WO2022134735A1 - 自移动设备及其回归控制方法、自动工作系统 - Google Patents

自移动设备及其回归控制方法、自动工作系统 Download PDF

Info

Publication number
WO2022134735A1
WO2022134735A1 PCT/CN2021/122649 CN2021122649W WO2022134735A1 WO 2022134735 A1 WO2022134735 A1 WO 2022134735A1 CN 2021122649 W CN2021122649 W CN 2021122649W WO 2022134735 A1 WO2022134735 A1 WO 2022134735A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
boundary
area
moving device
turning
Prior art date
Application number
PCT/CN2021/122649
Other languages
English (en)
French (fr)
Inventor
兰彬财
泰斯托林·费德里科
仇杰
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011514815.3A external-priority patent/CN114661037A/zh
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2022134735A1 publication Critical patent/WO2022134735A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay

Definitions

  • the present application relates to the technical field of automatic control, and in particular, to a self-moving device, a regression control method thereof, and an automatic working system.
  • Self-moving equipment refers to equipment that can move automatically without manual operation. For example: smart lawn mowers, sweeping robots, etc.
  • the self-mobile device needs to return to the docking station (such as: charging pile, charging base, etc.) for charging or docking when the work is over or the power is insufficient.
  • the docking station such as: charging pile, charging base, etc.
  • the self-moving device as an intelligent lawn mower as an example
  • the area that needs to be worked is usually enclosed by laying signal lines on the grass, and the docking station is set on the signal line.
  • the smart lawn mower needs to return to the docking station, the smart lawn mower moves along the signal line to return to the docking station.
  • the laying length of the signal line also increases, and the distance that the self-moving device moves along the signal line during the process of returning to the docking station will also increase, which will lead to the return of the self-moving device.
  • the return time of the docking station is long and the return efficiency is low.
  • a self-moving device a regression control method thereof, and an automatic working system are provided.
  • an automatic working system comprising:
  • a turning marker arranged at at least one preset position on an area boundary, where the area boundary is used to define a working area
  • a self-moving device movable in a return mode along a first path to a docking station on the area boundary, the first path comprising a path for the self-moving device to move along the area boundary to the docking station;
  • the self-moving equipment includes:
  • a boundary identification device connected to the fuselage, configured to identify the area boundary
  • an identification detection device connected to the fuselage, configured to detect the steering identification member
  • a control device respectively electrically connected to the boundary identification device and the identification detection device, is configured to:
  • the self-moving equipment In the return mode, the self-moving equipment is controlled to move along the boundary of the area, and when the sign detection device detects the turning sign, the self-moving equipment is controlled to move toward the working area according to a preset angle Internal steering is performed, and the area boundary in the forward direction after the steering is completed is searched, and when the self-moving device finds the area boundary again, the self-moving device is controlled to continue to move along the area boundary.
  • each of the turning identification elements includes at least two magnetic elements
  • the identification detection device includes a magnetic field sensor
  • the interval between adjacent magnetic members at the same place is between 5cm-40cm.
  • the magnetic element includes a magnetic stripe that traverses the region boundary.
  • the magnetic stripe is perpendicular to the area boundary.
  • the magnetic field sensor has a first projection on the ground
  • the magnetic strip has a second projection on the ground; wherein, The line connecting the center of the first projection and the center of the second projection is parallel to the area boundary at the preset position.
  • the preset angle is between 30 degrees and 150 degrees.
  • the preset angle is 90 degrees.
  • the area boundary includes an obstacle boundary, the obstacle boundary is used to define the area where the obstacle is located, and the turning marker is provided on the obstacle boundary;
  • the control device controls the self-moving device to follow the The preset angle is turned towards the inside of the working area to escape the obstacle boundary.
  • the turning marker is arranged at a preset position on the boundary of the obstacle
  • the marking detection device when the marking detection device detects the turning marking piece, it controls the self-moving device to turn towards the inside of the working area according to the preset angle, and finds the forward direction after the turning is completed. and when the self-moving device finds the area boundary again, the self-moving device is controlled to continue to move along the area boundary.
  • control device in the non-regressive mode, is configured to:
  • the self-moving device is controlled to continue to work along the original path.
  • the non-regressive mode includes an edgewise mode and a normal working mode, and in the edgewise mode, the control device is configured to control the self-moving device to work along the area boundary; In the normal working mode, the control device is configured to control the self-moving device to work inside the working area.
  • a self-moving device which can move to a docking station along an area boundary in a return mode, the area boundary being used to define a work area;
  • the self-moving device includes: :
  • a boundary identification device connected to the fuselage, configured to identify the area boundary
  • an identification detection device connected to the fuselage, and configured to detect a turning identification piece disposed on the boundary of the area
  • a control device respectively electrically connected to the boundary identification device and the identification detection device, is configured to:
  • the self-moving device In the return mode, the self-moving device is controlled to move along the boundary of the area; when the marking detection device detects the turning marker, the self-moving device is controlled to move toward the working area according to a preset angle Internal steering is performed, and the area boundary in the forward direction after the steering is completed is searched, and when the self-moving device finds the area boundary again, the self-moving device is controlled to continue to move along the area boundary.
  • the self-moving device further includes:
  • an input component connected to the body, configured to receive the angle information of the preset angle input by the user;
  • the control device is electrically connected to the input assembly, and is configured to, in the return mode, control the self-moving device to move toward the self-moving device according to the input angle information when the identification detection device detects the turning identification member.
  • the working area is internally turned.
  • a return control method for a self-moving device can move to a docking station along the area boundary in a return mode, and the self-moving device includes an identification detection device, The marker detection device is configured to detect the turning marker provided on the boundary of the area,
  • the regression control method includes:
  • the identification detection device When the identification detection device detects the turning identification piece, it controls the self-moving device to turn toward the inside of the working area according to a preset angle, and searches for the area boundary in the forward direction after the turning is completed;
  • the self-moving device finds the area boundary again, the self-moving device is controlled to continue to move along the area boundary.
  • FIG 1 is an application scenario diagram of an automatic walking system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a self-moving device in an automatic walking system provided by an embodiment of the present application
  • Fig. 3 is a schematic diagram of the return path of the automatic walking device under the traditional mode
  • FIG. 4 is a schematic diagram of a return path of a self-moving device in an automatic walking system provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a return path of a self-moving device in an automatic walking system provided by another embodiment of the present application.
  • FIG. 6 is a schematic diagram of a return path of a self-moving device in an automatic walking system provided by another embodiment of the present application.
  • FIG. 7 is a schematic diagram of a path that falls into an infinite loop during the return process of a self-moving device in an automatic walking system provided by an embodiment of the present application;
  • FIG. 8 is a flowchart of a method for regression control from a mobile device provided by an embodiment of the present application.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
  • the self-moving device when the self-moving device needs to return to the docking station on the signal line, it usually moves along the signal line until reaching the docking station.
  • the laying length of the signal line will continue to increase, which increases the return distance from the mobile device and prolongs the return time, resulting in low return efficiency and low power utilization rate from the mobile device.
  • the present application provides an automatic working system, a self-moving device, and a regression control method for the self-moving device, so as to shorten the returning time of the self-moving device and improve the returning efficiency.
  • an automated working system includes a steering marker 230 and a self-moving device 100 .
  • the automatic work system includes an area boundary 200 for defining a work area 210 , and a docking station 220 is provided on the area boundary 200 .
  • the area boundary 200 may be a physical wire or a virtual boundary.
  • the self-mobile device 100 can move and work within the working area 210 defined by the area boundary 200 in the normal working mode, and can move along the area boundary 200 toward the docking station 220 in the returning mode, and then return to the docking station 220 for charging or parking.
  • the function of the turning marker 230 is to trigger the turning of the self-mobile device 100 .
  • the user can predetermine the position where the self-mobile device 100 needs to be turned, and set the turning marker 230 at this position, and then when the self-mobile device 100 is turned When moving to this location, a turn from the mobile device 100 can be triggered.
  • the turning marker 230 is set at at least one preset position on the area boundary 200. In practical applications, the turning marker 230 can be set at one preset position on the zone boundary 200, or can be set at two preset positions.
  • the turning identification member 230 is set at the position or three preset positions or more preset positions, which can be determined according to actual needs. The return distance and return time from the mobile device 100 are shortened.
  • the self-mobile device 100 When the self-mobile device 100 detects that its own power is insufficient or other situations that need to be returned to the charging station occur, the self-mobile device 100 enters the return mode. In the return mode, the self-mobile device 100 may travel along a first path to the docking station 220 on the area boundary 200 (as shown in FIG. 3 ), the first path including the movement of the self-mobile device 100 along the area boundary 200 to the docking station 220 path. Generally, after the mobile device 100 enters the regression mode, it first searches for the area boundary 200 , and after finding the area boundary 200 , moves toward the docking station 220 along the area boundary 200 until reaching the docking station 220 .
  • the self-moving device 100 includes a body, a boundary identification device 110 , an identification detection device 120 and a control device 130 .
  • the fuselage is connected with a moving component, and the moving component drives the fuselage to move.
  • the moving assembly may include moving rollers, and the number of moving rollers may be one or two or more.
  • the moving assembly is a three-wheel drive assembly, and the three-wheel drive assembly includes two moving rollers located on both sides of the fuselage. , the two moving rollers are symmetrically arranged about the central axis of the fuselage.
  • the boundary recognition device 110 is connected to the fuselage, and is configured to recognize the area boundary 200 .
  • the boundary identification device 110 may include a Hall sensor, and the Hall sensor can identify the position of the area boundary 200 by detecting the magnetic field signal generated by the area boundary 200 .
  • the self-mobile device 100 can search for the area boundary 200 according to the boundary recognition result of the boundary recognition device 110 .
  • the marker detection device 120 is connected to the fuselage, and is configured to detect the turning marker 230 .
  • the marking detection device 120 is disposed on the fuselage. When the self-mobile device 100 moves to the vicinity of the turning marking member 230 , the marking detecting device 120 can detect the turning marking member 230 , and then the control device 130 controls the turning of the self-mobile device 100 .
  • the identification detection device 120 and the steering identification member 230 are arranged to match each other, and there are various ways of matching.
  • the marking detection device 120 and the turning marking member 230 can be set according to the detection method of the magnetic signal.
  • the turning marking member 230 is set as the magnetic member 231, and the marking detection device 120 is set as the magnetic field sensor for detecting the magnetic member 231; or according to the image
  • the detection method of the signal is set to identify the detection device 120 and the turning identification member 230.
  • the turning identification member 230 is set as a logo graphic, and the turning identification member 230 is set as a graphic scanning component (such as a camera or a barcode scanner, etc.) that scans the logo graphic. Only two matching methods are listed above, and other matching methods that can realize the detection function can also be applied to this solution, which are not limited here.
  • the control device 130 is electrically connected to the boundary identification device 110 and the identification detection device 120, respectively, and is configured to:
  • the self-moving device 100 is controlled to move along the area boundary 200.
  • the identification detection device 120 detects the turning marker 230
  • the self-moving device 100 is controlled to turn toward the inside of the work area 210 according to a preset angle, and after the completion of the search and when the self-mobile device 100 finds the area boundary 200 again, the self-mobile device 100 is controlled to continue to move along the area boundary 200 . That is, the self-mobile device 100 is controlled to be turned at a preset position on the area boundary 200 to move according to a second path different from the first path.
  • the principle of setting the preset position is that the position of the area boundary 200 found again after the self-mobile device 100 turns at the preset position does not belong to the position passed by the self-mobile device 100 before turning, so that the The position of the found area boundary 200 is the starting point, and the distance walking along the area boundary 200 to the docking station 220 should be shorter or the same as the distance of the original return path. That is, the distance from the mobile device 100 when it moves to the docking station 220 according to the second path is less than or equal to the distance when it moves to the docking station 220 according to the first path.
  • the position of the turning marker 230 can be set as shown in FIG. 4 or FIG. 5 or 6 to shorten the return path.
  • the setting position of the turning marker 230 in FIG. 4 or FIG. 5 or 6 belongs to The category of the aforementioned preset position; and if the setting method is shown in FIG. 7 , the self-mobile device 100 will return to the position passed before the turning after turning at the turning marker 230, and then fall into an infinite loop, unable to return, correspondingly 7, the setting position of the turning identification member 230 does not belong to the category of the aforementioned preset positions.
  • the traditional regression method is that after the mobile device 100 finds the area boundary 200, it moves to the docking station 220 along the area boundary 200.
  • the longer the area boundary 200 the longer the return time from the mobile device 100. Reduced regression efficiency.
  • the sign detecting device 120 detects the turning sign 230 disposed on the area border 200 in real time. Then, the first path is no longer maintained, but is turned toward the inside of the work area 210 according to a preset angle, so that the self-mobile device 100 moves to the docking station 220 according to the second path.
  • the distance from the station 220 is less than or equal to the distance when it moves to the docking station 220 according to the first path. Therefore, compared with the return method that always follows the first path, the return method of this solution can effectively shorten the return time from the mobile device 100 , improve the return efficiency, thereby saving electricity and improving the utilization rate of electricity.
  • the first path refers to the path corresponding to the whole process of finding the area boundary 200 after the self-mobile device 100 enters the regression mode, and then moving along the area boundary 200 to the docking station 220 after finding the area boundary 200 , optional, the path shown in Figure 3.
  • the second path means that the self-mobile device 100 searches for the area boundary 200 after entering the return mode, moves along the area boundary 200 toward the docking station 220 after finding the area boundary 200 , and moves toward work when the turning sign 230 is detected.
  • the area 210 is turned internally, and the area boundary 200 in the forward direction is searched again, and after finding the area boundary 200, the path corresponding to the whole process of moving along the area boundary 200 to the docking station 220 is optional, as shown in FIG. 4 . path.
  • the self-mobile device 100 Since the self-mobile device 100 turns toward the working area 210 in advance during the movement of the self-mobile device 100 toward the docking station 220 along the area boundary 200, the area boundary 200 in the forward direction after the self-mobile device 100 is turned is closer to the docking station 220, in other words , even if the self-mobile device 100 traverses the work area 210 in the process of returning along the area boundary 200, it directly reaches the area boundary 200 closer to the docking station 220 through a shortcut and then continues to move toward the docking station 220, so the length of the second path can be Less than or equal to the length of the first path, in most cases, the length of the second path may be less than the length of the first path.
  • the first path and the second path are different and overlap.
  • the point A of the area boundary 200 is provided with a turning marker 230, and the self-mobile device 100 turns around when moving to the point A along the area boundary 200, and moves to the point B of the area boundary 200 in the forward direction, with point B as the starting point
  • the overlapping area of the first path and the second path may include the path from the mobile device 100 before the turn at point A and the path that continues to move along the area boundary 200 starting from point B , the difference is that in the first path, the self-mobile device 100 travels from point A to point B along the area boundary 200; while in the second path, the self-mobile device 100 travels along the straight line from point A to point B by Point A travels to point B.
  • the second path is shorter than the first path.
  • first path and the second path may be counterclockwise or clockwise.
  • first path and the second path are both counterclockwise, so as to facilitate the connection between the mobile device 100 and the charging station 200 . Docking charging.
  • each of the turning identification members 230 includes at least two magnetic members 231 , and the identification detection device 120 includes a magnetic field sensor.
  • the matching method between the magnetic field sensor and the magnetic member 231 is relatively simple, easy to operate, and low in cost.
  • the magnetic element 231 may be used as the area boundary 200. Therefore, in order to distinguish it from the magnetic element 231 used as the area boundary 200, at least two magnetic elements 231 are arranged at each turning point in this embodiment.
  • Magnetic element 231 since the result of detecting one magnetic element 231 by the magnetic field sensor is different from the result of detecting two or more magnetic elements 231, the control module can accurately determine whether the self-mobile device 100 has reached the turning mark according to the detection result of the magnetic field sensor 230 to avoid misjudgment.
  • the magnetic field sensor counts the magnetic elements 231 after detecting the magnetic elements 231. If the number of the magnetic elements 231 detected within the preset detection time period is greater than or equal to 2, it is determined that the detected direction is steering. Identification piece 230 .
  • the interval between adjacent magnetic members 231 at the same location is between 5 cm and 40 cm.
  • the interval between adjacent magnetic members 231 may be set to 5 cm, 10 cm, 30 cm, or 40 cm, or the like.
  • the marker detection device 120 When moving from the mobile device 100 to the turning marker 230, the marker detection device 120 will detect each magnetic member 231 at the same place one by one. When the interval between adjacent magnetic members 231 is shorter, the detection interval of the marker detection device 120 The time is shorter, and vice versa. Therefore, the preset detection duration of the marker detection device 120 can be determined according to the length of the interval between adjacent magnetic members 231. For example, when the interval between adjacent magnetic members 231 is 5 cm, it is determined that the detection is detected within a shorter preset detection duration. Whether the number of magnetic pieces 231 is greater than or equal to 2, and the interval between adjacent magnetic pieces 231 is 40 cm, it is determined whether the number of magnetic pieces 231 detected within the longer preset detection duration is greater than or equal to 2.
  • the interval between adjacent magnetic members 231 is less than 5cm, omissions and misrepresentations are likely to occur due to the fast driving speed of the mobile device; if the interval between adjacent magnetic members 231 is greater than 40cm, it is easy to cause The response time and response distance of the self-mobile device 100 are too long, thereby causing a waste of the power of the self-mobile device 100 .
  • the interval between adjacent magnetic members 231 at the same location is 30 cm.
  • the interval is set to 30cm, which is more conducive to the identification detection device 120 to count the magnetic parts 231 to a certain extent, avoids misses, misrecords, etc., and avoids the waste of power from the mobile device 100 .
  • the magnetic element 231 includes a magnetic stripe that traverses the region boundary 200 .
  • the magnetic stripe may be used as the area boundary 200. Therefore, in order to further distinguish it from the magnetic stripe used as the area boundary 200, in this embodiment, the magnetic stripe used as the turning marker 230 is set to traverse the In the area boundary 200, since the magnetic field sensor has different detection results for the magnetic strips arranged at different angles, the control module can accurately determine whether the self-mobile device 100 has moved to the turning marker 230 according to the detection results of the magnetic field sensor, so as to avoid misjudgment.
  • the magnetic stripe traverses the area boundary 200 means that the magnetic stripe and the area boundary 200 are arranged crosswise, and the included angle between the magnetic stripe and the area boundary 200 is greater than 0 degrees and less than 180 degrees. In one of the embodiments, the included angle between the magnetic stripe and the area boundary 200 is 90 degrees, that is, the magnetic stripe is arranged perpendicular to the area boundary 200 .
  • the magnetic field sensor when the self-mobile device 100 moves along the area boundary 200 in a direction perpendicular to the ground, the magnetic field sensor has a first projection on the ground, and the magnetic stripe has a second projection on the ground, wherein the center of the first projection is The line connecting the center of the second projection is parallel to the area boundary 200 at the preset position.
  • the magnetic field sensor includes a geomagnetic sensor.
  • the preset angle is between 30 degrees and 150 degrees. In practical applications, when the preset angle is less than 30 degrees, the self-mobile device 100 is prone to small-angle steering and is difficult to control, and the rotation angle is too small to effectively shorten the return distance; when the preset angle is greater than 150 degrees, The self-moving device 100 is prone to fall into an infinite loop.
  • the self-moving device 100 moves from the first side of the docking station 220 to the second side of the docking station 220 along the area boundary 200, and when it moves to the turning marker 230, Rotating 150 degrees, because the rotation angle is too large, it is easy to return to a certain boundary position passed by the current return, which is not conducive to shortening the return distance, but makes the self-mobile device 100 pass through the boundary position and steering. An infinite loop is formed between the points.
  • the preset angle is set to be between 30 degrees and 150 degrees, thereby, on the one hand, it can avoid the problem that the rotation angle is too small and difficult to control, and on the other hand, it can also prevent the occurrence of self-moving equipment 100 is stuck in an infinite loop and cannot be returned.
  • the preset angle can be 30 degrees or 50 degrees or 90 degrees or 130 degrees or 150 degrees, etc., and can be set according to the actual terrain, as long as the effect of shortening the return distance can be achieved after turning.
  • the preset angle is 90 degrees, that is, when moving from the mobile device 100 to the turning marker 230, it can be turned toward the inside of the working area 210 and turned 90 degrees to realize turning.
  • the preset angle of 90 degrees is convenient for steering control of the mobile device, and also helps the user to quickly locate a suitable position for setting the marking device 230 , and the above-mentioned series of problems caused by the angle being too small or too large are less likely to occur.
  • the self-moving device 100 may include an angle adjustment device connected to the body and configured to adjust a preset angle. That is, the user can adjust the preset angle through the angle adjustment device according to actual needs to adapt to different terrains.
  • the area boundary 200 includes an obstacle boundary 300 , and the obstacle boundary 300 is used to define the area where the obstacle is located.
  • the obstacles may include objects such as pools, trees, and sculptures in the work area 210 that may easily interfere with the movement of the self-mobile device 100 .
  • the obstacle boundary 300 is often connected with the non-obstruction boundary in the area boundary 200.
  • the traditional method is to follow the obstacle from the mobile device 100. After the boundary 300 bypasses the obstacle or moves around the obstacle for a predetermined number of times, it leaves the obstacle boundary, and continues to move after finding the non-obstacle boundary.
  • the turning marker 230 may also be provided on the obstacle boundary 300 .
  • the control device 130 controls the self-moving device 100 to turn toward the inside of the working area 210 according to a preset angle when the identification detecting device 120 detects the turning marker 230, to escape the obstacle boundary 300.
  • Setting the turning marker 230 on the obstacle boundary 300 is, on the one hand, to make the self-mobile device 100 quickly leave the obstacle area and return to the non-obstruction boundary;
  • the angle of the internal turning so that after turning, it can move to the area boundary 200 closer to the docking station 220 through a shortcut, and continue to move to the docking station 220 along the area boundary 200, thereby shortening the return distance and return from the mobile device 100 total duration.
  • the self-mobile device 100 searches for the area boundary 200, moves along the area boundary 200 to the obstacle boundary 300, and turns away from the obstacle boundary 300 when the turning marker 230 is detected, and moves to At the area boundary 200 in the forward direction, the path experienced in the process of continuing to move along the area boundary 200 to the docking station 220 is defined as a third path, that is, the path shown in FIG. 5 . It can be seen that the distance from the mobile device 100 when it moves to the docking station 220 according to the third path is less than or equal to the distance when it moves to the docking station 220 according to the first path.
  • the turning marker 230 is disposed at a preset position on the obstacle boundary 300 .
  • the marker detection device 120 detects the turning marker 230, it controls the self-mobile device 100 to turn toward the inside of the work area according to a preset angle, and searches for the area boundary 200 in the forward direction after the turning is completed, and when the self-moving device 100 is turned toward the inside of the work area at a preset angle
  • the control self-mobile device 100 continues to move along the area boundary 200 .
  • the turning marker 230 may be disposed at a position where the obstacle boundary 300 is close to the docking station 220 .
  • the obstacle boundary 300 is usually a closed shape, such as a rectangle, a circle, or an irregular shape, etc., and there are usually some areas facing the docking station 220 and other areas facing away from the docking station 220 .
  • the position of the obstacle boundary 300 close to the docking station 220 in this embodiment refers to the area where the obstacle boundary 300 faces the docking station 220, and the position of the area boundary 200 found again after turning at this position is located at the current The location that has not been passed during the second return, and the location that is found again is not a location far away from the docking station 220 .
  • the turning marker 230 is set at a position on the obstacle boundary 300 facing away from the docking station 220, after the mobile device 100 completes the turning, it often reaches a position far away from the docking station 220, or even returns to the starting point. For example, you can It is the left side of the docking station 220 in FIG. 5 or the upper side of the docking station 220 in FIG. 6 , or the position of the area boundary 200 found again after turning from the mobile device 100 at the turning marker 230 on the obstacle boundary 300 is located at At the position passed by during the current return, the self-mobile device 100 needs to return along the boundary close to the entire area, which increases the return time. In view of this, in this embodiment, the turning marker 230 is set at the position of the obstacle boundary 300 close to the docking station 220. After the turning is completed, it can be found
  • the control device 130 controls the self-moving device 100 to not perform the steering and move in the original direction; or, adjust the preset The angle is controlled from the mobile device 100 to turn toward the inside of the working area 210 according to the adjusted angle.
  • the self-mobile device 100 may move to the passing position, move again according to the original path, and reach the turning point again , turn back to the original path, and so on, so that the self-moving device 100 falls into an infinite loop.
  • the identification detection device 120 detects a certain turning recognition device
  • it detects the turning recognition device again within a preset time period and determines that the self-moving device 120
  • the mobile device 100 falls into an infinite loop.
  • the control device 130 controls the self-mobile device 100 to no longer perform the steering operation when the steering identification device is detected again, but to move along the original path before the steering.
  • control device 130 may also adjust the initially set steering preset angle, and control the self-mobile device 100 to turn toward the inside of the working area 210 according to the adjusted angle.
  • the control device 130 can reduce the steering preset angle, that is, reduce the steering amplitude. While shortening the return distance, it can prevent the self-moving device 100 from returning to the area boundary 200 passed by due to the excessive steering amplitude. Stuck in an infinite loop.
  • the adjustment of the preset angle can also be implemented by the user through the angle adjustment device on the fuselage.
  • control device 130 in the non-return mode, is configured to: turn off the marker detection device 120; or, when the marker detection device 120 detects the turning marker 230, control the self-mobile device 100 to continue along the original path Work.
  • the non-regressive mode may include an edgewise mode and a normal operation mode.
  • the control device 130 In the edgewise mode, the control device 130 is configured to control the self-mobile device 100 to work along the area boundary 200; in the normal operation mode, the control device 130 is configured to control the self The mobile device 100 works inside the work area 210 .
  • the lawn mower needs to deal with weeds at the boundary of the area, and can enter the edge mode.
  • the self-moving device 100 is controlled not to turn when passing the turning marker 230, but continues to work along the area boundary 200, or directly turns off the marker detection device 120, thus avoiding the control process of the path in the above-mentioned regression mode Affects the normal edge-edge operation of the self-mobile device 100 in edge-edge mode.
  • the control process of the path in the above-mentioned regression mode affects the normal operation of the self-mobile device 100 in the normal operation mode.
  • control device 130 may also be configured to: in the normal working mode, when the identification detection device 120 detects the turning of the identification member 130 , control the self-mobile device 100 to turn toward the inside of the working area 210 .
  • the self-mobile device 100 is in the normal working mode, if the self-mobile device 100 moves to the turning marker 230 on the area boundary 200 , the self-mobile device 100 is controlled to be turned toward the inside of the work area 210 to continue to work in the work area 210 .
  • a self-moving device 100 is provided that can be moved in a return mode to a docking station 220 along an area boundary 200 for defining a work area 210 .
  • the self-moving device 100 provided in this embodiment includes a body, a boundary identification device 110 , an identification detection device 120 , and a control device 130 .
  • the boundary recognition device 110 is connected to the fuselage, and is configured to recognize the area boundary 200 .
  • the marker detection device 120 is connected to the fuselage, and is configured to detect the turning marker 230 provided on the area boundary 200 .
  • the control device 130 is electrically connected to the boundary identification device 110 and the identification detection device 120 respectively, and is configured to: in the return mode, control the self-moving device 100 to move along the area boundary 200; when the identification detection device 120 detects the turning identification member 230, then Control the self-mobile device 100 to turn toward the inside of the work area 210 according to a preset angle, and find the area boundary 200 in the forward direction after the steering is completed, and when the self-mobile device 100 finds the area boundary 200 again, control the self-mobile device 100 to continue Move along the area boundary 200 . That is, the self-mobile device 100 is controlled to be turned at a preset position on the area boundary 200 to move according to a second path different from the original first path.
  • the turning marker 230 is set at a preset position on the area boundary 200.
  • the principle of setting the preset position is that the position of the area boundary 200 found again after the mobile device 100 turns at the preset position does not belong to the self-mobile device 100.
  • the distance walking along the area boundary 200 to the stop 220 should be shorter or the same as the distance of the original return path. That is, the distance from the mobile device 100 when it moves to the docking station 220 according to the second path is less than or equal to the distance when it moves to the docking station 220 according to the first path.
  • the traditional regression method is to move to the docking station 220 along the area boundary 200 after the mobile device 100 finds the area boundary 200.
  • the longer the area boundary 200 the longer the return time from the mobile device 100, which reduces the return efficiency.
  • the identification detection device 120 detects the steering marker 230 provided on the area boundary 200 in real time. Then, the first path is no longer maintained, but is turned toward the inside of the work area 210 according to the preset angle, so that the self-mobile device 100 moves to the docking station 220 according to the second path.
  • the distance from the station 220 is less than or equal to the distance when it moves to the docking station 220 according to the first path. Therefore, compared to always returning along the first path, the return method of this solution can effectively shorten the return time from the mobile device 100 and improve the Return efficiency, thereby improving the utilization rate of electricity.
  • the self-moving device 100 may include an input component (not shown).
  • the input assembly is connected to the fuselage, and is configured to receive angle information of a preset angle input by the user; and the control device 130 is electrically connected to the input assembly, and is configured to be in the return mode, when the identification detection device 120 detects the steering identification When the component 230 is activated, the mobile device 100 is controlled to turn toward the inside of the work area according to the input angle information.
  • the input component may be a display panel with a touch function.
  • the display panel may include a liquid crystal display panel, an organic light emitting diode display panel, a quantum dot light emitting diode display panel, a mini light emitting diode display panel, and a micro light emitting diode display panel.
  • a liquid crystal display panel an organic light emitting diode display panel, a quantum dot light emitting diode display panel, a mini light emitting diode display panel, and a micro light emitting diode display panel.
  • the user can adjust the preset angle through the input component according to actual factors such as the topography of the home and the location of the docking station, and then the control device 130 can adjust the steering angle of the self-mobile device according to the input angle information, so as to better realize self-movement Fast return of equipment.
  • the aforementioned angle adjustment device may be integrated into the input component in the form of a touch button.
  • the self-mobile device 100 provided by this embodiment and the automatic working system provided by the foregoing embodiments belong to the same inventive concept.
  • a return control method of the self-moving device 100 is provided.
  • the self-moving device 100 can move to the docking station 220 along the area boundary 200 in the returning mode.
  • the device 120 is configured to detect a turn marker 230 disposed on the zone boundary 200 .
  • the regression control method provided by this embodiment includes the following steps:
  • Step S200 in the regression mode, control the self-mobile device 100 to move along the area boundary 200 .
  • Step S400 when the identification detection device 120 detects the steering identification member 230, controls the self-mobile device 100 to steer toward the interior of the working area 210 according to a preset angle, and searches for the area boundary 200 in the forward direction after the steering is completed;
  • Step S600 when the self-mobile device 100 finds the area boundary 200 again, the self-mobile device 100 is controlled to continue to move along the area boundary 200 .
  • the self-mobile device 100 is controlled to be turned at a preset position on the area boundary 200 to move according to a second path different from the first path.
  • the turning marker 230 is set at a preset position on the area boundary 200.
  • the principle of setting the preset position is that the position of the area boundary 200 found again after the mobile device 100 turns at the preset position does not belong to the self-mobile device 100.
  • the distance walking along the area boundary 200 to the stop 220 should be shorter or the same as the distance of the original return path. That is, the distance from the mobile device 100 when it moves to the docking station 220 according to the second path is less than or equal to the distance when it moves to the docking station 220 according to the first path.
  • the traditional regression method is to move to the docking station 220 along the area boundary 200 after the mobile device 100 finds the area boundary 200 .
  • the turning identification member 230 disposed on the area boundary 200 is detected in real time by the identification detection device 120. If detected, it will no longer be maintained.
  • the first path advances, but turns toward the inside of the work area 210 according to a preset angle, so that the self-mobile device 100 moves to the docking station 220 according to the second path.
  • the distance is less than or equal to the distance when it moves to the docking station 220 according to the first path. Therefore, compared to always returning along the first path, the regression method of this solution can effectively shorten the return time from the mobile device 100, improve the return efficiency, and further Improve the utilization of electricity.
  • step S200 when the self-mobile device 100 enters the regression mode, the self-mobile device 100 is first controlled to search for the area boundary 200, and after the area boundary 200 is found, the self-mobile device 100 is controlled to dock along the area boundary 200 toward the area boundary 200.
  • Station 220 moves. That is, the first path refers to the path corresponding to the whole process of finding the area boundary 200 after the self-mobile device 100 enters the regression mode, and then moving along the area boundary 200 to the docking station 220 after finding the area boundary 200.
  • step S400 and step S600 when the self-mobile device 100 moves toward the docking station 220 along the area boundary 200, the identification detection device 120 detects the turning indicator 230 on the area boundary 200, and controls the self-mobile device 100 to escape from the first One path turns toward the inside of the work area 210 according to a preset angle, switches to the second path, and moves to the docking station 220 . Since the distance from the mobile device 100 when it moves to the docking station 220 according to the second path is less than or equal to the distance when it moves to the docking station 220 according to the first path, the return distance and return time can be shortened.
  • the self-mobile device 100 firstly control the self-mobile device 100 to complete the turning according to the preset angle, then control the self-mobile device 100 to move forward in the forward direction after the turning is completed, and search for the area boundary 200 in the forward direction during the forward process, and then find the After reaching the area boundary 200 in the forward direction, it returns to the area boundary 200 again, and moves toward the docking station 220 along the area boundary 200 .
  • the second path refers to that the self-mobile device 100 searches for the area boundary 200 after entering the regression mode, and moves toward the docking station 220 along the area boundary 200 after finding the area boundary 200.
  • the area boundary 200 in the forward direction is searched again, and after finding the area boundary 200, the whole process corresponds to the path corresponding to the whole process of moving along the area boundary 200 to the docking station 220 again.
  • the self-mobile device 100 Since the self-mobile device 100 turns toward the working area 210 in advance in the process of moving toward the docking station 220 along the area boundary 200, the area boundary 200 in the forward direction after the self-mobile device 100 is turned is closer to the docking station 220, which is equivalent to the self-direction.
  • the mobile device 100 traverses the work area 210 in the process of returning along the area boundary 200, and directly reaches the area boundary 200 that is closer to the docking station 220 through a shortcut and continues to move toward the docking station 220, so the length of the second path is less than or equal to the first path. The length of the path enables fast return from the mobile device 100 .
  • the area boundary 200 includes an obstacle boundary 300 , the obstacle boundary 300 is used to define an obstacle, and the obstacle boundary 300 is provided with a turning marker 230 .
  • the obstacles may include objects such as pools, trees, and sculptures in the work area 210 that may easily interfere with the movement of the self-mobile device 100 .
  • the obstacle boundary 300 is often connected with the non-obstruction boundary on the area boundary 200. When the self-mobile device 100 moves from the area boundary 200 to the obstacle, the traditional way is to bypass the self-mobile device 100 along the obstacle boundary 300. The obstacle then returns to the non-obstruction boundary and continues to move.
  • the regression control method provided in this embodiment further includes: in the regression mode, when the self-moving device 100 moves along the obstacle boundary 300 and the marker detecting device 120 detects the turning marker 230, controlling the self-moving device 100 to follow a preset angle Steer toward the interior of the work area 210 to clear the obstacle boundary 300 .
  • the self-mobile device 100 is quickly removed from the obstacle area and back to the non-obstruction boundary on the area boundary 200 .
  • the turning marker 230 is arranged at a preset position on the obstacle boundary 300; the regression control method provided in this embodiment further includes: in the regression mode, when the marker detecting device 120 detects the turning marker 230, then controlling the self-moving device 100 turns toward the inside of the work area 210 according to a preset angle, and searches for the area boundary 200 in the forward direction after the steering is completed, and when the self-mobile device 100 finds the area boundary 200 again, controls the self-mobile device 100 to continue along the area boundary 200 move.
  • the self-mobile device 100 can also move through a shortcut after turning.
  • the regression control method from the mobile device 100 provided in this embodiment belongs to the same inventive concept as the automatic working system provided in the foregoing embodiments.
  • For the specific content of the regression control method from the mobile device 100 provided in this embodiment please refer to the foregoing embodiments. Corresponding descriptions are not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自移动设备(100)及其回归控制方法、自动工作系统。系统包括:转向标识件(230)和自移动设备(100),转向标识件(230)设置于区域边界(200)上的至少一处预设位置;自移动设备(100)可在回归模式下沿区域边界(200)移动至停靠站(220);自移动设备(100)包括边界识别装置(110)、标识检测装置(120)和控制装置(130),边界识别装置(110)被配置为识别区域边界(200);标识检测装置(120)被配置为检测转向标识件(230);控制装置(130)被配置为:在回归模式下,控制自移动设备(100)沿区域边界(200)移动,当标识检测装置(120)检测到转向标识件(230),控制自移动设备(100)按照预设角度朝工作区域(210)内部转向,并寻找转向完成后的前进方向上的区域边界(200),以及当自移动设备(100)再次寻找到区域边界(200)时,控制自移动设备(100)继续沿区域边界(200)移动。由此可缩短回归时间,提高回归效率。

Description

自移动设备及其回归控制方法、自动工作系统
相关申请
本申请要求2020年12月22日申请的,申请号为202011514815.3,名称为“自移动设备的自动回归系统和自移动设备”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及自动控制技术领域,特别是涉及一种自移动设备及其回归控制方法、自动工作系统。
背景技术
自移动设备是指无需人工操作,可以实现自动移动的设备。比如:智能割草机、扫地机器人等。自移动设备在工作结束或者电量不足的情况下,需要回归停靠站(比如:充电桩、充电基座等)进行充电或停靠。
以自移动设备为智能割草机为例,需要进行工作的区域通常通过在草地上铺设信号线围成,停靠站设置在信号线上。当智能割草机需要回归停靠站时,智能割草机则沿着信号线移动即可回归停靠站。
然而,随着工作区域的扩大,信号线的铺设长度也随之增大,自移动设备在回归停靠站的过程中沿着信号线移动的距离也会增大,这就会导致自移动设备回归停靠站的回归时间长、回归效率较低的问题。
发明内容
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。
根据本申请的各种实施例,提供一种自移动设备及其回归控制方法、自动工作系统。
根据本申请的一个方面,提供了一种自动工作系统,包括:
转向标识件,设置于区域边界上的至少一处预设位置,所述区域边界用于限定工作区域;
自移动设备,可在回归模式下沿第一路径移动至所述区域边界上的停靠站,所述第一路径包括所述自移动设备沿所述区域边界移动至所述停靠站的路径;
所述自移动设备包括:
机身;
边界识别装置,连接所述机身,被配置为识别所述区域边界;
标识检测装置,连接所述机身,被配置为检测所述转向标识件;
控制装置,分别电性连接所述边界识别装置和所述标识检测装置,被配置为:
在所述回归模式下,控制所述自移动设备沿所述区域边界移动,当所述标识检测装置检测到所述转向标识件,则控制所述自移动设备按照预设角度朝所述工作区域内部转向,并寻找转向完成后的前进方向上的所述区域边界,以及当所述自移动设备再次寻找到所述区域边界时,控制所述自移动设备继续沿所述区域边界移动。
在其中一个实施例中,每一处的所述转向标识件均包含至少两个磁性件,所述标识检测装置包括磁场传感器。
在其中一个实施例中,同一处的相邻所述磁性件之间的间隔位于5cm-40cm之间。
在其中一个实施例中,所述磁性件包括磁条,所述磁条横贯所述区域边界。
在其中一个实施例中,所述磁条垂直于所述区域边界。
在其中一个实施例中,沿垂直于地面的方向,所述自移动设备沿所述区域边界移动时所述磁场传感器于地面具有第一投影,所述磁条于地面具有第二投影;其中,所述第一投影的中心与所述第二投影的中心的连线与所述预设位置处的区域边界平行。
在其中一个实施例中,所述预设角度位于30度-150度之间。
在其中一个实施例中,所述预设角度为90度。
在其中一个实施例中,所述区域边界包括障碍物边界,所述障碍物边界用于限定障碍物所处的区域,所述障碍物边界上设置有所述转向标识件;
在所述回归模式下,当所述自移动设备沿所述障碍物边界移动时,所述控制装置在所述标识检测装置检测到所述转向标识件时,控制所述自移动设备按照所述预设角度朝所述工作区域内部转向,以脱离所述障碍物边界。
在其中一个实施例中,所述转向标识件设置于所述障碍物边界上的预设位置处;
在所述回归模式下,当所述标识检测装置检测到所述转向标识件,则控制所述自移动设备按照所述预设角度朝所述工作区域内部转向,并寻找转向完成后的前进方向上的所述区域边界,以及当所述自移动设备再次寻找到所述区域边界时,控制所述自移动设备继续沿所述区域边界移动。
在其中一个实施例中,在非回归模式下,所述控制装置被配置为:
关闭所述标识检测装置;或,
当所述标识检测装置检测到所述转向标识件时,控制所述自移动设备继续 沿原路径工作。
在其中一个实施例中,所述非回归模式包括沿边模式和普通工作模式,在所述沿边模式下,所述控制装置被配置为控制所述自移动设备沿所述区域边界工作;在所述普通工作模式下,所述控制装置被配置为控制所述自移动设备在所述工作区域内部工作。
根据本申请的另一个方面,提供了一种自移动设备,所述自移动设备在回归模式下可沿区域边界移动至停靠站,所述区域边界用于限定工作区域;所述自移动设备包括:
机身;
边界识别装置,连接所述机身,被配置为识别所述区域边界;
标识检测装置,连接所述机身,被配置为检测设置于所述区域边界上的转向标识件;
控制装置,分别电性连接所述边界识别装置和所述标识检测装置,被配置为:
在所述回归模式下,控制所述自移动设备沿所述区域边界移动;当所述标识检测装置检测到所述转向标识件,则控制所述自移动设备按照预设角度朝所述工作区域内部转向,并寻找转向完成后的前进方向上的所述区域边界,以及当所述自移动设备再次寻找到所述区域边界时,控制所述自移动设备继续沿所述区域边界移动。
在其中一个实施例中,所述自移动设备还包括:
输入组件,连接所述机身,被配置为接收用户输入的所述预设角度的角度信息;且,
所述控制装置与所述输入组件电性连接,被配置为在所述回归模式下,当所述标识检测装置检测到所述转向标识件时,控制所述自移动设备按照输入的角度信息朝所述工作区域内部转向。
根据本申请的又一个方面,提供了一种自移动设备的回归控制方法,所述自移动设备在回归模式下可沿所述区域边界移动至停靠站,所述自移动设备包括标识检测装置,所述标识检测装置被配置为检测设置于区域边界上的转向标识件,
所述回归控制方法包括:
在所述回归模式下,控制所述自移动设备沿所述区域边界移动;
当所述标识检测装置检测到所述转向标识件时,控制所述自移动设备按照预设角度朝所述工作区域内部转向,并寻找转向完成后的前进方向上的所述区域边界;
当所述自移动设备再次寻找到所述区域边界时,控制所述自移动设备继续沿所述区域边界移动。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请一实施例提供的自动行走系统的应用场景图;
图2为本申请一实施例提供的自动行走系统中自移动设备的结构示意图;
图3为传统方式下自动行走设备的回归路径示意图;
图4为本申请一实施例提供的自动行走系统中自移动设备的回归路径示意图;
图5为本申请另一实施例提供的自动行走系统中自移动设备的回归路径示意图;
图6为本申请又一实施例提供的自动行走系统中自移动设备的回归路径示意图;
图7为本申请一实施例提供的自动行走系统中自移动设备回归过程中陷入死循环的路径示意图;
图8为本申请一实施例提供的自移动设备的回归控制方法的流程框图。
附图标记说明:
100、自移动设备;110、边界识别装置;120、标识检测装置;130、控制装置;
200、区域边界;210、工作区域;220、停靠站;230、转向标识件;231、磁性件;
300、障碍物边界。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术 领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
正如背景技术所述,当自移动设备需回归至信号线上的停靠站时,其往往是沿着信号线移动直至到达停靠站。但是由于工作区域不断扩大,信号线的铺设长度也会不断增大,这使得自移动设备的回归距离增大,回归时间延长,导致回归效率较低,自移动设备的电量利用率较低。
针对上述问题,本申请提供了一种自动工作系统、自移动设备以及自移动设备的回归控制方法,以缩短自移动设备的回归时长,提高回归效率。
在一个实施例中,提供了一种自动工作系统,包括转向标识件230和自移动设备100。
具体地,参照图1,自动工作系统包括区域边界200,区域边界200用于限定工作区域210,区域边界200上设置有停靠站220。其中,区域边界200可以是实体的电线,也可以是虚拟的边界。自移动设备100在普通工作模式下可以在区域边界200限定的工作区域210内移动和工作,在回归模式下可以沿区域边界200朝向停靠站220移动,进而回归至停靠站220充电或停靠。
转向标识件230起到的作用是触发自移动设备100转向,使用时,用户可以预先确定自移动设备100需要转向的位置,并将转向标识件230设置于该位置处,进而当自移动设备100移动至该位置处时,可以触发自移动设备100转向。具体地,转向标识件230设置于区域边界200上的至少一处预设位置,在实际应用中,可以在区域边界200的一处预设位置设置转向标识件230,也可以在两处预设位置或三处预设位置或更多预设位置处均设置转向标识件230,具体可根据实际需求而定,目的均是通过控制自移动设备100在回归过程中于合适的位置处转向,以缩短自移动设备100的回归距离和回归时长。
当自移动设备100检测到自身电量不足或发生其他需要返回充电站的情况时,自移动设备100进入回归模式。在回归模式下,自移动设备100可沿第一路径移动至区域边界200上的停靠站220(如图3所示),第一路径包括自移动设备100沿区域边界200移动至停靠站220的路径。一般地,自移动设备100进入回归模式后,首先寻找区域边界200,找到区域边界200之后即沿区域边界200朝向停靠站220移动,直至到达停靠站220。
参照图2,本实施例中,自移动设备100包括机身、边界识别装置110、标识检测装置120以及控制装置130。
其中,机身连接有移动组件,移动组件带动机身移动。移动组件可以包括移动滚轮,移动滚轮的数量可以为一个或两个或更多,本实施例中,移动组件为三轮驱动组件,该三轮驱动组件包括位于机身两侧的两个移动滚轮,该两个移动滚轮关于机身的中轴线对称设置。
边界识别装置110连接机身,被配置为识别区域边界200。边界识别装置110可以包括霍尔传感器,霍尔传感器通过检测区域边界200所产生的磁场信号,进而识别出区域边界200的位置。在回归模式下,自移动设备100可根据边界识别装置110的边界识别结果寻找区域边界200。
标识检测装置120连接机身,被配置为检测转向标识件230。标识检测装置120设置于机身上,当自移动设备100移动至转向标识件230附近时,标识检测装置120能够检测到转向标识件230,进而控制装置130控制自移动设备100转向。
其中,标识检测装置120与转向标识件230相互匹配设置,匹配的方式具有多种。具体地,可以根据磁信号的检测方式设置标识检测装置120和转向标识件230,例如,转向标识件230设置为磁性件231,标识检测装置120设置为检测磁性件231的磁场传感器;或者根据图像信号的检测方式设置标识检测装置120和转向标识件230,例如,转向标识件230设置为标识图形,转向标识件230设置为扫描标识图形的图形扫描组件(如摄像头或条码扫描器等)。以上仅列举出两种匹配方式,其他能够实现检测功能的匹配方式也可以应用于本方案中,在此不做限定。
控制装置130分别电性连接边界识别装置110和标识检测装置120,被配置为:
在回归模式下,控制自移动设备100沿区域边界200移动,当标识检测装置120检测到转向标识件230,则控制自移动设备100按照预设角度朝工作区域210内部转向,并寻找转向完成后的前进方向上的区域边界200,以及当自移动设备100再次寻找到区域边界200时,控制自移动设备100继续沿区域边界200 移动。即,控制自移动设备100在区域边界200上的预设位置处转向,以按照区别于第一路径的第二路径移动。
本实施例中,预设位置的设置原则是,自移动设备100在预设位置处转向后所再次寻找到的区域边界200的位置不属于自移动设备100在转向之前途径过的位置,以再次寻找到的区域边界200的位置为起点,沿区域边界200行走至停靠站220的距离应当比原始回归路径的距离更短或相同。即,自移动设备100按照第二路径移动至停靠站220时的距离小于或等于其按照第一路径移动至停靠站220时的距离。
例如,可以如图4或图5或图6中的设置方式设置转向标识件230的位置,以缩短回归路径,相应的,图4或图5或图6中转向标识件230的设置位置便属于前述预设位置的范畴;而若如图7中的设置方式,自移动设备100则会在转向标识件230处转向后又回到转向之前途径过的位置,进而陷入死循环,无法回归,相应的,图7中转向标识件230的设置位置便不属于前述预设位置的范畴。
如前文所述,参照图3,传统的回归方式是自移动设备100找到区域边界200之后,沿区域边界200移动至停靠站220,区域边界200越长,则自移动设备100的回归时间越久,降低了回归效率。本实施例中,参照图4,当自移动设备100沿区域边界200朝向停靠站220移动的过程中,通过标识检测装置120实时检测设置于区域边界200上的转向标识件230,若检测到,则不再保持第一路径前进,而是按照预设角度朝工作区域210内部转向,以使自移动设备100按照第二路径移动至停靠站220,由于自移动设备100按照第二路径移动至停靠站220时的距离小于或等于其按照第一路径移动至停靠站220时的距离,因此,相对于始终沿第一路径的回归方式,本方案的回归方式可有效缩短自移动设备100的回归时间,提高回归效率,进而可节约电量,提高电量的利用率。
本实施例中,第一路径指的是,自移动设备100在进入回归模式后,寻找区域边界200,并在找到区域边界200后沿区域边界200移动至停靠站220这整个过程所对应的路径,可选的,如图3中所示路径。第二路径指的是,自移动设备100在进入回归模式后,寻找区域边界200,并在找到区域边界200后沿区域边界200朝向停靠站220移动,并在检测到转向标识件230时朝工作区域210内部转向,重新寻找前进方向上的区域边界200,并在找到区域边界200后再次沿区域边界200移动至停靠站220这整个过程所对应的路径,可选的,如图4中所示路径。
由于自移动设备100在沿区域边界200朝向停靠站220的移动过程中,提前朝工作区域210内转向,使得自移动设备100转向后的前进方向上的区域边 界200更趋近停靠站220,换言之,即使自移动设备100在沿区域边界200回归过程中横穿工作区域210,通过一捷径直接到达更接近停靠站220的区域边界200处再继续朝停靠站220移动,因此第二路径的长度可小于或等于第一路径的长度,大部分情况下,第二路径的长度可小于第一路径的长度。
需要说明的是,第一路径与第二路径存在区别,也存在重叠。假设,区域边界200的A点设置有转向标识件230,自移动设备100在沿区域边界200移动至A点时发生转向,并移动至前进方向上区域边界200的B点,以B点为起点继续沿区域边界200移动至停靠站220,那么第一路径和第二路径的重叠区域可包括自移动设备100在A点发生转向之前的路径以及以B点为起点继续沿区域边界200移动的路径,区别则在于,在第一路径中,自移动设备100是沿区域边界200由A点行进到B点;而在第二路径中,自移动设备100是沿A点到B点的直线轨迹由A点行进到B点。显然,第二路径短于第一路径。
本实施例中,第一路径与第二路径可以为逆时针方向或顺时针方向,一般情况下,第一路径与第二路径均为逆时针方向,从而方便自移动设备100与充电站200的对接充电。
在其中一个实施例中,参照图4,每一处的转向标识件230均包含至少两个磁性件231,标识检测装置120包括磁场传感器。
通过磁场传感器与磁性件231的匹配方式,较为简便,且易操作、成本低。由于在实际应用中,有可能会出现以磁性件231作为区域边界200的情况,因此,为了与作为区域边界200的磁性件231进行区分,本实施例在每一处转向处均设置至少两个磁性件231,由于磁场传感器检测到一个磁性件231的结果与检测到两个以上磁性件231的结果不同,因此,控制模块可根据磁场传感器的检测结果准确判断自移动设备100是否到达了转向标识件230处,避免出现误判。
在实际应用中,磁场传感器在检测到磁性件231后,对磁性件231进行计数,若在预设检测时长内检测到的磁性件231的个数大于等于2,则确定其检测到的是转向标识件230。
在其中一个实施例中,同一处的相邻磁性件231之间的间隔位于5cm-40cm之间。其中,相邻磁性件231之间的间隔可以设为5cm或10cm或30cm或40cm等。
当自移动设备100移动至转向标识件230处时,标识检测装置120会逐个检测到同一处的各个磁性件231,当相邻磁性件231之间的间隔越短,标识检测装置120的检测间隔时间则越短,反之越长。因此可根据相邻磁性件231之间的间隔长短确定标识检测装置120的预设检测时长,例如,相邻磁性件231之 间间隔为5cm时,判断在较短的预设检测时长内检测到的磁性件231的个数是否大于等于2,相邻磁性件231之间间隔为40cm时,则判断在较长的预设检测时长内检测到的磁性件231的个数是否大于等于2。若相邻磁性件231之间的间隔小于5cm,则容易因自移动设备的行驶速度较快而发生漏记、错记的情形;若相邻磁性件231之间的间隔大于40cm,则容易导致自移动设备100的反应时间和反应距离过长,从而对自移动设备100的电量造成浪费。
在其中一个实施例中,同一处的相邻磁性件231之间的间隔为30cm。间隔设置为30cm,可在一定程度上更利于标识检测装置120对磁性件231进行计数,避免漏记、错记等情形,同时避免自移动设备100的电量浪费。
在其中一个实施例中,磁性件231包括磁条,磁条横贯区域边界200。由于在实际应用中,有可能会出现以磁条作为区域边界200的情况,因此,为了进一步与作为区域边界200的磁条进行区分,本实施例将作为转向标识件230的磁条设置为横贯区域边界200,由于磁场传感器对不同角度设置的磁条的检测结果不同,因此,控制模块可根据磁场传感器的检测结果准确判断自移动设备100是否移动至转向标识件230处,避免出现误判。
其中,磁条横贯区域边界200是指磁条与区域边界200交叉设置,磁条与区域边界200之间的夹角大于0度且小于180度。在其中一个实施例中,磁条与区域边界200之间的夹角为90度,即磁条垂直于区域边界200设置。
在其中一个实施例中,沿垂直于地面的方向,自移动设备100沿区域边界200移动时,磁场传感器于地面具有第一投影,磁条于地面具有第二投影,其中,第一投影的中心与第二投影的中心的连线与预设位置处的区域边界200平行。考虑到磁条的磁场分布特性,使第一投影的中心与第二投影的中心的连线与预设位置处的区域边界200平行,有利于方便磁场传感器检测其两侧的磁场强度变化,从而能够更准确地检测出磁条。可选的,磁场传感器包括地磁传感器。
在其中一个实施例中,预设角度位于30度-150度之间。在实际应用中,当预设角度小于30度时,自移动设备100易出现小角度转向难以控制的情况,并且转动角度过小,并不能有效缩短回归距离;当预设角度大于150度时,自移动设备100易出现陷入死循环的情况,例如,自移动设备100由停靠站220的第一侧沿区域边界200朝向停靠站220的第二侧移动,当移动至转向标识件230处时,转动150度,由于转动角度过大,极易在当次回归时再次回到途径过的某个边界位置,不但不利于缩短回归距离,反而使自移动设备100在途径过的该边界位置和转向点之间形成死循环移动。
基于上述考虑,本实施例中,将预设角度设置为30度-150度之间,由此,一方面可避免转动角度过小而难控制的问题,另一方面也可以防止出现自移动 设备100陷入死循环、无法回归的问题。
其中,预设角度可以为30度或50度或90度或130度或150度等,可根据实际地形设定,只要在转向后能够实现缩短回归距离的效果均可。在其中一个实施例中,预设角度为90度,即,当自移动设备100移动至转向标识件230处时,可朝向工作区域210内部,转动90度实现转向。90度的预设角度便于自移动设备的转向控制,也有利于用户快速定位出适合设置标识装置230的位置,且不易出现角度过小或过大而导致的上述系列问题。
需要说明的是,受限于自移动设备100本身的控制精度,在实际转向过程中,在设定的预设角度基础上可能会出现±2度至±3度的微小误差,但并不影响实施本方案。
在其中一个实施例中,自移动设备100可以包括角度调节装置,角度调节装置连接机身,被配置为调节预设角度。即,用户可以根据实际需求通过角度调节装置来调节预设角度,以适应不同的地形。
在其中一个实施例中,参照图5,区域边界200包括障碍物边界300,障碍物边界300用于限定障碍物所处的区域。其中,障碍物可以包括工作区域210内的水池、树木、雕塑等易对自移动设备100的移动造成干扰的物体。障碍物边界300往往与区域边界200中的非障碍物边界连接在一起,回归模式下,当自移动设备100由区域边界200移动至障碍物处时,传统的方式是自移动设备100沿障碍物边界300绕过障碍物后或是绕障碍物移动预定圈数后再离开障碍物边界,寻找到非障碍物边界后继续移动。
本实施例中,在障碍物边界300上也可以设置转向标识件230。在回归模式下,当自移动设备100沿障碍物边界300移动时,控制装置130在标识检测装置120检测到转向标识件230时,控制自移动设备100按照预设角度朝工作区域210内部转向,以脱离障碍物边界300。在障碍物边界300上设置转向标识件230,一方面是为了使自移动设备100迅速脱离障碍物区域,重新回到非障碍物边界上;另一方面通过设定自移动设备100朝工作区域210内部转向的角度,使得转向之后可通过一捷径移动至更接近停靠站220的区域边界200处,并继续沿区域边界200移动至停靠站220,由此可缩短自移动设备100的回归距离和回归总时长。
本实施例中,将自移动设备100进入回归模式后,寻找区域边界200,沿区域边界200移动至障碍物边界300,并在检测到转向标识件230时转向脱离障碍物边界300,并移动至前进方向上的区域边界200处,继续沿区域边界200移动至停靠站220这一过程所经历的路径定义为第三路径,即图5中所示路径。可以看到,自移动设备100按照第三路径移动至停靠站220时的距离小于或等于 其按照第一路径移动至停靠站220时的距离。
在其中一个实施例中,参照图5和图6,转向标识件230设置于障碍物边界300上的预设位置处。
在回归模式下,当标识检测装置120检测到转向标识件230,则控制自移动设备100按照预设角度朝工作区域内部转向,并寻找转向完成后的前进方向上的区域边界200,以及当自移动设备100再次寻找到区域边界200时,控制自移动设备100继续沿区域边界200移动。
具体地,转向标识件230可以设置于障碍物边界300靠近停靠站220的位置处。障碍物边界300往往是一个封闭形状,例如矩形或圆形或不规则形等,其往往有部分区域面向停靠站220,而另一部分区域背对停靠站220。本实施例中所说的障碍物边界300靠近停靠站220的位置指的是,障碍物边界300面向停靠站220的区域,且在该位置处转向后再次找到的区域边界200的位置位于在当次回归时未途径过的位置,且再次找到的位置也不是距离停靠站220较远的位置。假设将转向标识件230设置于障碍物边界300上背对着停靠站220的位置,自移动设备100完成转向后往往会到达距离停靠站220较远的位置,甚至会回到出发地,例如可以是图5中停靠站220的左侧或图6中停靠站220的上侧,又或者自移动设备100于障碍物边界300上的转向标识件230处转向后再次找到的区域边界200的位置位于在当次回归时途径过的位置,自移动设备100则需沿接近整个区域边界重新回归,增加了回归时长。鉴于此,本实施例将转向标识件230设置于障碍物边界300靠近停靠站220的位置,当其完成转向后,能够找到
捷径以快速到达更加接近停靠站220的区域边界200处,进而继续沿区域边界200移动至停靠站220。
在其中一个实施例中,当在移动过程中,标识检测装置120重复检测到同一处转向标识件230时,控制装置130控制自移动设备100不进行转向,按照原方向移动;或者,调整预设角度,控制自移动设备100按照调整后的角度朝工作区域210内部转向。
具体地,参照图7,由于地形原因,在自移动设备100按前述方案在某转向点进行转向后,其有可能会移动至途径过的位置,又再次按照原路径移动,再次到达该转向点,转向又回到原路径,如此往复,进而使自移动设备100陷入死循环中。为了避免自移动设备100陷入死循环,本实施例中,可以设定,当标识检测装置120检测到某转向识别装置后,其在预设时长内又再次检测到该转向识别装置时,确定自移动设备100陷入死循环中,此时控制装置130控制自移动设备100在再次检测到该转向识别装置时,不再执行转向操作,而仍沿 转向前的原路径移动。
作为替换方式,控制装置130也可以调整最初设定的转向的预设角度,并控制自移动设备100按照调整后的角度朝工作区域210内部转向。具体地,控制装置130可以缩小转向预设角度,即减小转向幅度,在缩短回归距离的同时,能够避免自移动设备100因转向幅度过大而又重新回到途径过的区域边界200上,陷入死循环。其中,对预设角度的调整也可以由用户通过机身上的角度调节装置实施。
在其中一个实施例中,在非回归模式下,控制装置130被配置为:关闭标识检测装置120;或,当标识检测装置120检测到转向标识件230时,控制自移动设备100继续沿原路径工作。
其中,非回归模式可以包括沿边模式和普通工作模式,在沿边模式下,控制装置130被配置为控制自移动设备100沿区域边界200工作;在普通工作模式下,控制装置130被配置为控制自移动设备100在工作区域210内部工作。
例如割草机需针对区域边界处的杂草进行处理,即可进入沿边模式。在沿边模式下,控制自移动设备100在经过转向标识件230时不进行转向,而是继续沿区域边界200工作,或者直接关闭标识检测装置120,因此避免了上述回归模式下对路径的控制过程影响自移动设备100在沿边模式下的正常沿边工作。同理,也可以避免上述回归模式下对路径的控制过程影响自移动设备100在普通工作模式下的正常工作。
在其中一个实施例中,控制装置130还可以被配置为:在普通工作模式下,当标识检测装置120检测到转向标识件130时,控制自移动设备100朝工作区域210内部转向。当自移动设备100处于普通工作模式下时,若其移动至区域边界200上的转向标识件230处时,则控制自移动设备100朝工作区域210内部转向,以继续回到工作区域210内部工作。
在一个实施例中,提供了一种自移动设备100,自移动设备100可在回归模式下沿区域边界200移动至停靠站220,区域边界200用于限定工作区域210。
参照图2,本实施例所提供的自移动设备100包括机身、边界识别装置110、标识检测装置120以及控制装置130。
边界识别装置110连接机身,被配置为识别区域边界200。标识检测装置120连接机身,被配置为检测设置于区域边界200上的转向标识件230。控制装置130分别电性连接边界识别装置110和标识检测装置120,被配置为:在回归模式下,控制自移动设备100沿区域边界200移动;当标识检测装置120检测到转向标识件230,则控制自移动设备100按照预设角度朝工作区域210内部转 向,并寻找转向完成后的前进方向上的区域边界200,以及当自移动设备100再次寻找到区域边界200时,控制自移动设备100继续沿区域边界200移动。即,控制自移动设备100在区域边界200上的预设位置处转向,以按照区别于原有的第一路径的第二路径移动。
转向标识件230设置于区域边界200上的预设位置,预设位置的设置原则是,自移动设备100在预设位置处转向后所再次寻找到的区域边界200的位置不属于自移动设备100在转向之前途径过的位置,以再次寻找到的区域边界200的位置为起点,沿区域边界200行走至停靠站220的距离应当比原始回归路径的距离更短或相同。即,自移动设备100按照第二路径移动至停靠站220时的距离小于或等于其按照第一路径移动至停靠站220时的距离。
参照图3,传统的回归方式是自移动设备100找到区域边界200之后,沿区域边界200移动至停靠站220,区域边界200越长,则自移动设备100的回归时间越久,降低了回归效率。本实施例中,参照图4,当自移动设备100沿区域边界200朝向停靠站220移动的过程中,通过标识检测装置120实时检测设置于区域边界200上的转向标识件230,若检测到,则不再保持第一路径前进,而是按照预设角度朝工作区域210内部转向,以使自移动设备100按照第二路径移动至停靠站220,由于自移动设备100按照第二路径移动至停靠站220时的距离小于或等于其按照第一路径移动至停靠站220时的距离,因此,相对于始终沿第一路径回归,本方案的回归方式可有效缩短自移动设备100的回归时间,提高回归效率,进而提高电量的利用率。
在其中一个实施例中,自移动设备100可以包括输入组件(图未示出)。输入组件连接机身,且被配置为接收用户输入的预设角度的角度信息;且,控制装置130与输入组件电性连接,被配置为在回归模式下,当标识检测装置120检测到转向标识件230时,控制自移动设备100按照输入的角度信息朝工作区域内部转向。可选的,输入组件可以是具有触控功能的显示面板,示例性的,显示面板可以包括液晶显示面板、有机发光二极管显示面板、量子点发光二极管显示面板、迷你发光二极管显示面板和微发光二极管显示面板的任一种或多种的组合。从而,用户可以根据自家地形、停靠站的位置等实际因素通过输入组件来调节预设角度,进而由控制装置130根据输入的角度信息来调整自移动设备的转向角度,以更好地实现自移动设备的快速回归。
可选的,前文所述的角度调节装置可以以触控按钮的形式集成在输入组件中。
本实施例提供的自移动设备100与前述实施例提供的自动工作系统属于同一发明构思,关于本实施例提供的自移动设备100的具体内容可参见前述实施 例中相应描述,在此不再赘述。
在一个实施例中,提供了一种自移动设备100的回归控制方法,自移动设备100在回归模式下可沿区域边界200移动至停靠站220,自移动设备100包括标识检测装置120,标识检测装置120被配置为检测设置于区域边界200上的转向标识件230。
参照图8,本实施例提供的回归控制方法包括以下步骤:
步骤S200、在回归模式下,控制自移动设备100沿区域边界200移动。
步骤S400、当标识检测装置120检测到转向标识件230时,控制自移动设备100按照预设角度朝工作区域210内部转向,并寻找转向完成后的前进方向上的区域边界200;
步骤S600、当自移动设备100再次寻找到区域边界200时,控制自移动设备100继续沿区域边界200移动。
即,控制自移动设备100在区域边界200上的预设位置处转向,以按照区别于第一路径的第二路径移动。
转向标识件230设置于区域边界200上的预设位置,预设位置的设置原则是,自移动设备100在预设位置处转向后所再次寻找到的区域边界200的位置不属于自移动设备100在转向之前途径过的位置,以再次寻找到的区域边界200的位置为起点,沿区域边界200行走至停靠站220的距离应当比原始回归路径的距离更短或相同。即,自移动设备100按照第二路径移动至停靠站220时的距离小于或等于其按照第一路径移动至停靠站220时的距离。
传统的回归方式是自移动设备100找到区域边界200之后,沿区域边界200移动至停靠站220,区域边界200越长,则自移动设备100的回归时间越久,降低了回归效率。本实施例中,当自移动设备100沿区域边界200朝向停靠站220移动的过程中,通过标识检测装置120实时检测设置于区域边界200上的转向标识件230,若检测到,则不再保持第一路径前进,而是按照预设角度朝工作区域210内部转向,以使自移动设备100按照第二路径移动至停靠站220,由于自移动设备100按照第二路径移动至停靠站220时的距离小于或等于其按照第一路径移动至停靠站220时的距离,因此,相对于始终沿第一路径回归,本方案的回归方式可有效缩短自移动设备100的回归时间,提高回归效率,进而提高电量的利用率。
在步骤S200中,当自移动设备100进入回归模式时,首先控制自移动设备100寻找区域边界200,当寻找到区域边界200后,控制自移动设备100沿区域边界200朝向区域边界200上的停靠站220移动。即,第一路径指的是,自移 动设备100在进入回归模式后,寻找区域边界200,并在找到区域边界200后沿区域边界200移动至停靠站220这整个过程所对应的路径。
在步骤S400和步骤S600中,当自移动设备100沿区域边界200朝向停靠站220移动的过程中,标识检测装置120检测到了区域边界200上的转向标识件230,则控制自移动设备100脱离第一路径,按照预设角度朝工作区域210内部转向,切换至第二路径移动至停靠站220。由于自移动设备100按照第二路径移动至停靠站220时的距离小于或等于其按照第一路径移动至停靠站220时的距离,因此可缩短回归距离和回归时间。
即,首先按照预设角度控制自移动设备100完成转向,然后控制自移动设备100沿着转向完成后的前进方向前行,并在前进过程中寻找前进方向上的区域边界200,进而在寻找到前进方向上的区域边界200后,再次回到区域边界200上,并沿区域边界200朝向停靠站220移动。本实施例中,第二路径指的是,自移动设备100在进入回归模式后,寻找区域边界200,并在找到区域边界200后沿区域边界200朝向停靠站220移动,并在检测到转向标识件230时朝工作区域210内部转向,重新寻找前进方向上的区域边界200,并在找到区域边界200后再次沿区域边界200移动至停靠站220这整个过程所对应的路径。
由于自移动设备100在沿区域边界200朝向停靠站220移动过程中,提前朝工作区域210内转向,自移动设备100转向后的前进方向上的区域边界200更趋近停靠站220,相当于自移动设备100在沿区域边界200回归过程中横穿工作区域210,通过一捷径直接到达更接近停靠站220的区域边界200处继续朝停靠站220移动,因此第二路径的长度小于或等于第一路径的长度,能够实现自移动设备100的快速回归。
在其中一个实施例中,区域边界200包括障碍物边界300,障碍物边界300用于限定障碍物,障碍物边界300上设置有转向标识件230。其中,障碍物可以包括工作区域210内的水池、树木、雕塑等易对自移动设备100的移动造成干扰的物体。障碍物边界300往往与区域边界200上的非障碍物边界连接在一起,当自移动设备100由区域边界200移动至障碍物处时,传统的方式是自移动设备100沿障碍物边界300绕过障碍物后再回到非障碍物边界继续移动。
本实施例提供的回归控制方法还包括:在回归模式下,当自移动设备100沿障碍物边界300移动,且标识检测装置120检测到转向标识件230时,控制自移动设备100按照预设角度朝工作区域210内部转向,以脱离障碍物边界300。使自移动设备100迅速脱离障碍物区域,重新回到区域边界200上的非障碍物边界。
转向标识件230设置于障碍物边界300上的预设位置处;本实施例提供的 回归控制方法还包括:在回归模式下,当标识检测装置120检测到转向标识件230,则控制自移动设备100按照预设角度朝工作区域210内部转向,并寻找转向完成后的前进方向上的区域边界200,以及当自移动设备100再次寻找到区域边界200时,控制自移动设备100继续沿区域边界200移动。通过设定自移动设备100朝工作区域210内部转向的角度,和/或将转向标识件230设置在靠近停靠站220的障碍物边界300上,使得转向之后自移动设备100还可通过一捷径移动至更接近停靠站220的区域边界200处,并继续沿区域边界200移动至停靠站220,由此可缩短自移动设备100的回归距离和回归总时长,其中,“靠近停靠站220”的设置方式可参见前述实施例中描述,在此不再赘述。
本实施例提供的自移动设备100的回归控制方法与前述实施例提供的自动工作系统属于同一发明构思,关于本实施例提供的自移动设备100的回归控制方法的具体内容可参见前述实施例中相应描述,在此不再赘述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种自动工作系统,其特征在于,包括:
    转向标识件,设置于区域边界上的至少一处预设位置,所述区域边界用于限定工作区域;
    自移动设备,在回归模式下可沿所述区域边界移动至停靠站;
    所述自移动设备包括:
    机身;
    边界识别装置,连接所述机身,被配置为识别所述区域边界;
    标识检测装置,连接所述机身,被配置为检测所述转向标识件;
    控制装置,分别电性连接所述边界识别装置和所述标识检测装置,被配置为:
    在所述回归模式下,控制所述自移动设备沿所述区域边界移动,当所述标识检测装置检测到所述转向标识件,则控制所述自移动设备按照预设角度朝所述工作区域内部转向,并寻找转向完成后的前进方向上的所述区域边界,以及当所述自移动设备再次寻找到所述区域边界时,控制所述自移动设备继续沿所述区域边界移动。
  2. 根据权利要求1所述的自动工作系统,其特征在于,每一处的所述转向标识件均包含至少两个磁性件,所述标识检测装置包括磁场传感器。
  3. 根据权利要求2所述的自动工作系统,其特征在于,同一处的相邻所述磁性件之间的间隔位于5cm-40cm之间。
  4. 根据权利要求2所述的自动工作系统,其特征在于,所述磁性件包括磁条,所述磁条横贯所述区域边界。
  5. 根据权利要求4所述的自动工作系统,其特征在于,所述磁条垂直于所述区域边界。
  6. 根据权利要求4所述的自动工作系统,其特征在于,沿垂直于地面的方向,所述自移动设备沿所述区域边界移动时所述磁场传感器于地面具有第一投影,所述磁条于地面具有第二投影;其中,所述第一投影的中心与所述第二投影的中心的连线与所述预设位置处的区域边界平行。
  7. 根据权利要求1所述的自动工作系统,其特征在于,所述预设角度位于30度-150度之间。
  8. 根据权利要求7所述的自动工作系统,其特征在于,所述预设角度为90度。
  9. 根据权利要求1所述的自动工作系统,其特征在于,所述区域边界包括障碍物边界,所述障碍物边界用于限定障碍物所处的区域,所述障碍物边界上设置有所述转向标识件;
    在所述回归模式下,当所述自移动设备沿所述障碍物边界移动,所述控制装置在所述标识检测装置检测到所述转向标识件时,控制所述自移动设备按照所述预设角度朝所述工作区域内部转向,以脱离所述障碍物边界。
  10. 根据权利要求9所述的自动工作系统,其特征在于,所述转向标识件设置于所述障碍物边界上的所述预设位置处;
    在所述回归模式下,当所述标识检测装置检测到所述转向标识件,则控制所述自移动设备按照所述预设角度朝所述工作区域内部转向,并寻找转向完成后的前进方向上的所述区域边界,以及当所述自移动设备再次寻找到所述区域边界时,控制所述自移动设备继续沿所述区域边界移动。
  11. 根据权利要求1所述的自动工作系统,其特征在于,在非回归模式下,所述控制装置被配置为:
    关闭所述标识检测装置;或,
    当所述标识检测装置检测到所述转向标识件时,控制所述自移动设备继续沿原路径工作。
  12. 根据权利要求11所述的自动工作系统,其特征在于,所述非回归模式包括沿边模式和普通工作模式,在所述沿边模式下,所述控制装置被配置为控制所述自移动设备沿所述区域边界工作;在所述普通工作模式下,所述控制装置被配置为控制所述自移动设备在所述工作区域内部工作。
  13. 一种自移动设备,其特征在于,所述自移动设备在回归模式下可沿区域边界移动至停靠站,所述区域边界用于限定工作区域;
    所述自移动设备包括:
    机身;
    边界识别装置,连接所述机身,被配置为识别所述区域边界;
    标识检测装置,连接所述机身,被配置为检测设置于所述区域边界上的转 向标识件;
    控制装置,分别电性连接所述边界识别装置和所述标识检测装置,被配置为:
    在所述回归模式下,控制所述自移动设备沿所述区域边界移动;当所述标识检测装置检测到所述转向标识件,则控制所述自移动设备按照预设角度朝所述工作区域内部转向,并寻找转向完成后的前进方向上的所述区域边界;以及当所述自移动设备再次寻找到所述区域边界时,控制所述自移动设备继续沿所述区域边界移动。
  14. 根据权利要求13所述的自移动设备,其特征在于,所述自移动设备还包括:
    输入组件,连接所述机身,被配置为接收用户输入的所述预设角度的角度信息;且,
    所述控制装置与所述输入组件电性连接,所述控制装置被配置为在所述回归模式下,当所述标识检测装置检测到所述转向标识件时,控制所述自移动设备按照输入的角度信息朝所述工作区域内部转向。
  15. 一种自移动设备的回归控制方法,所述自移动设备在回归模式下可沿所述区域边界移动至停靠站,所述自移动设备包括标识检测装置,所述标识检测装置被配置为检测设置于区域边界上的转向标识件,其特征在于,
    所述回归控制方法包括:
    在所述回归模式下,控制所述自移动设备沿所述区域边界移动;
    当所述标识检测装置检测到所述转向标识件时,控制所述自移动设备按照预设角度朝所述工作区域内部转向,并寻找转向完成后的前进方向上的所述区域边界;
    当所述自移动设备再次寻找到所述区域边界时,控制所述自移动设备继续沿所述区域边界移动。
PCT/CN2021/122649 2020-12-22 2021-10-08 自移动设备及其回归控制方法、自动工作系统 WO2022134735A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011514815.3 2020-12-22
CN202011514815.3A CN114661037A (zh) 2020-12-22 2020-12-22 自移动设备的自动回归系统和自移动设备
CN202023120857.7 2020-12-22
CN202023120857 2020-12-22

Publications (1)

Publication Number Publication Date
WO2022134735A1 true WO2022134735A1 (zh) 2022-06-30

Family

ID=82158795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122649 WO2022134735A1 (zh) 2020-12-22 2021-10-08 自移动设备及其回归控制方法、自动工作系统

Country Status (1)

Country Link
WO (1) WO2022134735A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022109922B3 (de) 2022-04-25 2023-09-28 AL-KO Geräte GmbH Bodenbearbeitungsroboter-System, Vorrichtung zur lokalen Veränderung eines Schleifendrahtmagnetfeldes, Erdnagel und Verfahren zur Rückführung eines autonom fahrenden Bodenbearbeitungsroboters

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107305390A (zh) * 2016-04-21 2017-10-31 苏州宝时得电动工具有限公司 一种停靠系统
CN107608341A (zh) * 2016-07-11 2018-01-19 苏州宝时得电动工具有限公司 自动工作系统及自移动园艺设备的回归控制方法
CN109828565A (zh) * 2019-01-30 2019-05-31 宁波大叶园林设备股份有限公司 一种自移动设备回归路径的控制方法
WO2020030066A1 (zh) * 2018-08-08 2020-02-13 苏州宝时得电动工具有限公司 自移动设备、自动工作系统及其控制方法
US20200125103A1 (en) * 2018-10-22 2020-04-23 Ecovacs Robotics Co., Ltd. Method of travel control, device and storage medium
CN111721280A (zh) * 2020-05-25 2020-09-29 科沃斯机器人股份有限公司 一种区域识别方法、自移动设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107305390A (zh) * 2016-04-21 2017-10-31 苏州宝时得电动工具有限公司 一种停靠系统
CN107608341A (zh) * 2016-07-11 2018-01-19 苏州宝时得电动工具有限公司 自动工作系统及自移动园艺设备的回归控制方法
WO2020030066A1 (zh) * 2018-08-08 2020-02-13 苏州宝时得电动工具有限公司 自移动设备、自动工作系统及其控制方法
US20200125103A1 (en) * 2018-10-22 2020-04-23 Ecovacs Robotics Co., Ltd. Method of travel control, device and storage medium
CN109828565A (zh) * 2019-01-30 2019-05-31 宁波大叶园林设备股份有限公司 一种自移动设备回归路径的控制方法
CN111721280A (zh) * 2020-05-25 2020-09-29 科沃斯机器人股份有限公司 一种区域识别方法、自移动设备及存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022109922B3 (de) 2022-04-25 2023-09-28 AL-KO Geräte GmbH Bodenbearbeitungsroboter-System, Vorrichtung zur lokalen Veränderung eines Schleifendrahtmagnetfeldes, Erdnagel und Verfahren zur Rückführung eines autonom fahrenden Bodenbearbeitungsroboters
EP4278880A2 (de) 2022-04-25 2023-11-22 AL-KO Geräte GmbH Bodenbearbeitungsroboter-system, vorrichtung zur lokalen veränderung eines schleifendrahtmagnetfeldes, erdnagel und verfahren zur rückführung eines autonom fahrenden bodenbearbeitungsroboters

Similar Documents

Publication Publication Date Title
AU2019201384B2 (en) Moving robot and moving robot system
KR102499553B1 (ko) 이동 로봇 및 그 제어방법
WO2021228040A1 (zh) 一种路径规划方法、自移动设备
WO2018036199A1 (zh) 清洁机器人及其控制方法
CN107402573B (zh) 自动工作系统,自移动设备及其控制方法
CN106462161B (zh) 自主型移动机器人
US5107946A (en) Steering control system for moving vehicle
CN109407675B (zh) 机器人回座的避障方法和芯片以及自主移动机器人
US8635015B2 (en) Enhanced visual landmark for localization
WO2020030066A1 (zh) 自移动设备、自动工作系统及其控制方法
EP2913732B1 (en) Lawn mower robot and method of controlling the same
WO2012146195A1 (zh) 自动工作系统、自动行走设备及其转向方法
JPS63501664A (ja) 作業車輌の自動制御方法及び装置
WO2022134735A1 (zh) 自移动设备及其回归控制方法、自动工作系统
WO2020228262A1 (zh) 自移动机器人的控制方法及自移动机器人系统
KR102249808B1 (ko) 이동 로봇 시스템 및 이동 로봇 시스템의 제어 방법
KR102206388B1 (ko) 이동 로봇 및 이의 제어 방법
WO2021244594A1 (zh) 自动割草机及其路径规划方法、系统和设备
KR102489615B1 (ko) 이동로봇과 이동로봇 시스템
KR20190123677A (ko) 이동로봇과 이동로봇의 제어방법
KR102489616B1 (ko) 이동 로봇과 이동 로봇 시스템
KR102489618B1 (ko) 이동 로봇과 이동 로봇 시스템
WO2020228263A1 (zh) 自移动机器人的控制方法及自移动机器人系统
CN112486173A (zh) 一种自行走设备作业边界获取方法和自行走设备
WO2022223023A1 (zh) 自移动设备、移动轨迹调整方法及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908736

Country of ref document: EP

Kind code of ref document: A1