a geomagnetic detection module.
- the magnetic signal detection module includes a first geomagnetic detection module and a second geomagnetic detection module, and the first and second geomagnetic detection modules are respectively installed in the forward direction of the self-mobile device. On both sides.
- control module controls the movement mode of the self-mobile device based on the strength and / or direction of the magnetic signal detected by the geomagnetic detection module.
- control module determines the reliability of the boundary recognition module. When the reliability is within a preset range, the control module controls self-movement based on the recognition result of the boundary recognition module. The movement mode of the device, when the reliability exceeds the preset range, the control module controls the movement mode of the mobile device based on a detection result of the magnetic signal detection module.
- the automatic working system by setting a magnetic device in the working area or near the boundary of the working area, uses a magnetic signal detection module to detect the magnetic device from the mobile device, and assists in identifying the boundary of the working area based on the magnetic signal of the magnetic device. And for guiding the self-mobile device, the control module controls the movement mode of the self-mobile device based on the detection results of the boundary recognition module and the magnetic signal detection module.
- the boundary detection result of the automatic working system is accurate, the working efficiency is high, and the automatic working system is improved. Security.
- the magnetic device can automatically generate a magnetic field signal without being connected to a power source and is less affected by environmental factors, which can effectively suppress waste of energy and reduce maintenance costs.
- an embodiment of the present invention also proposes a working method of an automatic work system.
- the automatic work system includes a self-mobile device that moves and performs a work task within a work area defined by a boundary, and is configured to be set in the work area or A magnetic device located near the boundary of a work area.
- the self-moving device includes a boundary identification module, a magnetic signal detection module, and a control module. The method includes:
- the movement mode of the mobile device is controlled.
- the mobile device detects the magnetic signal generated by the magnetic device set in the work area in real time to accurately identify the boundary of the work area and accurately guide the movement of the mobile device, and finally combines the boundary recognition module and The detection result of the magnetic signal detection module controls the movement mode of the self-mobile device, which improves the working efficiency of the self-mobile device and reduces the danger of work.
- an embodiment of the present invention also provides a self-mobile device, the self-mobile device includes a boundary recognition module, a magnetic signal detection module, and a control module; the boundary recognition module is used to identify the boundary of a work area, and the control module Controlling the mobile device to move and perform work tasks within a work area with a boundary limit; the magnetic signal detection module detects a magnetic signal to further identify the boundary of the work area and / or guide the mobile device; the control module is based on the boundary recognition module's The recognition result and / or the detection result of the magnetic signal detection module controls the movement mode of the mobile device.
- the magnetic signal is generated by a magnetic device that is disposed at a position within the working area or near a boundary of the working area.
- the self-mobile device proposed by the present invention uses a magnetic signal detection module to detect a magnetic device installed in a work area, and uses the detected magnetic signal to assist in identifying the boundary of the work area, and to guide the self-mobile device.
- the control module is based on the boundary recognition module And the detection result of the magnetic signal detection module to control the movement mode of the self-mobile device, so that the boundary detection result of the self-mobile device is accurate, the work efficiency is improved, and the safety of the self-mobile device is improved.
- the self-mobile device uses a geomagnetic detection module to detect a magnetic device installed in a work area.
- the geomagnetic detection module has high detection sensitivity and accurate detection results.
- FIG. 1 is a schematic diagram of an automatic working system according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of a module composition of a self-mobile device according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram of an automatic working system according to the first embodiment of the present invention.
- FIG. 4 is a schematic diagram of a boundary position of a magnetic device in an automatic working system according to a first embodiment of the present invention.
- FIG. 5 is a schematic diagram of a boundary position of a magnetic device in an automatic working system according to a second embodiment of the present invention.
- FIG. 6 is a schematic diagram of a magnetic device in an extended position of a docking station in an automatic working system according to an embodiment of the present invention.
- FIG. 7 is a schematic diagram of setting a magnetic device on a docking station in an automatic working system according to another embodiment of the present invention.
- FIG. 8 is a schematic diagram of returning to the docking station from the mobile device in FIG. 7.
- FIG. 9 is a schematic diagram of a magnetic device disposed in a space connecting a first work area and a second work area in an automatic work system according to an embodiment of the present invention.
- FIG. 10 is a schematic diagram of a magnetic device disposed in an exclusion area in an automatic working system according to an embodiment of the present invention.
- an automatic work system 1000 includes a self-mobile device 100 that moves and performs a work task within a work area 200 defined by a boundary.
- the form does not include the form of the boundary line flowing through the electric signal to form a changing magnetic field, and in particular does not include the form of the boundary line flowing through the electric signal to form an electric circuit.
- the boundary in this embodiment may be in the form of a virtual boundary, which can be effectively identified by a mobile device.
- the virtual boundary defines its own working area.
- a magnetic device 300 is also provided in the working area or near the boundary of the working area.
- the magnetic device is a strip-shaped permanent magnet that can cause the surrounding environment without external energy. The magnetic field changes to generate a magnetic field signal.
- the strip-shaped permanent magnet includes a strip-shaped magnetic device, such as a magnetic strip or a strip-shaped magnetic device formed by arraying magnetic objects.
- the self-mobile device 100 includes a housing, a work task execution module provided on the housing, and a mobile module supporting the housing to drive the mobile device to move.
- the self-mobile device 100 further includes a boundary recognition module 10.
- the control module 30 is electrically connected to the boundary identification module 10, the magnetic signal detection module 20, the mobile module, and the work task execution module, and is used to control the operation of each module.
- the boundary recognition module 10 is used to identify the boundary 201 of the work area 200.
- the boundary 201 is used to limit the scope of the work area 200.
- the control module 30 controls the mobile device 100 to perform work tasks within the restricted work area 200.
- the magnetic signal detection module 20 is used to detect magnetic signals in the surrounding environment, and further identify the boundary 201 of the work area based on the magnetic signals of the magnetic device 300.
- the magnetic signal detection module 20 can also guide the self-mobile device 100 based on the detected magnetic signals.
- the boundary identification module 10 and the magnetic signal detection module 20 send the detection result to the control module 30.
- the control module 30 controls the operation of the mobile module to control the mobile device based on the recognition result of the boundary recognition module 10 and / or the detection result of the magnetic signal detection module 20.
- the magnetic signal detection module is a geomagnetic detection module, and the number is not limited.
- the geomagnetic detection module is used to detect the magnetic signal of the magnetic device, and the detection is more sensitive.
- setting the magnetic device near the boundary includes setting the magnetic device directly on the boundary, and also setting the magnetic device when the mobile device crosses the channel from the first working area to the second working area.
- the device is located near the boundary of the first working area in the aisle.
- the magnetic device can also be located near the boundary of the working area such as the doorway of the user's home.
- the self-mobile device provided in the embodiment of the present invention is used to intelligently perform job tasks, thereby freeing the user from time-consuming and labor-intensive tedious work.
- the self-mobile device may be an automatic or semi-automatic machine such as an intelligent lawn mower, an intelligent lawn mower, an intelligent pruner, or an intelligent snowplow.
- the self-mobile device uses an intelligent lawn mower as an example.
- the boundary recognition module includes a position detection module, and the boundary of the work area is identified by the position detection module.
- a smart lawnmower 100 is taken from a mobile device, and a lawn 200 is used as a working area.
- the position detection module 11 to detect the smart lawnmower.
- the current position of the machine 100 is compared with a preset map to identify the boundary 201 of the lawn.
- the control module 30 controls the smart lawnmower 100 to turn or retreat, so that The smart lawnmower 100 does not cross the boundary, and can always walk and work in the lawn 200.
- the position detection module 11 includes a satellite signal acquisition unit.
- the satellite signal acquisition unit is, for example, a GPS positioning module.
- the position detection module uses the GPS module to acquire satellite signals and calculates the current position of the smart lawnmower 100 based on the satellite signals.
- the preset map in the above embodiment may be a boundary map formed by the user operating the mobile device 100 with the position detection module 11 walking on the boundary 201 in advance, which may be a manner in which the user personally guides the mobile device 100 to walk on the boundary, or It can be the way that the user walks on the border remotely from the mobile device 100, or the user operates the position detection module 11 detached from the mobile device 100 to detect the border 201 to generate a border map.
- the user can also use the position detection in advance.
- the other positioning module of the function detects the boundary map generated by the boundary 201, and then transmits the boundary map to the mobile device 100, or the boundary map obtained from the cloud in advance by the mobile device 100.
- it can also be implemented by the mobile device.
- the current position is compared with the boundary map stored in the cloud, and the position relationship between the current position of the mobile device 100 and the boundary map is determined, so as to control its own movement in the work area 200 that is limited by the boundary.
- the form of acquiring the preset map is not limited.
- the above-mentioned position detection module may also obtain the current position of the mobile device by communicating with a plurality of positioning beacons set at the boundary position of the work area.
- a positioning beacon, a positioning element is provided on the mobile device, and the positioning element can communicate with the positioning beacon. While the positioning element follows the mobile device, the mobile device obtains the distance from the mobile device to the positioning beacon, and finally obtains the work area.
- the set of boundary positions, that is, the boundary map of the work area is obtained. While the mobile device is performing the task process, it will obtain its current position, determine the position relationship between the current position and the boundary map, and finally control the mobile device to be able to walk and work in the work area at all times.
- the positioning beacons and positioning elements are calculated using ultra-wideband tag positioning (UWB) technology, that is, the positioning elements are ultra-wideband positioning elements, or ultra-wideband positioning tags, and the positioning beacons are ultra-wideband label positioning modules.
- UWB ultra-wideband tag positioning
- the positioning beacons and positioning elements use ultrasonic positioning technology for position calculation.
- other positioning methods are also feasible, such as infrared positioning technology, WIFI positioning technology, Bluetooth positioning technology, Zigbee positioning technology and the like.
- the boundary recognition module includes a surface feature recognition module, and the surface feature recognition module recognizes a boundary of the work area based on a difference between a surface feature of the work area and a surface feature of the non-work area.
- the surface feature recognition module recognizes a boundary of the work area based on a difference between a surface feature of the work area and a surface feature of the non-work area.
- the surface features of the lawn and the road are different, and the surface feature recognition module of the mobile device can distinguish the difference between them, so that they can identify the boundary between the two.
- the surface feature recognition module may be one or more of an image acquisition module, a capacitance detection module, a millimeter wave radar detection module, a multispectral detection module, and an infrared laser image detection module.
- the image acquisition module recognizes the boundary by identifying the color and / or texture features of the grass.
- the capacitance detection module recognizes the boundary by identifying the moisture characteristics of the grassland.
- the millimeter-wave radar detection module identifies boundaries by identifying the echo characteristics of the grass surface.
- the multispectral detection module recognizes the boundary by identifying the chlorophyll content of the grassland, and the infrared laser image recognizes the boundary by obtaining the pixel dispersion in the grassland image.
- the surface feature recognition module in the embodiment of the present invention can effectively recognize the grassland and non-grassland area features to identify the boundary, the type is not limited.
- a magnetic device may be provided at the boundary position to assist in defining the boundary of the working area.
- the magnetic device is configured to be disposed at a boundary position where the signal is unreliable, wherein the boundary position where the signal is unreliable includes a boundary position where the satellite signal is unreliable, or a surface feature of the working area and / or a surface feature of the non-working area is unreliable. position.
- the magnetic device is set at the boundary position to solve the problem that the boundary recognition module only uses the boundary recognition module to recognize the boundary, and the signal recognized by the boundary recognition module is not reliable, which causes the misjudgment of the boundary recognition.
- the following embodiments are specifically introduced.
- the satellite signal received by the satellite signal acquisition unit is of poor quality or cannot receive satellite signals at all.
- the location where the satellite signal acquisition unit cannot receive reliable satellite signals can be called the shadow area.
- the position detection module 11 can easily cause misjudgment. For example, based on the determination result of the position detection module 11, the intelligent lawnmower 200 considers that the location is within the boundary 201. At this time, the intelligent lawnmower 100 continues to work and will drive out.
- a magnetic device 300 is set in the shadow area of the boundary 201.
- the shadow area is indicated by hatching in FIG. 4.
- the magnetic device causes a magnetic field change and generates a magnetic signal.
- the intelligent lawnmower 100 is on the lawn.
- the control module 300 When working within 200, in addition to detecting its own current position by the position detection module 11 and comparing the position relationship between the current position and the boundary 201, it will also detect the magnetic signal generated by the magnetic device 30 in real time through the magnetic signal detection module 20, and the control module 300 will combine the detection results of the position detection module 11 and the magnetic signal detection module 20 to determine the current position of the smart lawnmower 100. For example, when the smart lawnmower 200 walks into a shadow area, the control module 30 uses the satellite signal acquisition unit to receive The satellite signal is unreliable and cannot accurately reflect the relationship between the current position and the boundary position of the intelligent lawnmower 200. At this time, the control module controls the magnetic signal detection module 20 to detect the magnetic signal generated by the magnetic device 30.
- the control module 30 may The smart lawnmower 100 is controlled to perform actions such as turning or backing, to control the smart lawnmower 100 to move away from the border 201, or to control the smart lawnmower 100 to cut along the border 201 to perform a trimming mode of cutting along the border.
- the magnetic device 30 can be set not only near the boundary where the signal is unreliable, but also at other positions where the signal is unreliable. For example, two working areas are separated by a space, and satellite signals in the space are unreliable. At this time, a magnetic device is set in the space to guide the smart lawnmower from one area to another along the magnetic device. This embodiment will be described below.
- the intelligent lawn mower 100 cannot clearly distinguish the boundary 201 using a surface feature recognition module 12 such as a capacitive sensor during the work process, which may easily cause Misjudgment of boundary 201 detection, for example, the intelligent lawn mower 100 is easy to walk outside the work area, causing danger. Therefore, users can set magnetic devices at the boundary locations where the surface features of the work area and / or the surface features of the non-work area are not reliable. 300, that is, the user can set the magnetic device 300 at a boundary position with unclear features. The boundary position with unclear features is indicated by hatching in FIG. 5.
- the surface feature recognition module 12 outputs the boundary recognition result to the control module.
- the control module controls the magnetic signal detection module 20 to detect the magnetic device 300 to assist in detecting the boundary 201, even if the surface feature recognition module 12 detects When the result is inaccurate, it can also be detected by the magnetic signal detection module 20
- the boundary 201 defined by the magnetic device is used to improve the accuracy of detecting the boundary.
- the surface feature recognition module 12 and the magnetic signal detection module 20 can perform detection at the same time, and analyze the boundary of the work area by integrating the detection results of the two.
- the magnetic device may be disposed not only near the boundary but also at other locations, which will be described below.
- the setting position of the magnetic device 300 is generated based on a preset map, that is, the preset map displays the position where the magnetic device can be set.
- the boundary is detected by a position detection module such as GPS to generate
- the map is preset
- the unreliable locations of the satellite signals will be displayed on the preset map.
- a prompt for setting a magnetic device will be generated.
- the user can set a magnetic device at the prompt position according to his needs. Understandable, When the preset map is acquired from the outside by the mobile device, the preset map may also display a prompt for setting the setting position of the magnetic device.
- the automatic working system in the embodiment of the present invention further includes a docking station 400 for docking from the mobile device, so that the mobile device 100 can dock or charge on the docking station 400 if the docking station is near the docking station due to bushes, etc.
- the reason is that the satellite signal is unreliable, forming a shaded area (indicated by the hatched fill in Figure 6). Since the mobile device 100 cannot accurately detect its own position, resulting in a failure to return to the docking station 400 smoothly, it is set at the location of the docking station 400
- the magnetic device 300 detects the magnetic device 300 by using a magnetic signal detection device to guide the mobile device 100 to return to the docking station 400.
- the magnetic device is disposed in a direction indicating that the mobile device is docked with the docking station, that is, the magnetic device is horizontal.
- the extending direction in the direction is parallel to the walking direction of the self-mobile device. The closer to the stop, the stronger the magnetic field signal.
- the magnetic signal detection module will detect the magnetic signal of the magnetic device 300 and transmit the detected magnetic signal to the control module based on the strength of the magnetic field signal
- the control module determines the distance and / or direction from the mobile device to the docking station, controls the mobile device 100 to approach the docking station 400 along the magnetic device 300, and finally guides the mobile device 100 to return to the docking station 400.
- the vicinity of the stop may specifically refer to an environment within a range of less than 1.5 meters with the stop as the center.
- the magnetic device 300 is disposed at the extended position of the docking station 400.
- One end of the magnetic device 300 is connected to or very close to one end of the docking station 400.
- the magnetic signal detection module detects The magnetic signal of the surrounding environment.
- the control module controls the mobile device 100 to move along the magnetic device 300 based on the strength and / or direction of the magnetic signal to guide the mobile device 100.
- the docking station 400 and if necessary, use the docking technology such as the guide rails on the docking station 400 to guide the mobile device 100 to dock accurately at the docking position on the docking station.
- the magnetic device 300 may also be disposed on the docking station 400.
- the magnetic device 400 may be disposed on the central axis 402 of the base 401 of the docking station.
- the magnetic signal detection module detects the magnetic signal of the magnetic device, and continuously approaches the docking position of the docking station along the magnetic device 300 under the action of the magnetic device.
- the central axis 101 of the mobile device 100 and the magnetic device 300 are continuously approached and finally coincide with each other, and accurate docking between the mobile device 100 and the docking station 400 is achieved.
- the above-mentioned solution of setting a magnetic device at the docking station is also applicable to the second embodiment of the present invention that uses the surface feature recognition module to identify the boundary of the work area, and uses the magnetic device to assist in guiding the return from the mobile device to the docking station.
- the number of geomagnetic detection modules is two
- the magnetic signal detection module 20 includes a first geomagnetic detection module 2011 and a second geomagnetic detection module 2012, and the first geomagnetic detection module 2011 and the first
- the two geomagnetic detection modules 2012 are respectively installed on two sides in the forward direction of the mobile device 100.
- the two geomagnetic detection modules 2012 can be symmetrically disposed on both sides in the forward direction of the mobile device 100, and are respectively used to detect the first magnetic signal and the first magnetic signal generated by the magnetic device 300. Two magnetic signals.
- the first geomagnetic detection module 2011 and the second geomagnetic detection module 2012 detect the first magnetic signal and the second magnetic signal in real time and adjust the walking direction of the machine in real time.
- the two geomagnetic detection modules from the mobile device 100 are located on both sides of the magnetic device.
- the first geomagnetic detection sensor module 2011 is set The front side in the walking direction of the mobile device is located to the right, and the second geomagnetic detection module 2012 is located in the front side in the walking direction of the mobile device.
- the control module 300 may control the mobile device 100 to adjust the position to the left; when the intensity of the first magnetic field signal is less than the intensity of the second magnetic field signal, the control module 300 may control the mobile device 100 to adjust the position to the right; when the strength of the first magnetic field signal is equal to the strength of the second magnetic field signal, the control module 300 may control the mobile device 100 to go straight.
- the mobile device 100 reaches the docking position, for example, when the magnetic signal strength reaches a preset strength, the mobile device is controlled to stop. It can be understood that the self-moving device 100 will walk slowly and have a small rotation range to make corrective actions at any time.
- two symmetrical geomagnetic detection sensor modules are provided on the self-mobile device, which has high detection sensitivity, and it is more convenient and accurate to determine the distance and orientation of the self-mobile device relative to the docking station, thereby achieving accurate return of the self-mobile device and Automatic charging.
- the work area of the mobile device is usually discontinuous.
- the front yard and backyard of the user's home are separated and usually connected by a channel.
- the front yard is the first work area 202 and the back yard is the second work.
- the area 203 is taken as an example.
- the first work area 202 and the second work area 203 are separated by a space 500.
- a magnetic device 300 may be provided in the space 500, especially near the boundary of the first work area.
- the direction indicates the direction in which the space 500 can pass from the first work area 202 to the second work area 203.
- the control module 30 is based on the strength of the magnetic signal and The direction control moves from the mobile device 100 along the magnetic device 300 to pass through the space 500 from the first work area 202 to the second work area 203.
- the self-mobile device detects the magnetic device by a route moving along the boundary of the first working area, so that the self-mobile device can regularly and quickly detect the magnetic device, preventing the self-mobile device from walking and detecting blindly in the work area, affecting the detection. To the efficiency of magnetic devices.
- the magnetic device is preferably disposed at a position where the signal is unreliable.
- a position detection module such as a GPS module
- the self-mobile device cannot obtain its position based on the satellite signal, and it cannot traverse the space.
- a magnetic device is set in the space.
- Walking along the magnetic device can accurately guide the mobile device through the space. It can be understood that this embodiment is also applicable to the case of using the surface feature recognition module to identify the boundary.
- the space connecting the first work area and the second work area is generally a passageway, and the passageway is usually laid for the convenience of the user.
- Roads without weeds, such as slab roads, and the surface feature recognition module of the smart lawnmower recognizes that the channel is a non-working area. At this time, the smart lawnmower will be away from the channel and will not be able to cross the channel.
- a magnetic device with a guiding function is set in the channel. When the smart lawnmower needs to enter the first working area from the second working area, the magnetic device is detected by the magnetic signal detection module, and the magnetic device is moved along the magnetic device. Go to the second work area.
- the magnetic device may also be disposed in an exclusion area within the work area, and plays a role of prohibiting entry from the mobile device to the exclusion area.
- the lawn 200 of the user's house includes a flower bed 204.
- the lawn 200 is a work area that requires a smart lawn mower to perform tasks
- the flower bed 204 is an exclusion area that does not require a smart lawn mower to perform cutting tasks
- the exclusion area is defined as the area where the mobile device is prohibited from performing work tasks in the work area.
- the user can set a magnetic device in the exclusion area, that is, around the flower bed 204, to function as a separation wall.
- a magnetic detection device is also used to detect the magnetic device.
- the control module judges the distance and / or direction of the intelligent lawn mower and the flower bed 204 based on the strength and / or direction of the detected magnetic signal.
- the control module controls the smart lawnmower to move backward or turn away from the flowerbed 204 to prevent the smart lawnmower from cutting into the flowerbed 204 and causing damage to the flowerbed 204, or to control the smart lawnmower to walk and cut along the border of the flowerbed to Cut the weeds around the flower bed 204 clean.
- the control module of the mobile device in the foregoing embodiments of the present invention determines the reliability of the recognition result of the boundary recognition module.
- the boundary recognition module is a GPS module
- the control module analyzes the reliability of the GPS module receiving satellite signals. When the reliability is within a preset range, the control module judges that the satellite signal reliability is high at this time, the control module uses the GPS module to detect the boundary as the result of boundary recognition. Accordingly, the control module does not use magnetic signal detection at this time.
- the result of the module detection of the boundary and when the control module analyzes that the reliability of the satellite signal received by the GPS module exceeds the preset range, it indicates that the reliability of the satellite signal is poor, and the boundary error identified by the GPS module is large.
- the control module uses The boundary result detected by the magnetic signal detection module shall prevail to control the movement mode of the mobile device, and the detection result of the GPS module is ignored.
- This setting is to prevent the GPS module's detection result from being unreliable when the satellite signal is unreliable, and the self-mobile device will cause misjudgment based on the unreliable detection result, affecting work efficiency, and possibly causing self-mobile device or work Damage to the area.
- the control module Based on the detection result of the magnetic signal detection module, the movement mode of the mobile device is controlled. For example, when the GPS module detects a location as a non-boundary area, and the magnetic signal detection module detects the magnetic signal at the location, and judges that the location is a boundary, the control module takes the detection result of the magnetic signal detection module as the standard. Determine that the position is a boundary and control the movement of the mobile device.
- An embodiment of the present invention also provides a working method of an automatic work system.
- the automatic work system includes a self-mobile device that moves and executes a work task within a work area defined by a boundary, which is described in the above embodiments, and is used to set the A magnetic device located in an area or near the boundary of a work area.
- the self-moving device includes a boundary recognition module, a magnetic signal detection module, and a control module.
- the control method includes the following steps:
- Step S1 identify the boundary of the work area
- Step S2 detecting the magnetic device to further identify the boundary of the work area and / or guide the mobile device;
- Step S3 Control the movement mode of the mobile device based on the recognition result of the boundary recognition module and / or the detection result of the magnetic signal detection module.
- An embodiment of the present invention further provides a self-mobile device, which includes a boundary recognition module, a magnetic signal detection module, and a control module.
- the boundary recognition module is used to identify a boundary of a work area, and the control module controls the self-mobile device to limit the boundary at the boundary. Move and perform work tasks within the working area of the device; the magnetic signal detection module detects the magnetic signal to further identify the boundary of the working area and / or guide from the mobile device; the control module is based on the recognition result of the boundary recognition module and / or the detection of the magnetic signal detection module The result controls the movement mode from the mobile device.
- the magnetic signal is generated by a magnetic device used to be disposed at a position within the working area or near a boundary of the working area.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Electromagnetism (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
一种自移动设备(100)、自动工作系统(1000)及其控制方法,所述自动工作系统(1000)包括:自移动设备(100),在边界(201)限定的工作区域(200)内移动并执行工作任务;磁性装置(300),用于设置在工作区域(200)内或工作区域(200)的边界(201)附近位置;所述自移动设备(100)包括边界识别模块(10)、磁信号检测模块(20)及控制模块(30);所述边界识别模块(10)用于识别工作区域(200)的边界(201);所述磁信号检测模块(20)用于检测磁性装置(300)产生的磁信号以进一步识别工作区域(200)的边界(201)和/或引导自移动设备(100);所述控制模块(30)基于边界识别模块(10)的识别结果和/或磁信号检测模块(20)的检测结果控制自移动设备(100)的移动方式。该自动工作系统(1000)的边界限定方式简单,边界检测结果准确,工作效率高,同时提高了系统的安全性。
Description
本发明涉及一种自动工作系统,特别是一种控制自移动设备在工作区域内执行工作任务的系统。
本发明涉及一种自动工作系统的控制方法,特别是一种控制自移动设备在工作区域内执行工作任务的控制方法。
本发明涉及一种自移动设备,特别是一种自动在工作区域内执行工作任务的自移动设备。
随着充电技术的发展,自动充电技术也得到了越来越广泛的应用。以智能割草机一类的自动行走设备为例,自动行走设备通常在一定的工作区域内工作,例如除草或清洁,当自动行走设备出现低电量的情况时,会移动至充电站的位置,并与充电站对接以完成充电。
现有技术中,通常在自动行走设备的工作区域内设置边界线,并将边界线连接于充电站上,以使自动行走设备可以与充电站的充电极片准确对接并完成充电,但边界线引导自动行走设备进行充电对接的方法,需要使边界线一直处于通电状态,并产生较大的功耗,不符合节能环保的理念。
现有技术中的自移动设备通常在一个被限制的工作区域工作,例如扫地机器人的工作区域通常被墙壁等限制,而例如智能割草机等自移动设备通常在工作区域的周围铺设一圈边界线,智能割草机通过检测边界线信号来检测工作区域的边界,从而控制自身在工作区域内行走和工作,但是这种在工作区域的周围埋入式边界线的安装,不仅麻烦,而且耗时耗力,并且根据土地的大小和复杂性需要几个小时甚至几天的工作,还会造成对草坪、土壤等工作区域表面的损坏,并且某一处边界线的损坏不易检查,且维修起来更加复杂繁琐。
发明内容
基于此,有必要针对上述问题,提供一种不需要铺设边界线,工作区域限定方式简单、定位准确、工作效率高且安全的自移动设备、自动工作系统及其控制方法。
本发明提出了一种自动工作系统,所述自动工作系统包括:
自移动设备,在边界限定的工作区域内移动并执行工作任务;磁性装置,用于设置在工作区域内或工作区域的边界附近位置;所述自移动设备包括边界识别模块、磁信号检测模块 及控制模块;
所述边界识别模块用于识别工作区域的边界;
所述磁信号检测模块用于检测磁性装置产生的磁信号以进一步识别工作区域的边界和/或引导自移动设备;
所述控制模块基于边界识别模块的识别结果和/或磁信号检测模块的检测结果控制自移动设备的移动方式。
在一个具体的实施例中,所述磁性装置包括条状磁性装置。
在一个具体的实施例中,所述边界识别模块包括位置检测模块,所述位置检测模块基于检测的自移动设备的当前位置与一预设的地图的比较以识别工作区域的边界。
在一个具体的实施例中,所述位置检测模块包括卫星信号获取单元,所述卫星信号获取单元基于获取的卫星信号以检测自移动设备的当前位置。
在一个具体的实施例中,所述磁性装置用于设置在位置检测模块的信号不可靠的边界附近位置,所述磁信号检测模块检测磁信号以识别工作区域的边界,所述控制模块基于磁信号检测模块的检测结果控制自移动设备远离所述边界或者沿所述边界移动。
在一个具体的实施例中,所述磁性装置的设置位置基于所述预设的地图生成。
在一个具体的实施例中,所述预设的地图由所述位置检测模块生成或者由所述自移动设备从外部获取。
在一个具体的实施例中,所述边界识别模块包括表面特征识别模块,所述表面特征识别模块基于工作区域的表面特征与非工作区域的表面特征的不同而识别工作区域的边界。
在一个具体的实施例中,所述表面特征识别模块包括图像获取模块、电容检测模块、毫米波雷达检测模块、多光谱检测模块、红外激光图像检测模块的其中一种或多种。
在一个具体的实施例中,所述磁性装置用于设置在工作区域的表面特征和/或非工作区域表面特征不可靠的边界附近位置,所述磁信号检测模块检测磁信号以识别工作区域的边界,所述控制模块基于磁信号检测模块的检测结果控制自移动设备远离所述边界或者沿所述边界移动。
在一个具体的实施例中,所述自动工作系统还包括供自移动设备停靠的停靠站,所述磁性装置用于设置在停靠站处,沿所述自移动设备与停靠站对接的方向上设置,所述控制模块基于磁信号检测模块检测的磁信号控制自移动设备沿着磁性装置移动,以引导自移动设备移动到所述停靠站处。
在一个具体的实施例中,所述磁性装置设置在所述停靠站的延伸位置,所述控制模块控 制自移动设备沿着磁性装置移动以引导自移动设备回归到停靠站。
在一个具体的实施例中,所述磁性装置设置在所述停靠站上,所述控制模块控制自移动设备沿着磁性装置移动以引导自移动设备与所述停靠站对接。在一个具体的实施例中,所述停靠站还包括底座,所述磁性装置设置于所述底座的中轴线上。
在一个具体的实施例中,所述工作区域包括通过至少一个空间分离的第一工作区域和第二工作区域,所述磁性装置用于设置在所述空间内,指示能够穿越所述空间从第一工作区域进入到第二工作区域的方向上,所述控制模块基于磁信号检测模块检测的磁信号控制自移动设备沿着磁性装置移动,以引导所述自移动设备穿越所述空间从所述第一工作区域进入第二工作区域。在一个具体的实施例中,所述自移动设备沿着第一工作区域的边界移动以检测磁性装置。在一个具体的实施例中,所述磁性装置用于设置在工作区域内的排除区域的周围,所述控制模块基于磁性检测装置检测的磁信号控制自移动设备的移动方式以远离到所述排除区域或者绕所述排除区域移动,所述排除区域包括工作区域内禁止自移动设备执行工作任务的区域。在一个具体的实施例中,所述磁信号检测模块包括地磁检测模块。
在一个具体的实施例中,所述磁信号检测模块包括第一地磁检测模块和第二地磁检测模块,所述第一地磁检测模块和第二地磁检测模块分别安装于所述自移动设备前进方向的两侧。
在一个具体的实施例中,所述控制模块基于地磁检测模块检测的磁信号的强度和/或方向控制所述自移动设备的移动方式。
在一个具体的实施例中,所述控制模块判断所述边界识别模块的可靠度,当所述可靠度在一预设范围时,所述控制模块基于所述边界识别模块的识别结果控制自移动设备的移动方式,当所述可靠度超过所述预设范围时,所述控制模块基于所述磁信号检测模块的检测结果控制自移动设备的移动方式。
本发明提出的自动工作系统,通过在工作区域内或工作区域的边界附近位置设置磁性装置,自移动设备利用磁信号检测模块检测磁性装置,基于磁性装置的磁信号来辅助识别工作区域的边界,以及用来引导自移动设备,控制模块基于边界识别模块和磁信号检测模块的检测结果来控制自移动设备的移动方式,该自动工作系统的边界检测结果准确,工作效率高,且提高自动工作系统的安全性。同时,磁性装置无需连接电源即可自动产生磁场信号且受环境因素的影响较小,可以有效的抑制能源的浪费并降低维护成本。
相应地,本发明实施例还提出了一种自动工作系统的工作方法,所述自动工作系统包括在边界限定的工作区域内移动并执行工作任务的自移动设备,用于设置在工作区域内或工作区域的边界附近位置的磁性装置,所述自移动设备包括边界识别模块、磁信号检测模块及控 制模块;所述方法包括:
识别工作区域的边界;
检测磁性装置以进一步识别工作区域的边界和/或引导自移动设备;
基于边界识别模块的识别结果和/或磁信号检测模块的检测结果控制自移动设备的移动方式。
本发明提出的自动工作系统的控制方法,自移动设备通过实时检测工作区域设置的磁性装置产生的磁信号,来准确识别工作区域的边界及精确引导自移动设备的移动,最终结合边界识别模块和磁信号检测模块的检测结果来控制自移动设备的移动方式,提高了自移动设备的工作效率及降低了工作的危险性。
同时,本发明实施例还提出了一种自移动设备,所述自移动设备包括边界识别模块、磁信号检测模块及控制模块;所述边界识别模块用于识别工作区域的边界,所述控制模块控制自移动设备在边界限制的工作区域内移动并执行工作任务;所述磁信号检测模块检测磁信号以进一步识别工作区域的边界和/或引导自移动设备;所述控制模块基于边界识别模块的识别结果和/或磁信号检测模块的检测结果控制自移动设备的移动方式。
在一个具体的实施例中,所述磁信号由用于设置在工作区域内或工作区域的边界附近位置的磁性装置产生。
本发明提出的自移动设备,利用磁信号检测模块检测在工作区域设置的磁性装置,基于检测到的磁信号来辅助识别工作区域的边界,以及用来引导自移动设备,控制模块基于边界识别模块和磁信号检测模块的检测结果来控制自移动设备的移动方式,使得自移动设备的边界检测结果准确,工作效率提高,同时提高了自移动设备工作的安全性。另外,自移动设备利用地磁检测模块检测工作区域内设置的磁性装置,地磁检测模块检测灵敏度高,检测结果准确。
图1为本发明一实施例的自动工作系统的示意图。
图2为本发明一实施例的自移动设备的模块组成示意图。
图3为本发明第一实施例的自动工作系统示意图。
图4为本发明第一实施例的自动工作系统中磁性装置设置边界位置的示意图。
图5为本发明第二实施例的自动工作系统中磁性装置设置边界位置的示意图。
图6为本发明一实施例的自动工作系统中磁性装置设置在停靠站延伸位置的示意图。
图7为本发明另一实施例的自动工作系统中磁性装置设置停靠站上的示意图。
图8为图7中的自移动设备回归停靠站的示意图。
图9为本发明一实施例的自动工作系统中磁性装置设置在连接第一工作区域与第二工作区域的空间内的示意图。
图10为本发明一实施例的自动工作系统中磁性装置设置在排除区域的示意图。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
如图1所示,本发明在一实施例中提出了一种自动工作系统1000,该自动工作系统1000包括在边界限定的工作区域200内移动并执行工作任务的自移动设备100,该边界的形式不包括流经电信号而形成变化磁场的边界线形式,尤其不包括流经电信号而形成电回路的边界线形式,本实施例的边界可以是虚拟边界的形式,自移动设备能够有效识别该虚拟边界来限定自己的工作区域,在该工作区域内或者工作区域的边界附近位置还设置有磁性装置300,该磁性装置为一种条形的永磁体,无需外接能源即可引起周围环境的磁场变化,产生磁场信号,具体地,该条形的永磁体包括条状磁性装置,例如为磁条或者由磁性物体排列形成的条状磁性装置。如图2所示,该自移动设备100包括壳体,设置在壳体上的工作任务执行模块,支撑壳体以带动自移动设备移动的移动模块,该自移动设备100还包括边界识别模块10、磁信号检测模块20及控制模块30,该控制模块30与边界识别模块10,磁信号检测模块20,移动模块,工作任务执行模块电连接,用于控制各模块的运行。具体地,该边界识别模块10用于识别工作区域200的边界201,该边界201用于限制的工作区域200的范围,控制模块30控制自移动设备100在限制的工作区域200内执行工作任务,磁信号检测模块20用于检测附近环境中的磁信号,基于磁性装置300的磁信号来进一步识别工作区域的边界201,还可以基于检测到的磁信号来引导该自移动设备100,边界识别模块10和磁信号检测模块20将检测的结果发送给控制模块30,控制模块30基于边界识别模块10的识别结果和/或磁信号检测模块20的检测结果来控制移动模块的运行以控制自移动设备100的移动方式,包括控制自移动设备后退或转向以远离边界,或者控制自移动设备绕边界行走,例如执行沿边界切割模式,或者控制自移动设备的移动来引导自移动设备,根据需要还可以根据检测结果来控制 任务执行模块的运行。在一个具体的实施例中,磁信号检测模块为地磁检测模块,数量不限定,利用地磁检测模块检测磁性装置的磁信号,检测更加灵敏。其中,本发明实施例中将磁性装置设置在边界附近的位置包括可以直接将磁性装置设置在边界上,还可以在自移动设备从第一工作区域穿越通道进入到第二工作区域时,将磁性装置设置在通道内靠近第一工作区域边界的位置,当然还可以将磁性装置设置在用户家的门口等工作区域边界的附近位置。
其中,本发明实施例中提供的自移动设备用以智能化的执行作业任务,将用户从费时费力的繁琐工作中解放出来。该自移动设备可以是智能割草机、智能打草机、智能修枝机,智能扫雪机等自动、半自动的机器。以下实施例中,该自移动设备以智能割草机为例。
在本发明的第一实施例中,该边界识别模块包括位置检测模块,利用位置检测模块识别工作区域的边界。如图3所示,自移动设备以智能割草机100,工作区域以草坪200为例,智能割草机100在一草坪200内执行切割任务的同时,会利用位置检测模块11检测智能割草机100的当前位置,将当前位置与一预设的地图比较来识别草坪的边界201,当检测到当前位置为草坪的边界201时,控制模块30控制智能割草机100转向或后退等,使得智能割草机100不会越出该边界,始终能够在草坪200内行走并工作。其中,该位置检测模块11包括卫星信号获取单元,卫星信号获取单元例如为GPS定位模块,该位置检测模块利用GPS模块获取卫星信号,基于卫星信号来计算智能割草机100的当前位置。
上述实施例中的预设的地图可以是用户预先操作具有位置检测模块11的自移动设备100在边界201行走形成的边界地图,其可以是用户亲自引导自移动设备100在边界行走的方式,也可以是用户遥控自移动设备100在边界行走的方式,或者用户预先操作从自移动设备100上拆卸的位置检测模块11检测边界201以生成的边界地图,当然,也可以是用户预先使用具有位置检测功能的其他定位模块检测边界201生成的边界地图,再将该边界地图传输到自移动设备100,又或者是自移动设备100预先从云端获取的边界地图,当然可实现地,自移动设备也可以不获取地图,而是将当前位置与云端存储的边界地图比较,判断自移动设备100的当前位置与边界地图的位置关系,从而控制其自身在边界限制的工作区域200的移动。总之,该获取该预设的地图的形式并不限定。
在另一个实施例中,上述位置检测模块也可以通过与在工作区域的边界位置设置的多个定位信标通信而获取自移动设备的当前位置,例如,在工作区域的边界位置设有多个定位信标,自移动设备上设置有定位元件,该定位元件能够与定位信标通信,在定位元件跟随自移动设备移动的同时,自移动设备获取自身到该定位信标的距离,最终获取工作区域边界位置的集合,即获取工作区域的边界地图。自移动设备在执行任务过程的同时,会获取自身的当 前位置,判断当前位置与边界地图的位置关系,最终控制自移动设备能够一直在工作区域内行走并工作。本实施例中,定位信标和定位元件采用超宽带标签定位(UWB)技术进行位置计算,即定位元件为超宽带定位元件,或称超宽带定位标签,定位信标为超宽带标签定位模块。在另一个实施例中,定位信标和定位元件采用超声波定位技术进行位置计算,当然,其他的定位方式也是可行的,如红外定位技术、WIFI定位技术、蓝牙定位技术、Zigbee定位技术等方式。
在本发明的第二实施例中,边界识别模块包括表面特征识别模块,表面特征识别模块基于工作区域表面的特征与非工作区域表面特征的不同而识别工作区域的边界。以工作区域内为草坪,工作区域外为马路为例,草坪与马路的表面特征是不同的,而自移动设备的表面特征识别模块能够分辨出两者的不同,从而能够识别出两者的分界。其中,表面特征识别模块可以是图像获取模块、电容检测模块、毫米波雷达检测模块、多光谱检测模块、红外激光图像检测模块的其中一种或多种。本领域技术人员可理解地,图像获取模块通过识别草地的颜色和/或纹理特征等而识别边界。电容检测模块通过识别草地的水分特征而识别边界。毫米波雷达检测模块通过识别草地表面的回波特征而识别边界。多光谱检测模块通过识别草地的叶绿素含量而识别边界,红外激光图像通过来获取草地图像中像素的离散度来识别边界。本发明实施例中的表面特征识别模块只要能够有效识别草地与非草地的区域特征以识别边界即可,种类并不限定。
利用上述各实施例的边界识别模块识别工作区域的边界时,可在边界位置设置磁性装置,以辅助限定工作区域的边界。具体地,磁性装置用于设置在信号不可靠的边界位置,其中,信号不可靠的边界位置包括卫星信号不可靠的边界位置,或工作区域的表面特征和/或非工作区域表面特征不可靠的位置。将磁性装置设置在边界位置,以解决只利用边界识别模块识别边界,由于边界识别模块识别的信号不可靠,造成对边界识别的误判的问题。下面实施例具体介绍。
如图4所示,例如用户家的草坪200内的某一处或几处设置有树木、灌丛,卫星信号获取单元在该处接收到的卫星信号质量较差或者根本无法收到卫星信号,卫星信号获取单元无法接收到可靠的卫星信号的位置我们可以称之为阴影区域,当智能割草机100行走到阴影区域时,无法准确检测自身的当前位置,当该阴影区域位于边界201时,位置检测模块11很容易产生误判,例如,智能割草机200基于位置检测模块11的判定结果,认为该位置位于边界201内,而此时智能割草机100继续行走工作,则会驶出边界201外,智能割草机多次行走到工作区域外,会影响其切割效率,还会存在安全隐患。此时,为了准确检测边界201,在 边界201的阴影区域设置磁性装置300,阴影区域在图4中以斜线填充表示,磁性装置会引起磁场变化,产生磁信号,智能割草机100在草坪200内工作时,除了通过位置检测模块11检测其自身的当前位置,比较当前位置与边界201的位置关系外,还会实时地通过磁信号检测模块20检测磁性装置30产生的磁信号,控制模块300会结合位置检测模块11和磁信号检测模块20的检测结果来判断智能割草机100的当前位置,例如,智能割草机200行走到阴影区域时,控制模块30利用卫星信号获取单元接收的卫星信号不可靠,无法准确反映智能割草机200的当前位置与边界位置的关系,此时,控制模块控制磁信号检测模块20检测到磁性装置30产生的磁信号,当智能割草机200行走到磁性装置30的有效检测范围内,即可基于检测到的磁信号的强度和/或方向计算出智能割草机100的当前位置与边界201位置的距离和方向,以判断智能割草机100的当前位置是否为边界位置,若磁信号检测模块20检测到边界201,则控制模块30即可控制智能割草机100执行转向或后退等动作,以控制智能割草机100远离边界201或者控制智能割草机100沿着边界201切割,以执行沿边界切割的修边模式。可理解的是,该磁性装置30不仅可以设置在信号不可靠的边界附近位置,还可以设置在信号不可靠的其他位置,例如两个工作区域被一空间分离,该空间内卫星信号不可靠,此时在空间内设置磁性装置,以便于引导智能割草机沿着磁性装置从一个区域进入到另一个区域,该实施例会在下文中介绍。
如图5所示的实施例中,工作区域200的边界位置由于斑驳草地,智能割草机100在工作的过程中,利用电容传感器等表面特征识别模块12无法清楚分辨边界201,很容易造成对边界201检测的误判,例如智能割草机100很容易行走到工作区域外部,发生危险,因此,用户可以在工作区域的表面特征和/或非工作区域表面特征不可靠的边界位置设置磁性装置300,也就是说,用户可以在特征不清晰的边界位置设置磁性装置300,该特征不清晰的边界位置在图5中以斜线填充表示,表面特征识别模块12将边界识别结果输出至控制模块,控制模块经过判断后,例如,控制模块判断到表面特征识别模块的识别结果不准确时,控制模块控制磁信号检测模块20检测磁性装置300以辅助检测边界201,即使在表面特征识别模块12检测结果不准确的情况下,还能够利用磁信号检测模块20检测磁性装置限定的边界201,以提高检测边界的准确性。当然,根据需要,表面特征识别模块12和磁信号检测模块20可以同时进行检测,综合两者的检测结果来分析工作区域的边界。
同样,在利用表面特征识别模块识别边界的第二实施例中,磁性装置不仅可以设置在边界附近位置,还可以设置在其他位置,下文会进行介绍。
上述各实施例中,磁性装置300的设置位置基于预设的地图生成,也就是说,该预设的 地图上显示可以设置磁性装置的位置,例如,在由GPS等位置检测模块检测边界,生成预设地图时,该预设地图上会显示卫星信号不可靠的位置,在卫星信号不可靠的位置会生成可以设置磁性装置的提示,用户根据需要在提示的位置设置磁性装置,可理解的,当预设的地图是由自移动设备从外部获取时,该预设的地图上也可以显示设置磁性装置设置位置的提示。
如图6所示,本发明实施例中的自动工作系统还包括供自移动设备停靠的停靠站400,以供自移动设备100停靠在停靠站400上待机或充电,若停靠站附近由于灌木等原因,造成卫星信号不可靠,形成阴影区域(在图6中以斜线填充表示),自移动设备100无法准确检测自己的位置,导致无法顺利回归停靠站400,则在停靠站400位置处设置磁性装置300,利用磁信号检测装置检测磁性装置300,以引导自移动设备100回归到停靠站400,具体地,磁性装置设置在指示自移动设备与停靠站对接的方向上,即磁性装置在水平方向上的延伸方向与自移动设备的行走方向平行,距离停靠站越近,磁场信号越强烈。自移动设备利用GPS、视觉等技术回归到停靠站附近时,磁信号检测模块会检测到磁性装置300的磁信号时,并将检测到的磁信号传输给控制模块,控制模块基于磁场信号的强度和/或方向判断出自移动设备距离停靠站的距离和/方向,控制自移动设备100沿着磁性装置300向停靠站400靠近,最终引导自移动设备100回归到停靠站400处。其中,停靠站附近具体可以指以停靠站为圆心小于1.5米范围内的环境。
再如图6所示,磁性装置300设置在停靠站400的延伸位置,磁性装置300的一端与停靠站400的一端连接或者十分接近,在自移动设备100的回归过程中,磁信号检测模块检测周围环境的磁信号,当磁信号检测模块检测到磁性装置产生的磁信号时,控制模块基于磁信号的强度和/或方向控制自移动设备100沿着磁性装置300移动,以引导自移动设备100回归到停靠站400上,如有必要地,再利用停靠站400上的导轨等对接技术引导自移动设备100准确停靠在停靠站上的对接位置。
如图7-8所示,至少部分磁性装置300还可以设置在停靠站400上,具体地,磁性装置400可以设置在停靠站的底座401的中轴线402上。当自移动设备100回归到停靠站400附近时,磁信号检测模块检测到磁性装置的磁信号,并且在磁性装置的作用下沿着磁性装置300不断向停靠站的对接位置靠近,理想地,自移动设备100的中轴线101会与磁性装置300不断靠近并最终重合,并实现自移动设备100与停靠站400的准确对接。
上述在停靠站处设置磁性装置的方案也同样适用于本发明利用表面特征识别模块识别工作区域的边界的第二实施例,利用磁性装置辅助引导自移动设备回归到停靠站。
请再参阅图8所示,本实施例中,地磁检测模块的数量为2个,磁信号检测模块20包括 第一地磁检测模块2011和第二地磁检测模块2012,第一地磁检测模块2011和第二地磁检测模块2012分别安装于自移动设备100前进方向的两侧,具体地,可以对称设置在自移动设备前进方向的两侧,并分别用于检测磁性装置300产生的第一磁信号和第二磁信号,当自移动设备200靠近停靠站400的过程中,第一地磁检测模块2011和第二地磁检测模块2012实时检测第一磁信号和第二磁信号并实时调整机器的行走方向,当调整到检测到的第一磁信号和第二磁信号的方向相反时,表示自移动设备100的两个地磁检测模块位于磁性装置的两侧,具体的,假设第一地磁检测传感模块2011设置于自移动设备行走方向上的前侧靠右位置,第二地磁检测模块2012设置于自移动设备行走方向上的前侧靠左位置,则当第一磁场信号的强度大于第二磁场信号的强度时,控制模块300可以控制自移动设备100向左调整位置;当第一磁场信号的强度小于第二磁场信号的强度时,控制模块300可以控制自移动设备100向右调整位置;当第一磁场信号的强度与第二磁场信号的强度相等时,控制模块300可以控制自移动设备100直行。当自移动设备100到达到对接位置时,例如当磁信号强度到达预设强度时,控制自移动设备停止。可理解的是,自移动设备100会行走的较为缓慢且转动幅度较小,以随时做出纠正动作。本实施例通过在自移动设备上设置两个对称的地磁检测传感模块,检测灵敏度高,更方便准确地判定出自移动设备相对于停靠站的距离和方位,从而实现自移动设备的精确回归以及自动充电。
如图9所示,自移动设备的工作区域通常是不连续的,例如用户家的前院和后院是分离的,通常通过一通道相连,以前院为第一工作区域202,后院为第二工作区域203为例,该第一工作区域202和第二工作区域203被一空间500分离,当自移动设备在第一工作区域202完成工作任务需要进入到第二工作区域203执行任务,或者自移动设备在第一工作区域202工作时电量不足需要回归到第二工作区域203的停靠站进行充电等情况时,自移动设备100需要从第一工作区域202进入到第二工作区域203时,此时为了方便引导自移动设备100从第一工作区域202进入到第二工作区域203,可以在该空间500内设置磁性装置300,尤其设置在第一工作区域边界的附近位置,该磁性装置300的设置方向指示能够穿越空间500从第一工作区域202进入到第二工作区域203的方向上,当自移动设备100需要穿越该空间500时,自移动设备100可以沿着第一工作区域202的边界行走,以检测空间500内的磁性装置300,当检测到磁性装置300的磁信号时,控制模块30基于磁信号的强度和/或方向控制自移动设备100沿着磁性装置300移动,以穿越该空间500从第一工作区域202进入第二工作区域203。其中,自移动设备以沿着第一工作区域边界移动的路线来检测磁性装置,使得自移动设备有规律且快速的检测到磁性装置,防止自移动设备在工作区域内盲目地行走检测,影 响检测到磁性装置的效率。
上述实施例中,磁性装置优选设置在空间内信号不可靠的位置,例如在利用位置检测模块,如利用GPS模块检测自移动设备的位置时,若该空间内由于灌木等原因,导致该空间内的卫星信号质量不可靠,此时,自移动设备无法基于卫星信号而得到自己的位置,也就无法穿越该空间,此时,在该空间内设置磁性装置,当自移动设备检测到磁性装置时沿着磁性装置行走,能够准确引导自移动设备穿越该空间。可理解的是,该实施例也同样适用于利用表面特征识别模块识别边界的情况,例如连接第一工作区域和第二工作区域的该空间一般为通道,该通道通常为为了方便用户行走而铺设的石板路等没有杂草的路面,而智能割草机的表面特征识别模块识别到该通道为非工作区域,此时智能割草机会远离该通道,也就无法穿越该通道,此时在该通道内设置一起引导作用的磁性装置,当智能割草机需要从第一工作区域进入到第二工作区域时,利用磁信号检测模块检测磁性装置,并沿着磁性装置移动,最终穿越该空间进入到第二工作区域。
在一个具体的实施例中,磁性装置还可以设置在工作区域内的排除区域,起到禁止自移动设备进入到排除区域的作用。如图10所示,用户家的草坪200内包括一花坛204,草坪200是需要智能割草机执行任务的工作区域,而该花坛204是不需要智能割草机执行切割任务的区域的排除区域,排除区域定义为工作区域内禁止自移动设备执行工作任务的区域,此时,用户可以在排除区域,即在花坛204的周围设置磁性装置,起到隔离墙的作用,当智能割草机在草坪内执行切割任务时,还会同时利用磁性检测装置检测磁性装置,控制模块根据检测到的磁信号的强度和/或方向判断智能割草机与花坛204的距离和/或方向,当接近花坛204时,控制模块控制智能割草机后退或转向以远离到花坛204,防止智能割草机进入到花坛204切割,对花坛204造成伤害,或者控制智能割草机沿着花坛边界行走切割,以将花坛204周边的杂草切割干净。
可理解的是,本发明上述各实施例中的自移动设备的控制模块会判断边界识别模块的识别结果可靠度,例如边界识别模块为GPS模块时,控制模块分析GPS模块接收卫星信号的可靠度,当可靠度在一预设范围时,控制模块判断此时卫星信号可靠性高,则控制模块以GPS模块检测边界的结果为边界识别的结果,相应地,此时控制模块不采用磁信号检测模块检测边界的结果,而当控制模块分析到GPS模块接收的卫星信号可靠度超过预设范围时,此时表示卫星信号可靠性差,利用GPS模块识别的边界误差性大,此时,控制模块以磁信号检测模块检测的边界结果为准来控制自移动设备的移动方式,忽略GPS模块的检测结果。如此设置是为了防止在由于卫星信号不可靠时,GPS模块检测结果不可靠,而自移动设备以不可靠的 检测结果为准造成误判,影响工作效率,还有可能造成对自移动设备或工作区域的损坏。
在另一实施例中,若自移动设备不设置边界识别模块的识别结果可靠度,还可以采用以下方案,即若当磁信号检测模块的检测结果与边界识别模块的识别结果不同时,控制模块基于磁信号检测模块的检测结果控制自移动设备的移动方式。举例说明,当利用GPS模块检测到某一位置为非边界区域,而磁信号检测模块检测到该位置的磁信号,判断该位置为边界,则控制模块以磁信号检测模块的检测结果为准,判断该位置为边界,控制自移动设备的移动。
本发明实施例还提出了一种自动工作系统的工作方法,该自动工作系统包括上述各实施例中介绍的在边界限定的工作区域内移动并执行工作任务的自移动设备,用于设置在工作区域内或工作区域边界附近位置的磁性装置,该自移动设备包括边界识别模块、磁信号检测模块及控制模块,该控制方法包括以下步骤:
步骤S1:识别工作区域的边界;
步骤S2:检测磁性装置以进一步识别工作区域的边界和/或引导自移动设备;
步骤S3:基于边界识别模块的识别结果和/或磁信号检测模块的检测结果控制自移动设备的移动方式。
本发明实施例还提出了一种自移动设备,该自移动设备包括边界识别模块、磁信号检测模块及控制模块,边界识别模块用于识别工作区域的边界,控制模块控制自移动设备在边界限制的工作区域内移动并执行工作任务;磁信号检测模块检测磁信号以进一步识别工作区域的边界和/或引导自移动设备;控制模块基于边界识别模块的识别结果和/或磁信号检测模块的检测结果控制自移动设备的移动方式。可理解的是,该磁信号由用于设置在工作区域内或工作区域边界附近位置的磁性装置产生。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (24)
- 一种自动工作系统,其特征在于,所述自动工作系统包括:自移动设备,在边界限定的工作区域内移动并执行工作任务;磁性装置,用于设置在工作区域内或工作区域的边界附近位置;所述自移动设备包括边界识别模块、磁信号检测模块及控制模块;所述边界识别模块用于识别工作区域的边界;所述磁信号检测模块用于检测磁性装置产生的磁信号以进一步识别工作区域的边界和/或引导自移动设备;所述控制模块基于边界识别模块的识别结果和/或磁信号检测模块的检测结果控制自移动设备的移动方式。
- 根据权利要求1所述的自动工作系统,其特征在于,所述磁性装置包括条状磁性装置。
- 根据权利要求1所述的自动工作系统,其特征在于,所述边界识别模块包括位置检测模块,所述位置检测模块基于检测的自移动设备的当前位置与一预设的地图的比较以识别工作区域的边界。
- 根据权利要求3所述的自动工作系统,其特征在于,所述位置检测模块包括卫星信号获取单元,所述卫星信号获取单元基于获取的卫星信号以检测自移动设备的当前位置。
- 根据权利要求3所述的自动工作系统,其特征在于,所述磁性装置用于设置在位置检测模块的信号不可靠的边界附近位置,所述磁信号检测模块检测磁信号以识别工作区域的边界,所述控制模块基于磁信号检测模块的检测结果控制自移动设备远离所述边界或者沿所述边界移动。
- 根据权利要求3所述的自动工作系统,其特征在于,所述磁性装置的设置位置基于所述预设的地图生成。
- 根据权利要求3所述的自动工作系统,其特征在于,所述预设的地图由所述位置检测模块生成或者由所述自移动设备从外部获取。
- 根据权利要求1所述的自动工作系统,其特征在于,所述边界识别模块包括表面特征识别模块,所述表面特征识别模块基于工作区域的表面特征与非工作区域的表面特征的不同而识别工作区域的边界。
- 根据权利要求8所述的自动工作系统,其特征在于,所述表面特征识别模块包括图像获取模块、电容检测模块、毫米波雷达检测模块、多光谱检测模块、红外激光图像检测模块 的其中一种或多种。
- 根据权利要求8所述的自动工作系统,其特征在于,所述磁性装置用于设置在工作区域的表面特征和/或非工作区域表面特征不可靠的边界附近位置,所述磁信号检测模块检测磁信号以识别工作区域的边界,所述控制模块基于磁信号检测模块的检测结果控制自移动设备远离所述边界或者沿所述边界移动。
- 根据权利要求1所述的自动工作系统,其特征在于,所述自动工作系统还包括供自移动设备停靠的停靠站,所述磁性装置用于设置在停靠站处,沿所述自移动设备与停靠站对接的方向上设置,所述控制模块基于磁信号检测模块检测的磁信号控制自移动设备沿着磁性装置移动,以引导自移动设备移动到所述停靠站处。
- 根据权利要求11所述的自动工作系统,其特征在于,所述磁性装置设置在所述停靠站的延伸位置,所述控制模块控制自移动设备沿着磁性装置移动以引导自移动设备回归到停靠站。
- 根据权利要求11所述的自动工作系统,其特征在于,所述磁性装置设置在所述停靠站上,所述控制模块控制自移动设备沿着磁性装置移动以引导自移动设备与所述停靠站对接。
- 根据权利要求13所述的自动工作系统,其特征在于,所述停靠站还包括底座,所述磁性装置设置于所述底座的中轴线上。
- 根据权利要求1所述的自动工作系统,其特征在于,所述工作区域包括通过至少一个空间分离的第一工作区域和第二工作区域,所述磁性装置用于设置在所述空间内,指示能够穿越所述空间从第一工作区域进入到第二工作区域的方向上,所述控制模块基于磁信号检测模块检测的磁信号控制自移动设备沿着磁性装置移动,以引导所述自移动设备穿越所述空间从所述第一工作区域进入第二工作区域。
- 根据权利要求15所述的自动工作系统,其特征在于,所述自移动设备沿着第一工作区域的边界移动以检测磁性装置。
- 根据权利要求1所述的自动工作系统,其特征在于,所述磁性装置用于设置在工作区域内的排除区域的周围,所述控制模块基于磁性检测装置检测的磁信号控制自移动设备的移动方式以远离到所述排除区域或者绕所述排除区域移动,所述排除区域包括工作区域内禁止自移动设备执行工作任务的区域。
- 根据权利要求1所述的自动工作系统,其特征在于,所述磁信号检测模块包括地磁检测模块。
- 根据权利要求18所述的自动工作系统,其特征在于,所述地磁检测模块包括第一地 磁检测模块和第二地磁检测模块,所述第一地磁检测模块和第二地磁检测模块分别安装于所述自移动设备前进方向的两侧。
- 根据权利要求1所述的自动工作系统,其特征在于,所述控制模块基于磁信号检测模块检测的磁信号的强度和/或方向控制所述自移动设备的移动方式。
- 根据权利要求1所述的自动工作系统,其特征在于,所述控制模块判断所述边界识别模块的可靠度,当所述可靠度在一预设范围时,所述控制模块基于所述边界识别模块的识别结果控制自移动设备的移动方式,当所述可靠度超过所述预设范围时,所述控制模块基于所述磁信号检测模块的检测结果控制自移动设备的移动方式。
- 一种自动工作系统的工作方法,其特征在于,所述自动工作系统包括在边界限定的工作区域内移动并执行工作任务的自移动设备,用于设置在工作区域内或工作区域的边界附近位置的磁性装置,所述自移动设备包括边界识别模块、磁信号检测模块及控制模块;所述方法包括:识别工作区域的边界;检测磁性装置以进一步识别工作区域的边界和/或引导自移动设备;基于边界识别模块的识别结果和/或磁信号检测模块的检测结果控制自移动设备的移动方式。
- 一种自移动设备,其特征在于,所述自移动设备包括边界识别模块、磁信号检测模块及控制模块;所述边界识别模块用于识别工作区域的边界,所述控制模块控制自移动设备在边界限制的工作区域内移动并执行工作任务;所述磁信号检测模块检测磁信号以进一步识别工作区域的边界和/或引导自移动设备;所述控制模块基于边界识别模块的识别结果和/或磁信号检测模块的检测结果控制自移动设备的移动方式。
- 根据权利要求23所述的自移动设备,其特征在于,所述磁信号由用于设置在工作区域内或工作区域的边界附近位置的磁性装置产生。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980005085.3A CN111226182A (zh) | 2018-08-08 | 2019-08-08 | 自移动设备、自动工作系统及其控制方法 |
EP19847334.0A EP3835907A4 (en) | 2018-08-08 | 2019-08-08 | SELF-MOBILE DEVICE, AUTOMATIC OPERATING SYSTEM AND CONTROL METHOD THEREOF |
US17/266,920 US20210294348A1 (en) | 2018-08-08 | 2019-08-08 | Self-moving device, automatic working system, and control method therefor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810897515 | 2018-08-08 | ||
CN201821275478.5 | 2018-08-08 | ||
CN201810897515.4 | 2018-08-08 | ||
CN201821275478 | 2018-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020030066A1 true WO2020030066A1 (zh) | 2020-02-13 |
Family
ID=69413238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/099865 WO2020030066A1 (zh) | 2018-08-08 | 2019-08-08 | 自移动设备、自动工作系统及其控制方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20210294348A1 (zh) |
EP (1) | EP3835907A4 (zh) |
CN (1) | CN111226182A (zh) |
WO (1) | WO2020030066A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021190514A1 (zh) * | 2020-03-23 | 2021-09-30 | 苏州宝时得电动工具有限公司 | 自动工作系统、自移动设备及其控制方法 |
EP3506039B1 (en) | 2017-12-27 | 2022-05-25 | Kubota Corporation | Work area determination system for autonomous traveling work machine, autonomous traveling work machine and work area determination program |
WO2022134735A1 (zh) * | 2020-12-22 | 2022-06-30 | 苏州宝时得电动工具有限公司 | 自移动设备及其回归控制方法、自动工作系统 |
SE2150560A1 (en) * | 2021-05-03 | 2022-11-04 | Husqvarna Ab | Improved navigation for a robotic work tool |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7706917B1 (en) | 2004-07-07 | 2010-04-27 | Irobot Corporation | Celestial navigation system for an autonomous robot |
US11209833B2 (en) * | 2004-07-07 | 2021-12-28 | Irobot Corporation | Celestial navigation system for an autonomous vehicle |
WO2020030066A1 (zh) | 2018-08-08 | 2020-02-13 | 苏州宝时得电动工具有限公司 | 自移动设备、自动工作系统及其控制方法 |
CN114355870B (zh) * | 2020-09-30 | 2023-11-07 | 苏州宝时得电动工具有限公司 | 自动工作系统及方法 |
CN112486174B (zh) * | 2020-12-01 | 2023-08-08 | 南京苏美达智能技术有限公司 | 基于地磁和惯导的自行走设备遍历控制方法和自行走设备 |
CN114661037A (zh) * | 2020-12-22 | 2022-06-24 | 苏州宝时得电动工具有限公司 | 自移动设备的自动回归系统和自移动设备 |
CN115328108B (zh) * | 2021-04-23 | 2024-06-18 | 南京泉峰科技有限公司 | 智能割草设备及其运行控制方法 |
SE2151016A1 (en) * | 2021-08-23 | 2023-02-24 | Husqvarna Ab | Improved navigation for a robotic work tool system |
Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000029525A (ja) | 1998-07-08 | 2000-01-28 | Fuji Heavy Ind Ltd | 誘導走行を行う走行車 |
JP2000029515A (ja) | 1998-07-08 | 2000-01-28 | Fuji Heavy Ind Ltd | 磁気誘導路の設置方法 |
JP2000029521A (ja) | 1998-07-08 | 2000-01-28 | Fuji Heavy Ind Ltd | 自律走行方法及び自律走行車 |
JP3467136B2 (ja) | 1995-11-07 | 2003-11-17 | 富士重工業株式会社 | 自律走行車の走行制御装置 |
EP1886549A1 (en) | 2006-08-07 | 2008-02-13 | Fabrizio Bernini | Apparatus for controlling the displacement of a self-propelling ground-based automatic vehicle |
CN102346480A (zh) * | 2010-08-02 | 2012-02-08 | 恩斯迈电子(深圳)有限公司 | 可移动的电子装置 |
EP2767150A1 (en) | 2013-02-19 | 2014-08-20 | Husqvarna AB | Improved robotic work tool |
WO2015072896A1 (en) | 2013-11-12 | 2015-05-21 | Husqvarna Ab | Improved navigation for a robotic working tool |
CN104703460A (zh) * | 2012-10-09 | 2015-06-10 | 胡斯华纳有限公司 | 用于提高自动园艺工具的覆盖分布的方法和系统 |
WO2015094052A1 (en) | 2013-12-19 | 2015-06-25 | Husqvarna Ab | Obstacle detection for a robotic working tool |
WO2015094054A1 (en) | 2013-12-19 | 2015-06-25 | Husqvarna Ab | Navigation for a robotic working tool |
WO2015094053A1 (en) | 2013-12-19 | 2015-06-25 | Husqvarna Ab | System and method for navigating a robotic working tool. |
WO2016000734A1 (en) | 2014-06-30 | 2016-01-07 | Husqvarna Ab | Improved robotic working tool |
CN105573308A (zh) * | 2014-10-08 | 2016-05-11 | 苏州宝时得电动工具有限公司 | 基于图像检测的割草机及割草机控制方法 |
EP3018548A1 (en) | 2014-11-07 | 2016-05-11 | F. Robotics Acquisitions Ltd. | Domestic robotic system |
WO2016091312A1 (en) | 2014-12-11 | 2016-06-16 | Husqvarna Ab | Improved navigation for a robotic working tool |
SE1551278A1 (en) | 2014-12-23 | 2016-06-24 | Husqvarna Ab | Improved operation of a robotic work tool by adapting the operation to weather conditions |
WO2016102142A1 (en) | 2014-12-23 | 2016-06-30 | Husqvarna Ab | 3d map generation by a robotic work tool |
WO2016102144A1 (en) | 2014-12-23 | 2016-06-30 | Husqvarna Ab | Improved operation of a robotic work tool by adapting the operation to weather conditions |
WO2016102143A1 (en) | 2014-12-23 | 2016-06-30 | Husqvarna Ab | Improved navigation for a robotic lawnmower |
WO2016102141A1 (en) | 2014-12-24 | 2016-06-30 | Husqvarna Ab | Improved navigation for a robotic work tool |
WO2016102145A1 (en) | 2014-12-23 | 2016-06-30 | Husqvarna Ab | Robotic work tool and method for detecting tool damage or loss |
WO2016178616A1 (en) | 2015-05-04 | 2016-11-10 | Husqvarna Ab | Error detection and resetting of a robotic work tool |
EP3168705A1 (en) | 2015-10-21 | 2017-05-17 | F. Robotics Acquisitions Ltd. | Domestic robotic system |
WO2017092801A1 (en) | 2015-12-02 | 2017-06-08 | Husqvarna Ab | Improved navigation for a vehicle by implementing two operating modes |
WO2017092798A1 (en) | 2015-12-02 | 2017-06-08 | Husqvarna Ab | Improved navigation for a robotic work tool |
KR20170114735A (ko) * | 2016-04-06 | 2017-10-16 | 주식회사에스이티 | 잔디절삭기를 이용한 골프장 잔디 관리 시스템 및 그 방법 |
CN206611777U (zh) | 2016-09-23 | 2017-11-07 | 苏州宝时得电动工具有限公司 | 自动工作系统及充电站 |
CN107396680A (zh) | 2016-05-20 | 2017-11-28 | 宝时得科技(中国)有限公司 | 自动工作系统及充电站及智能割草机回归充电站的方法 |
US20180035606A1 (en) | 2016-08-05 | 2018-02-08 | Romello Burdoucci | Smart Interactive and Autonomous Robotic Property Maintenance Apparatus, System, and Method |
WO2018054255A1 (zh) | 2016-09-23 | 2018-03-29 | 苏州宝时得电动工具有限公司 | 自动工作系统及充电站及智能割草机回归充电站的方法 |
CN107966725A (zh) * | 2016-10-19 | 2018-04-27 | 惠州市蓝微电子有限公司 | 一种智能割草机的割草方法 |
WO2018108178A1 (zh) | 2016-12-15 | 2018-06-21 | 苏州宝时得电动工具有限公司 | 自移动设备的回归方法、自移动设备、存储介质和服务器 |
WO2018108180A1 (zh) | 2016-12-15 | 2018-06-21 | 苏州宝时得电动工具有限公司 | 自移动设备的工作区域的分区方法、装置和电子设备 |
EP3835907A1 (en) | 2018-08-08 | 2021-06-16 | Positec Power Tools (Suzhou) Co., Ltd | Self-mobile device, automatic operating system and control method thereof |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL113913A (en) * | 1995-05-30 | 2000-02-29 | Friendly Machines Ltd | Navigation method and system |
US10809071B2 (en) * | 2017-10-17 | 2020-10-20 | AI Incorporated | Method for constructing a map while performing work |
KR100600487B1 (ko) * | 2004-10-12 | 2006-07-13 | 삼성광주전자 주식회사 | 로봇 청소기의 좌표보정방법 및 이를 이용한 로봇 청소기시스템 |
US8392044B2 (en) * | 2010-07-28 | 2013-03-05 | Deere & Company | Robotic mower boundary sensing system |
JP5712097B2 (ja) * | 2010-09-30 | 2015-05-07 | 本田技研工業株式会社 | 自律走行作業車の制御装置 |
US9820433B2 (en) * | 2012-12-28 | 2017-11-21 | Positec Power Tools (Suzhou Co., Ltd.) | Auto mowing system |
WO2014173290A1 (zh) * | 2013-04-22 | 2014-10-30 | 苏州宝时得电动工具有限公司 | 自动行走设备及其工作区域判断方法 |
CN203324473U (zh) * | 2013-06-04 | 2013-12-04 | 宁波大学 | 一种适用于移动机器人的边界识别系统 |
WO2015018355A1 (zh) * | 2013-08-07 | 2015-02-12 | 苏州宝时得电动工具有限公司 | 自动工作系统、自动行走设备及其控制方法 |
JP6014192B1 (ja) * | 2015-03-27 | 2016-10-25 | 本田技研工業株式会社 | 無人作業車の制御装置 |
KR102439184B1 (ko) * | 2015-04-28 | 2022-09-02 | 엘지전자 주식회사 | 이동 로봇 및 그 제어방법 |
EP3428885A4 (en) * | 2016-03-09 | 2019-08-14 | Guangzhou Airob Robot Technology Co., Ltd. | CARD CONSTRUCTION METHOD, AND CORRECTION METHOD AND APPARATUS |
CN112731945B (zh) * | 2016-04-12 | 2024-04-12 | 苏州宝时得电动工具有限公司 | 自动工作系统,自移动设备及其控制方法 |
EP3571561B1 (en) * | 2017-01-19 | 2022-03-02 | Husqvarna AB | Improved work scheduling for a robotic lawnmower |
EP3412135B1 (de) * | 2017-06-09 | 2022-09-14 | Andreas Stihl AG & Co. KG | Bodenbearbeitungssystem mit mindestens einer ladestation mit einer datenverbindung |
US10583561B2 (en) * | 2017-08-31 | 2020-03-10 | Neato Robotics, Inc. | Robotic virtual boundaries |
DE102017120218A1 (de) * | 2017-09-01 | 2019-03-07 | RobArt GmbH | Bewegungsplanung für autonome mobile roboter |
SE541895C2 (en) * | 2018-01-31 | 2020-01-02 | Husqvarna Ab | System and method for navigating a robotic lawnmower into a docking position |
KR102106100B1 (ko) * | 2018-02-02 | 2020-05-06 | 엘지전자 주식회사 | 이동 로봇 |
KR102090649B1 (ko) * | 2018-02-28 | 2020-03-18 | 엘지전자 주식회사 | 이동로봇과 이동로봇 시스템 |
SE544035C2 (en) * | 2018-04-04 | 2021-11-16 | Husqvarna Ab | Improved maintenance for a robotic working tool |
SE544545C2 (en) * | 2019-09-25 | 2022-07-12 | Husqvarna Ab | Propulsion control arrangement, robotic tool, method of propelling robotic tool and related devices |
-
2019
- 2019-08-08 WO PCT/CN2019/099865 patent/WO2020030066A1/zh unknown
- 2019-08-08 EP EP19847334.0A patent/EP3835907A4/en active Pending
- 2019-08-08 CN CN201980005085.3A patent/CN111226182A/zh active Pending
- 2019-08-08 US US17/266,920 patent/US20210294348A1/en active Pending
Patent Citations (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3467136B2 (ja) | 1995-11-07 | 2003-11-17 | 富士重工業株式会社 | 自律走行車の走行制御装置 |
JP2000029525A (ja) | 1998-07-08 | 2000-01-28 | Fuji Heavy Ind Ltd | 誘導走行を行う走行車 |
JP2000029515A (ja) | 1998-07-08 | 2000-01-28 | Fuji Heavy Ind Ltd | 磁気誘導路の設置方法 |
JP2000029521A (ja) | 1998-07-08 | 2000-01-28 | Fuji Heavy Ind Ltd | 自律走行方法及び自律走行車 |
EP1886549A1 (en) | 2006-08-07 | 2008-02-13 | Fabrizio Bernini | Apparatus for controlling the displacement of a self-propelling ground-based automatic vehicle |
CN102346480A (zh) * | 2010-08-02 | 2012-02-08 | 恩斯迈电子(深圳)有限公司 | 可移动的电子装置 |
CN104703460A (zh) * | 2012-10-09 | 2015-06-10 | 胡斯华纳有限公司 | 用于提高自动园艺工具的覆盖分布的方法和系统 |
EP2767150A1 (en) | 2013-02-19 | 2014-08-20 | Husqvarna AB | Improved robotic work tool |
WO2015072896A1 (en) | 2013-11-12 | 2015-05-21 | Husqvarna Ab | Improved navigation for a robotic working tool |
WO2015094052A1 (en) | 2013-12-19 | 2015-06-25 | Husqvarna Ab | Obstacle detection for a robotic working tool |
WO2015094054A1 (en) | 2013-12-19 | 2015-06-25 | Husqvarna Ab | Navigation for a robotic working tool |
WO2015094053A1 (en) | 2013-12-19 | 2015-06-25 | Husqvarna Ab | System and method for navigating a robotic working tool. |
WO2016000734A1 (en) | 2014-06-30 | 2016-01-07 | Husqvarna Ab | Improved robotic working tool |
CN105573308A (zh) * | 2014-10-08 | 2016-05-11 | 苏州宝时得电动工具有限公司 | 基于图像检测的割草机及割草机控制方法 |
EP3018548A1 (en) | 2014-11-07 | 2016-05-11 | F. Robotics Acquisitions Ltd. | Domestic robotic system |
WO2016091312A1 (en) | 2014-12-11 | 2016-06-16 | Husqvarna Ab | Improved navigation for a robotic working tool |
WO2016102144A1 (en) | 2014-12-23 | 2016-06-30 | Husqvarna Ab | Improved operation of a robotic work tool by adapting the operation to weather conditions |
EP3236733A1 (en) | 2014-12-23 | 2017-11-01 | Husqvarna AB | Improved navigation for a robotic lawnmower |
SE1551278A1 (en) | 2014-12-23 | 2016-06-24 | Husqvarna Ab | Improved operation of a robotic work tool by adapting the operation to weather conditions |
WO2016102143A1 (en) | 2014-12-23 | 2016-06-30 | Husqvarna Ab | Improved navigation for a robotic lawnmower |
WO2016102145A1 (en) | 2014-12-23 | 2016-06-30 | Husqvarna Ab | Robotic work tool and method for detecting tool damage or loss |
WO2016102142A1 (en) | 2014-12-23 | 2016-06-30 | Husqvarna Ab | 3d map generation by a robotic work tool |
WO2016102141A1 (en) | 2014-12-24 | 2016-06-30 | Husqvarna Ab | Improved navigation for a robotic work tool |
WO2016178616A1 (en) | 2015-05-04 | 2016-11-10 | Husqvarna Ab | Error detection and resetting of a robotic work tool |
EP3168705A1 (en) | 2015-10-21 | 2017-05-17 | F. Robotics Acquisitions Ltd. | Domestic robotic system |
WO2017092798A1 (en) | 2015-12-02 | 2017-06-08 | Husqvarna Ab | Improved navigation for a robotic work tool |
WO2017092801A1 (en) | 2015-12-02 | 2017-06-08 | Husqvarna Ab | Improved navigation for a vehicle by implementing two operating modes |
KR20170114735A (ko) * | 2016-04-06 | 2017-10-16 | 주식회사에스이티 | 잔디절삭기를 이용한 골프장 잔디 관리 시스템 및 그 방법 |
CN107396680A (zh) | 2016-05-20 | 2017-11-28 | 宝时得科技(中国)有限公司 | 自动工作系统及充电站及智能割草机回归充电站的方法 |
US20180035606A1 (en) | 2016-08-05 | 2018-02-08 | Romello Burdoucci | Smart Interactive and Autonomous Robotic Property Maintenance Apparatus, System, and Method |
CN206611777U (zh) | 2016-09-23 | 2017-11-07 | 苏州宝时得电动工具有限公司 | 自动工作系统及充电站 |
WO2018054255A1 (zh) | 2016-09-23 | 2018-03-29 | 苏州宝时得电动工具有限公司 | 自动工作系统及充电站及智能割草机回归充电站的方法 |
CN107966725A (zh) * | 2016-10-19 | 2018-04-27 | 惠州市蓝微电子有限公司 | 一种智能割草机的割草方法 |
WO2018108178A1 (zh) | 2016-12-15 | 2018-06-21 | 苏州宝时得电动工具有限公司 | 自移动设备的回归方法、自移动设备、存储介质和服务器 |
WO2018108180A1 (zh) | 2016-12-15 | 2018-06-21 | 苏州宝时得电动工具有限公司 | 自移动设备的工作区域的分区方法、装置和电子设备 |
WO2018108179A1 (zh) | 2016-12-15 | 2018-06-21 | 苏州宝时得电动工具有限公司 | 自移动设备及其定位故障报警方法和自动工作系统 |
EP3835907A1 (en) | 2018-08-08 | 2021-06-16 | Positec Power Tools (Suzhou) Co., Ltd | Self-mobile device, automatic operating system and control method thereof |
Non-Patent Citations (1)
Title |
---|
See also references of EP3835907A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3506039B1 (en) | 2017-12-27 | 2022-05-25 | Kubota Corporation | Work area determination system for autonomous traveling work machine, autonomous traveling work machine and work area determination program |
WO2021190514A1 (zh) * | 2020-03-23 | 2021-09-30 | 苏州宝时得电动工具有限公司 | 自动工作系统、自移动设备及其控制方法 |
CN113504775A (zh) * | 2020-03-23 | 2021-10-15 | 苏州宝时得电动工具有限公司 | 自动工作系统、自移动设备及其充电过程控制方法 |
EP4130919A4 (en) * | 2020-03-23 | 2023-10-18 | Positec Power Tools (Suzhou) Co., Ltd. | AUTOMATIC WORK SYSTEM, SELF-PROPELLED DEVICE AND ASSOCIATED CONTROL METHOD |
WO2022134735A1 (zh) * | 2020-12-22 | 2022-06-30 | 苏州宝时得电动工具有限公司 | 自移动设备及其回归控制方法、自动工作系统 |
SE2150560A1 (en) * | 2021-05-03 | 2022-11-04 | Husqvarna Ab | Improved navigation for a robotic work tool |
SE545830C2 (en) * | 2021-05-03 | 2024-02-13 | Husqvarna Ab | System and method for operating a robotic work tool in a first and a second work area |
Also Published As
Publication number | Publication date |
---|---|
CN111226182A (zh) | 2020-06-02 |
EP3835907A1 (en) | 2021-06-16 |
EP3835907A4 (en) | 2022-04-20 |
US20210294348A1 (en) | 2021-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020030066A1 (zh) | 自移动设备、自动工作系统及其控制方法 | |
US8340438B2 (en) | Automated tagging for landmark identification | |
EP3234721B1 (en) | Multi-sensor, autonomous robotic vehicle with mapping capability | |
US8996171B2 (en) | Pheromone for robotic boundary | |
KR20190064252A (ko) | 이동 로봇 및 그 제어방법 | |
EP3232763A1 (en) | Robotic vehicle with automatic camera calibration capability | |
CN107229275A (zh) | 一种果园自动遍历智能割草机控制系统及方法 | |
CN103809591A (zh) | 自动工作系统 | |
US20210373562A1 (en) | System and method for improved boundary detection for robotic mower system | |
CN109782770A (zh) | 一种割草机自主充电的方法 | |
WO2019096260A1 (zh) | 自移动设备及其工作系统、识别方法、工作方法 | |
WO2021139685A1 (zh) | 一种自动工作系统 | |
WO2023274339A1 (zh) | 自动工作系统 | |
EP3695701B1 (en) | Robotic vehicle for boundaries determination | |
CN113448327B (zh) | 一种自动行走设备的运行控制方法及自动行走设备 | |
CN115454077A (zh) | 自动割草机及其控制方法和计算机可读存储介质 | |
CN113419529B (zh) | 一种机器自动引导故障机器的方法和自行走设备 | |
CN114937258A (zh) | 割草机器人的控制方法、割草机器人以及计算机存储介质 | |
US11934196B1 (en) | Visual identifiers for docking and zoning an autonomous mower | |
CN112486173B (zh) | 一种自行走设备作业边界获取方法和自行走设备 | |
CN112702693B (zh) | 一种自行走设备的地图构建方法及定位方法 | |
CN116430838A (zh) | 自移动设备、及其控制方法 | |
CN108431715A (zh) | 自动识别前方物体的自移动设备及其识别方法 | |
US20240069561A1 (en) | Mapping objects encountered by a robotic garden tool | |
US20240119842A1 (en) | Methods and Systems for Coupling Vehicles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19847334 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019847334 Country of ref document: EP Effective date: 20210309 |