WO2023104087A1 - 自动工作系统、自动工作方法和计算机可读存储介质 - Google Patents

自动工作系统、自动工作方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2023104087A1
WO2023104087A1 PCT/CN2022/137222 CN2022137222W WO2023104087A1 WO 2023104087 A1 WO2023104087 A1 WO 2023104087A1 CN 2022137222 W CN2022137222 W CN 2022137222W WO 2023104087 A1 WO2023104087 A1 WO 2023104087A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
boundary
mobile device
reference circle
charging station
Prior art date
Application number
PCT/CN2022/137222
Other languages
English (en)
French (fr)
Inventor
康蒂伊曼纽尔
兰彬财
李想
钟源
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2023104087A1 publication Critical patent/WO2023104087A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • G05D1/0253Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting relative motion information from a plurality of images taken successively, e.g. visual odometry, optical flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to the technical field of data processing from mobile devices, in particular to an automatic working system, an automatic working method and a computer-readable storage medium.
  • Commonly used return charging control methods include setting a magnetic strip on the boundary line of the work area, installing a magnetic induction sensor on the self-mobile device, and guiding the self-mobile device to return to the charging station through the magnetic strip.
  • regressive charging along the boundary line will lead to a longer regressing process, especially when the self-mobile device is far away from the charging station, which will consume the power of the self-mobile device and affect the work efficiency of the self-mobile device.
  • an automatic working system includes: a self-moving device and a charging station, the self-moving device moves and/or works in a working area defined by a boundary, the a charging station for charging the self-mobile device, the charging station is located on the boundary, the charging station has a forward and a rearward orientation, and divides the boundary into a forward-facing side and a rearward-facing side side,
  • the mobile devices include:
  • a positioning module configured to collect satellite positioning information from the mobile device, and the positioning module has a positioning error
  • a storage module configured to store the charging station location
  • the automatic working system also includes: a control module, the control module is connected to the positioning module and the storage module with signals;
  • the automatic working system also includes: a control module, the control module is connected to the positioning module and the storage module with signals;
  • the control module determines a reference circle with the location of the charging station as the center, and the radius of the reference circle is greater than or equal to the positioning error;
  • the control module is configured to control the self-mobile device to move toward the reference circle, move to the boundary under the guidance of the reference circle, and return to the charging station along the boundary. charging station.
  • the autonomous mobile device further includes: a boundary detection module, configured to detect a boundary;
  • the control module determines that the self-mobile device reaches the boundary according to the detection result of the boundary detection module.
  • the positioning module collects satellite positioning information of the self-mobile device, and determines the current position of the self-mobile device;
  • the control module determines a positional relationship between the current position and the reference circle.
  • the controlling the self-moving device to move to the reference circle, guided by the reference circle Move down to the boundary including:
  • the control module controls the self-moving device to move toward the reference circle along the tangent line between the current position and the reference circle, and the boundary detection module detects the boundary during the movement, if the boundary detection If the module does not detect the boundary during the movement, then the self-mobile device reaches the circumference of the reference circle along the tangent path, and after reaching the circumference of the reference circle, extends the reference circle The circumference of the moves to the boundary.
  • control module controls the self-moving device to move to the reference circle, and when guided by the reference circle Move down to the boundary, including:
  • the control module controls the self-moving device to move toward the reference circle along the tangent line between the current position and the reference circle, and the boundary detection module detects the boundary during the movement, if the boundary detection When the module detects the boundary during the moving process, the mobile device moves to the boundary along the tangent path.
  • control module controls the self-moving device to move to the reference circle, and when guided by the reference circle Move down to the boundary, including:
  • the control module controls the self-moving device to move toward the reference circle along the radius path of the reference circle where the current position is located until reaching the circumference of the reference circle, and after reaching the circumference of the reference circle , move to the boundary along the circumference of the reference circle.
  • control module controls the self-moving device to move to the reference circle, and when guided by the reference circle Move down to the boundary, including:
  • the control module controls the self-moving device to move to the boundary along the circumference of the reference circle.
  • the returning to the charging station along the boundary includes:
  • control module controls the mobile device to move along the border to the charging station.
  • control module controls the self-moving device to move toward the reference circle along a tangent line between the current position and the reference circle, including:
  • the control module determines a tangent between the current position and the reference circle
  • the tangents include two, obtaining two tangent points between the two tangents and the circumference of the reference circle;
  • controlling the self-moving device to move toward the reference circle along a line tangent to the reference circle includes:
  • the acquiring the included angle between the walking direction of the self-mobile device and the tangent path includes:
  • the included angle between the current heading direction of the self-mobile device and the tangent path is determined.
  • the boundary includes a regular polygon.
  • the positioning error of the positioning module is greater than or equal to 5-10m.
  • the boundary detection module includes:
  • An image acquisition module used to collect image data from the surrounding environment of the mobile device
  • Detecting the boundary during movement to the reference circle comprising:
  • the boundary is detected from the image data.
  • system further includes:
  • the boundary detection module includes:
  • a magnetic sensing module configured to sense the boundary signal
  • Detecting the boundary during movement to the reference circle comprising:
  • the boundary is detected according to the sensed boundary signal.
  • the boundary includes a magnetic strip
  • the boundary detection module includes: a magnetic field detection module, configured to detect a magnetic signal of the magnetic strip;
  • Detecting the boundary during walking to the reference point includes:
  • the boundary is detected based on the magnetic signal.
  • the detecting the boundary includes:
  • the self-mobile device is controlled to travel according to the driving action until a boundary of the working area is detected.
  • the detecting the boundary includes:
  • Said detecting said boundary comprises:
  • the self-mobile device is controlled to travel according to the driving action until a boundary of the working area is detected.
  • the heading angle based on the self-mobile device and the return direction and the true north direction determines the driving action of the self-mobile device, including:
  • heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ +90° or ⁇ +270° ⁇ 360°, control the self-mobile device to turn left at a preset angle and move forward for a preset distance;
  • the self-mobile device If the yaw angle ⁇ of the self-mobile device satisfies: ⁇ +90° ⁇ +270°, the self-mobile device is controlled to turn right by a preset angle and move forward by a preset distance.
  • the heading angle of the self-mobile device and the return direction and the true north direction determines the driving action of the self-mobile device, including:
  • heading angle ⁇ of the self-mobile device satisfies: ⁇ -90° ⁇ +90°, then control the self-mobile device to turn left at a preset angle and move forward a preset distance;
  • the self-mobile device If the heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -90° or ⁇ +90° ⁇ 360°, the self-mobile device is controlled to turn right by a preset angle and move forward by a preset distance.
  • the heading angle of the self-mobile device and the return direction and the true north direction determines the driving action of the self-mobile device, including:
  • heading angle ⁇ of the self-mobile device satisfies: ⁇ -90° ⁇ +90°, then control the self-mobile device to turn left at a preset angle and move forward for a preset distance;
  • the self-mobile device If the heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -90° or ⁇ +90° ⁇ 360°, the self-mobile device is controlled to turn right by a preset angle and move forward by a preset distance.
  • the heading angle of the self-mobile device and the return direction and the true north direction determines the driving action of the self-mobile device, including:
  • heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -270° or ⁇ -90° ⁇ 360°, control the self-mobile device to turn left at a preset angle and move forward for a preset distance;
  • the self-mobile device If the heading angle ⁇ of the self-mobile device satisfies: ⁇ -270° ⁇ -90°, the self-mobile device is controlled to turn right by a preset angle and move forward by a preset distance.
  • the detecting the boundary includes:
  • the self-mobile device is controlled to travel according to the driving action until a boundary of the working area is detected.
  • the heading angle based on the self-mobile device and the return direction and the true north direction determines the driving action of the self-mobile device, including:
  • heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ or ⁇ +270° ⁇ 360°, control the self-mobile device to turn around and go straight ahead;
  • the self-mobile device If the yaw angle ⁇ of the self-mobile device satisfies: ⁇ +90° ⁇ +270°, the self-mobile device is controlled to go straight forward.
  • the heading angle of the self-mobile device and the return direction and the true north direction determines the driving action of the self-mobile device, including:
  • heading angle ⁇ of the self-mobile device satisfies: ⁇ -90° ⁇ +90°, then control the self-mobile device to turn around and drive forward;
  • the self-mobile device If the heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -90° or ⁇ +90° ⁇ 360°, the self-mobile device is controlled to go straight forward.
  • the heading angle of the self-mobile device and the return direction and the true north direction determines the driving action of the self-mobile device, including:
  • heading angle ⁇ of the self-mobile device satisfies: ⁇ -90° ⁇ +90°, then control the self-mobile device to turn around on the spot and go straight ahead;
  • the self-mobile device If the heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -90° or ⁇ +90° ⁇ 360°, the self-mobile device is controlled to go straight forward.
  • the heading angle of the self-mobile device and the return direction and the true north direction determines the driving action of the self-mobile device, including:
  • heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -270° or ⁇ -90° ⁇ 360°, control the self-mobile device to turn around and drive forward;
  • the self-mobile device is controlled to move forward.
  • an automatic control method including:
  • Satellite positioning information obtained from mobile devices, maps of work areas and locations of charging stations;
  • a self-mobile device including:
  • a positioning module configured to collect satellite positioning information from the mobile device, and the positioning module has a positioning error
  • a storage module for storing a map of the work area and the locations of the charging stations and a computer program
  • a processor disposed inside the main body, is electrically connected to the positioning module and the storage module, and is configured to implement the steps of the method described in any embodiment of the present disclosure when executing the computer program.
  • a computer-readable storage medium when the instructions in the storage medium are executed by the processor of the electronic device, the electronic device is able to execute the instructions described in any embodiment of the present disclosure. described method.
  • the self-mobile device can firstly drive to a position close to the charging station along the return direction on the boundary, and then guide it to drive to the charging station.
  • the regression efficiency is greatly improved.
  • the existing boundary regression guidance method can be used to guide to the charging station, and the solution is highly practicable.
  • Fig. 1 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 2 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 3 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 4(a) is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 4(b) is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 5 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 6 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 7 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 8 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 9 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 10 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 11 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 12 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 13 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 14 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 15 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 16 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 17 is a flow chart showing an automatic control method according to an exemplary embodiment.
  • Fig. 18 is a schematic structural diagram of a mobile device according to an exemplary embodiment.
  • Fig. 19 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 20 is a partial enlarged view of the driving position of the self-mobile device in Fig. 19 .
  • Fig. 21 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 22 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 23 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 24 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • Fig. 1 is an application scene diagram of an automatic working system according to an exemplary embodiment.
  • the mobile device 100 since it detects that its own power is insufficient, it will start a fast return charging procedure.
  • the boundary 101 of the working area can be a virtual boundary or a boundary of pre-laid magnetic strips, and a reference position is set on the boundary 101, and the reference position can exist on the map of the working area.
  • the environment can be absent, which represents a location point.
  • the self-mobile device 100 when the self-mobile device 100 detects that its own power is insufficient, it can use the satellite positioning sensor to determine its own position, and plan the driving path from the current position to the reference position.
  • the path reaches the reference point 103 . And drive along the boundary of the work area to the charging station for docking charging.
  • the self-mobile device 100 may reach the preset range of the reference point 103.
  • the execution action of the self-mobile device 100 can be determined according to the return direction and the heading angle of the self-mobile device. , travel to the boundary of the working area according to the execution action, and travel to the charging station in the return direction for docking and charging.
  • the robot 100 first drives to the nearest boundary, such as behind the self-mobile device 100, and then drives to the charging station along the boundary of the working area. driving path and improve charging efficiency.
  • An automatic working system provided by the present disclosure includes: a self-moving device and a charging station, the self-moving device walks and/or works in a working area defined by a boundary, and the charging station is used to supply power to the self-moving device , the charging station is used to charge the self-mobile device, the charging station is located on the boundary, the charging station has a forward direction and a rearward direction, and the boundary is divided into a side located at the forward direction and a side located at the On the rear facing side, the self-moving device includes:
  • a positioning module configured to collect satellite positioning information during the walking process of the self-mobile device, and the positioning module has a positioning error;
  • a storage module configured to store a map of the work area and locations of the charging stations
  • the automatic working system further includes: a control module, the control module is connected to the positioning module and the storage module with signals, and the control module is configured to control the self-moving device in the process of returning to the charging station moving to a reference position, and detecting the boundary during the movement, and controlling the self-mobile device to return to the charging station along the boundary when reaching near the reference position or reaching the boundary, wherein,
  • the reference position is located forward of the charging station, and the distance between the reference position and the charging station is greater than or equal to twice the positioning error.
  • the charging station has a front direction and a rear direction, and the boundary is divided into a side located in the forward direction and a side located in the rear direction.
  • the self-mobile device has a preset return direction, for example, the return direction in FIG. 1 is the instant needle direction.
  • the forward direction of the charging station is in the reverse direction of the returning direction.
  • the backward direction of the charging station is in the return direction.
  • the mobile device When the mobile device travels to a certain position behind the charging station, it will not immediately drive towards the charging station, but still follow the return direction, travel along the boundary for a week, and return to the charging station. . Therefore, it is possible to get back to the charging station faster when the mobile device is located in the forward direction of the charging station than when the mobile device is located in the backward direction of the charging station.
  • the positioning module may include a positioning sensor, such as a satellite positioning sensor. Affected by the occlusion of clouds, trees, and buildings, there is a positioning error in the positioning module.
  • the storage module may include memory such as ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, and optical data storage devices, among others.
  • the control module may include a controller, a processor and the like.
  • the boundary is used to distinguish the working area and the non-working area, so that the self-mobile device can drive and work in the working area when it is working.
  • the boundary of the working area includes the boundary of the mowing area and the non-mowing area.
  • the boundary of the working area includes the boundary of the cleaning area and the non-cleaning area.
  • the vicinity of the reference position includes a preset rectangle or circle centered around the reference position.
  • the charging station provides power to the self-mobile device. When the self-mobile device detects that its own power does not meet the preset value after working for a period of time, it needs to drive to the charging station for charging.
  • a magnetic strip may be set in whole or part of the boundary of the working area
  • a magnetic induction sensor may be provided on the self-moving device, and the magnetic induction sensor may be used to detect the magnetic strip, so that the self-moving device can drive along the boundary of the working area.
  • the self-mobile device using the boundary of the stored working map and other sensor devices such as satellite positioning sensors or inertial navigation sensors to obtain positioning data from the mobile device, according to the positioning data and the boundary of the stored map, the self-mobile device Follow the boundaries of the work area. According to the above two examples, setting the charging station on the boundary of the working area is beneficial to guide the self-mobile device to recharge along the boundary of the working area.
  • the return direction includes a preset clockwise return direction or counterclockwise return direction along the boundary. Once the return direction is set, the self-mobile device will return to the charging station according to the return direction during the return process along the boundary.
  • the reference position is a virtual point in an actual application scene, representing a preset position, and the preset position can be marked on the map of the working area.
  • the reference position is located in the forward direction of the charging station, and the distance between the reference position and the charging station is greater than or equal to twice the positioning error, and the mobile device can first pass the reference position along the return direction , arrive at the charging station after a preset distance.
  • the preset range of the reference position may include the position of the reference position or within the range of a circular area with the reference position as the center and the preset length as the radius.
  • the controlling the self-mobile device to travel to the preset range of the reference position may include using a satellite positioning sensor and/or an inertial navigation sensor or other odometer sensors to provide positioning data for the self-mobile device to determine the location of the self-mobile device. position, and then determine the driving path from the position to the reference position, and control the self-mobile device to drive to the preset range of the reference position.
  • the self-mobile device if the self-mobile device happens to travel to the reference position, the self-mobile device is directly controlled to travel along the return direction on the boundary of the working area to the charging station; if the self-mobile device travels to a position other than the reference position, Then the mobile device is controlled to detect the boundary of the working area according to the following embodiments.
  • the method for detecting the boundary of the working area may include: in one example, controlling the self-mobile device to turn left, right, forward or backward within the preset range until it is located on the self-mobile device
  • the sensors detect the boundaries of the work area.
  • the action to be performed by the self-mobile device is determined, and the adjustment is made continuously until the boundary of the working area is detected. After the self-mobile device detects the boundary, it can travel along the returning direction to the location of the charging station on the boundary of the working area according to the method in the above embodiment.
  • the self-mobile device can firstly drive to a position near the reference position, and then guide it to drive to the charging station. Compared with the traditional regression charging method along the boundary, the regression efficiency is greatly improved. Moreover, in the process of guiding the mobile device from the reference position to the charging station, the existing boundary regression guidance method can be used to guide to the charging station, and the solution is highly practicable.
  • Fig. 1 to Fig. 3 are diagrams showing application scenarios of a method for controlling return from a mobile device according to an exemplary embodiment.
  • the preset distance is set as an error value from a satellite positioning sensor on the mobile device.
  • the recessed area may include the area where the building is located.
  • the charging station is at a preset distance from the reference point 103 along the return direction.
  • the reference point 103 coincides with the inflection point of the working area boundary, and the charging station is at a preset distance from the reference point 103 along the return direction.
  • the charging station is on the concave boundary of the working area, and the charging station is at a preset distance from the reference point 103 along the return direction.
  • a low-precision satellite positioning sensor can be used to guide the self-mobile device to travel within the preset range of the reference point. If the preset distance is less than the error value of the satellite positioning sensor, the self-mobile device may travel to such as The left side of the charging station in Figures 1 to 3, resulting in an increase in the return distance (at this time, the self-mobile device will drive a circle along the boundary of the work area, and then return to the charging station), if the preset distance is greater than the satellite positioning
  • the error value of the sensor in turn, will lead to a certain distance from the charging station when the mobile device travels to the boundary, so the error value of the satellite positioning sensor is set to the preset distance, in one example, the error Values can include 5-10m. It can ensure that the self-mobile device can detect the boundary of the working area and travel to the charging station within a short distance when it is within the preset range of the reference point, thereby further improving the return efficiency.
  • Fig. 4(a) and Fig. 4(b) are application scene diagrams of an automatic working system according to an exemplary embodiment.
  • the reference position is a reference point located on the boundary, and the control module controls the mobile device to move to the reference position, including:
  • the control module determines a reference circle 401 on the map with the location of the charging station 200 as the center and the distance between the location of the reference point 103 and the location of the charging station as the radius;
  • the reference position may include a reference point located on the boundary, such as the reference point 103 in Figure 4(a); In the fan-shaped included angle area of one side, for example, the included angle is 45 degrees.
  • the method of obtaining the reference circle may include determining the reference circle 401 with the location of the charging station 200 as the center and the distance between the location of the reference point 103 and the location of the charging station as the radius. .
  • the reference circle in the implementation of the present disclosure can also be replaced by a circular arc or a semicircle, as long as the function and effect realized by it are the same or similar to the reference circle of the present application, it shall be covered within the protection scope of the present application. .
  • the mobile device 100 and the reference circle 401 have two tangent paths such as j1 and j3 in FIG. 4 , when walking in the next position, the two tangent paths become j2 and j4.
  • one of the two tangent paths needs to be selected, for example, one j4 is selected from j2 and j4, and the specific selection conditions can be set in advance.
  • Self-mobile device 100 continuously adjusts the walking direction during the walking process, and adjusts toward the direction in which the angle between the walking direction and the tangent path becomes smaller (for example, the angle between the walking direction of self-mobile device 100 and j4 is smaller than the angle between the walking direction and j3 ), gradually approaching the tangent path.
  • the intersection A of the tangent path j4 and the reference circle 401 is outside the working area, walk from the mobile device to point A, detect the boundary 101 and upper boundary 101 of the working area, and then return to the charging station 200 for charging.
  • controlling the self-moving device to move toward the reference circle along a tangent line of the reference circle until walking to the reference point or reaching the boundary includes:
  • the circle moves to the reference point or reaches the boundary.
  • the charging station 200 when the reference point 103 does not exist, the charging station 200 can still be used as the center of the circle to be greater than or equal to twice the positioning error.
  • the distance of is the radius, and the reference circle 401 is determined.
  • the self-mobile device gradually approaches the tangent path and arrives near the forward boundary of the charging station. In an example, after the self-mobile device walks along the tangent path of the reference circle to the intersection of the tangent path and the reference circle, the self-mobile device can continue to walk along the arc of the reference circle, and detect the boundary of the working area during the walking process 101.
  • the self-mobile device may drive to the outside of the boundary, such as near point A.
  • the self-mobile device can detect the location of the working area Boundary, upper boundary, and then return to charging station 200 for charging.
  • the self-mobile device may drive to the inner side of the boundary, such as near point B, then the self-mobile device may be controlled to drive along the reference circle to the boundary 101 in a direction consistent with the return direction, and then return to the charging station 200 for charging.
  • the radius of the circle is the distance between the charging station location and the reference point, and the distance is greater than or equal to twice the positioning error. Therefore, through the above-mentioned tangent path, it is possible to quickly guide the mobile device to reach the vicinity of the reference point without being too close to the charging station when there is an error in the satellite positioning signal.
  • controlling the self-moving device to move toward the reference circle along a line tangent to the reference circle includes:
  • the control module plans a tangent path from the current position to the reference circle
  • the preset requirement is that the intersection point is located on the side close to the charging station
  • the first tangent path j1 and the second tangent path j3 in the case of including two tangent paths, for example, the first tangent path j1 and the second tangent path j3 .
  • the coordinates of the intersection of the two tangent paths and the reference circle may be calculated, and the coordinates of the corners may be compared with the coordinates of the charging station.
  • the intersection point of the first tangent path j1 and the reference circle is (x 1 , y 1 )
  • the intersection point of the second tangent path j3 and the reference circle is (x 2 , y 2 )
  • the coordinates of the charging station are (X, Y) , and x 1 >X>x 2 .
  • the reference point 103 is on the right side of the charging station 200, and the preset return direction is the clockwise direction.
  • the preset size relationship may include selecting a tangent path whose abscissa of the coordinates of the intersection point is smaller than the abscissa of the charging station. Therefore, in the embodiment of the present disclosure, the second tangent path j3 is used as the The tangent path of the circle.
  • the preset size relationship may also include that the abscissa (ordinate) of the coordinates of the intersection point is greater than the abscissa (ordinate) of the charging station, and its setting depends on the relative position of the reference point and the charging station.
  • Fig. 19 is an application scenario diagram of an automatic working system according to an exemplary embodiment.
  • the controlling the self-moving device to move toward the reference circle along the tangent line of the reference circle includes:
  • the included angle between the advancing direction 502 and the tangent path 503 can be expressed as d, and the included angle between the advancing direction and the tangential path at the historical moment, for example, the included angle at time t1 is d1, The included angle at time t2 is d2.
  • adjust the forward direction of the self-moving device at the next moment of the self-moving device for example, if the self-propelled device turns right (or left) during the process from t1 to t2 Turning), and it is detected that d2>d1, it means that turning right from the self-mobile device will deviate from the tangent path, so the forward direction of the self-mobile device is adjusted by turning left.
  • the self-propelled device is turning right (or turning left) during the process from t1 to t2, and detects that d2 ⁇ d1, it means that turning right from the mobile device will approach the tangent path, so by continuing to turn right Turns are adjusted from the forward direction of the mobile device.
  • the self-mobile device can continuously adjust the angle and the forward direction during the walking process, so that the self-mobile device can walk along the tangent path.
  • Fig. 20 is a partial enlarged view of the driving position of the self-mobile device in Fig. 19 .
  • the acquisition of the angle between the current direction of the self-mobile device and the tangent path includes:
  • the included angle between the current heading direction of the self-mobile device and the tangent path is determined.
  • the angle b between the travel path 504 of the mobile device and the true north direction 501 and the angle a between the travel path 504 and the tangent path 503 can be determined by using the satellite positioning data of the mobile device.
  • the angle c between the heading direction 502 of the mobile device and the true north direction 501 is determined from the guide sensor data.
  • controlling the self-mobile device to return to the charging station along the boundary includes:
  • intersection point When walking near the intersection point, if the intersection point is within the boundary, control the self-mobile device to walk along the reference circle to the reference point in a direction consistent with the return charging direction, so The intersection point is the intersection point of the tangent path and the reference circle;
  • the direction consistent with the return direction may include matching the preset direction of the return direction, for example: if the return direction is clockwise, the mobile device follows the clockwise direction along the Walking in the reference circle to the reference point; if the return direction is counterclockwise, walking in the counterclockwise direction from the mobile device to the reference point along the reference circle. It should be noted that since the boundary shape of the working area may be different from the shape of the reference circle, the real-time walking direction of the self-mobile device on the arc may be different from the return direction, but it is sufficient to ensure that they match.
  • the self-mobile device is controlled to walk along the reference circle in a direction consistent with the direction of the regression charging To the reference point, the reference point can be reached quickly.
  • controlling the self-mobile device to return to the charging station along the boundary includes:
  • intersection point When walking near the intersection point, if the intersection point is outside the boundary, control the self-mobile device to detect the boundary, and control the self-mobile device to return to the charging station along the boundary for charging, so
  • the intersection point is the intersection point of the tangent path and the reference circle.
  • the boundary can be determined according to any of the detection methods disclosed in the above embodiments. To avoid detours to the side of the charging station opposite the reference point. Save time on the border.
  • the boundary includes a regular polygon.
  • the working area is a rectangle, and points are collected at four vertices. By controlling the machine to go to four points respectively, stop at each point for a few minutes to collect satellite coordinate points, and then calculate the average value.
  • the charging station stays for the longest time to collect coordinate points, so the accuracy of the charging station coordinates should be the highest. Therefore, fast regressive charging is more efficient when the boundary of the working area is positively polymorphic.
  • the positioning error of the positioning module is greater than or equal to 5-10m.
  • the mobile device further includes:
  • Image collection module used to collect image data of grass and non-grass boundaries
  • Detecting the boundary in the process of controlling it to walk according to the walking path including:
  • the boundary is detected according to the image data.
  • system further includes:
  • the self-mobile device also includes:
  • a magnetic sensing module configured to sense the boundary signal
  • Detecting the boundary in the process of controlling it to walk according to the walking path including:
  • the boundary is detected according to the sensed boundary signal.
  • the boundary includes a magnetic strip
  • the self-moving device further includes: a magnetic field detection module, configured to detect a magnetic signal in the magnetic strip;
  • Detecting the boundary in the process of controlling it to walk according to the walking path including:
  • the boundary is detected according to the magnetic signal.
  • the detecting the boundary includes:
  • the self-mobile device is controlled to travel according to the driving action until a boundary of the working area is detected.
  • the heading angle of the self-mobile device includes an angle between the traveling direction of the self-mobile device and the true north direction, which may be obtained through a satellite positioning sensor.
  • the heading angle of the self-mobile device and the angle between the return direction and the true north direction can reflect the positional relationship between the boundary of the working area and the self-mobile device, thereby setting the driving action of the self-mobile device so that it moves toward Drive close to the boundary side of the work area.
  • the corresponding driving action can be set according to the magnitude relationship between the heading angle of the self-mobile device and the included angle, and the magnitude relationship can be continuously determined, and the preset driving action can be executed until the working area is detected. boundary.
  • the embodiments of the present disclosure can accurately determine the driving action of the self-mobile device, and quickly guide the self-mobile device to travel to the boundary of the working area.
  • the specific implementation example is as follows.
  • Fig. 5 is a flowchart showing a method for controlling return from a mobile device according to an exemplary embodiment. Referring to Figure 5, if the angle ⁇ between the return direction and the true north direction satisfies: 0° ⁇ 90°, according to the heading angle of the self-mobile device and the angle between the return direction and the true north direction , determining the driving action of the self-mobile device, including:
  • heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ +90° or ⁇ +270° ⁇ 360°, control the self-mobile device to turn left at a preset angle and move forward for a preset distance;
  • the self-mobile device If the yaw angle ⁇ of the self-mobile device satisfies: ⁇ +90° ⁇ +270°, the self-mobile device is controlled to turn right by a preset angle and move forward by a preset distance.
  • ⁇ 2 is introduced to indicate the angle between the normal direction of the regression direction (inside the working area) and the true north direction;
  • ⁇ 3 indicates the angle between the normal direction of the regression direction (inside the working area) and The angle from true north.
  • ⁇ 2 ⁇ +90°
  • the heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ +90° or ⁇ +270° ⁇ 360°, which means that the orientation of the self-mobile device is at a right angle between the true north direction and the return direction, indicating that the boundary of the working area is located in the left front of the self-mobile device.
  • the preset angle may include a small number of acute angles, and the preset distance is less than or equal to a positioning error value from the satellite sensor of the mobile device.
  • the yaw angle ⁇ of the self-mobile device satisfies: ⁇ +90° ⁇ +270°, it means that the orientation of the self-mobile device is a right angle between the direction opposite to the homing direction and the true north direction In the area, it indicates that the boundary of the working area is located in the right front of the self-mobile device. Therefore, the mobile device is controlled to turn right at a preset angle and move forward a preset distance.
  • the setting of the preset angle and the preset distance can be the same as the above embodiment, the preset angle can include a small number of acute angles, and the preset distance is less than or equal to the positioning error value from the satellite sensor of the mobile device.
  • the embodiments of the present disclosure can accurately detect the position of the boundary of the working area relative to the mobile device, so as to determine the corresponding driving action, and guide the mobile device to drive to the boundary of the working area quickly.
  • Fig. 6 is a flow chart showing a method for controlling return from a mobile device according to an exemplary embodiment. Referring to Fig. 6, if the angle ⁇ between the return direction and the true north direction satisfies: 90° ⁇ 180°, determining the driving action of the self-mobile device according to the heading angle of the self-mobile device and the angle between the return direction and the true north direction, including:
  • heading angle ⁇ of the self-mobile device satisfies: ⁇ -90° ⁇ +90°, then control the self-mobile device to turn left at a preset angle and move forward for a preset distance;
  • the self-mobile device If the heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -90° or ⁇ +90° ⁇ 360°, the self-mobile device is controlled to turn right by a preset angle and move forward by a preset distance.
  • the heading angle ⁇ of the self-mobile device satisfies: ⁇ -90° ⁇ +90°, it means that the orientation of the self-mobile device is in the right-angle area between the normal direction of the return direction (outside the working area) and the return direction If it is inside, it means that the boundary of the working area is located in the left front of the self-moving device, then the self-moving device is controlled to turn left at a preset angle and move forward a preset distance, and the setting of the preset angle and the preset distance
  • the preset angle may include a small number of acute angles, and the preset distance is less than or equal to the positioning error value from the satellite sensor of the mobile device.
  • the heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -90° or ⁇ +90° ⁇ 360°, it means that the head of the self-mobile device is facing the normal direction of the return direction (Outside of the working area) in the direct area between the opposite direction of the return direction, it means that the boundary of the working area is located in the right front of the self-moving device, then control the self-moving device to turn right to the preset angle and move forward to the preset
  • the distance, the setting of the preset angle and the preset distance can be the same as the above embodiment, the preset angle can include a small number of acute angles, and the preset distance is less than or equal to the positioning error from the satellite sensor of the mobile device value.
  • the embodiments of the present disclosure can accurately detect the position of the boundary of the working area relative to the mobile device, so as to determine the corresponding driving action, and guide the mobile device to drive to the boundary of the working area quickly.
  • Fig. 7 is a flow chart showing a method for controlling return from a mobile device according to an exemplary embodiment. Referring to Figure 7, if the angle ⁇ between the return direction and the true north direction satisfies: 180° ⁇ 270°, the heading angle of the self-mobile device and the angle between the return direction and the true north direction , determining the driving action of the self-mobile device, including:
  • heading angle ⁇ of the self-mobile device satisfies: ⁇ -90° ⁇ +90°, then control the self-mobile device to turn left at a preset angle and move forward for a preset distance;
  • the self-mobile device If the heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -90° or ⁇ +90° ⁇ 360°, the self-mobile device is controlled to turn right by a preset angle and move forward by a preset distance.
  • the heading angle ⁇ of the self-mobile device satisfies: ⁇ -90° ⁇ +90°, it means that the front of the self-mobile device is facing the normal direction of the return direction (outside the working area) and the right-angle area between the return direction , it means that the boundary of the working area is located in front left of the self-mobile device, and the self-mobile device is controlled to turn left by a preset angle and move forward by a preset distance.
  • the setting of the preset angle and the preset distance can be the same as the above embodiment, the preset angle can include a small number of acute angles, and the preset distance is less than or equal to the positioning error value from the satellite sensor of the mobile device.
  • the heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -90° or ⁇ +90° ⁇ 360°, it means that the head of the self-mobile device is facing the normal direction of the return direction ( In the right-angle area between the outside of the working area) and the opposite direction of the return direction, it means that the boundary of the working area is located in the right front of the self-moving device, and the self-moving device is controlled to turn right at a preset angle and move forward a preset distance , the preset angle may include a small number of acute angles, and the preset distance is less than or equal to a positioning error value from the satellite sensor of the mobile device.
  • the embodiments of the present disclosure can accurately detect the position of the boundary of the working area relative to the mobile device, so as to determine the corresponding driving action, and guide the mobile device to drive to the boundary of the working area quickly.
  • Fig. 8 is a flow chart showing a method for controlling return from a mobile device according to an exemplary embodiment. Referring to Figure 8, if the angle ⁇ between the return direction and the true north direction satisfies: 270° ⁇ 360°, according to the heading angle of the self-mobile device and the angle between the return direction and the true north direction , determining the driving action of the self-mobile device, including:
  • heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -270° or ⁇ -90° ⁇ 360°, control the self-mobile device to turn left at a preset angle and move forward for a preset distance;
  • the self-mobile device If the heading angle ⁇ of the self-mobile device satisfies: ⁇ -270° ⁇ -90°, the self-mobile device is controlled to turn right by a preset angle and move forward by a preset distance.
  • the heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -270° or ⁇ -90° ⁇ 360°, it means that the head of the self-mobile device is facing the normal direction of the return direction (outside the working area ) and the return direction, it means that the boundary of the working area is located in the left front of the self-mobile device, then the self-mobile device is controlled to turn left at a preset angle and move forward a preset distance; in an example, if the self-mobile device The heading angle ⁇ of the mobile device satisfies: ⁇ +90° ⁇ +270°, which means that the head of the self-mobile device is facing the right angle between the normal direction of the return direction (outside the working area) and the direction of the return direction area, it means that the boundary of the working area is located in the right front of the self-mobile device, and the self-mobile device is controlled to turn right at a preset angle and move forward a preset distance.
  • the setting of the preset angle and the preset distance can
  • the embodiments of the present disclosure can accurately detect the position of the boundary of the working area relative to the mobile device, so as to determine the corresponding driving action, and guide the mobile device to drive to the boundary of the working area quickly.
  • the determined driving action of the self-mobile device is not executed in isolation.
  • the orientation state of the self-mobile device satisfies the execution condition described in another embodiment, and can travel according to the corresponding driving action of another embodiment.
  • the present disclosure is not limited until the boundaries of the working area are detected.
  • the detecting the boundary includes:
  • the self-mobile device is controlled to travel according to the driving action until a boundary of the working area is detected.
  • the heading angle of the self-mobile device and the angle between the return direction and the true north direction can reflect the positional relationship between the boundary of the working area and the self-mobile device, so as to set the driving action of the self-mobile device so that Drive toward the boundary side of the work area.
  • the corresponding driving action can be set according to the magnitude relationship between the heading angle of the self-mobile device and the included angle, and the preset driving action can be executed without repeating the determination of the magnitude relationship, and only needs to drive according to the above driving action , the boundary of the working area can be detected.
  • the specific implementation example is as follows.
  • an automatic working method including:
  • Satellite positioning information obtained from mobile devices, maps of work areas and locations of charging stations;
  • the boundary is used to distinguish the working area and the non-working area, so that the self-mobile device can drive and work in the working area when it is working.
  • the boundary of the working area includes the boundary of the mowing area and the non-mowing area.
  • the boundary of the working area includes the boundary of the cleaning area and the non-cleaning area.
  • the vicinity of the reference position includes a preset rectangle or circle centered around the reference position.
  • the charging station provides power to the self-mobile device. When the self-mobile device detects that its own power does not meet the preset value after working for a period of time, it needs to drive to the charging station for charging.
  • a magnetic strip may be set in whole or part of the boundary of the working area
  • a magnetic induction sensor may be provided on the self-moving device, and the magnetic induction sensor may be used to detect the magnetic strip, so that the self-moving device can drive along the boundary of the working area.
  • the self-mobile device using the boundary of the stored working map and other sensor devices such as satellite positioning sensors or inertial navigation sensors to obtain positioning data from the mobile device, according to the positioning data and the boundary of the stored map, the self-mobile device Follow the boundaries of the work area. According to the above two examples, setting the charging station on the boundary of the working area is beneficial to guide the self-mobile device to recharge along the boundary of the working area.
  • the return direction includes a preset clockwise return direction or counterclockwise return direction along the boundary. Once the return direction is set, the self-mobile device returns to the charging station according to the return direction during the return process along the boundary.
  • the reference position is a virtual point in an actual application scene, representing a preset position, and the preset position can be marked on the map of the working area.
  • the reference position is located in the forward direction of the charging station, and the distance between the reference position and the charging station is greater than or equal to twice the positioning error, and the mobile device can first pass the reference position along the return direction , arrive at the charging station after a preset distance.
  • the reference circle when the reference position does not exist, the reference circle may still be determined with the charging station as the center and a distance greater than or equal to twice the positioning error as the radius.
  • the self-mobile device gradually approaches the tangent path and reaches the vicinity of the forward boundary of the charging station.
  • the self-mobile device can detect the boundary of the working area, the upper boundary, and then return to the charging station for charging;
  • the self-mobile device may drive to the outside of the boundary, at this time, the self-mobile device may detect the boundary and upper boundary of the working area, and then return to the charging station 200 for charging.
  • the mobile device since the mobile device may travel to the inner side of the boundary, the mobile device may be controlled to travel along the reference circle to the boundary in a direction consistent with the return direction, and then return to the charging station 200 for charging.
  • FIG. 9 and Fig. 10 are flowcharts showing a method for controlling return from a mobile device according to an exemplary embodiment. Referring to Figure 5 Figure 9 and Figure 10,
  • the self-movement is determined according to the heading angle of the self-moving device and the angle between the return direction and the true north direction
  • the driving action of the equipment including:
  • heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ +90° or ⁇ +270° ⁇ 360°, control the self-mobile device to turn around and go straight ahead;
  • the self-mobile device If the yaw angle ⁇ of the self-mobile device satisfies: ⁇ +90° ⁇ +270°, the self-mobile device is controlled to go straight forward.
  • ⁇ 2 represents the angle between the normal direction of the homing direction (inside the working area) and the true north direction
  • ⁇ 3 the angle between the normal direction of the homing direction (outside the working area) and the true north direction horn.
  • ⁇ 2 ⁇ +90°
  • the heading angle ⁇ of the mobile device satisfies: 0° ⁇ +90° or ⁇ +270° ⁇ ⁇ 360°, which means that the orientation of the mobile device is at a right angle between the true north direction and the return direction, indicating that the boundary of the working area is located in the left front of the mobile device.
  • the self-mobile device can be controlled to make a U-turn on the spot and then go straight forward, so as to reach the boundary of the working area.
  • the yaw angle ⁇ of the self-mobile device satisfies: ⁇ +90° ⁇ +270°, it means that the direction of the self-mobile device is in the opposite direction of the homing direction and true north In the right-angle area between the directions, it indicates that the boundary of the working area is located in the right front of the self-mobile device.
  • the self-mobile device is controlled to go straight forward and reach the boundary of the working area.
  • the embodiments of the present disclosure can accurately detect the position of the boundary of the working area relative to the mobile device, so as to determine the corresponding driving action, and guide the mobile device to drive to the boundary of the working area quickly.
  • Fig. 11 and Fig. 12 are flowcharts showing a method for controlling return from a mobile device according to an exemplary embodiment. Referring to Figure 11 and Figure 12, if the included angle ⁇ between the returning direction and the true north direction satisfies: 90° ⁇ 180°, the heading angle based on the self-mobile device and the included angle between the returning direction and the true north direction angle, determining the driving action of the self-mobile device, including:
  • heading angle ⁇ of the self-mobile device satisfies: ⁇ -90° ⁇ +90°, then control the self-mobile device to turn around and drive forward;
  • the self-mobile device If the heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -90° or ⁇ +90° ⁇ 360°, the self-mobile device is controlled to go straight forward.
  • the heading angle ⁇ of the self-mobile device satisfies: ⁇ -90° ⁇ +90°, it means that the orientation of the self-mobile device is in the right-angle area between the normal direction of the return direction (outside the working area) and the return direction If it is inside, it means that the boundary of the working area is located in the left front of the self-mobile device, as shown in FIG.
  • the heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -90° or ⁇ +90° ⁇ 360°, it means that the head of the self-mobile device is facing the normal direction of the return direction (Outside of the working area) in the direct area between the opposite direction of the return direction, it means that the boundary of the working area is located in the right front of the self-mobile device, as shown in Figure 12, at this time the self-mobile device is controlled to go straight forward , until the boundary of the working area is detected.
  • the embodiments of the present disclosure can accurately detect the position of the boundary of the working area relative to the mobile device, so as to determine the corresponding driving action, and guide the mobile device to drive to the boundary of the working area quickly.
  • Fig. 13 and Fig. 14 are flowcharts showing a method for controlling return from a mobile device according to an exemplary embodiment. Referring to Figure 13 and Figure 14, if the angle ⁇ between the return direction and the true north direction satisfies: 180° ⁇ 270°, the heading angle according to the self-mobile device and the return direction and the true north direction The included angle determines the driving action of the self-mobile device, including:
  • heading angle ⁇ of the self-mobile device satisfies: ⁇ -90° ⁇ +90°, then control the self-mobile device to turn around on the spot and go straight ahead;
  • the self-mobile device If the heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -90° or ⁇ +90° ⁇ 360°, the self-mobile device is controlled to go straight forward.
  • the heading angle ⁇ of the self-mobile device satisfies: ⁇ -90° ⁇ +90°, it means that the front of the self-mobile device is facing the normal direction of the return direction (outside the working area) and the right-angle area between the return direction , it means that the boundary of the working area is located at the left front of the self-mobile device, as shown in FIG.
  • the heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -90° or ⁇ +90° ⁇ 360°, it means that the head of the self-mobile device is facing the normal direction of the return direction ( In the right-angled area between the outside of the working area) and the opposite direction of the return direction, it means that the boundary of the working area is located in the right front of the self-mobile device, as shown in Figure 14, at this time the self-mobile device is controlled to go straight forward, until the boundary of the working area is detected.
  • the embodiments of the present disclosure can accurately detect the position of the boundary of the working area relative to the mobile device, so as to determine the corresponding driving action, and guide the mobile device to drive to the boundary of the working area quickly.
  • Fig. 15 and Fig. 16 are flow charts showing a method for controlling return from a mobile device according to an exemplary embodiment. Referring to Figure 15 and Figure 16, if the angle ⁇ between the return direction and the true north direction satisfies: 270° ⁇ 360°, the heading angle according to the mobile device and the return direction and the true north direction The included angle determines the driving action of the self-mobile device, including:
  • heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -270° or ⁇ -90° ⁇ 360°, control the self-mobile device to turn around and drive forward;
  • the self-mobile device is controlled to move forward.
  • the heading angle ⁇ of the self-mobile device satisfies: 0° ⁇ -270° or ⁇ -90° ⁇ 360°, it means that the head of the self-mobile device is facing the normal direction of the return direction (outside the working area ) and the return direction, it means that the boundary of the working area is located at the left front of the mobile device, as shown in Figure 15, at this time, the mobile device is controlled to turn around and drive forward.
  • the heading angle ⁇ of the self-mobile device satisfies: ⁇ -270° ⁇ -90°, it means that the head of the self-mobile device is facing the normal direction of the return direction (outside the working area) and the return direction
  • the right-angled area between the direction and the direction means that the boundary of the working area is located in the right front of the self-mobile device, as shown in FIG. 16 , and the self-mobile device is controlled to move forward at this time.
  • the embodiments of the present disclosure can accurately detect the position of the boundary of the working area relative to the mobile device, so as to determine the corresponding driving action, and guide the mobile device to drive to the boundary of the working area quickly.
  • Fig. 17 is a flow chart showing an automatic control method according to an exemplary embodiment.
  • a kind of automatic control method comprises:
  • the satellite positioning information collected from the mobile device during walking The satellite positioning information collected from the mobile device during walking;
  • the map of the working area plan a walking path from the current position to the reference point, and control the self-mobile device to detect the boundary of the working area during the process of walking according to the walking path, wherein the map includes the location of the charging station and The reference point position, the distance between the two positions is greater than or equal to twice the satellite positioning error;
  • the self-mobile device When walking to the preset range of the reference point, the self-mobile device is controlled to return to the charging station along the boundary for charging.
  • the planning of the walking path from the current position to the reference point according to the map of the working area includes:
  • the control module determines a reference circle on the map with the location of the charging station as the center and the distance between the location of the reference point and the location of the charging station as the radius;
  • the control module plans a tangent path from the current position to the reference circle, and a walking path to the reference point via the tangent path.
  • Fig. 18 is a schematic structural diagram of a mobile device according to an exemplary embodiment.
  • the mobile device 180 may include: a main body;
  • a satellite positioning sensor for obtaining satellite positioning data
  • the processor 181 is disposed inside the main body, is electrically connected with the satellite positioning sensor and the memory, and is configured to implement the steps of the method described in any embodiment of the present disclosure when executing the computer program.
  • the processor 181 may have data processing capabilities, and may also have wired or wireless communication capabilities.
  • the processor 181 may be or include a Microcontroller Unit (MCU).
  • the processor 181 can compensate the positioning data of each sampling point in the shadow area on the boundary of the working area; determine the estimation error of the sampling point in the shadow area according to the positioning data; according to the compensated positioning data, the To estimate the error, determine the work area boundary map.
  • the self-moving device may generally include a device that can move according to a predetermined travel route and control strategy, and may include an intelligent lawn mower, a sweeping robot, an automatic delivery machine, and the like.
  • Self-moving devices can usually work without human intervention.
  • the self-propelled device in the embodiment of this specification can be in contact with human equipment or external equipment.
  • the self-propelled device can have a handrail, and the operator can follow behind the self-propelled device and hold the handrail of the self-propelled device.
  • the travel route and control strategy of the self-moving device still come from the control logic of the self-moving device itself. Even if the operator holds the handrail or can actively change the direction or speed of the self-moving device through the handrail, such
  • the device still belongs to the mobile device described in the embodiments of this specification.
  • self-moving equipment carrying people can also be included.
  • the main body may generally include driving equipment (such as a power supply, etc.), traveling devices (such as traveling rollers or crawlers, etc.), steering equipment (rack and pinion steering gear, worm crank pin steering gear, etc.) ) and corresponding operating tools (such as mowing devices, cleaning devices, etc.).
  • driving equipment such as a power supply, etc.
  • traveling devices such as traveling rollers or crawlers, etc.
  • steering equipment rack and pinion steering gear, worm crank pin steering gear, etc.
  • corresponding operating tools such as mowing devices, cleaning devices, etc.
  • a storage medium including instructions such as a memory including instructions.
  • the above instructions can be executed by a processor of the device to complete the above method.
  • the storage medium may be a non-transitory computer readable storage medium such as ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, and optical data storage device, for example. And other implementations of readable storage media, such as quantum storage, graphene storage, etc.
  • the self-mobile device 100 moves and/or works within the working area defined by the boundary 101.
  • the boundary 101 of the working area can be a virtual boundary or a boundary with pre-laid magnetic strips, and charging devices are set on the boundary 101.
  • Station 200 the charging station 200 is used to charge the self-mobile device 100 .
  • the mobile device 100 includes a positioning module.
  • the positioning module may include a satellite positioning module.
  • the satellite positioning module is used to collect satellite positioning information from the mobile device 100 to determine the position of the mobile device 100.
  • the satellite positioning module has a positioning error.
  • the self-mobile device includes a storage module, and the location of the charging station is pre-stored in the storage module, and the location of the charging station includes at least the X and Y coordinates of the location of the charging station.
  • the fast regression charging procedure includes: determining a reference circle 401 from the control module of the mobile device 100 with the location of the charging station as the center and a distance greater than or equal to the positioning error as the radius.
  • the control module In order to make the self-mobile device 100 return to the charging station 200 for charging, the control module first controls the self-mobile device 100 to move to the circumference of the reference circle 401, and moves to the boundary under the guidance of the reference circle 401, and then controls the self-mobile device 100 to move along the circumference of the reference circle 401. Boundary moves until return to charging station.
  • the self-mobile device 100 Since the charging connection assembly of the charging station 200 is set on one side of the charging station 200, the self-mobile device 100 arrives at the charging station 200 along the return direction, and can be docked and charged with the charging connection assembly of the charging station 200, so in this embodiment, the self-mobile Only when the device 100 moves according to the fast return charging program can it move to a position closer to the charging station along the return direction on the boundary, so as to realize the fast return to the charging station.
  • the self-mobile device 100 when it detects that its battery is insufficient, it can use a satellite positioning sensor to determine its own location, and plan a driving route from the current location to the charging station.
  • the control module determines a reference circle 401 with the charging station 200 as the center and the distance greater than or equal to the positioning error as the radius. Since the positional relationship between the self-mobile device 100 and the reference circle 401 is that the self-mobile device 100 is outside the circumference of the reference circle 401 , the tangent points between the current position of the self-mobile device 100 and the reference circle 400 are determined as A and B.
  • the return direction of the mower is clockwise, on the boundary where the charging station is located, the return direction is from the left side of the charging station to the right side of the charging station. Along this direction, point A is in front of point B, so point A The located tangent serves as a tangent path from the current position of the mobile device 100 to the reference circle 401 .
  • the lawnmower moves from its current position to tangent point A along a tangent path. Since the mobile device 100 first arrives at the intersection C of the tangent path and the boundary 101 during the movement process, the boundary detection module detects the boundary, and the control module determines that the mobile device arrives at point C on the boundary according to the detection result of the boundary detection module. Therefore, after the mobile device 100 reaches the point C, it stops moving along the tangential path, but moves along the border to the charging station 200 in the returning direction.
  • the tangent path may be determined before the movement starts, and a new tangent path is no longer determined based on the new position during the movement. It is also possible to constantly determine a new danger-rescue path based on the new position during the movement, constantly adjust the moving direction, and move along the new danger-relief path. If the new dangerous path is not determined during the moving process, and only moves along the dangerous path determined before the start of the movement, the calculation amount of the self-mobile device 100 can be greatly reduced.
  • the ego mobile device 100 moves from the current location to the tangent point A along a tangent path. Since the mobile device 100 first arrives at the tangent point A during the movement, after the mobile device 100 reaches the point A, it stops moving along the tangent path, but moves along the return direction along the circumference of the reference circle 401 to the point where the circumference of the reference circle 401 is in line with the reference circle 401. The intersection point D of the boundaries. After reaching the point D on the boundary, the self-mobile device 100 stops moving along the circle, but moves along the boundary line along the return direction to the charging station 200 .
  • the reference circle where the current position of the self-mobile device 100 is located is determined.
  • the radius path of 401, the direction of the radius path is from the center of the reference circle 401 to the circumference.
  • the self-mobile device 100 moves toward the circumference of the reference circle 401 along a radial path at the current position until the self-mobile device 100 reaches a point E on the reference circle 401 .
  • the mobile device 100 After the mobile device 100 reaches the point E, it stops moving along the radius path, but moves along the circumference of the reference circle 401 along the return direction to the intersection point F of the circumference of the reference circle 401 and the boundary. After the self-mobile device 100 reaches the point F on the boundary, the self-mobile device 100 stops moving along the circle, but moves along the boundary along the return direction to the charging station 200 .
  • the self-mobile device 100 is on the circumference of the reference circle 401 .
  • the self-mobile device 100 moves from the current position along the circumference of the reference circle 401 until the self-mobile device 100 reaches the intersection point G of the circumference of the reference circle 401 and the boundary. After the self-mobile device 100 reaches the point G on the boundary, the self-mobile device stops moving along the circle, but moves along the boundary along the return direction to the charging station 200 .
  • the positioning module on the mobile device 100 may be a satellite positioning module, which is used to collect satellite positioning information from the mobile device 100 .
  • the positioning module can also be a satellite positioning module and an IMU module.
  • the positioning result of the IMU module is very accurate in a short period of time, but due to drift, after a period of cumulative use, the IMU module can only provide relative yaw. With satellite positioning, we can calculate the absolute yaw.
  • the algorithm of the control module of lawn mower 100 can use satellite positioning data and IMU data in combination to calculate a more accurate yaw value from mobile device 100 .
  • the mobile device 100 can move based on the satellite positioning data of the satellite positioning module. It is also possible to move based on the positioning data of the fusion of the satellite positioning data of the satellite positioning module and the IMU data of the IMU module.
  • the image data from the surrounding environment of the mobile device at least includes an image of the ground in the surrounding environment of the mobile device.
  • the ground includes a grass area and a non-grass area.
  • the boundary detection module recognizes that the image includes a grass area and a non-grass area, the grass area can be determined. and the decomposition line of the non-grass area as the boundary.
  • each module can be realized in the same or more software and/or hardware, and the modules that realize the same function can also be realized by a combination of multiple submodules or subunits, etc. .
  • the device embodiments described above are only illustrative.
  • the division of energy wave sensors and shooting devices is only a logical function division.
  • multiple units or components can be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling and communication connection between the devices or units shown or described in the mobile device can be realized by direct and/or indirect coupling/connection, and can be achieved through some standard or custom interfaces and protocols etc., are implemented in electrical, mechanical or other forms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自动工作系统、自动工作方法和计算机可读存储介质。自动工作系统包括:自移动设备(100)以及充电站(200),自移动设备(100)包括:定位模块,定位模块被配置为采集自移动设备(100)的卫星定位信息,定位模块存在定位误差;存储模块,存储模块被配置为存储工作区域的地图以及充电站(200)位置;自动工作系统中还包括:控制模块,控制模块被配置为在地图上以充电站(200)的位置为圆心,确定一参考圆(401),参考圆(401)的半径大于或等于定位误差;控制模块被配置为在回归充电站(200)的过程中,控制自移动设备(100)向参考圆(401)移动,在参考圆(401)的引导下移动到边界(101),沿边界(101)回归至充电站(200)。通过自动工作方法,能大大提高自移动设备(100)的回归效率。

Description

自动工作系统、自动工作方法和计算机可读存储介质 技术领域
本公开涉及自移动设备数据处理技术领域,特别是涉及一种自动工作系统、自动工作方法和计算机可读存储介质。
背景技术
随着科学技术的发展,越来越多的自移动设备走进了人们的生活。例如,自动割草机、自动扫地机器人、自动送货机等。这些自移动设备给人们的生产和生活带来了极大地便利。
自移动设备在工作一段时间后,需要自动回归到充电站充电。常用的回归充电的控制方法有,在工作区域的边界线上设置磁条,自移动设备上安装磁感应传感器,通过磁条引导自移动设备回归到充电站。然而,沿边界线回归充电会导致回归过程较长,尤其是当自移动设备距离充电站较远时,损耗自移动设备的电量,影响自移动设备的工作效率。
因此,亟需一种可以使自移动设备更加有效、快速的回归充电的解决方案。
发明内容
基于此,有必要针对上述技术问题,提供一种控制自移动设备回归的自动工作系统、自动工作方法和计算机可读存储介质。
根据本公开实施例的第一方面,一种自动工作系统,所述自动工作系统包括:自移动设备以及充电站,所述自移动设备在边界限定的工作区域内移动和/或工作,所述充电站用于向所述自移动设备充电,所述充电站位于所述边界上,所述充电站具有前向和后向,将所述边界分为位于前向的一侧以及位于后向的一侧,
所述自移动设备包括:
定位模块,所述定位模块被配置为采集所述自移动设备的卫星定位信息,所述定位模块存在定位误差;
存储模块,所述存储模块被配置为存储所述充电站位置;
所述自动工作系统中还包括:控制模块,所述控制模块与所述定位模块以及所述存储模块信号相连;
所述自动工作系统中还包括:控制模块,所述控制模块与所述定位模块以及所述存储模块信号相连;
所述控制模块以所述充电站的位置为圆心,确定一参考圆,所述参考圆的半径大于或等于所述定位误差;
所述控制模块被配置为在回归充电站的过程中,控制所述自移动设备向所述参考圆移动,在所述参考圆的引导下移动到所述边界,沿所述边界回归至所述充电站。
在一种可能的实现方式中,所述自移动设备还包括:边界检测模块,用于检测边界;
所述控制模块根据所述边界检测模块的检测结果确定所述自移动设备到达所述边界。
在一种可能的实现方式中,所述控制所述自移动设备向所述参考圆移动之前,包括;
所述定位模块采集所述自移动设备的卫星定位信息,确定所述自移动设备的当前位置;
所述控制模块确定所述当前位置与所述参考圆的位置关系。
在一种可能的实现方式中,若所述位置关系为所述当前位置在所述参考圆的圆周外,所述控制所述自 移动设备向所述参考圆移动,在所述参考圆的引导下移动到所述边界,包括:
所述控制模块控制所述自移动设备沿所述当前位置与所述参考圆的切线路径向所述参考圆移动,所述边界检测模块在移动的过程中检测所述边界,若所述边界检测模块在所述移动的过程中未检测到所述边界,则所述自移动设备延所述切线路径到达所述参考圆的圆周,并在到达所述参考圆的圆周后,延所述参考圆的圆周移动至所述边界。
在一种可能的实现方式中,若所述位置关系为所述当前位置在所述参考圆的圆周外,所述控制模块控制所述自移动设备向所述参考圆移动,在参考圆的引导下移动到所述边界,包括:
所述控制模块控制所述自移动设备沿所述当前位置与所述参考圆的切线路径向所述参考圆移动,所述边界检测模块在移动的过程中检测所述边界,若所述边界检测模块在所述移动的过程中检测到所述边界,则所述自移动设备延所述切线路径移动至所述边界。
在一种可能的实现方式中,若所述位置关系为所述当前位置在所述参考圆的圆周内,所述控制模块控制所述自移动设备向所述参考圆移动,在参考圆的引导下移动到所述边界,包括:
所述控制模块控制所述自移动设备沿所述当前位置所在的所述参考圆的半径路径向所述参考圆移动,直至到达所述参考圆的圆周,并在到达所述参考圆的圆周后,延所述参考圆的圆周移动至所述边界。
在一种可能的实现方式中,若所述位置关系为所述当前位置在所述参考圆的圆周上,所述控制模块控制所述自移动设备向所述参考圆移动,在参考圆的引导下移动到所述边界,包括:
所述控制模块控制所述自移动设备沿所述参考圆的圆周移动至所述边界。
在一种可能的实现方式中,所述沿所述边界回归至所述充电站,包括:
当所述自移动设备到达所述边界后,所述控制模块控制所述自移动设备沿所述边界移动至所述充电站。
在一种可能的实现方式中,所述控制模块控制所述自移动设备沿所述当前位置与所述参考圆的切线路径向所述参考圆移动,包括:
所述控制模块确定所述当前位置与所述参考圆的切线;
在所述切线包括两条的情况下,获取两切线与所述参考圆的圆周的两切点;
确定沿回归方向在前端的切点所在的切线为所述当前位置至所述参考圆的切线路径;
控制所述自移动设备沿所述切线路径向所述参考圆移动。
在一种可能的实现方式中,所述控制所述自移动设备沿所述参考圆的切线路径向所述参考圆移动,包括:
获取所述自移动设备的行走方向与所述切线路径的夹角;
根据所述夹角调整所述自移动设备的行走方向;
按照所述行走方向行走,以向所述参考圆移动。
在一种可能的实现方式中,所述获取所述自移动设备行走方向与所述切线路径的夹角,包括:
获取自移动设备的卫星定位数据以及惯导传感器数据;
根据所述卫星定位数据和所述惯导传感器数据,确定所述自移动设备当前前进方向与所述切线路径的夹角。
在一种可能的实现方式中,所述边界包括正多边形。
在一种可能的实现方式中,所述定位模块定位误差大于或等于5-10m。
在一种可能的实现方式中,所述边界检测模块包括:
图像采集模块,用于采集自移动设备周围环境的图像数据;
在向所述参考圆移动的过程中检测所述边界,包括:
在向所述参考圆移动的过程中,根据所述图像数据检测所述边界。
在一种可能的实现方式中,所述系统还包括:
信号发生装置,所述信号发生装置用于发出边界信号;
所述边界检测模块包括:
磁感应模块,用于感应所述边界信号;
在向所述参考圆移动的过程中检测所述边界,包括:
在向所述参考圆移动的过程中,根据感应到的所述边界信号检测所述边界。
在一种可能的实现方式中,所述边界包括磁条,所述边界检测模块包括:磁场检测模块,所述磁场检测模块用于检测所述磁条的磁信号;
在行走至所述参考点的过程中检测所述边界,包括:
在行走至所述参考点的过程中,根据所述磁信号检测所述边界。
在一种可能的实现方式中,所述检测所述边界,包括:
根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,所述航向角包括自移动设备行驶方向与真北方向的夹角;
控制所述自移动设备按照所述行驶动作行驶,直到检测到所述工作区域的边界。
在一种可能的实现方式中,所述检测所述边界,包括:
所述检测所述边界,包括:
根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,所述航向角包括自移动设备行驶方向与真北方向的夹角;
控制所述自移动设备按照所述行驶动作行驶,直到检测到所述工作区域的边界。
在一种可能的实现方式中,若所述回归方向与真北方向的夹角θ满足:0°≤θ≤90°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:0°≤α≤θ+90°或θ+270°<α<360°,则控制所述自移动设备左转预设角度并前行预设距离;
若自移动设备的航偏角α满足:θ+90°≤α<θ+270°,则控制所述自移动设备右转预设角度并前行预设距离。
在一种可能的实现方式中,若所述回归方向与真北方向的夹角θ满足:90°<θ≤180°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:θ-90°<α≤θ+90°,则控制所述自移动设备左转预设角度 并前行预设距离;
若自移动设备的航向角α满足:0°≤α≤θ-90°或θ+90°<α<360°,则控制所述自移动设备右转预设角度并前行预设距离。
在一种可能的实现方式中,若所述回归方向与真北方向的夹角θ满足:180°<θ≤270°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:θ-90°<α≤θ+90°,则控制所述自移动设备左转预设角度并前行预设距离;
若自移动设备的航向角α满足:0°≤α≤θ-90°或θ+90°<α<360°,则控制所述自移动设备右转预设角度并前行预设距离。
在一种可能的实现方式中,若所述回归方向与真北方向的夹角θ满足:270°<θ<360°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:0°≤α≤θ-270°或θ-90°<α<360°,则控制所述自移动设备左转预设角度并前行预设距离;
若自移动设备的航向角α满足:θ-270°<α≤θ-90°,则控制所述自移动设备右转预设角度并前行预设距离。
在一种可能的实现方式中,所述检测所述边界,包括:
根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,所述航向角包括自移动设备行驶方向与真北方向的夹角;
控制所述自移动设备按照所述行驶动作行驶,直到检测到所述工作区域的边界。
在一种可能的实现方式中,若所述回归方向与真北方向的夹角θ满足:0°≤θ≤90°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:0°≤α≤θ或θ+270°<α<360°,则控制所述自移动设备原地掉头后,向前直行;
若自移动设备的航偏角α满足:θ+90°≤α<θ+270°,则控制所述自移动设备向前直行。
在一种可能的实现方式中,若所述回归方向与真北方向的夹角θ满足:90°<θ≤180°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:θ-90°<α≤θ+90°,则控制所述自移动设备原地掉头后向前行驶;
若自移动设备的航向角α满足:0°≤α≤θ-90°或θ+90°<α<360°,则控制所述自移 动设备向前直行。
在一种可能的实现方式中,若所述回归方向与真北方向的夹角θ满足:180°<θ≤270°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:θ-90°<α≤θ+90°,则控制所述自移动设备原地掉头后向前直行;
若自移动设备的航向角α满足:0°≤α≤θ-90°或θ+90°<α<360°,则控制所述自移动设备向前直行。
在一种可能的实现方式中,若所述回归方向与真北方向的夹角θ满足:270°<θ<360°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:0°≤α≤θ-270°或θ-90°<α<360°,则控制所述自移动设备原地掉头后向前行驶;
若自移动设备的航向角α满足:θ-270°<α≤θ-90°,则控制所述自移动设备向前行驶。
根据本公开实施例的第二方面,提供一种自动控制方法,包括:
获取自移动设备的卫星定位信息、工作区域的地图以及充电站的位置;
在所述地图上以所述充电站的位置为圆心,确定一参考圆,所述参考圆的半径大于或等于所述卫星定位信息的定位误差;
控制所述自移动设备向参考圆移动,在参考圆的引导下移动到所述边界,沿所述边界回归至所述充电站,其中,所述充电站位于所述边界上,所述充电站用于向所述自移动设备充电,所述边界用于限定工作区域。
根据本公开实施例的第三方面,提供一种自移动设备,包括:
主体;
定位模块,用于采集所述自移动设备的卫星定位信息,所述定位模块存在定位误差;
存储模块,用于存储所述工作区域的地图以及所述充电站的位置和计算机程序;
处理器,设置于所述主体内部,与所述定位模块和所述存储模块电性连接,用于执行所述计算机程序时实现本公开任一实施例所述的方法的步骤。
根据本公开实施例的第四方面,提供一种计算机可读存储介质,当所述存储介质中的指令由电子设备的处理器执行时,使得所述电子设备能够执行本公开任一实施例所述的方法。
通过本公开实施例的方法,可以使自移动设备率先行驶至边界上沿回归方向靠近充电站的位置,再引导其行驶到充电站。相较于传统的沿边界回归充电方法,大大提高了回归效率。并且,在引导自移动设备从当前位置到充电站的过程中,可以利用已有的边界回归引导方法即可引导到充电站处,方案可实施性较强。
附图说明
图1是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图2是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图3是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图4(a)是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图4(b)是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图5是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图6是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图7是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图8是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图9是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图10是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图11是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图12是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图13是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图14是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图15是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图16是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图17是根据一示例性实施例示出的一种自动控制方法的流程图。
图18是根据一示例性实施例示出的一种自移动设备的结构示意图。
图19是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图20是图19中自移动设备行驶位置处局部放大图。
图21是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图22是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图23是根据一示例性实施例示出的一种自动工作系统的应用场景图。
图24是根据一示例性实施例示出的一种自动工作系统的应用场景图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
图1是根据一示例性实施例示出的一种自动工作系统的应用场景图,参考图1所示,自移动设备100在工作区域内工作,当检测到自身的电量不足的时候,启动快速回归充电的程序。在本公开实施例中,工作区域的边界101可以是虚拟边界也可以是预先铺设好磁条的边界,边界101上设置参考位置,该参考位置可存在于工作区域的地图上,在实际的工作环境中可以是不存在的,其表示一个位置点。在本公开实施例中,自移动设备100检测到自身电量不足,可以利用卫星定位传感器确定自己的位置,并规划当前位置到参考位置的行驶路径,参考图1中虚线箭头所指,按照该行驶路径到达参考点103。并沿着工作区域的边界行驶到充电站进行对接充电。在自移动设备的定位信号不佳的情况下,自移动设备100可能到达参考 点103的预设范围内,此时可以根据回归方向与自移动设备的航向角,确定自移动设备100的执行动作,按照该执行动作行驶到工作区域的边界上,并按照回归方向行驶至充电站进行对接充电。相较于常用的回归充电的引导方法,机器人100先行驶到最近的边界处,如自移动设备100的后方,然后沿工作区域的边界行驶到充电站,本公开实施例可以大大节省自移动设备的行驶路径,提高充电效率。
下面对本公开所述的自动工作系统进行详细的说明。本公开提供的一种自动工作系统,包括:自移动设备以及充电站,所述自移动设备在边界限定的工作区域内行走和/或工作,所述充电站用于向所述自移动设备供电,所述充电站用于向所述自移动设备充电,所述充电站位于所述边界上,所述充电站具有前向和后向,将所述边界分为位于前向的一侧以及位于后向的一侧,所述自移动设备包括:
定位模块,所述定位模块被配置为采集所述自移动设备行走过程中的卫星定位信息,所述定位模块存在定位误差;
存储模块,所述存储模块被配置为存储所述工作区域的地图以及所述充电站位置;
所述自动工作系统中还包括:控制模块,所述控制模块与所述定位模块以及所述存储模块信号相连,所述控制模块被配置为在回归充电站的过程中,控制所述自移动设备向参考位置移动,且在移动的过程中检测所述边界,当到达所述参考位置附近或到达所述边界时,控制所述自移动设备沿着所述边界回归至所述充电站,其中,所述参考位置位于所述充电站的前向,且所述参考位置与所述充电站之间的距离大于或等于所述定位误差的两倍。
本公开实施例中,所述充电站具有前向和后向,将所述边界分为位于前向的一侧以及位于后向的一侧。参考图1所示,自移动设备具有预设的回归方向,例如,图1中的回归方向为瞬时针方向。所述充电站的前向方向在回归方向的反向方向上,自移动设备行驶到充电站前向某位置时,例如参考点103,按照回归方向会很快的回归到充电站。所述充电站的后向方向在回归方向上,自移动设备行驶到充电站的后向某位置,不会立刻朝着充电站行驶,而仍然按照回归方向,沿边界行驶一周,回到充电站。因此,自移动设备位于充电站前向方向时相较于所述自移动设备位于充电站后向方向时能更快的回到充电站。
本公开实施例中,所述定位模块可以包括定位传感器,如卫星定位传感器。受云层、树木、建筑物的遮挡的影响,所述定位模块存在定位误差。所述存储模块可以包括存储器,如ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。所述控制模块可以包括控制器,处理器等。
本公开实施例中,所述边界用于区分工作区域和非工作区域,以使自移动设备在工作时,位于工作区域内行驶工作。例如,对于割草机而言,工作区域边界包括割草区域和非割草区域的边界,再比如,扫地机器人,工作区域的边界包括清洁区域和非清洁区域的边界。所述参考位置附近包括以参考位置为中心的预设矩形或圆心范围。所述充电站向自移动设备提供电源,当自移动设备在工作一段时间后,检测到自身的电量不满足预设值时,需要行驶到充电站充电。在一个示例中,可以在工作区域的边界全部或部分设置磁条,在自移动设备上设置磁感应传感器,利用磁感应传感器检测磁条,使所述自移动设备能够沿工作区域的边界行驶。在另一个示例中,利用存储的工作地图的边界,以及其他传感器设备如卫星定位传感器或惯导传感器获取自移动设备的定位数据,根据该定位数据和已存储的地图的边界,使得自移动设备沿工作区域的边界行驶。根据上述两个示例,将充电站设置于工作区域的边界上,有利于引导自移动设备沿工作区域的边界回归充电。
本公开实施例中,所述回归方向包括预先设置的沿边界顺时针回归方向或逆时针回归方向。该回归方 向一经设置后,自移动设备沿边界回归的过程中则按照所述回归方向回归到充电站。所述参考位置在实际的应用场景中为一虚拟点,表示一预设位置,该预设位置可以标注在工作区域的地图上。所述参考位置位于所述充电站的前向,且所述参考位置与所述充电站之间的距离大于或等于所述定位误差的两倍,自移动设备沿回归方向,可以先经过参考位置,经预设距离后到达充电站。
本公开实施例中,所述参考位置的预设范围内可以包括参考位置的位置或者以参考位置为圆心,以预设长度为半径的圆形区域范围内。所述控制自移动设备行驶至所述参考位置的预设范围内可以包括利用通过卫星定位传感器和/或惯导传感器或其他里程计传感器为所述自移动设备提供定位数据,确定自移动设备的位置,进而确定该位置到参考位置的行驶路径,控制自移动设备行驶至所述参考位置的预设范围内。本公开实施例中,若自移动设备恰好行驶到参考位置上,则直接控制自移动设备在工作区域的边界上沿回归方向行驶至充电站;若自移动设备行驶到参考位置的以外的位置,则控制自移动设备按照如下实施例方式检测工作区域的边界。
本公开实施例中,检测工作区域边界的方法可以包括:在一个示例中,控制自移动设备在所述预设范围内进行左转、右转、前进或后退等运动,直到位于自移动设备上的传感器检测到工作区域的边界。在另一个示例中,根据自移动设备的航向角、回归方向、确定自移动设备具体要执行的动作,不断的调整,直到检测到工作区域的边界。当自移动设备检测到边界之后,就可以按照上述实施例中的方法,在工作区域的边界上,沿所述回归方向行驶至充电站位置处。
通过本公开实施例的方法,可以使自移动设备率先行驶至参考位置附近位置,再引导其行驶到充电站。相较于传统的沿边界回归充电方法,大大提高了回归效率。并且,在引导自移动设备从参考位置到充电站的过程中,可以利用已有的边界回归引导方法即可引导到充电站处,方案可实施性较强。
图1至图3是根据一示例性实施例示出的一种控制自移动设备回归的方法的应用场景图。参考图1至图3所示,在一种可能的实现方式中,所述预设距离被设置为自移动设备上卫星定位传感器的误差值。在图1所示的实施例中,工作区域的边界没有凹进去的区域,内凹区域可以包括房屋建筑所在的区域。充电站在所述参考点103沿回归方向的预设距离处。在图2所示的实施例中,参考点103与工作区域边界的拐点相重合,充电站在所述参考点103沿回归方向的预设距离处。在图3所示的实施例中,充电站在工作区域内凹的边界上,且充电站在参考点103沿回归方向的预设距离处。
本公开实施例,可以利用低精度的卫星定位传感器,引导自移动设备行驶至参考点预设范围内,若所述预设距离小于卫星定位传感器的误差值,自移动设备有可能会行驶到如图1至3中的充电站的左侧,从而导致回归距离增加(此时,自移动设备会沿工作区域的边界行驶一圈,然后回到充电站),若所述预设距离大于卫星定位传感器的误差值,又会导致引导自移动设备行驶到边界上使距离充电站还有一段距离,因此,将卫星定位传感器的误差值设置为所述预设距离,在一个示例中,所述误差值可以包括5-10m。能够保证自移动设备在参考点预设范围内的情况下可以检测到到工作区域的边界并行驶至充电站位置处的距离较短,从而进一步提高回归效率。
图4(a)、图4(b)是根据一示例性实施例示出的一种自动工作系统的应用场景图。参考图4(a)所示,所述参考位置为一位于边界上的参考点,所述控制模块控制所述自移动设备向所述参考位置移动,包括:
所述控制模块在所述地图上以所述充电站200的位置为圆心,以所述参考点103的位置与所述充电站 的位置之间的距离为半径,确定参考圆401;
控制所述自移动设备沿所述参考圆的切线路径向所述参考圆移动,直至行走至所述参考点或到达所述边界。
本公开实施例中,所述参考位置可以包括一位于边界上的参考点,如图4(a)中的参考点103;所述参考位置还可以包括位于充电站前向工作区域,以边界101为一个边的扇形夹角区域内,如夹角的度数为45度。自移动设备在工作区域工作一段时间后,电量不足,需要启动快速回归充电。可以按照从当前位置与参考圆的切点的切线路径回归到参考点103附近。本公开实施例中,参考圆的获得方式可以包括以所述充电站200的位置为圆心,以所述参考点103的位置与所述充电站的位置之间的距离为半径,确定参考圆401。在一个示例中,为了方便计算,还可以圆弧或半圆来替代本公开实施中的参考圆,只要其实现的功能和效果与本申请参考圆相同或相似,均应涵盖与本申请保护范围内。参考图4(a)所示,自移动设备100与参考圆401有两个切线路径例如图4中的j1和j3,当行走的下一位置时,两条切线路径变为j2和j4。当存在两条切线路径的情况下,需要从两条切线路径中选择一条,例如从j2和j4中选择一条j4,具体选择的条件可以预先设置好。自移动设备100在行走的过程中不断调整行走方向,向着行走方向与切线路径夹角变小的方向调整(例如自移动设备100行走方向与j4的夹角小于所述行走方向与j3的夹角),逐渐的逼近切线路径。本公开实施例中。参考图4,当切线路径j4与参考圆401的交点A在工作区域的外侧时,自移动设备行走至A点,检测工作区域的边界101,上边界101,然后回归到充电站200进行充电。
在一种可能的实现方式中,控制所述自移动设备沿所述参考圆的切线路径向所述参考圆移动,直至行走至所述参考点或到达所述边界,包括:
控制所述自移动设备沿所述参考圆的切线路径向所述参考圆移动,当所述自移动设备移动至所述参考圆的圆周位置上后,控制所述自移动设备沿所述参考圆的圆周移动至所述参考点或到达所述边界。
在本申请的另一个实施例中,参考图4(b)所示,当参考点103不存在的时候,仍然可以以所述充电站200为圆心,以大于或等于所述定位误差的两倍的距离为半径,确定参考圆401。自移动设备按照上述图4(a)对应实施例的方法,逐渐逼近切线路径,到达充电站前向边界附近。在一个示例中,当自移动设备沿参考圆的切线路径行走至切线路径与参考圆的交点后,自移动设备可以沿着参考圆的圆弧继续行走,在行走的过程中检测工作区域的边界101,检测到边界后上边界101,然后回归到充电站200进行充电;在一个示例中,自移动设备可能行驶到边界的外侧,如A点附近,此时,自移动设备可以检测工作区域的边界,上边界,然后回到充电站200进行充电。在一个示例中,自移动设备可能行驶到边界的内测,如B点附近,则可以控制自移动设备按照与回归方向一致的方向,沿所述参考圆行驶至边界101,然后回归到充电站200进行充电。
本公开实施例中,由于充电站的坐标位置是已知的,圆的半径为充电站位置与参考点的距离,该距离大于或定于定位误差的两倍。因此,通过上述切线路径可以在卫星定位信号存在误差的情况下,快速引导自移动设备快速到达参考点的附近,而不至于离充电站太近,
在一个示例中,所述控制所述自移动设备沿所述参考圆的切线路径向所述参考圆移动,包括:
所述控制模块规划从当前位置至所述参考圆的切线路径;
在所述切线路径包括两条的情况下,获取两切线路径与所述参考圆的交点;
将满足预设要求的交点所在切线作为所述当前位置至所述参考圆的切线路径,所述预设要求为所述交 点位于靠近所述充电站的一侧;
控制所述自移动设备沿所述切线路径向所述参考圆移动。
本公开实施例中,参考图4a或者图4b所述,在切线路径包括两条的情况下,例如第一切线路径j1和第二切线路径j3。可以计算两切线路径与参考圆的交点坐标,并比较所述角点坐标和所述充电站的坐标。例如第一切线路径j1与参考圆的交点为(x 1,y 1),第二切线路径j3与参考圆的交点为(x 2,y 2),充电站的坐标为(X,Y),且x 1>X>x 2。在图4a或者图4b所示的实施例中,参考点103在充电站200的右侧,预设的回归方向为顺指针方向,因此,为确保自移动设备从参考点103沿回归方向较快的到达充电站200,所述预设的大小关系可以包括选择交点坐标的横坐标小于充电站横坐标的切线路径,因此,本公开实施例将第二切线路径j3作为所述当前位置至所述圆的切线路径。需要说明的是,在一些情况下,预设大小关系还可以包括交点坐标的横坐标(纵坐标)大于充电站横坐标(纵坐标),其设定情况依据参考点与充电站的相对位置。
图19是根据一示例性实施例示出的一种自动工作系统的应用场景图。参考图19所示,所述控制所述自移动设备沿所述参考圆的切线路径向所述参考圆移动,包括:
获取所述自移动设备历史时刻前进方向与所述切线路径的夹角;
根据所述夹角,调整所述自移动设备的前进方向;
按照所述前进方向行走,以向所述参考圆移动。
本公开实施例中,所述前进方向502与所述切线路径503的夹角可以表示为d,所述历史时刻前进方向与所述切线路径的夹角,例如,t1时刻的夹角为d1,t2时刻的夹角为d2。所述根据所述夹角,调整所述自移动设备下一时刻的所述自移动设备的前进方向,例如,若自动行走设备在从t1到达t2的过程中,是右转弯的(也可是左转弯的),并且检测到d2>d1,说明,自移动设备右转弯会偏离切线路径,因此通过左转弯调整自移动设备的前进方向。再例如,若自动行走设备在从t1到达t2的过程中,是右转弯的(也可是左转弯的),并且检测到d2<d1,说明自移动设备右转弯会靠近切线路径,因此通过继续右转弯调整自移动设备前进方向。
通过本公开实施例的方法,自移动设备在行走的过程中不断的调整角度和前进的方向,可以使所述自移动设备沿切线路径行走。
图20是图19中自移动设备行驶位置处局部放大图。参考图20所示,所述获取所述自移动设备当前时刻前进方向与所述切线路径的夹角,包括:
获取自移动设备的卫星定位数据以及惯导传感器数据;
根据所述卫星定位数据和所述惯导传感器数据,确定所述自移动设备当前前进方向与所述切线路径的夹角。
本公开实施例中,可以利用自移动设备的卫星定位数据确定自移动设备行进路径504与真北方向501的夹角b以及行进路径504与切线路径503的夹角a,利用自移动设备的惯导传感器数据确定自移动设备前进方向502与真北方向501的夹角c。则前进方向502与切线路径503的夹角d可以通过公式d=(a-b)+c得到。
在一种可能的实现方式中,当到达所述参考位置附近时,控制所述自移动设备沿着所述边界回归至所述充电站,包括:
当行走至交点附近时,若所述交点在所述边界以内,则控制所述自移动设备按照与所述回归充电的方向相一致的方向,沿所述参考圆行走至所述参考点,所述交点为所述切线路径与所述参考圆的交点;
控制所述自移动设备沿着所述边界回归至所述充电站进行充电。
本公开实施例中,所述与所述回归方向一致的方向可以包括与回归方向的预设方向相匹配,例如:若回归方向为顺时针方向,则自移动设备按照顺时针方向,沿所述参考圆行走至所述参考点;若回归方向为逆时针方向,则自移动设备按照逆时针方向,沿所述参考圆行走至所述参考点。需要说明的是,由于工作区域的边界形状与参考圆的形状可能不同,因此,自移动设备在圆弧上的实时的行走方向与回归方向可能不同,但保证相匹配即可。
本公开实施例中,若所述切线路径与所述参考圆的交点在所述边界以内,则控制所述自移动设备按照与所述回归充电的方向相一致的方向,沿所述参考圆行走至所述参考点,能够快速的到达参考点。
在一种可能的实现方式中,当到达所述边界时,控制所述自移动设备沿着所述边界回归至所述充电站,包括:
当行走至交点附近时,若所述交点在所述边界以外,则控制所述自移动设备检测所述边界,控制所述自移动设备沿着所述边界回归至所述充电站进行充电,所述交点为所述切线路径与所述参考圆的交点。
本公开实施例中,若所述切线路径与所述参考圆的交点在所述边界以外,则无需沿参考圆行驶,可以按照上述实施例中公开的任一中检测边界的方法上边界。以免绕到充电站的与参考点相对的一边。节省上边界的时间。
本公开实施例中,所述边界包括正多边形。本公开实施例中,工作区域为长方形,会在四个顶点采集点。通过控制机器分别走到四个点,在每个点停几分钟采卫星坐标点,然后计算平均值。充电站停留采集坐标点的时间最长,因此充电站坐标的精度应该是最高的。因此,当工作区域的边界为正多变形的时候,快速回归充电的效率更高。
在一种可能的实现方式中,所述定位模块定位误差大于或等于5-10m。
在一种可能的实现方式中,所述自移动设备还包括:
图像采集模块,用于采集草与非草边界的图像数据;
在控制其按照所述行走路径行走的过程中检测所述边界,包括:
在控制其按照所述行走路径行走的过程中,根据所述图像数据检测所述边界。
在一种可能的实现方式中,所述系统还包括:
信号发生装置,所述信号发生装置用于发出边界信号;
所述自移动设备设备还包括:
磁感应模块,用于感应所述边界信号;
在控制其按照所述行走路径行走的过程中检测所述边界,包括:
在控制其按照所述行走路径行走的过程中,根据感应到的所述边界信号检测所述边界。
在一种可能的实现方式中,所述边界包括磁条,所述自移动设备设备还包括:磁场检测模块,所述磁场检测模块用于检测所述磁条中的磁信号;
在控制其按照所述行走路径行走的过程中检测所述边界,包括:
在控制其按照所述行走路径行走的过程中,根据所述磁信号检测所述边界。
在一种可能的实现方式中,所述检测所述边界,包括:
根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,所述航向角包括自移动设备行驶方向与真北方向的夹角;
控制所述自移动设备按照所述行驶动作行驶,直到检测到所述工作区域的边界。
本公开实施例中,所述自移动设备的航向角所述航向角包括自移动设备行驶方向与真北方向的夹角,可以通过卫星定位传感器获得。本公开实施例中自移动设备的航向角以及所述回归方向与真北方向的夹角,可以反映工作区域的边界与自移动设备的位置关系,从而设置自移动设备的行驶动作,使其朝靠近工作区域的边界侧行驶。在一个示例中,可以根据自移动设备的航向角与所述夹角的大小关系,设置对应的行驶动作,并不断的确定所述大小关系,执行预设的行驶动作,直到检测到工作区域的边界。本公开实施例可以准确的确定自移动设备的行驶动作,较快的引导自移动设备行驶到工作区域的边界。具体展开实施例如下。
图5是根据一示例性实施例示出的一种控制自移动设备回归的方法的流程图。参考图5所示,若所述回归方向与真北方向的夹角θ满足:0°≤θ≤90°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:0°≤α≤θ+90°或θ+270°<α<360°,则控制所述自移动设备左转预设角度并前行预设距离;
若自移动设备的航偏角α满足:θ+90°≤α<θ+270°,则控制所述自移动设备右转预设角度并前行预设距离。
本公开实施例中,为了便于理解,引入θ 2表示回归方向的法线方向(在工作区域内侧)与真北方向的夹角;θ 3表示回归方向的法线方向(在工作区域外侧)与真北方向的夹角。参考图5所示,则有θ 2=θ+90°,θ 3=θ 2+180°=θ+270°,当自移动设备的航向角α满足:0°≤α≤θ+90°或θ+270°<α<360°,即表示自移动设备的朝向在真北方向和回归方向之间的直角区域,表明工作区域的边界位于自移动设备的左前方,因此,控制自移动设备左转预设角度,并前行预设距离。在一个示例中,所述预设角度可以包括较小的锐角度数,所述预设距离小于或等于自移动设备卫星传感器的定位误差值。在一个示例中,当自移动设备的航偏角α满足:θ+90°≤α<θ+270°,则表示自移动设备的朝向在回归方向的反方向与真北方向之间的的直角区域内,表明工作区域的边界位于自移动设备的右前方,因此,控制自移动设备右转预设角度,并前行预设距离。所述预设角度和所述预设距离的设置可以同上实施例,所述预设角度可以包括较小的锐角度数,所述预设距离小于或等于自移动设备卫星传感器的定位误差值。
本公开实施例能够准确的检测工作区域边界相对于自移动设备的位置,从而确定与之对应的行驶动作,较快的引导自移动设备行驶到工作区域的边界。
图6是根据一示例性实施例示出的一种控制自移动设备回归的方法的流程图,参考图6所示,若所述 回归方向与真北方向的夹角θ满足:90°<θ≤180°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:θ-90°<α≤θ+90°,则控制所述自移动设备左转预设角度并前行预设距离;
若自移动设备的航向角α满足:0°≤α≤θ-90°或θ+90°<α<360°,则控制所述自移动设备右转预设角度并前行预设距离。
本公开实施例中,回归方向的法线方向(在工作区域内侧)与真北方向的夹角θ 2=θ+90°,回归方向的法线方向(在工作区域外侧)与真北方向的夹角θ 3=θ 2-180°=θ-90°。若自移动设备的航向角α满足:θ-90°<α≤θ+90°,则表示自移动设备的朝向在回归方向的法线方向(在工作区域外侧)于回归方向之间的直角区域内,则表示工作区域的边界位于所述自移动设备的左前方,则控制所述自移动设备左转预设角度并前行预设距离,所述预设角度和所述预设距离的设置可以同上实施例,所述预设角度可以包括较小的锐角度数,所述预设距离小于或等于自移动设备卫星传感器的定位误差值。在一个示例中,若自移动设备的航向角α满足:0°≤α≤θ-90°或θ+90°<α<360°,则表示自移动设备的车头朝向在回归方向的法线方向(在工作区域外侧)于回归方向的反方向之间的直接区域内,则表示工作区域的边界位于自移动设备的右前方,则控制所述自移动设备右转预设角度并前行预设距离,所述预设角度和所述预设距离的设置可以同上实施例,所述预设角度可以包括较小的锐角度数,所述预设距离小于或等于自移动设备卫星传感器的定位误差值。
本公开实施例能够准确的检测工作区域边界相对于自移动设备的位置,从而确定与之对应的行驶动作,较快的引导自移动设备行驶到工作区域的边界。
图7是根据一示例性实施例示出的一种控制自移动设备回归的方法的流程图。参考图7所示,若所述回归方向与真北方向的夹角θ满足:180°<θ≤270°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:θ-90°<α≤θ+90°,则控制所述自移动设备左转预设角度并前行预设距离;
若自移动设备的航向角α满足:0°≤α≤θ-90°或θ+90°<α<360°,则控制所述自移动设备右转预设角度并前行预设距离。
本公开实施例中,回归方向的法线方向(在工作区域内侧)与真北方向的夹角θ 2=θ+90°,回归方向的法线方向(在工作区域外侧)与真北方向的夹角θ 3=θ 2-180°=θ-90°。若自移动设备的航向角α满足:θ-90°<α≤θ+90°,则表示自移动设备的车头朝向回归方向的法线方向(在工作 区域外侧)与回归方向之间的直角区域,则表示工作区域的边界位于自移动设备的左前方,则控制所述自移动设备左转预设角度并前行预设距离。所述预设角度和所述预设距离的设置可以同上实施例,所述预设角度可以包括较小的锐角度数,所述预设距离小于或等于自移动设备卫星传感器的定位误差值。在一个示例中,若自移动设备的航向角α满足:0°≤α≤θ-90°或θ+90°<α<360°,则表示自移动设备的车头朝向回归方向的法线方向(在工作区域外侧)与回归方向的反方向之间的直角区域内,则表示工作区域的边界位于自移动设备的右前方,则控制所述自移动设备右转预设角度并前行预设距离,所述预设角度可以包括较小的锐角度数,所述预设距离小于或等于自移动设备卫星传感器的定位误差值。
本公开实施例能够准确的检测工作区域边界相对于自移动设备的位置,从而确定与之对应的行驶动作,较快的引导自移动设备行驶到工作区域的边界。
图8是根据一示例性实施例示出的一种控制自移动设备回归的方法的流程图。参考图8所示,若所述回归方向与真北方向的夹角θ满足:270°<θ<360°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:0°≤α≤θ-270°或θ-90°<α<360°,则控制所述自移动设备左转预设角度并前行预设距离;
若自移动设备的航向角α满足:θ-270°<α≤θ-90°,则控制所述自移动设备右转预设角度并前行预设距离。
本公开实施例中,回归方向的法线方向(在工作区域内侧)与真北方向的夹角θ 2=θ-270°,回归方向的法线方向(在工作区域外侧)与真北方向的夹角θ 3=θ 2+180°=θ-90°。若自移动设备的航向角α满足:0°≤α≤θ-270°或θ-90°<α<360°,则表示自移动设备的车头朝向位于回归方向的法线方向(在工作区域外侧)与回归方向之间的直角区域,则表示工作区域的边界位于自移动设备的左前方,则控制所述自移动设备左转预设角度并前行预设距离;在一个示例中,若自移动设备的航向角α满足:θ+90°≤α<θ+270°,则表示自移动设备的车头朝向位于回归方向的法线方向(在工作区域外侧)与回归方向的方向之间的直角区域,则表示工作区域的边界位于自移动设备的右前方,则控制所述自移动设备右转预设角度并前行预设距离。所述预设角度和所述预设距离的设置可以同上实施例,所述预设角度可以包括较小的锐角度数,所述预设距离小于或等于自移动设备卫星传感器的定位误差值。
本公开实施例能够准确的检测工作区域边界相对于自移动设备的位置,从而确定与之对应的行驶动作,较快的引导自移动设备行驶到工作区域的边界。
需要说明的是,上述实施例中,根据自移动设备的航向角与回归方向与真北方向的夹角大小关系,确定的自移动设备的行驶动作不是孤立执行的,在执行完一个实施例的行驶动作时,此时,自移动设备的朝向状态满足另一个实施例所述的执行条件,可以按照另一个实施例对应的行驶动作行驶。直到检测到工作区域的边界,本公开不做限制。
在一种可能的实现方式中,所述检测所述边界,包括:
根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,所述航向角包括自移动设备行驶方向与真北方向的夹角;
控制所述自移动设备按照所述行驶动作行驶,直到检测到所述工作区域的边界。
本公开实施例中,自移动设备的航向角以及所述回归方向与真北方向的夹角,可以反映工作区域的边界与自移动设备的位置关系,从而设置自移动设备的行驶动作,使其朝靠近工作区域的边界侧行驶。在一个示例中,可以根据自移动设备的航向角与所述夹角的大小关系,设置对应的行驶动作,无需重复确定所述大小关系,执行预设的行驶动作,只需按照上述行驶动作行驶,即可检测到工作区域的边界。具体展开实施例如下。
在一种可能的实现方式中,提供一种自动工作方法,包括:
获取自移动设备的卫星定位信息、工作区域的地图以及充电站的位置;
控制所述自移动设备向参考位置移动,且在移动的过程中检测边界,当到达所述参考位置附近或到达所述边界时,控制所述自移动设备沿所述边界回归至所述充电站,其中,所述参考位置位于所述充电站的前向,且所述参考位置与所述充电站之间的距离大于或等于所述定位误差的两倍,所述充电站位于所述边界上,所述充电站具有前向和后向,将所述边界分为位于前向的一侧以及位于后向的一侧,所述充电站用于向所述自移动设备充电,所述边界用于限定工作区域。
本公开实施例中,所述边界用于区分工作区域和非工作区域,以使自移动设备在工作时,位于工作区域内行驶工作。例如,对于割草机而言,工作区域边界包括割草区域和非割草区域的边界,再比如,扫地机器人,工作区域的边界包括清洁区域和非清洁区域的边界。所述参考位置附近包括以参考位置为中心的预设矩形或圆心范围。所述充电站向自移动设备提供电源,当自移动设备在工作一段时间后,检测到自身的电量不满足预设值时,需要行驶到充电站充电。在一个示例中,可以在工作区域的边界全部或部分设置磁条,在自移动设备上设置磁感应传感器,利用磁感应传感器检测磁条,使所述自移动设备能够沿工作区域的边界行驶。在另一个示例中,利用存储的工作地图的边界,以及其他传感器设备如卫星定位传感器或惯导传感器获取自移动设备的定位数据,根据该定位数据和已存储的地图的边界,使得自移动设备沿工作区域的边界行驶。根据上述两个示例,将充电站设置于工作区域的边界上,有利于引导自移动设备沿工作区域的边界回归充电。所述回归方向包括预先设置的沿边界顺时针回归方向或逆时针回归方向。该回归方向一经设置后,自移动设备沿边界回归的过程中则按照所述回归方向回归到充电站。所述参考位置在实际的应用场景中为一虚拟点,表示一预设位置,该预设位置可以标注在工作区域的地图上。所述参考位置位于所述充电站的前向,且所述参考位置与所述充电站之间的距离大于或等于所述定位误差的两倍,自移动设备沿回归方向,可以先经过参考位置,经预设距离后到达充电站。
在另一个示例中,当参考位置不存在的时候,仍然可以以所述充电站为圆心,以大于或等于所述定位误差的两倍的距离为半径,确定参考圆。自移动设备按照上述实施例的方法,逐渐逼近切线路径,到达充电站前向边界附近,在一个示例中,自移动设备可以检测工作区域的边界,上边界,然后回归到充电站进行充电;在一个示例中,自移动设备可能行驶到边界的外侧,,此时,自移动设备可以检测工作区域的边界,上边界,然后回到充电站200进行充电。在一个示例中,自移动设备可能行驶到边界的内测,则可以控制自移动设备按照与回归方向一致的方向,沿所述参考圆行驶至边界,然后回归到充电站200进行充电。
图9和图10是根据一示例性实施例示出的一种控制自移动设备回归的方法的流程图。参考图5图9和图10所示,
若所述回归方向与真北方向的夹角θ满足:0°≤θ≤90°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:0°≤α≤θ+90°或θ+270°<α<360°,则控制所述自移动设备原地掉头后,向前直行;
若自移动设备的航偏角α满足:θ+90°≤α<θ+270°,则控制所述自移动设备向前直行。
参考图5所示,θ 2表示回归方向的法线方向(在工作区域内侧)与真北方向的夹角;θ 3表示回归方向的法线方向(在工作区域外侧)与真北方向的夹角。则有θ 2=θ+90°,θ 3=θ 2+180°=θ+270°,当自移动设备的航向角α满足:0°≤α≤θ+90°或θ+270°<α<360°,即表示自移动设备的朝向在真北方向和回归方向之间的直角区域,表明工作区域的边界位于自移动设备的左前方。参考图9所示,此时可以控制所述自移动设备原地掉头后向前直行,既可以到达工作区域的边界。参考图5所示,在一个示例中,当自移动设备的航偏角α满足:θ+90°≤α<θ+270°,则表示自移动设备的朝向在回归方向的反方向与真北方向之间的的直角区域内,表明工作区域的边界位于自移动设备的右前方,参考图10所述,此时控制所述自移动设备向前直行,到达工作区域的的边界。
本公开实施例能够准确的检测工作区域边界相对于自移动设备的位置,从而确定与之对应的行驶动作,较快的引导自移动设备行驶到工作区域的边界。
图11和图12是根据一示例性实施例示出的一种控制自移动设备回归的方法的流程图。参考图11和图12,若所述回归方向与真北方向的夹角θ满足:90°<θ≤180°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:θ-90°<α≤θ+90°,则控制所述自移动设备原地掉头后向前行驶;
若自移动设备的航向角α满足:0°≤α≤θ-90°或θ+90°<α<360°,则控制所述自移动设备向前直行。
参考图6所示,本公开实施例中,回归方向的法线方向(在工作区域内侧)与真北方向的夹角θ 2=θ+90°,回归方向的法线方向(在工作区域外侧)与真北方向的夹角θ 3=θ 2-180°=θ-90°。若自移动设备的航向角α满足:θ-90°<α≤θ+90°,则表示自移动设备的朝向在回归方向的法线方向(在工作区域外侧)于回归方向之间的直角区域内,则表示工作区域的边界位于所述自移动设备的 左前方,参考图11所示,此时控制所述自移动设备原地掉头后向前行驶,直到检测到工作区域的边界。在一个示例中,若自移动设备的航向角α满足:0°≤α≤θ-90°或θ+90°<α<360°,则表示自移动设备的车头朝向在回归方向的法线方向(在工作区域外侧)于回归方向的反方向之间的直接区域内,则表示工作区域的边界位于自移动设备的右前方,参考图12所示,此时控制所述自移动设备向前直行,直到检测到工作区域的边界。
本公开实施例能够准确的检测工作区域边界相对于自移动设备的位置,从而确定与之对应的行驶动作,较快的引导自移动设备行驶到工作区域的边界。
图13和图14是根据一示例性实施例示出的一种控制自移动设备回归的方法的流程图。参考图13和图14所示,若所述回归方向与真北方向的夹角θ满足:180°<θ≤270°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:θ-90°<α≤θ+90°,则控制所述自移动设备原地掉头后向前直行;
若自移动设备的航向角α满足:0°≤α≤θ-90°或θ+90°<α<360°,则控制所述自移动设备向前直行。
参考图7所示,本公开实施例中,回归方向的法线方向(在工作区域内侧)与真北方向的夹角θ 2=θ+90°,回归方向的法线方向(在工作区域外侧)与真北方向的夹角θ 3=θ 2-180°=θ-90°。若自移动设备的航向角α满足:θ-90°<α≤θ+90°,则表示自移动设备的车头朝向回归方向的法线方向(在工作区域外侧)与回归方向之间的直角区域,则表示工作区域的边界位于自移动设备的左前方,参考图13所示,此时控制所述自移动设备原地掉头后向前直行,直到检测到工作区域的边界。在一个示例中,若自移动设备的航向角α满足:0°≤α≤θ-90°或θ+90°<α<360°,则表示自移动设备的车头朝向回归方向的法线方向(在工作区域外侧)与回归方向的反方向之间的直角区域内,则表示工作区域的边界位于自移动设备的右前方,参考图14所示,此时控制所述自移动设备向前直行,直到检测到工作区域的边界。
本公开实施例能够准确的检测工作区域边界相对于自移动设备的位置,从而确定与之对应的行驶动作,较快的引导自移动设备行驶到工作区域的边界。
图15和图16是根据一示例性实施例示出的一种控制自移动设备回归的方法的流程图。参考图15和图16所示,若所述回归方向与真北方向的夹角θ满足:270°<θ<360°,所述根据自移动设备的航向角以及所述回归方向与真北方向的夹角,确定所述自移动设备的行驶动作,包括:
若自移动设备的航向角α满足:0°≤α≤θ-270°或θ-90°<α<360°,则控制所述自移动设备原地掉头后向前行驶;
若自移动设备的航向角α满足:θ-270°<α≤θ-90°,则控制所述自移动设备向前行驶。
参考图8所示,本公开实施例中,回归方向的法线方向(在工作区域内侧)与真北方向的夹角θ 2=θ-270°,回归方向的法线方向(在工作区域外侧)与真北方向的夹角θ 3=θ 2+180°=θ-90°。若自移动设备的航向角α满足:0°≤α≤θ-270°或θ-90°<α<360°,则表示自移动设备的车头朝向位于回归方向的法线方向(在工作区域外侧)与回归方向之间的直角区域,则表示工作区域的边界位于自移动设备的左前方,参考图15所示,此时控制所述自移动设备原地掉头后向前行驶。在一个示例中,若自移动设备的航向角α满足:θ-270°<α≤θ-90°,则表示自移动设备的车头朝向位于回归方向的法线方向(在工作区域外侧)与回归方向的方向想之间的直角区域,则表示工作区域的边界位于自移动设备的右前方,参考图16所示,此时控制所述自移动设备向前行驶。
本公开实施例能够准确的检测工作区域边界相对于自移动设备的位置,从而确定与之对应的行驶动作,较快的引导自移动设备行驶到工作区域的边界。
图17是根据一示例性实施例示出的一种自动控制方法的流程图。参考图17所示,一种自动控制方法,包括:
采集自移动设备行走过程中的卫星定位信息;
按照工作区域的地图,规划从当前位置至所述参考点的行走路径,控制所述自移动设备按照所述行走路径行走的过程中检测工作区域的边界,其中,所述地图包括充电站位置和参考点位置,两位置之间的距离大于或等于卫星定位误差的两倍;
当行走至所述参考点预设范围时,控制所述自移动设备沿所述边界回归至充电站进行充电。
在一种可能的实现方式中,所述按照工作区域的地图,规划从当前位置至所述参考点的行走路径,包括:
所述控制模块在所述地图上以所述充电站的位置为圆心,以所述参考点的位置与所述充电站的位置之间的距离为半径,确定参考圆;
所述控制模块规划从所述当前位置至所述参考圆的切线路径,以及经由所述切线路径行走至所述参考点的行走路径。
图18是根据一示例性实施例示出的一种自移动设备的结构示意图。参考图10所示,所述自移动设备180可以包括:主体;
卫星定位传感器,用于获取卫星定位数据;
存储器,用于存储计算机程序;
处理器181,设置于所述主体内部,与所述卫星定位传感器和所述存储器电性连接,用于执行所述计算机程序时实现本公开任一实施例所述的方法的步骤。
处理器181,设置于所述主体180内部,与所述定位传感器和所述存储器电性连接,用于执行所述计算机程序时实现根据本公开实施例任一项所述的生成地图方法的步骤。所述处理器181可以具有数据处理能力,也可以同时具有有线或无线的通信能力。例如处理器181可以是或者包括微控制单元(Microcontroller Unit,MCU)。处理器181可以对所述工作区域边界上的阴影区域内各个采样点的定位数据进行补偿;根据 所述定位数据,确定阴影区域内采样点的预估误差;根据补偿后的定位数据、所述预估误差,确定所述工作区域边界地图。本实施例中,所述的自移动设备通常可以包括能够按照预定的行进路线和控制策略进行移动的设备,可以包括智能割草机、扫地机器人、自动送货机等。自移动设备通常可以无需人为干预。本说明书实施例中的自移动设备可以与人接触设备或外接设备,例如自移动设备可以有扶手,作业人员可以跟随在自移动设备后面并握住自移动设备的扶手。但该情况下,自移动设备的行进路线和控制策略仍然是出自于自移动设备自身的控制逻辑,即使作业人员握住扶手或者可以通过扶手主动改变自移动设备的行进方向或速度等,这种设备仍然属于本说明书实施例中所述的自移动设备。类似的,还可以包括载人的自移动设备。
在自移动设备中,所述的主体通常可以包括驱动设备(如电源等)、行进装置(如行进滚轮或履带等)、转向设备(齿轮齿条式转向器、蜗杆曲柄指销式转向器等)以及相应的作业工具(如割草装置、清洁装置等)等。
在示例性实施例中,还提供了一种包括指令的存储介质,例如包括指令的存储器上述指令可由设备的处理器执行以完成上述方法。存储介质可以是非临时性计算机可读存储介质,例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。以及其它实现方式的可读存储介质,例如量子存储、石墨烯存储等等。
在至少一个实施例中,自移动设备100在边界101限定的工作区域内移动和/或工作,工作区域的边界101可以是虚拟边界也可以是预先铺设好磁条的边界,边界101上设置充电站200,充电站200用于向自移动设备100充电。自移动设备100包括定位模块,定位模块可以包括卫星定位模块,卫星定位模块用于采集自移动设备100的卫星定位信息,确定自移动设备100的位置,卫星定位模块具有定位误差。自移动设备包括存储模块,存储模块中预先存储了充电站的位置,充电站的位置至少包括充电站所在位置的X和Y坐标。当自移动设备100检测到自身的电量不足的时候,启动快速回归充电程序。快速回归充电程序包括:自移动设备100的控制模块,以充电站的位置为圆心,以大于等于定位误差的距离为半径,确定一参考圆401。为使自移动设备100回归充电站200充电,控制模块首先控制自移动设备100向参考圆401的圆周移动,并在参考圆401的引导下移动到所述边界上,再控制自移动设备100沿边界移动,直至回归到充电站。
由于充电站200的充电连接组件设置在充电站200的一侧,自移动设备100沿回归方向到达充电站200,才能与充电站200的充电连接组件对接充电,所以在本实施例中,自移动设备100根据快速回归充电程序移动,才能移动到边界上沿回归方向更靠近充电站的位置,实现快速回归充电站。
在至少一个实施例中,如图21所示,自移动设备100检测到自身电量不足,可以利用卫星定位传感器确定自己的位置,并规划当前位置到充电站的行驶路径。控制模块以充电站200为圆心,以大于等于定位误差的距离为半径,确定一参考圆401。由于自移动设备100与参考圆401的位置关系为自移动设备100在参考圆401的圆周外,确定自移动设备100的当前位置与参考圆400的切点为A和B。由于割草机的回归方向为顺时针方向,在充电站所在的边界上,回归方向为自充电站左侧向充电站右侧,沿该方向,点A在点B的前端,因此将点A所在的切线作为自移动设备100从当前位置到参考圆401的切线路径。割草机沿切线路径从当前位置向切点A移动。由于在移动过程中,自移动设备100首先到达切线路径与边界101的交点C,边界检测模块检测到边界,控制模块根据边界检测模块的检测结果确定自移动设备到达边界上 的点C。因此,自移动设备100到达点C后,停止沿切线路径移动,而是沿回归方向沿边界移动至充电站200。
自移动设备100沿切线路径移动,可以移动开始前确定一切线路径,在移动的过程中,不再基于新位置确定新的切线路径。也可以在移动的过程中,不停地基于新位置确定新的切险路径,不停地调整移动方向,沿新的切险路径移动。如果在移动过程不确定新的切险路径,只沿移动开始前确定的切险路径移动,自移动设备100的计算量可以大幅降低。
在至少一个实施例中,如图22所示,自移动设备100沿切线路径从当前位置向切点A移动。由于在移动过程中,自移动设备100首先到达切点A,自移动设备100到达点A后,停止沿切线路径移动,而是沿回归方向沿参考圆401的圆周移动至参考圆401的圆周与边界的交点D。到达边界上的点D后,自移动设备100停止沿圆周移动,而是延回归方向延边界线移动至充电站200。
在至少一个实施例中,如图23所示,由于自移动设备100与参考圆401的位置关系为自移动设备100在参考圆401的圆周内,确定自移动设备100的当前位置所在的参考圆401的半径路径,半径路径的方向为从参考圆401的圆心指向圆周。自移动设备100在当前位置延半径路径向参考圆401的圆周移动,直至自移动设备100到达参考圆401上的点E。自移动设备100到达点E后,停止沿半径路径移动,而是沿回归方向沿参考圆401的圆周移动至参考圆401的圆周与边界的交点F。自移动设备100到达边界上的点F后,自移动设备100停止沿圆周移动,而是沿延回归方向延边界移动至充电站200。
在至少一个实施例中,如图24所示,由于自移动设备100与参考圆401的位置关系为自移动设备100在参考圆401的圆周上。自移动设备100从当前位置沿参考圆401的圆周移动,直至自移动设备100到达参考圆401的圆周与边界的交点G。自移动设备100到达边界上的点G后,自移动设备停止沿圆周移动,而是延回归方向延边界移动至充电站200。
自移动设备100上的定位模块可以是卫星定位模块,用于采集自移动设备100的卫星定位信息。定位模块也可以是卫星定位模块和IMU模块,IMU模块在短时间内的定位结果非常精确,但由于漂移,累计使用一段时间后,IMU模块只能提供相对的偏航。而通过卫星定位,我们可以计算出绝对的偏航。割草机100的控制模块的算法可以结合使用卫星定位数据和IMU数据,计算出自移动设备100的更准确的偏航值。
因此,在向参考圆移动的过程中,自移动设备100可以基于卫星定位模块的卫星定位数据的移动。也可以基于融合卫星定位模块的卫星定位数据和IMU模块的IMU数据的定位数据移动。
自移动设备周围环境的图像数据至少包括自移动设备周围环境中的地面的图像,地面包括草地区域和非草地区域,当边界检测模块识别出图像中包括草地区域和非草地区域,可确定草地区域和非草地区域的分解线为边界。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其它实施例的不同之处。
需要说明的,上述所述的方法、自移动设备、存储介质等根据方法或设备实施例的描述还可以包括其它的实施方式,具体的实现方式可以参照相关方法或设备实施例的描述。同时各个方法以及设备、存储介质实施例之间特征的相互组合组成的新的实施例仍然属于本公开所涵盖的实施范围之内,在此不作一一赘述。
为了描述的方便,描述以上自移动设备时以功能分为各种模块分别描述。当然,在实施本说明书一个 或多个时可以把各模块的功能在同一个或多个软件和/或硬件中实现,也可以将实现同一功能的模块由多个子模块或子单元的组合实现等。以上所描述的设备实施例仅仅是示意性的,例如,能量波传感器、拍摄装置的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,自移动设备中所显示或描述的装置或单元相互之间的耦合、通信连接等可以是直接和/或间接耦合/连接的方式实现,可以是通过一些标准或自定义的接口、协议等,是电性,机械或其它的形式实现。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。

Claims (18)

  1. 一种自动工作系统,所述自动工作系统包括:自移动设备以及充电站,所述自移动设备在边界限定的工作区域内移动和/或工作,所述充电站用于向所述自移动设备充电,所述充电站位于所述边界上,其特征在于,
    所述自移动设备包括:
    定位模块,所述定位模块被配置为采集所述自移动设备的卫星定位信息,所述定位模块存在定位误差;
    存储模块,所述存储模块被配置为存储所述充电站的位置;
    所述自动工作系统中还包括:控制模块,所述控制模块与所述定位模块以及所述存储模块信号相连;
    所述控制模块以所述充电站的位置为圆心,确定一参考圆,所述参考圆的半径大于或等于所述定位误差;
    所述控制模块被配置为在回归充电站的过程中,控制所述自移动设备向所述参考圆移动,在所述参考圆的引导下移动到所述边界,沿所述边界回归至所述充电站。
  2. 根据权利要求1所述的系统,其特征在于,所述自移动设备还包括:
    边界检测模块,用于检测边界;
    所述控制模块根据所述边界检测模块的检测结果确定所述自移动设备到达所述边界。
  3. 根据权利要求2所述的系统,其特征在于,所述控制所述自移动设备向所述参考圆移动之前,包括;
    所述定位模块采集所述自移动设备的卫星定位信息,确定所述自移动设备的当前位置;
    所述控制模块确定所述当前位置与所述参考圆的位置关系。
  4. 根据权利要求3所述的系统,其特征在于,若所述位置关系为所述当前位置在所述参考圆的圆周外,所述控制所述自移动设备向所述参考圆移动,在所述参考圆的引导下移动到所述边界,包括:
    所述控制模块控制所述自移动设备沿所述当前位置与所述参考圆的切线路径向所述参考圆移动,所述边界检测模块在移动的过程中检测所述边界,若所述边界检测模块在所述移动的过程中未检测到所述边界,则所述控制模块控制所述自移动设备延所述切线路径到达所述参考圆的圆周,并在到达所述参考圆的圆周后,沿所述参考圆的圆周移动至所述边界。
  5. 根据权利要求3所述的系统,其特征在于,若所述位置关系为所述当前位置在所述参考圆的圆周外,所述控制模块控制所述自移动设备向所述参考圆移动,在参考圆的引导下移动到所述边界,包括:
    所述控制模块控制所述自移动设备沿所述当前位置与所述参考圆的切线路径向所述参考圆移动,所述边界检测模块在移动的过程中检测所述边界,若所述边界检测模块在所述移动的过程中检测到所述边界,则所述控制模块控制所述自移动设备延所述切线路径移动至所述边界。
  6. 根据权利要求3所述的系统,其特征在于,若所述位置关系为所述当前位置在所述参考圆的圆周内,所述控制模块控制所述自移动设备向所述参考圆移动,在参考圆的引导下移动到所述边界,包括:
    所述控制模块控制所述自移动设备沿所述当前位置所在的所述参考圆的半径路径向所述参考圆移动,直至到达所述参考圆的圆周,并在到达所述参考圆的圆周后,延所述参考圆的圆周移动至所述边界。
  7. 根据权利要求3所述的系统,其特征在于,若所述位置关系为所述当前位置在所述参考圆的圆周上,所述控制模块控制所述自移动设备向所述参考圆移动,在参考圆的引导下移动到所述边界,包括:
    所述控制模块控制所述自移动设备沿所述参考圆的圆周移动至所述边界。
  8. 根据权利要求4-7任一项所述的系统,其特征在于,所述沿所述边界回归至所述充电站,包括:
    当所述自移动设备到达所述边界后,所述控制模块控制所述自移动设备沿所述边界移动至所述充电站。
  9. 根据权利要求4或5所述的系统,其特征在于,所述控制模块控制所述自移动设备沿所述当前位置与所述参考圆的切线路径向所述参考圆移动,包括:
    所述控制模块确定所述当前位置与所述参考圆的切线;
    在所述切线包括两条的情况下,获取两切线与所述参考圆的圆周的两切点;
    确定沿回归方向在前端的切点所在的切线为所述当前位置至所述参考圆的切线路径;
    控制所述自移动设备沿所述切线路径向所述参考圆移动。
  10. 根据权利要求4或5所述的系统,其特征在于,所述控制所述自移动设备沿所述参考圆的切线路径向所述参考圆移动,包括:
    所述控制模块获取所述自移动设备的行走方向与所述切线路径的夹角;
    根据所述夹角调整所述自移动设备的行走方向;
    所述控制模块控制所述自移动设备沿所述行走方向行走,以向所述参考圆移动。
  11. 根据权利要求10所述的系统,其特征在于,所述获取所述自移动设备行走方向与所述切线路径的夹角,包括:
    所述控制模块获取自移动设备的卫星定位数据以及惯导传感器数据;
    根据所述卫星定位数据和所述惯导传感器数据,确定所述自移动设备当前前进方向与所述切线路径的夹角。
  12. 根据权利要求1所述的系统,其特征在于,所述边界限定的工作区域的形状包括正多边形。
  13. 根据权利要求1所述的系统,其特征在于,所述定位模块定位误差大于或等于5-10m。
  14. 根据权利要求2所述的系统,其特征在于,所述边界检测模块包括:
    图像采集模块,用于采集所述自移动设备周围环境的图像数据;
    在向所述参考圆移动的过程中检测所述边界,包括:
    在向所述参考圆移动的过程中,所述边界检测模块根据所述图像数据检测所述边界。
  15. 根据权利要求2所述的系统,其特征在于,所述系统还包括:
    信号发生装置,所述信号发生装置用于发出边界信号;
    所述边界检测模块包括:
    磁感应模块,用于感应所述边界信号;
    在向所述参考圆移动的过程中检测所述边界,包括:
    在向所述参考圆移动的过程中,所述边界检测模块根据感应到的所述边界信号检测所述边界。
  16. 根据权利要求2所述的系统,其特征在于,所述边界包括磁条,所述边界检测模块包括:磁场检测模块,所述磁场检测模块用于检测所述磁条的磁信号;
    在向所述参考圆移动的过程中检测所述边界,包括:
    在向所述参考圆移动的过程中,所述边界检测模块根据所述磁信号检测所述边界。
  17. 一种自动工作方法,其特征在于,包括:
    获取自移动设备的卫星定位信息、工作区域的地图以及充电站的位置;
    在所述地图上以所述充电站的位置为圆心,确定一参考圆,所述参考圆的半径大于或等于所述卫星定位信息的定位误差;
    控制所述自移动设备向参考圆移动,在参考圆的引导下移动到所述边界,沿所述边界回归至所述充电站,其中,所述充电站位于所述边界上,所述充电站用于向所述自移动设备充电,所述边界用于限定工作区域。
  18. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求17所述的自动工作方法。
PCT/CN2022/137222 2021-12-07 2022-12-07 自动工作系统、自动工作方法和计算机可读存储介质 WO2023104087A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111487030.6A CN116300841A (zh) 2021-12-07 2021-12-07 自动工作系统、自动工作方法和计算机可读存储介质
CN202111487030.6 2021-12-07

Publications (1)

Publication Number Publication Date
WO2023104087A1 true WO2023104087A1 (zh) 2023-06-15

Family

ID=86729637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137222 WO2023104087A1 (zh) 2021-12-07 2022-12-07 自动工作系统、自动工作方法和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN116300841A (zh)
WO (1) WO2023104087A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2667272A2 (en) * 2010-03-29 2013-11-27 F. Robotics Acquisitions Ltd. Robotic element and charging and control systems therefor
JP2015519965A (ja) * 2012-06-07 2015-07-16 コーニンクレッカ フィリップス エヌ ヴェ 経路に沿ってロボット掃除機を誘導するシステムおよび方法
CN104808656A (zh) * 2014-01-24 2015-07-29 苏州宝时得电动工具有限公司 基于定位系统的回归引导方法及其系统
CN105467983A (zh) * 2014-08-22 2016-04-06 扬州维邦园林机械有限公司 自动行走设备导引系统和方法
CN109828565A (zh) * 2019-01-30 2019-05-31 宁波大叶园林设备股份有限公司 一种自移动设备回归路径的控制方法
CN111090284A (zh) * 2019-12-23 2020-05-01 南京苏美达智能技术有限公司 自行走设备返回基站的方法及自行走设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2667272A2 (en) * 2010-03-29 2013-11-27 F. Robotics Acquisitions Ltd. Robotic element and charging and control systems therefor
JP2015519965A (ja) * 2012-06-07 2015-07-16 コーニンクレッカ フィリップス エヌ ヴェ 経路に沿ってロボット掃除機を誘導するシステムおよび方法
CN104808656A (zh) * 2014-01-24 2015-07-29 苏州宝时得电动工具有限公司 基于定位系统的回归引导方法及其系统
CN105467983A (zh) * 2014-08-22 2016-04-06 扬州维邦园林机械有限公司 自动行走设备导引系统和方法
CN109828565A (zh) * 2019-01-30 2019-05-31 宁波大叶园林设备股份有限公司 一种自移动设备回归路径的控制方法
CN111090284A (zh) * 2019-12-23 2020-05-01 南京苏美达智能技术有限公司 自行走设备返回基站的方法及自行走设备

Also Published As

Publication number Publication date
CN116300841A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
EP3833176B1 (en) Autonomous machine navigation and training using vision system
EP3699715B1 (en) Intelligent lawn mowing system
US11589503B2 (en) Robotic mowing of separated lawn areas
US11841710B2 (en) Automatic working system, self-moving device, and methods for controlling same
US20110046784A1 (en) Asymmetric stereo vision system
WO2017198222A1 (zh) 自动工作系统,自移动设备及其控制方法
EP2296072A2 (en) Asymmetric stereo vision system
CN110026979B (zh) 移动机器人及返回充电方法
WO2021082659A1 (zh) 一种机器人通用的回充控制方法、芯片及机器人
CN112578779A (zh) 地图建立方法、自移动设备、自动工作系统
CN111090284B (zh) 自行走设备返回基站的方法及自行走设备
CN114353801A (zh) 自移动设备及其导航方法
CN114937258A (zh) 割草机器人的控制方法、割草机器人以及计算机存储介质
WO2023104087A1 (zh) 自动工作系统、自动工作方法和计算机可读存储介质
US20230069475A1 (en) Autonomous machine navigation with object detection and 3d point cloud
US20230195121A1 (en) Path generating method, program, path generating device, and autonomous mobile body
US20240053760A1 (en) Self-moving device, moving trajectory adjusting method, and computer-readable storage medium
WO2022088313A1 (zh) 机器人自动充电方法、系统,机器人及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903508

Country of ref document: EP

Kind code of ref document: A1