WO2020228262A1 - 自移动机器人的控制方法及自移动机器人系统 - Google Patents

自移动机器人的控制方法及自移动机器人系统 Download PDF

Info

Publication number
WO2020228262A1
WO2020228262A1 PCT/CN2019/115660 CN2019115660W WO2020228262A1 WO 2020228262 A1 WO2020228262 A1 WO 2020228262A1 CN 2019115660 W CN2019115660 W CN 2019115660W WO 2020228262 A1 WO2020228262 A1 WO 2020228262A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
self
boundary line
mobile robot
control method
Prior art date
Application number
PCT/CN2019/115660
Other languages
English (en)
French (fr)
Inventor
任雪
崔江伟
袁立超
Original Assignee
苏州科瓴精密机械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科瓴精密机械科技有限公司 filed Critical 苏州科瓴精密机械科技有限公司
Publication of WO2020228262A1 publication Critical patent/WO2020228262A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles

Definitions

  • the invention relates to the field of intelligent control, in particular to a control method of a self-moving robot and a self-moving robot system.
  • random mowing is a main low-cost method for mowing robots. That is, the robot moves forward in a delineated range such as an electronic boundary until it encounters an obstacle or boundary, rotates a random angle, and then continues to move forward until it encounters an obstacle or boundary again, and then does the same processing, and so on.
  • the lawn mower robot completes its task or detects that its battery is low, it will look for the nearest boundary line and return to charge along the boundary line.
  • the boundary lines of the obstacles and the boundary of the working area use wires, when the lawnmower robot encounters the wires around the obstacle, it will often mistake it for the wires located at the boundary of the working area and continue to walk along the wires.
  • the wire surrounding the obstacle often forms a closed circle with a small radius, which causes the mower to fall into an endless loop of walking around the closed circle when performing the return.
  • An object of the present invention is to provide a control method for a self-moving robot capable of quickly identifying a working area.
  • Another object of the present invention is to provide a self-moving robot system capable of quickly identifying a working area.
  • the present invention provides a control method of a self-moving robot, which includes the following steps:
  • the self-mobile robot walks to the boundary line and adjusts to the posture of walking along the boundary line;
  • S5. Determine whether the current boundary line is the target boundary line according to whether the calculated distance is less than the threshold.
  • the current position point is recorded as the first point and the timing is started, and in the step S3, walking along the boundary line, when the preset condition is reached, the timing is interrupted and the current position is recorded Point is the second point.
  • step S3 after walking along the boundary line for a preset time, it is determined whether the preset condition is reached.
  • the number of times the self-mobile robot reaches the preset condition reaches a preset value, and the current position point every time the preset condition is reached is recorded as the first Two points, get multiple second points, calculate the distance between the first point and each second point.
  • the distance between any second point and the first point is less than the threshold, and the current boundary line is determined as the target boundary line.
  • the distance between the preset number of second points and the first point is less than the threshold, and the current boundary line is determined as the target boundary line.
  • the average value of the sum of the distances between the plurality of second points and the first point is less than a threshold, and the current boundary line is determined as the target boundary line.
  • the mobile robot rotates at a preset angle and then moves forward in a straight line, leaving the current boundary line until it reaches another part of the boundary line, and then repeats the above process. Steps S1 to S5.
  • the preset condition is a preset time interval.
  • the preset condition is that the wheel speeds of the driving wheels on both sides of the mobile robot are different.
  • the self-mobile robot is in the return charging mode.
  • adjusting the posture to walk along the boundary line includes turning the heading of the self-mobile robot toward the direction of returning to the base station, so that all The front and back direction of the mobile robot is parallel to the extension direction of the boundary line.
  • the self-mobile robot is in the working mode, and the self-mobile robot, according to the judgment result in step S5, if the target boundary line is a preset working boundary line, the self-mobile robot walks along the boundary line for a full circle And perform work tasks at the same time.
  • adjusting the posture to walk along the boundary line includes turning the heading of the self-mobile robot toward the side with a larger angle between the current traveling direction and the boundary line.
  • calculating the distance between the first point and the second point includes:
  • the parameters for calculating the second point include:
  • calculating the parameters of the second point further includes:
  • S415 Calculate the parameters of the reference circle center according to the parameters of the first point
  • S416 Calculate the parameters of the second point according to the parameters of the center of the circle.
  • Is the x direction parameter of the first point The first point is the y-direction parameter, ⁇ i is the angle of the first point parameter, R i is the radius from the track of the mobile robot, dir i is from track direction of the mobile robot, ⁇ i is the angular velocity from the mobile robot; [Delta] t i is the time interval for the self-mobile robot to travel from the first point to the second point, Is the x direction parameter of the reference circle center, Is the y direction parameter of the reference circle center, Is the reference circle center angle parameter, Is the x-direction parameter of the current position point, Is the y direction parameter of the current position point, ⁇ i+1 is the angle parameter of the second point, and ⁇ d is the distance between the first point and the second point.
  • the present invention also relates to a self-moving robot system, including a self-moving robot and a boundary line defining a working area.
  • the self-moving robot has a walking module that drives the self-moving robot and a control module connected to the walking module.
  • the module includes a driving wheel that moves within the range defined by the boundary line, the control module is used to control the walking module to make the self-mobile robot walk, and the control module includes:
  • the patrol unit is used to control the self-mobile robot to the boundary line and adjust it to a pose that walks along the boundary line. Repeated execution controls the self-mobile robot to walk along the boundary line and records the current position as the first point when the preset conditions are reached, until it reaches the preset The number of conditions reaches the preset value, and the current position point is recorded as the second point; the calculation unit is used to calculate the parameters of the second point according to the parameters of the first point and the walking parameters of the self-mobile robot, based on the parameters of the first point Calculate the distance between the first point and the second point that reach the preset condition at least once with the parameters of the second point;
  • the pushing unit controls whether the self-mobile robot leaves the current boundary line according to whether the calculated distance is less than the threshold.
  • control module further includes a timing unit for timing the self-mobile robot from the first point to the second point.
  • the preset condition is a preset time interval.
  • the driving wheels include two, which are respectively located on two sides of the self-moving robot, and the preset condition is that the wheel speeds of the two driving wheels are different.
  • the beneficial effect of the present invention by calculating the distance between the first point and the second point, and controlling the walking of the self-mobile robot according to the comparison result of the calculated distance and the threshold, thereby avoiding the self-mobile robot from following the boundary line of the island Cycle walking ensures that the self-moving robot automatically works more reliably.
  • Fig. 1 is a schematic diagram of a self-moving robot in a preferred embodiment of the present invention
  • Figure 2 is a schematic diagram of a self-moving robot system in a preferred embodiment of the present invention
  • Figure 3 is a first control flow chart of the self-moving robot in the preferred embodiment of the present invention.
  • Fig. 4 is a sub-flow chart of step S2 in Fig. 3;
  • FIG. 5 is a sub-flow chart of step S3 in FIG. 3;
  • FIG. 6 is a sub-flow chart of step S5 in FIG. 3;
  • FIG. 7 is a detailed flowchart of the self-mobile robot charging and returning to the edge mode in a preferred embodiment of the present invention.
  • FIG. 8 is a flowchart of calculating a second point parameter by a mobile robot in a preferred embodiment of the present invention.
  • Fig. 9 is a second control flow chart of the self-moving robot in the preferred embodiment of the present invention.
  • the self-moving robot of the present invention may be an automatic lawn mower, or an automatic vacuum cleaner, etc., which automatically walks in the work area to cut grass and vacuum dust.
  • the self-mobile robot is an example of a lawn mower.
  • the working area may be a lawn.
  • the self-moving robot is not limited to lawn mowers and vacuum cleaners, but can also be other equipment, such as spraying equipment, snow removal equipment, monitoring equipment, etc., suitable for unattended equipment.
  • the self-moving robot is a lawn mower 100, which includes: a body, a walking module arranged on the body, a limit detection module, Energy module and control module.
  • the lawn mower also includes a work module, which is used to perform specific tasks of the lawn mower.
  • the work module includes a lawn mower blade, a cutting motor, etc., and may also include a mowing height adjustment mechanism and other components that optimize or adjust the mowing effect. .
  • the walking module is used to drive the lawn mower to walk and turn in the working area, and it is usually composed of a wheel set installed on the lawn mower and a drive motor that drives the wheel set to travel.
  • the walking module includes two driving wheels 21 located on both sides of the rear of the fuselage and two universal wheels 31 located on the front of the fuselage.
  • the boundary detection module is used to detect the relative position relationship between the lawn mower and the boundary line, which may specifically include one or more of the distance, angle, and the inner and outer directions of the boundary line.
  • the composition and principle of the limit detection module can be various, such as infrared, ultrasonic, collision detection, magnetic induction, etc., and the location and number of sensors and corresponding signal generating devices are also diverse.
  • the energy module is used to provide energy for various tasks of the lawn mower, and it includes a rechargeable battery and a charging connection structure.
  • the charging connection structure is usually a charging electrode sheet that can be exposed outside the lawn mower.
  • the control module is used to control the automatic walking and working of the lawn mower. It is electrically connected with the walking module and the limit detection module. It is the core component of the lawn mower. Its functions include controlling the working module to start or stop, generating a walking path and Control the walking module according to the walking, judge the power of the energy module and instruct the lawn mower to return to the base station to automatically dock and charge and so on.
  • the control module usually includes a single-chip microcomputer and memory and other peripheral circuits.
  • the above-mentioned lawn mower also includes various sensors for sensing the walking state of the lawn mower, such as: tipping, ground-off, collision sensors, etc., which will not be detailed here.
  • the lawn mower 100 and the boundary line defining its working area constitute a self-mobile robot system
  • the self-mobile robot system also includes a base station 200.
  • the base station can be located inside or outside the work area, and connected to the mains or other power supply system for the lawn mower to return to charge.
  • the base station can transmit pulse code signals along the boundary line to form an electromagnetic signal near the boundary line.
  • the control module can control the operation of the drive motor according to the change of the electromagnetic signal near the boundary line and the difference between the internal and external signals obtained by the state sensor of the boundary line, so that When the lawn mower detects the boundary line, it turns to avoid it and smoothly returns to the base station for charging along the boundary line.
  • the boundary line includes a peripheral boundary line 310 that defines the internal working area and an island boundary line 320 that defines an obstacle 330.
  • the boundary detection module includes two boundary line sensors 40 located at the front of the body. When the distance between the two lines of the island is less than a certain value When the machine cannot correctly identify the boundary signal, the fixed value is related to the characteristics of the boundary signal and the characteristics of the boundary line sensor. As a special case, when S is less than the distance L between two boundary line sensors, the machine cannot correctly identify the boundary signal. Therefore, when the machine starts from a certain point on the island and starts to walk along the boundary, it cannot get out of the island.
  • the control method of the lawn mower in the specific embodiment of the present invention will be described in detail below, specifically a method for quickly identifying the working area when the lawn mower is walking.
  • the method for the lawn mower to identify the working area includes the following steps:
  • the lawnmower walks to the boundary line and adjusts to the position of walking along the boundary line;
  • the above steps are used for the lawn mower to execute the edge mode, which can quickly determine whether the current boundary line is the target boundary line.
  • the target boundary line is the island boundary line in this embodiment, so as to prevent the lawn mower from walking along the island boundary line. Case.
  • step S2 specifically includes the following sub-steps:
  • step S3 specifically includes the following sub-steps:
  • step S32 Determine whether the preset condition is reached, and if the preset condition is not reached, continue to perform step S31;
  • step S5 specifically includes the following sub-steps:
  • the lawn mower can be controlled differently according to the determination results of the above steps.
  • the lawn mower meets the return charging conditions, such as detecting that the battery power is lower than the preset value, or the current work plan is completed, it enters the return charging mode along the boundary.
  • the lawn mower executes the work along the edge, it is determined that the currently walking boundary line is the boundary line where the work needs to be performed, and then it starts to walk one week along the boundary line and cut the grass.
  • the lawn mower executes the regressive charging mode along the boundary limit. At this time, it is necessary to quickly find the nearest boundary line.
  • the method for the lawn mower to walk to the boundary line in the above step S1 may be to perform straight-line walking until the boundary line is reached.
  • the front and rear direction of its fuselage may be at an angle to the boundary line, and the position of the lawn mower needs to be adjusted.
  • the adjustment of the position in the above step S1 is to make the heading of the robot turn toward the direction of returning to the base station.
  • the direction of returning to the base station is the direction of docking with the base station.
  • the top of the base station 200 is the charging direction.
  • the direction of turning is the direction of docking with the base station.
  • step S1 specifically includes: S11, lawn mower Walking to the boundary line, preferably walking in a straight line, can quickly find the boundary line; S12, judge whether the lawn mower reaches the boundary line, if it does not reach the boundary line, proceed to step S11; S13, if the boundary line is reached, adjust the position Posture, that is, the lawn mower is adjusted so that the front and rear direction of its body is roughly parallel to the boundary line.
  • the lawnmower needs to be recharged, so its posture adjustment includes turning the lawnmower toward the direction of recharging. The front and back of the lawnmower is roughly parallel to the boundary line, forming a posture that walks along the boundary line. So that the heading is towards the direction of return,
  • step S31 is specifically walking along the boundary line and recording the linear velocity of the left wheel and the linear velocity of the right wheel; correspondingly, the preset condition in step S32 is that the linear velocity of the left wheel is different from the linear velocity of the right wheel.
  • step S33 If it is detected that the linear velocity of the left wheel is different from the linear velocity of the right wheel, the timing is interrupted and the current position point is recorded as the second point Pi +1 .
  • the robot walks along the boundary line and records the linear velocity of the revolver And right wheel linear velocity If or If there is a change, the current position is recorded as Pi +1 (i is a positive integer), and the timing is interrupted; if with No change means that the curvature of the track remains the same, and no new points are recorded.
  • the preset event may be detection of docking with the base station for charging.
  • the preset event can be the detection of a return signal and confirming that it has reached the vicinity of the base station, then the above determination cycle can be jumped out; another special case, when the signal sent by the base station is detected, the above determination cycle can be jumped out; As a special case, when the preset identifier of the base station is detected, the above determination cycle can be jumped out. In this embodiment, until the robot detects docking with the base station for charging, it triggers an interruption and executes the charging action.
  • the preset condition in step S3 is that the wheel speeds of the driving wheels on both sides of the lawn mower are different.
  • the preset condition may also be a preset time interval.
  • the edge working mode of the lawn mower robot that is, the robot walks along the boundary line for one week and simultaneously mows the lawn.
  • the lawn mower will follow the judgment result in step S5, such as the current boundary line is the preset working boundary line, for example, the preset working boundary line is the island boundary line, and the lawn mower walks along the island boundary line Mowing the grass in one week at the same time; if the preset working boundary line is the outer boundary line, the lawn mower walks along the outer boundary line for a week and cuts the grass at the same time.
  • the mower when cutting grass along the border line, the mower does not need to turn its heading toward the direction of returning to the base station when it reaches the border line to turn. It can turn its heading toward the side with a larger angle between the current direction of travel and the border line to avoid The turning angle of the lawn mower is too large to save turning time.
  • a preset time can be set to walk along the boundary line before judging whether the preset condition is reached, such as recording After the first point, walk along the boundary line for 10-30 seconds, and then judge whether the preset conditions are reached.
  • steps S3 and S4 it is possible to limit the number of times the lawn mower reaches a preset condition to reach a preset value, where the preset value is an integer greater than 1, that is to say The lawn mower needs to reach the preset conditions many times, and record the current position point each time the preset conditions are reached as the second point, get multiple second points, calculate the distance between the first point and each second point, you can It is calculated every time a second point is recorded, or it can be calculated after all the second points are recorded.
  • the calculated distance is less than the threshold value, it can also be divided into multiple cases, as long as any second point and the first
  • the distance between the points ⁇ d i is less than the threshold, that is, the current boundary line is determined to be the target boundary line; in other solutions, the distance between the preset number of second points and the first point is less than the threshold, and the current boundary line is determined to be the target boundary
  • the critical ratio or a specified critical value
  • the critical ratio is 100% (or the critical value is 30)
  • all ⁇ d are required When i are all less than the threshold, it is judged as an island.
  • the average value of the sum of the distances between the multiple second points and the first point is less than the threshold, and the current boundary line is determined to be the target boundary line, that is, the average value If it is less than the threshold, it is judged as an island.
  • the distance calculated by the above two ways of avoiding misjudgment is less than the threshold value, and the control of the lawn mower is the same as the previous solution, and will not be repeated here.
  • step S4 the specific process of calculating the distance ⁇ d between the first point and the second point in step S4 is shown, wherein the parameters for calculating the second point Pi +1 in step S41 can be used according to the judgment result of the wheel speed difference Different calculation methods.
  • step S41 comprises: S411, is calculated from a first point to a second point P i P i + 1 difference in wheel speed, angular velocity, the linear velocity of the center of mass, the radius of track; S412, determines whether the wheel speed difference is equal to zero; S413, wheel in a first speed difference parameter calculation parameters of point P i P i + 1 of the second point is equal to zero; S414, calculates the wheel speed difference is not equal to zero from a first point P i to point P i + 1 of the second angular velocity, the centroid line speed, track radius; S415,, according to the parameters of the first calculation of the reference point P of the center O i of the parameter i; S416, parameters of the second point P i + 1 is calculated according to the parameter with reference to the center O i.
  • mower to travel from a first time point to a second point P i P i + 1 is the interval ⁇ t i; mower traveling from the first point to the process of the second point P i P i + 1 of ,
  • the linear velocity of the revolver is The linear velocity of the right wheel is
  • W car which can be considered as the walking parameters of the lawn mower.
  • the first known point parameter P i of among them Is the x direction parameter of the known point, Is the y direction parameter of the known point, and ⁇ i is the angle parameter of the known point.
  • the above calculation method it can be quickly determined whether the current boundary line is an island boundary line, and regardless of the shape of the island boundary line, the above algorithm can be used to meet the needs of different users, and the setting operation is convenient, and the memory is small. The processing speed is faster.
  • the present invention also provides a self-moving robot system, including a self-moving robot and a boundary line defining a working area.
  • the self-moving robot is a lawn mower in this embodiment, and has the ability to drive the lawn mower to work.
  • the walking module includes a driving wheel that moves within the range defined by the boundary line.
  • the control module is used to control the walking module to make the self-mobile robot walk.
  • the control module includes:
  • the patrol unit is used to control the self-mobile robot to the boundary line and adjust it to a pose that walks along the boundary line. Repeated execution controls the self-mobile robot to walk along the boundary line and records the current position as the first point when the preset conditions are reached, until it reaches the preset The number of conditions reaches the preset value, and the current position point is recorded as the second point;
  • Timing unit used for timing the lawn mower from the first point to the second point
  • the calculation unit is configured to calculate the parameters of the second point according to the parameters of the first point and the walking parameters of the self-mobile robot, and calculate the first point that reaches the preset condition at least once based on the parameters of the first point and the parameters of the second point The distance from the second point;
  • the pushing unit controls whether the lawn mower leaves the current boundary line according to whether the calculated distance is less than the threshold.
  • the lawn mower When the lawn mower is under low power and needs to go home, if the calculated distance is less than the threshold, the lawn mower will be controlled to leave the current boundary line.
  • the lawn mower can rotate in place by a preset angle and then move forward in a straight line, leaving the current boundary line , Until it reaches the other part of the boundary line, so that it can be recognized as soon as possible that the lawn mower is on the boundary line of the island, without spending too much time and saving power.
  • the current boundary line is the island boundary line.
  • the lawn mower walks along the island boundary line for a week and performs work tasks at the same time, such as cutting grass. If the current boundary line is the outer boundary line, the self-mobile robot walks along the outer boundary line for a full circle and performs work tasks at the same time.
  • the lawn mower executes the working mode along the boundary line, it can cut the grass on the boundary of the isolated island and ensure that the boundary of the isolated island is not over-cut.
  • the lawnmower By calculating the distance between the first point and the second point, and controlling the walking of the lawnmower according to the comparison result of the calculated distance and the threshold, the lawnmower is prevented from walking along the boundary line of the island and ensures the cutting The automatic operation of the grass machine is more reliable.
  • the method for the lawn mower to identify the working area includes the following steps:
  • the lawn mower walks to the boundary line and adjusts to the position of walking along the boundary line;
  • step S3' Repeat step S2' until the number of times the preset condition is reached reaches the preset value, and record the current position point as the second point;
  • S5' Determine whether the current boundary line is the target boundary line according to whether the calculated distance is less than the threshold.
  • the above steps are used for the lawn mower to execute the edge mode, which can quickly and accurately determine whether the current boundary line is the target boundary line.
  • the target boundary line is the island boundary line in this embodiment, so as to avoid the lawn mower from following the island boundary line.
  • step S3' the timing is interrupted when the second point is recorded.
  • step S3' the timing is interrupted when the second point is recorded.
  • the preset value k can be set to 30, that is, the lawn mower needs to record 30 first points, and the second point is the point recorded for the 31st time.
  • the distance between a preset number of first points and second points may be less than the threshold, that is, there is a critical ratio (or a designated critical value), as long as the number of ⁇ d i is less than the threshold, it is determined as An island, for example, when the critical ratio is 100% (or the critical value is 30), it is required that all ⁇ d i are less than the threshold before it is judged as an island.
  • the average If it is less than the threshold, that is, the average value of the sum of the distances between the first points and the second points is less than the threshold, it is determined as an island.
  • the control is the same as the control method of the first lawn mower.
  • the preset condition can be a preset time interval or the wheel speed of the driving wheels on both sides of the lawn mower. different.
  • the specific method of adjusting the posture to walk along the boundary line can also refer to the first lawn mower control method.
  • the calculation of the distance between the first point and the second point can also refer to the calculation steps in the first lawn mower control method, which will not be repeated here.
  • This embodiment also relates to a lawn mower system, including a lawn mower and a boundary line defining a working area.
  • the lawn mower has a walking module that drives it and a control module connected to the walking module.
  • the walking module is included on the boundary line.
  • the control module is used to control the walking module to make the mower walk.
  • the control module includes: a patrol unit, which is used to control the self-mobile robot to the boundary line and adjust it to the position of walking along the boundary line, and then control The self-mobile robot walks along the boundary line, records the current position point that meets the preset conditions within the preset times as the first point, and records the current position point as the second point when the preset conditions are reached more than the preset value; the calculation unit , Used to calculate the parameters of the second point based on the parameters of the first point that reached the preset condition at least once and the walking parameters of the self-mobile robot, and calculate the first point and the second point based on the parameters of the first point and the parameters of the second point The distance between two points; the pushing unit controls whether the self-mobile robot leaves the current boundary line according to whether the calculated distance is less than the threshold.
  • a patrol unit which is used to control the self-mobile robot to the boundary line and adjust it to the position of walking along the boundary line, and then control The self-mobile robot walks along the boundary line, records the current position point that meets the preset
  • the control module also includes a timing unit for timing the lawn mower from the first point to the second point.
  • the distance between at least one first point and the second point is calculated, and the walking of the lawn mower is controlled according to the comparison result of the calculated distance and the threshold, thereby avoiding mowing.
  • the machine circulates along the boundary line of the island, which ensures that the mower automatically works more reliably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自移动机器人(100)的控制方法,包括以下步骤:S1、自移动机器人(100)行走到边界线(310,320),调整成沿边界线(310,320)行走的位姿;S2、记录当前位置点为第一点;S3、沿边界线(310,320)行走,达到预设条件时记录当前位置点为第二点;S4、计算第一点和第二点之间的距离;S5、根据计算出的距离是否小于阈值,确定当前边界线(310,320)是否为目标边界线。通过计算第一点和第二点之间的距离,并根据计算出的距离和阈值的对比结果来控制自移动机器人(100)的行走,从而避免了自移动机器人(100)沿着孤岛边界线(320)循环行走,确保了自移动机器人(100)自动工作更加可靠。

Description

自移动机器人的控制方法及自移动机器人系统 技术领域
本发明涉及智能控制领域,尤其涉及一种自移动机器人的控制方法及自移动机器人系统。
背景技术
随着科学技术的不断进步,各种自动工作设备已经开始慢慢的走进人们的生活,例如:割草机器人。这种自动工作设备具有行走装置、工作装置及自动控制装置,从而使得自动工作设备能够脱离人们的操作,在一定范围内自动行走并执行工作,在自动工作设备的储能装置能量不足时,其能够自动返回基站装置进行充电,然后继续工作。
现有技术中,随机割草是割草机器人低成本的一个主要方式。即机器人在圈定范围如电子边界内向前运动,直到遇到障碍物或边界时,旋转一个随机角度,然后继续向前运动直到又遇到障碍物或边界,再做相同处理,如此循环。当割草机器人完成工作任务或者检测到自身电量低的时候,会寻找最近的边界线,并沿着边界线回归充电。由于障碍物的边界线和工作区域边界的边界线使用的都是导线,但是割草机器人遇到围绕障碍物的导线后,往往会误认为是位于工作区域边界的导线而持续地沿导线行走。而围绕障碍物的导线往往形成一个半径较小的封闭圆形,造成割草机在执行回归时会陷入绕着该封闭圆形行走的死循环中。
发明内容
本发明一个目的在于提供一种自移动机器人能够快速识别工作区域的控制方法。
本发明另一目的在于提供一种快速识别工作区域的自移动机器人系统。
为了实现上述发明目的之一,本发明提供了一种自移动机器人的控制方法,包括以下步骤:
S1、自移动机器人行走到边界线,调整成沿边界线行走的位姿;
S2、记录当前位置点为第一点;
S3、沿边界线行走,当达到预设条件时,记录当前位置点为第二点;
S4、计算第一点和第二点之间的距离;
S5、根据计算出的距离是否小于阈值,确定当前边界线是否为目标边界线。
作为本发明一具体实施方式的优选方案,所述步骤S2中记录当前位置点为第一点并开始计时,所述步骤S3中沿边界线行走,当达到预设条件时,中断计时并记录当前位置点为第二点。
作为本发明一具体实施方式的优选方案,若计算出的距离大于等于阈值,则重复上述步骤S3到S5,重复步骤S3到S5的过程中,计算第一点与每一次步骤S3到S5的过程中的第二点之间的距离。
作为本发明一具体实施方式的优选方案,在重复上述步骤S3到S5的过程中,若所述自移动机器人检测到预设事件,触发中断,跳出上述步骤S3到S5的循环。
作为本发明一具体实施方式的优选方案,在所述步骤S3中,沿边界线行走预设时间后再判断是否达到预设条件。
作为本发明一具体实施方式的优选方案,在所述步骤S3和S4中,所述自移动机器人达到预设条件的次数达到预设值,记录每次达到预设条件时的当前位置点为第二点,得到多个第二点,计算第一点和每个第二点之间的距离。
作为本发明一具体实施方式的优选方案,任意第二点与第一点之间的距离小于阈值,确定当前边界线为目标边界线。
作为本发明一具体实施方式的优选方案,预设数量的第二点与第一点之 间的距离小于阈值,确定当前边界线为目标边界线。
作为本发明一具体实施方式的优选方案,所述多个第二点与第一点之间的距离的和的平均值小于阈值,确定当前边界线为目标边界线。
作为本发明一具体实施方式的优选方案,若计算出的距离大于阈值,自移动机器人原地旋转预设角度后沿直线前进,离开当前边界线,直到到达边界线的另一部分,再循环进行上述步骤S1到S5。
作为本发明一具体实施方式的优选方案,所述预设条件为预设的时间间隔。
作为本发明一具体实施方式的优选方案,所述预设条件为自移动机器人两侧的驱动轮的轮速不同。
作为本发明一具体实施方式的优选方案,自移动机器人处于回归充电模式,在所述步骤S2中,调整成沿边界线行走的位姿包括使自移动机器人的航向朝向回归基站的方向转向,使所述自移动机器人的前后方向与边界线的延伸方向平行。
作为本发明一具体实施方式的优选方案,自移动机器人处于工作模式,自移动机器人根据步骤S5中的判断结果,如目标边界线为预设的工作边界线,自移动机器人沿该边界线行走一周并同时执行工作任务。
作为本发明一具体实施方式的优选方案,在所述步骤S1中,调整成沿边界线行走的位姿包括使自移动机器人的航向朝向当前行进方向与边界线夹角较大的一侧转向。
作为本发明一具体实施方式的优选方案,计算第一点和第二点之间的距离包括:
S41、计算第二点的参数;
S42、计算第一点与第二点的距离。
作为本发明一具体实施方式的优选方案,计算第二点的参数包括:
S411.计算从第一点到第二点自移动机器人两侧的驱动轮的轮速差、角速度、 质心线速度、航迹半径;
S412、判断两侧的驱动轮的轮速差是否等于零;
S413、轮速差等于零时,以第一点的参数计算第二点的参数。
作为本发明一具体实施方式的优选方案,计算第二点的参数进一步包括:
S414、轮速差不等于零时,计算从第一点到第二点的角速度、质心线速度、航迹半径;
S415、根据第一点的参数计算参考圆心的参数;
S416、根据圆心的参数计算第二点的参数。
作为本发明一具体实施方式的优选方案,若两侧的驱动轮的轮速差不等于零,参考圆心的参数和当前位置点的参数的计算公式如下:
Figure PCTCN2019115660-appb-000001
Figure PCTCN2019115660-appb-000002
若两侧的驱动轮的轮速差等于零,当前位置点的参数的计算公式如下:
Figure PCTCN2019115660-appb-000003
θ i+1=θ i
第二点和第一点之间的距离计算公式如下:
Figure PCTCN2019115660-appb-000004
上述公式中,
Figure PCTCN2019115660-appb-000005
为第一点x方向参数,
Figure PCTCN2019115660-appb-000006
为第一点y方向参数,θ i为第一点角度参数,R i为自移动机器人的航迹的半径,dir i为自移动机器人的航迹方向,ω i为自移动机器人的角速度;Δt i为自移动机器人从第一点行进到第二点的时间间隔,
Figure PCTCN2019115660-appb-000007
为参考圆心x方向参数,
Figure PCTCN2019115660-appb-000008
为参考圆心y方向参数,
Figure PCTCN2019115660-appb-000009
为参考圆心角度参数,
Figure PCTCN2019115660-appb-000010
为当前位置点方x向参数,
Figure PCTCN2019115660-appb-000011
为当前位置点y方向参数,θ i+1为第二点角度参数,Δd为第一点和第二点之间的距离。
本发明还涉及一种自移动机器人系统,包括自移动机器人及定义出工作区域的边界线,所述自移动机器人具有驱动所述自移动机器人的行走模块以 及连接行走模块的控制模块,所述行走模块包括在所述边界线限定的范围内移动的驱动轮,所述控制模块用于控制所述行走模块使自移动机器人行走,所述控制模块包括:
巡查单元,用于控制自移动机器人到边界线并调整成沿边界线行走的位姿,重复执行控制自移动机器人沿边界线行走并在达到预设条件时记录当前位置为第一点,直至达到预设条件的次数达到预设值,记录当前位置点为第二点;计算单元,用于根据第一点的参数和所述自移动机器人的行走参数计算第二点的参数,基于第一点的参数和第二点的参数计算至少一次达到预设条件的第一点和第二点之间的距离;
推动单元,根据计算出的距离是否小于阈值控制所述自移动机器人是否离开当前边界线。
作为本发明一具体实施方式的优选方案,所述控制模块还包括计时单元,用于所述自移动机器人从第一点到第二点的计时。
作为本发明一具体实施方式的优选方案,所述预设条件为预设的时间间隔。
作为本发明一具体实施方式的优选方案,所述驱动轮包括两个,分别位于所述自移动机器人的两侧,所述预设条件为两个驱动轮的轮速不同。
本发明的有益效果:通过计算第一点和第二点之间的距离,并根据计算出的距离和阈值的对比结果来控制自移动机器人的行走,从而避免了自移动机器人沿着孤岛边界线循环行走,确保了自移动机器人自动工作更加可靠。
附图说明
图1是本发明优选实施方式中自移动机器人的示意图;
图2是本发明优选实施方式中自移动机器人系统的示意图;
图3是本发明优选实施方式中自移动机器人的第一种控制流程图;
图4是图3中步骤S2的子流程图;
图5是图3中步骤S3的子流程图;
图6是图3中步骤S5的子流程图;
图7是本发明优选实施方式中自移动机器人充电回归执行沿边模式的详细流程图;
图8是本发明优选实施方式中自移动机器人计算第二点参数的流程图;
图9是本发明优选实施方式中自移动机器人的第二种控制流程图。
具体实施方式
以下将结合附图所示的实施方式对本发明进行详细描述。但该实施方式并不限制本发明,本领域的普通技术人员根据该实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
本发明的自移动机器人可以是自动割草机,或者自动吸尘器等,其自动行走于工作区域以进行割草、吸尘工作,本发明具体示例中,以自移动机器人为割草机为例做具体说明,相应的,所述工作区域可为草坪。当然,自移动机器人不限于割草机和吸尘器,也可以为其它设备,如喷洒设备、除雪设备、监视设备等等适合无人值守的设备。
如图1和图2所示,在本发明的一较佳实施方式中,自移动机器人为割草机100,割草机100包括:机体、设置于机体上的行走模块、界限侦测模块、能量模块以及控制模块。另外,割草机还包括工作模块,其用于执行割草机的具体工作任务,工作模块包括割草刀片、切割马达等,也可能包括割草高度调节机构等优化或调整割草效果的部件。
行走模块用于带动割草机在工作区域内行走和转向,通常由安装在割草机上的轮组和驱动轮组行走的驱动马达组成。本实施例中,行走模块包括两个位于机身后部两侧的驱动轮21以及位于机身前部的两个万向轮31。
界限侦测模块用于侦测割草机和边界线之间的相对位置关系,具体可能包括距离、角度,边界线内外方位中的一种或几种。界限侦测模块的组 成和原理可以为多种,如可以为红外线式、超声波式、碰撞检测式,磁感应式等等,其传感器和对应的信号发生装置的设置位置和数量也是多样的。
能量模块用于为割草机的各项工作提供能量,其包括可充电电池和充电连接结构,充电连接结构通常为可露出于割草机外的充电电极片。
控制模块用于控制割草机自动行走和工作,与行走模块和界限侦测模块电性连接,是割草机的核心部件,它执行的功能包括控制工作模块启动工作或停止,生成行走路径并控制行走模块依照行走,判断能量模块的电量并及时指令割草机返回基站自动对接充电等等。控制模块通常包括单片机和存储器以及其它外围电路。
上述割草机还包括用于感应割草机的行走状态的各种传感器,例如:倾倒、离地、碰撞传感器等,在此不做具体赘述。
其中,割草机100和限定其工作区域的边界线构成了自移动机器人系统,该自移动机器人系统还包括基站200。基站可以位于工作区域内侧或者外侧,和市电或其它电能提供系统连接,供割草机返回充电。基站可以沿边界线发射脉冲编码信号,以在边界线附近形成电磁信号,控制模块可根据界线附近电磁信号的变化以及其通过状态传感器获取到的边界线内外信号的差异来控制驱动马达运行,从而使割草机在侦测到边界线时及时转向避开以及顺利的沿着边界线返回基站充电。边界线包括限定内部工作区域的外围边界线310以及限定障碍物330的孤岛边界线320,界限侦测模块包括两个位于机体前部的边界线传感器40,当孤岛的两线间距S小于一定值时,机器无法正确辨识边界信号,该定值与边界信号特点、边界线传感器特性等有关。作为一个特例,当S小于两个边界线传感器间距L时,机器无法正确辨识边界信号。所以,当机器以孤岛上的某一点为起点,开始沿边界行走时,则无法走出孤岛。以下详述本发明的具体实施方式中割草机的控制方法,具体为割草机行走时快速识别工作区域的方法。
如图3到图7所示,本实施例中,割草机识别工作区域的方法包括以下步骤:
S1、割草机行走到边界线,调整成沿边界线行走的位姿;
S2、记录当前位置点为第一点;
S3、沿边界线行走,达到预设条件时记录当前位置点为第二点;
S4、计算第一点和第二点之间的距离Δd;
S5、根据计算出的距离Δd是否小于阈值,确定当前边界线是否为目标边界线。
上述步骤用于割草机执行沿边模式,可以快速判断行走的当前边界线是否为目标边界线,目标边界线在本实施例中为孤岛边界线,从而避免割草机沿着孤岛边界线一直行走的情况。
为方便第一点和第二点之间距离的计算,可以在记录当前位置点为第一点并开始计时,当达到预设条件时,中断计时并记录当前位置点为第二点。
也就是说,上述步骤S2中,具体包括以下子步骤:
S21、记录当前位置点为第一点;
S22、设置第一点的参数;
S23、开始计时。
上述步骤S3中,具体包括以下子步骤:
S31、割草机沿着边界线行走;
S32、判断是否达到预设条件,若没有达到预设条件则继续执行步骤S31;
S33、达到预设条件中断计时并记录当前位置点为第二点。
上述步骤S5中,具体包括以下子步骤:
S51、判断计算出的距离Δd是否小于阈值,若没有则重复执行上述步骤S3到S5;
S52、若计算出的距离Δd小于阈值,确认当前边界线为目标边界线。
根据上述子步骤,重复步骤S3到S5的过程中,计算第一点与每一次步骤S3到S5的过程中的第二点之间的距离,只要计算出的距离Δd小于阈值,确认当前边界线为目标边界线。
当割草机处于不同的控制模式时,根据上述步骤的判定结果可以对割草机进行不同的控制。当割草机满足回归充电条件时,如检测到电池电量低于预设值,或当前工作计划完成,则进入沿边界限回归充电模式。当割草机执行沿边割草工作时,确定当前行走的边界线为需要执行工作的边界线,则开始进行沿边界线行走一周并割草。
具体的,割草机执行沿边界限回归充电模式,此时需要快速找到最近的边界线,上述步骤S1中割草机行走到边界线的方法可以是执行直线行走,直到到达边界线。割草机到达边界线时,其机身的前后方向可能和边界线呈角度,需要调整割草机的位姿,上述步骤S1中调整位姿即为使机器人的航向朝向回归基站的方向转向,回归基站的方向即为与基站对接的方向。例如,图2中,基站200的上方为充电方向,若割草机遇到边界线,则向左转向,使机身的前后方向大致平行于边界线,这样,无论割草机以任何角度到达边界线,其转向的方向均为与基站对接的方向。
下面将以割草机识别到孤岛边界线320并寻找外围边界线310的过程为例进行详细说明。
割草机接收到执行沿边模式的指令,执行步骤S1,即割草机行走到边界线;该步骤具体包括直线行走和/或曲线行走,本实施中,步骤S1具体包括:S11、割草机行走到边界线,优选为沿直线行走,能够快速找到边界线;S12、判断割草机是否到达边界线,若没有到达边界线则继续进行步骤S11;S13、如到达边界线,则进行调整位姿,即割草机调整到其机身前后方向与边界线大致平行。本实施例中,割草机需要回归充电,因此其调整位姿包括使割草机朝向回归充电的方向转向,割草机的机身前后与 边界线大致平行,形成沿边界线行走的位姿,从而航向朝向回归方向,
调整好位姿后,在接下来的步骤S2具体为设置最初达到边界线的点为第一点P i(i=0),或者当前位置点为第一点P i(i=0),设置相应参数(0,0,0)并开始计时,即步骤S2中具体为记录当前位置点为P i,设置P i的参数,开始计时。
在本实施例中,步骤S31具体为沿边界线行走并记录左轮线速度和右轮线速度;对应的,步骤S32中的预设条件即为左轮线速度与右轮线速度不同,步骤S33中,若检测到左轮线速度与右轮线速度不同,则中断计时并记录当前位置点为第二点P i+1
具体的,机器人沿着边界线行走,记录左轮线速度
Figure PCTCN2019115660-appb-000012
和右轮线速度
Figure PCTCN2019115660-appb-000013
Figure PCTCN2019115660-appb-000014
Figure PCTCN2019115660-appb-000015
发生变化,则记录当前位置点为P i+1(i为正整数),中断计时;若
Figure PCTCN2019115660-appb-000016
Figure PCTCN2019115660-appb-000017
均不变,意味着航迹的曲率不变,则不记录新的点。
步骤S4中,计算第一点和第二点之间的距离Δd具体包括以下子步骤:S41、计算第二点P i+1的参数;S42、计算点P i与点P i+1的距离Δd,在接下来的步骤S51中,判断Δd是否小于阈值,若Δd小于阈值,则判断当前边界线为孤岛边界线,进而执行步骤S53、控制割草机原地旋转特定角度后前进,离开当前边界线,直到到达边界线的另一部分,前进的方式也优选沿直线前进,再循环进行上述步骤S1到S5。若Δd大于等于阈值,则进行步骤S54、设置i=i+1,重复上述步骤S3到S5。
在重复上述步骤S3到S5的过程中,当机器人检测到预设事件,即触发中断,跳出上述步骤S3到S5的判断循环。作为一个特例,预设事件可以为检测到与基站对接充电。作为另一特例,预设事件可以为检测到回归信号,确认已到达基站附近,即可跳出上述判定循环;又一特例,当检测到基站发出的信号时,即可跳出上述判定循环;再一特例,当检测到基站的预设标识时,即可跳出上述判定循环。本实施例中,直到机器人检测到 与基站对接充电,则触发中断,执行充电动作。
在重复步骤S3到S5的过程中,计算第一点P i与每一次步骤S3到S5的过程中的第二点之间的距离Δd,因此不会出现Δd的计算出现累加的情况,保证计算结果的准确性,其中阈值可以为一固定值。
根据上述步骤,步骤S3中的预设条件即为割草机两侧的驱动轮的轮速不同,当然,在其它的实施例中,预设条件也可以是预设的时间间隔。
此外,利用上述方法,还可以控制割草机器人的沿边工作模式,即机器人沿边界线行走一周并同时割草。当割草机处于工作模式,割草机根据步骤S5中的判断结果,如当前边界线为预设的工作边界线,比如预设工作边界线为孤岛边界线,割草机沿孤岛边界线行走一周并同时割草;如预设工作边界线为外围边界线,割草机沿外围边界线行走一周并同时割草。当然,沿边界线割草时,割草机在到达边界线转向时可以不必使其航向朝向回归基站的方向转向,可以使航向朝向当前行进方向与边界线夹角较大的一侧转向,以避免割草机转向角度过大,节省转向时间。
为了避免判定初期,由于与第一点与第二点的距离过近而导致的误判,在上述步骤S3中,可以设定沿边界线行走预设时间后再判断是否达到预设条件,例如记录第一点后沿边界线行走10-30秒时间,再判断是否达到预设条件。
当然也可以通过其它方式避免误判,比如在上述步骤S3和S4中,可以限定割草机达到预设条件的次数需要达到预设值,其中预设值为大于1的整数,也就是说割草机需要多次达到预设条件,记录每次达到预设条件时的当前位置点为第二点,得到多个第二点,计算第一点和每个第二点之间的距离,可以是每记录一个第二点即进行计算,也可以是记录完所有的第二点之后再进行计算,根据计算出的距离是否小于阈值也可以分为多种情况,只要任意第二点与第一点之间的距离Δd i小于阈值,即确定当前边界线为目标边界线;在其他方案中,预设数量的第二点与第一点之间的距 离小于阈值,确定当前边界线为目标边界线,比如存在一临界比例(或指定临界数值),只要大于该数量的Δd i小于阈值,则判定为孤岛,例如当临界比例为100%(或临界数值为30个)时,则要求所有Δd i全部小于阈值时,才判定为孤岛。在另一些实施方式中,多个第二点与第一点之间的距离的和的平均值小于阈值,确定当前边界线为目标边界线,也就是平均值
Figure PCTCN2019115660-appb-000018
小于阈值,则判定为孤岛。上述两种避免误判的方式计算出的距离小于阈值,对割草机的控制与前述方案相同,这里不再赘述。
参照图8,示出了步骤S4中计算第一点和第二点之间的距离Δd的具体过程,其中步骤S41中计算第二点P i+1的参数根据轮速差的判断结果可以采用不同的计算方式。具体的,步骤S41包括:S411、计算从第一点P i到第二点P i+1轮速差、角速度、质心线速度、航迹半径;S412、判断轮速差是否等于零;S413、轮速差等于零时以第一点P i的参数计算第二点P i+1的参数;S414、轮速差不等于零时计算从第一点P i到第二点P i+1角速度、质心线速度、航迹半径;S415、根据第一点P i的参数计算参考圆心O i的参数;S416、根据参考圆心O i的参数计算第二点P i+1的参数。
下面将具体说明计算第二点P i+1和第一点P i之间的距离Δd的详细算法。
已知:割草机从第一点P i行进到第二点P i+1的时间间隔为Δt i;割草机在从第一点P i行进到第二点P i+1的过程中,左轮线速度为
Figure PCTCN2019115660-appb-000019
右轮线速度为
Figure PCTCN2019115660-appb-000020
割草机左、右驱动轮之间的宽度为W car,这些都可以认为是割草机的行走参数,
Figure PCTCN2019115660-appb-000021
即割草机的航迹不为直线,则:
割草机质心(左右轮连线的中点)线速度
Figure PCTCN2019115660-appb-000022
割草机角速度
Figure PCTCN2019115660-appb-000023
航迹的半径
Figure PCTCN2019115660-appb-000024
航迹方向参数
Figure PCTCN2019115660-appb-000025
已知第一点P i的参数
Figure PCTCN2019115660-appb-000026
其中
Figure PCTCN2019115660-appb-000027
为已知点x方向参数,
Figure PCTCN2019115660-appb-000028
为已知点y方向参数,θ i为已知点角度参数。
通过已知第一点P i计算参考圆心点O i的参数
Figure PCTCN2019115660-appb-000029
其中
Figure PCTCN2019115660-appb-000030
为参考圆心点x方向参数,
Figure PCTCN2019115660-appb-000031
为参考圆心点y方向参数,
Figure PCTCN2019115660-appb-000032
为参考圆心点角度参数。则:
Figure PCTCN2019115660-appb-000033
通过参考圆心点O i计算第二点P i+1的参数
Figure PCTCN2019115660-appb-000034
则:
Figure PCTCN2019115660-appb-000035
Figure PCTCN2019115660-appb-000036
即机器人的航迹为直线,则:
Figure PCTCN2019115660-appb-000037
θ i+1=θ i
根据上述计算出的第二点P i+1的参数
Figure PCTCN2019115660-appb-000038
可以得到:
Figure PCTCN2019115660-appb-000039
根据上述计算方式,可以很快的确定当前边界线是否为孤岛边界线,而且无论孤岛边界线为任何形状,都可以使用上述算法,满足了不同用户的需求,且设置操作方便,占用内存小,处理速度更快。
基于前述的方法,本发明还提供了一种自移动机器人系统,包括自移动机器人及定义出工作区域的边界线,自移动机器人在本实施例中为割草机,具有带动割草机在工作区域内行走和转向的行走模块以及连接行走模块的控制模块,行走模块包括在边界线限定的范围内移动的驱动轮,控制模块用于控制行走模块使自移动机器人行走,其中,控制模块包括:
巡查单元,用于控制自移动机器人到边界线并调整成沿边界线行走的位姿,重复执行控制自移动机器人沿边界线行走并在达到预设条件时记录 当前位置为第一点,直至达到预设条件的次数达到预设值,记录当前位置点为第二点;
计时单元,用于割草机从第一点到第二点的计时;
计算单元,用于根据第一点的参数和所述自移动机器人的行走参数计算第二点的参数,基于第一点的参数和第二点的参数计算至少一次达到预设条件的第一点和第二点之间的距离;
推动单元,根据计算出的距离是否小于阈值控制割草机是否离开当前边界线。
当割草机已处于低电需要回家时,计算出的距离若小于阈值,则控制割草机离开当前边界线,割草机可以原地旋转预设角度后沿直线前进,离开当前边界线,直到到达边界线的另一部分,这样可以尽快辨识出割草机处于孤岛边界线,不用耗费过多时长,节省电量。
当割草机处于工作模式,计算出的距离若小于阈值,则当前边界线为孤岛边界线,割草机沿孤岛边界线行走一周并同时执行工作任务,如割草。如当前边界线为外围边界线,自移动机器人沿外围边界线行走一周并同时执行工作任务。割草机执行沿边界线工作模式时,即能够割到孤岛边界的草,又保证孤岛边界不被过度割草。
通过计算第一点和第二点之间的距离,并根据计算出的距离和阈值的对比结果来控制割草机的行走,从而避免了割草机沿着孤岛边界线循环行走,确保了割草机自动工作更加可靠。
参照图9所示,为割草机的另一种控制方法,同样可以实现割草机行走时快速识别工作区域。本实施例中,割草机识别工作区域的方法包括以下步骤:
S1’、割草机行走到边界线,调整成沿边界线行走的位姿;
S2’、沿边界线行走,当达到预设条件时,记录当前位置点为第一点;
S3’、重复执行步骤S2’,直至达到预设条件的次数达到预设值,记录 当前位置点为第二点;
S4’、计算至少一次达到预设条件的第一点和第二点之间的距离;
S5’、根据计算出的距离是否小于阈值,确定当前边界线是否为目标边界线。
上述步骤用于割草机执行沿边模式,可以快速准确的判断行走的当前边界线是否为目标边界线,目标边界线在本实施例中为孤岛边界线,从而避免割草机沿着孤岛边界线一直行走的情况,而且通过上述控制方法,可有效避免判定初期,由于与第一个点的距离过近而导致的误判。
为方便第一点和第二点之间距离的计算,可以在记录当前位置点为第一点并开始计时,步骤S3’中,记录第二点时中断计时。同样的,若计算出的距离大于等于阈值,则重复上述步骤S2’到S5’,重复步骤S2’到S5’的过程中,若割草机检测到预设事件,触发中断,跳出上述步骤S2’到S5’的循环。预设事件可以是与第一种割草机的控制方法中的预设事件相同,也可以是其它事件。
在上述步骤S3’和S4’中,割草机达到预设条件的次数达到预设值,记录每次达到预设条件时的当前位置点为第一点,得到多个第一点,计算每个第一点和第二点之间的距离。本实施例中,预设值k可以设置为30,也就是说,割草机需要记录30个第一点,第二点即为第31次记录的点。本实施例中优选分别计算每个第一点到第二点之间的距离{Δd 1,Δd 2,...,Δd k},在步骤S5’中,比较{Δd 1,Δd 2,...,Δd k}与阈值的关系,确定当前边界是否为孤岛边界线;若是,则离开当前边界线;若否,则返回执行S2’。
实际控制过程中,只要任意Δd i小于阈值,则判定为孤岛。在其他方案中,可以是预设数量的第一点与第二点之间的距离小于阈值,即存在一临界比例(或指定临界数值),只要大于该数量的Δd i小于阈值,则判定为孤岛,例如当临界比例为100%(或临界数值为30个)时,则要求所有Δd i全部小于阈 值时,才判定为孤岛。在另一些实施方式中,平均值
Figure PCTCN2019115660-appb-000040
小于阈值,即多个第一点与第二点之间的距离的和的平均值小于阈值,则判定为孤岛。
上述控制方法中,若计算出的距离大于阈值的控制与第一种割草机的控制方法相同,预设条件可以为预设的时间间隔,或者为割草机两侧的驱动轮的轮速不同。而且,调整成沿边界线行走的位姿的具体方法也可以参照第一种割草机的控制方法。另外,计算第一点和第二点之间的距离同样可以参照第一种割草机的控制方法中的计算步骤,这里不再赘述。
本实施例中同样也涉及一种割草机系统,包括割草机及定义出工作区域的边界线,割草机具有驱动其的行走模块以及连接行走模块的控制模块,行走模块包括在边界线限定的范围内移动的驱动轮,控制模块用于控制行走模块使割草机行走,控制模块包括:巡查单元,用于控制自移动机器人到边界线并调整成沿边界线行走的位姿,再控制自移动机器人沿边界线行走,记录预设次数内达到预设条件的当前位置点为第一点,并在达到预设条件的次数大于预设值时,记录当前位置点为第二点;计算单元,用于根据至少一次达到预设条件的第一点的参数和所述自移动机器人的行走参数计算第二点的参数,基于第一点的参数和第二点的参数计算第一点和第二点之间的距离;推动单元,根据计算出的距离是否小于阈值控制所述自移动机器人是否离开当前边界线。
控制模块还包括计时单元,用于割草机从第一点到第二点的计时。
上述控制方法和割草机系统中,通过计算至少一个第一点和第二点之间的距离,并根据计算出的距离和阈值的对比结果来控制割草机的行走,从而避免了割草机沿着孤岛边界线循环行走,确保了割草机自动工作更加可靠。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本 领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (23)

  1. 一种自移动机器人的控制方法,其特征在于,包括以下步骤:
    S1、自移动机器人行走到边界线,调整成沿边界线行走的位姿;
    S2、记录当前位置点为第一点;
    S3、沿边界线行走,当达到预设条件时,记录当前位置点为第二点;
    S4、计算第一点和第二点之间的距离;
    S5、根据计算出的距离是否小于阈值,确定当前边界线是否为目标边界线。
  2. 如权利要求1所述的自移动机器人的控制方法,其特征在于,所述步骤S2中记录当前位置点为第一点并开始计时,所述步骤S3中沿边界线行走,当达到预设条件时,中断计时并记录当前位置点为第二点。
  3. 如权利要求1~2任意一项所述的自移动机器人的控制方法,其特征在于,若计算出的距离大于等于阈值,则重复上述步骤S3到S5,重复步骤S3到S5的过程中,计算第一点与每一次步骤S3到S5的过程中的第二点之间的距离。
  4. 如权利要求3所述的自移动机器人的控制方法,其特征在于,在重复上述步骤S3到S5的过程中,若所述自移动机器人检测到预设事件,触发中断,跳出上述步骤S3到S5的循环。
  5. 如权利要求3所述的自移动机器人的控制方法,其特征在于,在所述步骤S3中,沿边界线行走预设时间后再判断是否达到预设条件。
  6. 如权利要求1~2任意一项所述的自移动机器人的控制方法,其特征在于,在所述步骤S3和S4中,所述自移动机器人达到预设条件的次数达到预设值,记录每次达到预设条件时的当前位置点为第二点,得到多个第二点,计算第一点和每个第二点之间的距离。
  7. 如权利要求6所述的自移动机器人的控制方法,其特征在于,任意第二点与第一点之间的距离小于阈值,确定当前边界线为目标边界线。
  8. 如权利要求6所述的自移动机器人的控制方法,其特征在于,预设数量的第二点与第一点之间的距离小于阈值,确定当前边界线为目标边界线。
  9. 如权利要求6所述的自移动机器人的控制方法,其特征在于,所述多个第二点与第一点之间的距离的和的平均值小于阈值,确定当前边界线为目标边界线。
  10. 如权利要求1~2任意一项所述的自移动机器人的控制方法,其特征在于,若计算出的距离大于阈值,自移动机器人原地旋转预设角度后沿直线前进,离开当前边界线,直到到达边界线的另一部分,再循环进行上述步骤S1到S5。
  11. 如权利要求1~2任意一项所述的自移动机器人的控制方法,其特征在于,所述预设条件为预设的时间间隔。
  12. 如权利要求1~2任意一项所述的自移动机器人的控制方法,其特征在于,所述预设条件为自移动机器人两侧的驱动轮的轮速不同。
  13. 如权利要求1~2任意一项所述的自移动机器人的控制方法,其特征在于,自移动机器人处于回归充电模式,在所述步骤S2中,调整成沿边界线行走的位姿包括使自移动机器人的航向朝向回归基站的方向转向,使所述自移动机器人的前后方向与边界线的延伸方向平行。
  14. 如权利要求1~2任意一项所述的自移动机器人的控制方法,其特征在于,自移动机器人处于工作模式,自移动机器人根据步骤S5中的判断结果,如目标边界线为预设的工作边界线,自移动机器人沿该边界线行走一周并同时执行工作任务。
  15. 如权利要求14所述的自移动机器人的控制方法,其特征在于,在所述步骤S1中,调整成沿边界线行走的位姿包括使自移动机器人的航向朝向当前行进方向与边界线夹角较大的一侧转向。
  16. 如权利要求1~2任意一项所述的自移动机器人的控制方法,其特征在 于,计算第一点和第二点之间的距离包括:
    S41、计算第二点的参数;
    S42、计算第一点与第二点的距离。
  17. 如权利要求16所述的自移动机器人的控制方法,其特征在于,计算第二点的参数包括:
    S411.计算从第一点到第二点自移动机器人两侧的驱动轮的轮速差、角速度、质心线速度、航迹半径;
    S412、判断两侧的驱动轮的轮速差是否等于零;
    S413、轮速差等于零时,以第一点的参数计算第二点的参数。
  18. 如权利要求17所述的自移动机器人的控制方法,其特征在于,计算第二点的参数进一步包括:
    S414、轮速差不等于零时,计算从第一点到第二点的角速度、质心线速度、航迹半径;
    S415、根据第一点的参数计算参考圆心的参数;
    S416、根据圆心的参数计算第二点的参数。
  19. 如权利要求16所述的自移动机器人的控制方法,其特征在于,若两侧的驱动轮的轮速差不等于零,参考圆心的参数和当前位置点的参数的计算公式如下:
    Figure PCTCN2019115660-appb-100001
    Figure PCTCN2019115660-appb-100002
    若两侧的驱动轮的轮速差等于零,当前位置点的参数的计算公式如下:
    Figure PCTCN2019115660-appb-100003
    第二点和第一点之间的距离计算公式如下:
    Figure PCTCN2019115660-appb-100004
    上述公式中,
    Figure PCTCN2019115660-appb-100005
    为第一点x方向参数,
    Figure PCTCN2019115660-appb-100006
    为第一点y方向参数,θ i为第一点角度参数,R i为自移动机器人的航迹的半径,dir i为自移动机器人的航迹方向,ω i为自移动机器人的角速度;Δt i为自移动机器人从第一点行进到第二点的时间间隔,
    Figure PCTCN2019115660-appb-100007
    为参考圆心x方向参数,
    Figure PCTCN2019115660-appb-100008
    为参考圆心y方向参数,
    Figure PCTCN2019115660-appb-100009
    为参考圆心角度参数,
    Figure PCTCN2019115660-appb-100010
    为当前位置点方x向参数,
    Figure PCTCN2019115660-appb-100011
    为当前位置点y方向参数,θ i+1为第二点角度参数,Δd为第一点和第二点之间的距离。
  20. 一种自移动机器人系统,包括自移动机器人及定义出工作区域的边界线,所述自移动机器人具有驱动所述自移动机器人的行走模块以及连接行走模块的控制模块,所述行走模块包括在所述边界线限定的范围内移动的驱动轮,所述控制模块用于控制所述行走模块使自移动机器人行走,其特征在于,所述控制模块包括:
    巡查单元,用于控制自移动机器人到边界线并调整成沿边界线行走的位姿,重复执行控制自移动机器人沿边界线行走并在达到预设条件时记录当前位置为第一点,直至达到预设条件的次数达到预设值,记录当前位置点为第二点;
    计算单元,用于根据第一点的参数和所述自移动机器人的行走参数计算第二点的参数,基于第一点的参数和第二点的参数计算至少一次达到预设条件的第一点和第二点之间的距离;
    推动单元,根据计算出的距离是否小于阈值控制所述自移动机器人是否离开当前边界线。
  21. 如权利要求20所述的自移动机器人系统,其特征在于,所述控制模块还包括计时单元,用于所述自移动机器人从第一点到第二点的计时。
  22. 如权利要求20所述的自移动机器人系统,其特征在于,所述预设条件为预设的时间间隔。
  23. 如权利要求20所述的自移动机器人系统,其特征在于,所述驱动轮包括两个,分别位于所述自移动机器人的两侧,所述预设条件为两个驱动轮的轮速不同。
PCT/CN2019/115660 2019-05-15 2019-11-05 自移动机器人的控制方法及自移动机器人系统 WO2020228262A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910404134.2 2019-05-15
CN201910404134.2A CN111941419B (zh) 2019-05-15 2019-05-15 自移动机器人的控制方法及自移动机器人系统

Publications (1)

Publication Number Publication Date
WO2020228262A1 true WO2020228262A1 (zh) 2020-11-19

Family

ID=73289272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115660 WO2020228262A1 (zh) 2019-05-15 2019-11-05 自移动机器人的控制方法及自移动机器人系统

Country Status (2)

Country Link
CN (1) CN111941419B (zh)
WO (1) WO2020228262A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485361A (zh) * 2021-07-30 2021-10-08 北京小狗吸尘器集团股份有限公司 结束绕障的控制方法、装置、电子设备和扫地机器人
CN113589804A (zh) * 2021-07-09 2021-11-02 深圳拓邦股份有限公司 一种机器人回充控制方法、装置及机器人
CN115328107A (zh) * 2021-04-23 2022-11-11 南京泉峰科技有限公司 智能割草系统及智能割草设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4293459A1 (en) * 2021-04-23 2023-12-20 Nanjing Chervon Industry Co., Ltd. Intelligent mowing system and intelligent mowing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050046373A1 (en) * 2001-11-03 2005-03-03 Aldred Micheal David Autonomous machine
CN102890509A (zh) * 2011-07-18 2013-01-23 苏州宝时得电动工具有限公司 自驱动装置、引导系统及其移动方法
CN104111651A (zh) * 2013-04-22 2014-10-22 苏州宝时得电动工具有限公司 自动行走设备及其向停靠站回归的方法
WO2016097897A1 (en) * 2014-12-18 2016-06-23 Husqvarna Ab Robotic patrol vehicle
CN106886215A (zh) * 2015-12-15 2017-06-23 北京智行者科技有限公司 一种基于多轴无轨电车循迹跟踪系统及具有其的电车
CN109597420A (zh) * 2019-01-22 2019-04-09 重庆润通智能装备有限公司 一种智能割草机边界自动闭合处理系统及方法
CN109669446A (zh) * 2017-10-13 2019-04-23 苏州宝时得电动工具有限公司 回归引导线寻找方法、装置和自动移动设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL113913A (en) * 1995-05-30 2000-02-29 Friendly Machines Ltd Navigation method and system
US9983586B2 (en) * 2011-04-28 2018-05-29 Positec Power Tools (Suzhou) Co., Ltd. Autonomous working system, an autonomous vehicle and a turning method thereof
US9516806B2 (en) * 2014-10-10 2016-12-13 Irobot Corporation Robotic lawn mowing boundary determination
CN108388241B (zh) * 2018-01-05 2021-02-12 广州科语机器人有限公司 移动机器人的路径跟踪方法
CN108196555B (zh) * 2018-03-09 2019-11-05 珠海市一微半导体有限公司 自主移动机器人沿边行走的控制方法
CN109063575B (zh) * 2018-07-05 2022-12-23 中国计量大学 一种基于单目视觉的智能割草机自主有序割草方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050046373A1 (en) * 2001-11-03 2005-03-03 Aldred Micheal David Autonomous machine
CN102890509A (zh) * 2011-07-18 2013-01-23 苏州宝时得电动工具有限公司 自驱动装置、引导系统及其移动方法
CN104111651A (zh) * 2013-04-22 2014-10-22 苏州宝时得电动工具有限公司 自动行走设备及其向停靠站回归的方法
WO2016097897A1 (en) * 2014-12-18 2016-06-23 Husqvarna Ab Robotic patrol vehicle
CN106886215A (zh) * 2015-12-15 2017-06-23 北京智行者科技有限公司 一种基于多轴无轨电车循迹跟踪系统及具有其的电车
CN109669446A (zh) * 2017-10-13 2019-04-23 苏州宝时得电动工具有限公司 回归引导线寻找方法、装置和自动移动设备
CN109597420A (zh) * 2019-01-22 2019-04-09 重庆润通智能装备有限公司 一种智能割草机边界自动闭合处理系统及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115328107A (zh) * 2021-04-23 2022-11-11 南京泉峰科技有限公司 智能割草系统及智能割草设备
CN115328107B (zh) * 2021-04-23 2024-03-19 南京泉峰科技有限公司 智能割草系统及智能割草设备
CN113589804A (zh) * 2021-07-09 2021-11-02 深圳拓邦股份有限公司 一种机器人回充控制方法、装置及机器人
CN113485361A (zh) * 2021-07-30 2021-10-08 北京小狗吸尘器集团股份有限公司 结束绕障的控制方法、装置、电子设备和扫地机器人

Also Published As

Publication number Publication date
CN111941419A (zh) 2020-11-17
CN111941419B (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2020228262A1 (zh) 自移动机器人的控制方法及自移动机器人系统
WO2017166971A1 (zh) 自动工作系统、自动行走设备及其转向方法
US11287821B2 (en) Autonomous working system, an autonomous vehicle and a turning method thereof
EP4057099B1 (en) Universal recharge control method for robot, chip and robot
WO2017198222A1 (zh) 自动工作系统,自移动设备及其控制方法
CN111198559B (zh) 行走机器人的控制方法及系统
WO2020155717A1 (zh) 自移动机器人系统
CN108634886A (zh) 机器人清扫中断后的控制方法及芯片
WO2017211308A1 (zh) 自移动园艺设备
CN106444736B (zh) 自动返回系统及控制方法
WO2022127567A9 (zh) 移动机器人的回充方法、移动机器人及存储介质
CN111123909A (zh) 自行走设备的行走控制方法、系统及自行走设备
WO2020228263A1 (zh) 自移动机器人的控制方法及自移动机器人系统
WO2020155715A1 (zh) 行走机器人及其转向控制方法、控制系统以及行走机器人工作系统
WO2022222678A1 (zh) 智能割草系统及智能割草设备
WO2022218177A1 (zh) 机器人避障方法及装置、机器人、存储介质、电子设备
WO2021031405A1 (zh) 自动工作系统、自动行走设备及其控制方法及计算机设备和计算机可读存储介质
WO2023104087A1 (zh) 自动工作系统、自动工作方法和计算机可读存储介质
EP4245473A1 (en) Automatic charging method and system for robot, and robot and storage medium
CN115328107A (zh) 智能割草系统及智能割草设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929138

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19929138

Country of ref document: EP

Kind code of ref document: A1