KR20190123677A - 이동로봇과 이동로봇의 제어방법 - Google Patents

이동로봇과 이동로봇의 제어방법 Download PDF

Info

Publication number
KR20190123677A
KR20190123677A KR1020190040038A KR20190040038A KR20190123677A KR 20190123677 A KR20190123677 A KR 20190123677A KR 1020190040038 A KR1020190040038 A KR 1020190040038A KR 20190040038 A KR20190040038 A KR 20190040038A KR 20190123677 A KR20190123677 A KR 20190123677A
Authority
KR
South Korea
Prior art keywords
driving
mobile robot
pattern
boundary
area
Prior art date
Application number
KR1020190040038A
Other languages
English (en)
Inventor
이재훈
최규천
우종진
박종일
주형국
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020190040038A priority Critical patent/KR20190123677A/ko
Priority to EP19780807.4A priority patent/EP3778146B1/en
Priority to AU2019247309A priority patent/AU2019247309B2/en
Priority to PCT/KR2019/004057 priority patent/WO2019194631A1/ko
Priority to US17/045,529 priority patent/US20210165416A1/en
Publication of KR20190123677A publication Critical patent/KR20190123677A/ko
Priority to KR1020210085632A priority patent/KR20210084392A/ko

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/835Mowers; Mowing apparatus of harvesters specially adapted for particular purposes
    • A01D34/86Mowers; Mowing apparatus of harvesters specially adapted for particular purposes for use on sloping ground, e.g. on embankments or in ditches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/005Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators using batteries, e.g. as a back-up power source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1684Tracking a line or surface by means of sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0038Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0088Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0214Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with safety or protection criteria, e.g. avoiding hazardous areas
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Environmental Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Transportation (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Game Theory and Decision Science (AREA)
  • Medical Informatics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Harvester Elements (AREA)

Abstract

본 발명에 따른 이동 로봇 및 이동 로봇의 제어방법은 제1 주행영역을 제1 패턴주행하고, 제1 주행영역의 주행이 완료되면 제1 패턴 주행과 교차되는 방향으로 제2 패턴 주행을 시작하는 것을 특징으로 한다.

Description

이동로봇과 이동로봇의 제어방법{ Moving robot and Controlling method for the same }
본 발명은 이동 로봇의 청소 경로를 효율적으로 구성하는 이동로봇 및 이동로봇의 제어방법에 에 관한 것이다.
로봇은 산업용으로 개발되어 공장 자동화의 일 부분을 담당하여 왔다. 최근에는 로봇을 응용한 분야가 더욱 확대되어, 의료용 로봇, 우주 항공 로봇 등이 개발되고, 일반 가정에서 사용할 수 있는 가정용 로봇도 만들어지고 있다. 이러한 로봇 중에서 자력으로 주행이 가능한 것을 이동 로봇이라고 한다. 가정의 야외 환경에서 사용되는 이동 로봇의 대표적인 예는 잔디 깎기 로봇이다.
실내를 자율 주행하는 이동 로봇의 경우 벽이나 가구 등에 의해 이동 가능 영역이 제한되나, 실외를 자율 주행하는 이동 로봇의 경우 이동 가능한 영역을 사전에 설정해야 할 필요성이 있다. 또한, 상기 잔디 깎기 로봇이 잔디가 심어진 영역을 주행하도록 이동 가능한 영역을 제한해 필요성이 있다.
종래 기술(한국공개특허공보제2015-0125508호)에서는, 잔디 깎기 로봇이 이동할 영역을 설정하기 와이어를 매설하고, 잔디 깎기 로봇은 와이어에 의해 흐르는 전류에 의해 형성되는 자기장을 센싱(sensing)하여 와이어에 의해 설정된 영역 내에서 이동할 수 있다.
또한, 종래 기술에 따르면, 잔디 깍기 로봇이 충전대의 위치를 정확하게 인지하지 못하고, 경계가 되는 와이어를 따라 계속적으로 주행하다가 충전대의 위치를 찾아서 충전하게 된다.
또한, 종래 기술에 따르면, 청소의 편의성과 효율성을 위해 설정된 주행 영역을 다수 개의 영역으로 구분하고 순차적으로 청소를 시작하게 되는데, 잔디 로봇은 야외에서 구동하게 되어서, 실내에서 구동하는 것처럼 영상을 통해 주행 구역을 맵핑하고 현재 위치를 맵 상에서 정확하게 인식하기 어렵다.
또한, 종래 기술의 잔디 로봇은 휠의 회전수를 감지하는 등의 방법으로 간접적으로 잔디 로봇의 위치를 추정하지만 이마저도 슬립 등의 문제로 정확하지 않은 문제점이 존재한다.
결국, 잔디 로봇의 현재 위치를 정확하게 인식하기 어렵기 때문에 잔디로봇의 복수의 주행 영역 중 어느 하나를 작업을 완료하게 되면, 그 위치에서 다른 주행 영역으로 이동하여 작업을 하는 것이 아니고, 다시 와이어를 따라서 계속 이동을 하면서 충전대를 찾고 충전대를 찾게 되면, 충전대의 위치를 통해 현재 위치를 맵 상에서 다시 인식하고, 충전대에서 다른 주행 영역의 시작점으로 와이어를 따라 이동한 후 다른 주행 영역의 작업을 시작하게 된다.
이처럼 잔디 로봇이 맵 상에서 현재 위치를 다시 인식하기 위해, 충전대로 복귀하면, 잔디 깍기 로봇의 주행거리가 길어지고, 잔기 깍기 로봇의 배터리 수명이 짧아지며, 충전대로 복귀하는 과정에서 동일한 경로를 따라 복귀하므로, 잔기 깍기 로봇의 복귀 경로를 따라 땅이 파이게 되고, 파인 땅은 잔디 깍기 로봇의 운행을 방해하는 문제점이 존재한다.
또한, 상술한 바와 같이 다른 주행 영역을 주행하기 위해 충전대로 복귀해서 다시 다른 주행 영역으로 이동하게 되면, 이동 거리가 길어져서 사용시간에 손실에 발생하게 되고, 사용자에게 신뢰감을 주지 못하는 문제점이 존재한다.
선행문헌 미국공개특허고보 제20180064024호는 주행 영역의 정점 등을 기준으로 다수의 영역으로 분할하는 것을 개시하고 있고, 이러한 주행 영역의 분할만으로는 효과적인 작업을 수행할 수 없는 문제점이 존재한다.
한국공개특허공보제2015-0125508호 (공개일 : 2015년 11월 9일) 미국공개특허고보 제20180064024호
본 발명의 일 과제는 하나의 주행구역의 작업을 완료 후에 다시 충전대로 복귀하지 않고 연속적으로 작업을 수행하는 이동 로봇 및 이동 로봇의 제어방법을 제공하는 것이다.
본 발명의 다른 과제는 이동 로봇이 맵상에 정확인 위치를 인식하기 위해 충전대로 복귀하는 횟수를 줄일 수 있는 이동 로봇 및 이동 로봇의 제어방법을 제공하는 것이다.
본 발명의 또 다른 과제는 충전대 근처의 잔디 손상을 줄이는 이동 로봇 및 이동 로봇의 제어방법을 제공하는 것이다.
본 발명의 또 다른 과제는 다수의 주행 영역을 순차적으로 작업하면서 효율적인 작업이 가능하고, 한정된 배터리를 최대의 효율로 이용할 수 있는 이동 로봇 및 이동 로봇의 제어방법을 제공하는 것이다.
본 발명의 다른 과제는 별도의 추가적인 센서를 부착하지 않고 주행 경로의 경계를 인식하는 센서를 공용하는 이동 로봇 및 이동 로봇에 제어방법을 제공하는 것이다.
상기 과제들을 해결하기 위하여, 본 발명의 해결 수단에 따른 이동 로봇 및 이동 로봇의 제어방법은 제1 주행영역을 제1 패턴주행하고, 제1 주행영역의 주행이 완료되면 제1 패턴 주행과 교차되는 방향으로 제2 패턴 주행을 시작하는 것을 특징으로 한다.
구체적으로, 본 발명은 외관을 형성하는 바디; 상기 바디를 이동시키는 주행부; 주행영역의 경계에서 발생하는 경계 신호를 감지하는 경계 신호 감지부; 상기 바디의 방향각을 산출하는 방위각 센서; 및 상기 경계 신호를 바탕으로 상기 주행영역을 정의하고, 상기 주행영역을 적어도 제1 주행영역 및 제2 주행영역을 포함하는 복수의 주행영역으로 분할하는 제어부를 포함하고, 상기 제어부는, 이동 로봇이 상기 제1 주행영역을 제1 방향각으로 제1 패턴주행하고, 상기 제1 주행영역의 주행을 완료 한 후, 상기 제1 방향각과 교차되는 제2 방향각으로 제2 패턴주행하도록 상기 주행부를 제어하는 것을 특징으로 한다.
상기 제1 방향각과 상기 제2 방향각 사이의 각도는 88° 내지 92° 일 수 있다.
상기 제어부는, 상기 제2 방향각을 랜덤하게 산출할 수 있다.
상기 제어부는, 상기 제1 방향각과 85 ° 내지 95 ° 사이의 각도를 가지는 값들 중 랜덤하게 선택된 하나의 값을 제2 방향각으로 산정할 수 있다.
상기 제어부는, 상기 이동 로봇이 상기 제1 주행영역의 주행을 완료 한 자리에서, 상기 제2 패턴주행을 하도록 상기 주행부를 제어할 수 있다.
상기 제1 방향각이 상기 제1 패턴주행의 시작점에 인접한 상기 주행영역의 경계와 나란하게 산정될 수 있다.
상기 경계 신호 감지부는 도킹 기기에서 발생하는 도킹 위치 신호를 감지하고, 상기 제어부는, 상기 이동로봇이 상기 제1 패턴주행을 시작하고 기 설정된 시간이 경과되면, 상기 도킹기기로 복귀하도록 상기 주행부를 제어할 수 있다.
상기 제어부는, 상기 이동로봇이 상기 패턴주행 중에 배터리 잔량이 부족하다고 판단되면, 상기 도킹기기로 복귀하도록 상기 주행부를 제어할 수 있다.
상기 경계 신호 감지부는 상기 도킹 신호와, 상기 경계 신호를 자기장의 방향 차이로 구별할 수 있다.
상기 제2 패턴주행의 진행방향은 상기 제1 패턴주행의 종점에서 인접한 상기 주행영역의 경계에서 멀어지는 방향일 수 있다.
상기 제2 패턴주행의 진행방향은 상기 제1 주행 영역에서 멀어지는 방향일 수 있다.
상기 경계 신호 감지부는 자기장 센서를 포함할 수 있다.
또한, 본 발명은 경계 신호를 바탕으로 주행영역을 정의하고, 상기 주행 영역을 적어도 제1 주행영역 및 제2 주행영역으로 분할하는 분할 단계; 이동 로봇이 상기 제1 주행영역을 제1 방향각으로 제1 패턴주행하는 제1 패턴 주행 단계; 및 상기 이동 로봇이 상기 제1 패턴 주행을 완료 후에, 상기 제1 방향각과 교차되는 제2 방향각으로 제2 패턴주행 하는 제2 패턴 주행 단계를 포함하는 것을 특징으로 한다.
상기 제1 패턴 주행 단계 전에, 상기 이동 로봇이 도킹기기에서 상기 주행 영역의 경계를 따라 상기 제1 패턴 주행의 시작점으로 이동하는 이동 단계를 더 포함할 수 있다.
상기 이동로봇은 상기 제1 패턴주행을 시작하고 기 설정된 시간이 경과되면, 도킹기기로 복귀하는 호밍 단계를 더 포함할 수 있다.
상기 이동로봇은 상기 패턴주행 중에 배터리 잔량이 부족하다고 판단되면, 상기 도킹기기로 복귀하는 호밍 단계를 더 포함할 수 있다.
상기 해결 수단을 통해, 본 발명은 하나의 주행구역의 작업을 완료 후에 다시 충전대로 복귀하지 않고 연속적으로 작업을 수행하여서, 사용자에게 주는 신뢰감을 향상시킬 수 있고, 맵 상에 정확인 위치 인식을 위해 자주 충전대로 복귀하지 않으므로, 충전대로 이동하는 와이어 주변의 훼손을 방지할 수 있는 이점이 존재한다.
또한, 본 발명은 이동 로봇이 맵상에 정확인 위치를 인식하기 위해 충전대로 복귀하는 횟수를 줄일 수 있으므로, 중간에 충전대로 복귀했다가 다시 주행 구역으로 이동하는 시간 및 에너지 손실을 줄일 수 있어서 효율적인 작업이 가능하고, 배터리를 효율적으로 사용할 수 있는 이점이 존재한다.
또한, 본 발명은 하나의 주행 영역의 청소를 완료한 후 다른 방향각을 가지는 패턴 주행을 실행하므로 동일한 방향각을 가지는 패턴 주행에 의해 주행 영역 중 일부 영역만 반복적으로 작업이 수행되는 것을 방지하는 이점이 존재한다.
또한, 본 발명은 충전대를 위치를 인식하는 것과, 주행 영역의 경계를 인식하는 것과, 인접 경계 영역을 인식하는 것을 모두 자기장 신호를 통해 하나의 센서를 통해 인식하고, 그 방향 차이 또는 분포 차이 또는 세기 차이에 의해 충전대의 위치와 경계를 식별하고, 호밍 경로를 인지하므로, 제조비용이 절감되는 이점이 존재하고, 제어부의 제어 부담을 줄이는 이점이 존재한다.
또한, 본 발명은 도킹 기기의 내부에 도전성 와이어를 배치하는 단순한 구성의 추가이므로, 제조 비용이 절감되고, 경계를 구성하는 경계 와이어를 공용으로 상용할 수 있고, 경계 와이어와 하나의 전원으로 구동될 수 있는 장점이 존재한다.
도 1은 본 발명의 일 실시예에 따른 이동 로봇(100)의 사시도 이다.
도 2는 도 1의 이동 로봇(100)의 정면을 바라본 입면도 이다.
도 3은 도 1의 이동 로봇(100)의 우측면을 바라본 입면도 이다.
도 4는 도 1의 이동 로봇(100)의 하측면을 바라본 입면도 이다.
도 5는 도 1의 이동 로봇(100)을 도킹(docking)시키는 도킹 기기(200)를 도 시한 사시도 이다.
도 6은 도 5의 도킹 기기(200)를 정면을 바라본 입면도 이다.
도 7a은 본 발명의 일 실시예에 따른 기준 와이어를 후방에서 바라본 도면이다.
도 7b는 본 발명의 일 실시예에 따른 기준 와이어를 일 측방에서 바라본 도면이다.
도 8은 도 1의 이동 로봇(100)의 제어 관계를 나타낸 블록도 이다.
도 9는 본 발명의 일 실시예에 따른 이동 로봇의 패턴 주행을 설명하는 도면이다.
도 10 내지 도 13은 본 발명의 일 실시예에 따른 이동 로봇의 주행 방법을 도시한 도면이다.
도 14는 본 발명의 일 실시예에 따른 이동 로봇의 제어방법을 도시한 순서도이다.
이하에서 언급되는 “전(F)/후(R)/좌(Le)/우(Ri)/상(U)/하(D)” 등의 방향을 지칭하는 표현은 도면에 표시된 바에 따라 정의하나, 이는 어디까지나 본 발명이 명확하게 이해될 수 있도록 설명하기 위한 것이며, 기준을 어디에 두느냐에 따라 각 방향들을 다르게 정의할 수도 있음은 물론이다.
이하에서 언급되는 구성요소 앞에 ‘제1, 제2' 등의 표현이 붙는 용어 사용은, 지칭하는 구성요소의 혼동을 피하기 위한 것일 뿐, 구성요소 들 사이의 순서, 중요도 또는 주종관계 등과는 무관하다. 예를 들면, 제1 구성요소 없이 제2 구성요소 만을 포함하는 발명도 구현 가능하다.
도면에서 각 구성의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기와 면적은 실제크기나 면적을 전적으로 반영하는 것은 아니다.
또한, 본 발명의 구조를 설명하는 과정에서 언급하는 각도와 방향은 도면에 기재된 것을 기준으로 한다. 명세서에서 구조에 대한 설명에서, 각도에 대한 기준점과 위치관계를 명확히 언급하지 않은 경우, 관련 도면을 참조하도록 한다.
이하 도 1 내지 도 6을 참조하여, 이동 로봇 중 잔디 깎기 로봇(100)을 예로 들어 설명하나, 반드시 이에 한정될 필요는 없다.
도 1 내지 도 4를 참고하여, 이동 로봇(100)은 외관을 형성하는 바디(110)를 포함한다. 바디(110)는 내부 공간을 형성한다. 이동 로봇(100)은 주행면에 대해 바디(110)를 이동시키는 주행부(120)을 포함한다. 이동 로봇(100)은 소정의 작업을 수행하는 작업부(130)를 포함한다.
바디(110)는 후술할 구동 모터 모듈(123)이 고정되는 프레임(111)을 포함한다. 프레임(111)에 후술할 블레이드 모터(132)가 고정된다. 프레임(111)은 후술할 배터리를 지지한다. 프레임(111)은 그 밖에도 다른 여러 부품들을 지지하는 뼈대 구조를 제공한다. 프레임(111)은 보조 휠(125)및 구동 휠(121)에 의해 지지된다.
바디(110)는 블레이드(131)의 양측방에서 사용자의 손가락이 블레이드(131)로 진입하는 것을 차단하기 위한 측방 차단부(111a)를 포함한다. 측방 차단부(111a)는 프레임(111)에 고정된다. 측방 차단부(111a)는 프레임(111)의 다른 부분의 하측면에 비해 하측으로 돌출되어 배치된다. 측방 차단부(111a)는 구동 휠(121)과 보조 휠(125)의 사이 공간의 상측부를 커버하며 배치된다.
한 쌍의 측방 차단부(111a-1, 111a-2)가 블레이드(131)를 사이에 두고 좌우로 배치된다. 측방 차단부(111a)는 블레이드(131)로부터 소정 거리 이격되어 배치된다.
측방 차단부(111a)의 전방면(111af)은 라운드지게 형성된다. 전방면(111af)은 측방 차단부(111a)의 하측면에서 부터 전방으로 갈수록 라운드지게 상측으로 꺾이는 표면을 형성한다. 이러한 전방면(111af)의 형상을 이용하여, 이동 로봇(100)이 전방으로 이동할 때 측방 차단부(111a)는 소정 기준 이하의 하부 장애물을 쉽게 타고 넘어갈 수 있다.
바디(110)는 블레이드(131)의 전방에서 사용자의 손가락이 블레이드(131)로 진입하는 것을 차단하기 위한 전방 차단부(111b)를 포함한다. 전방 차단부(111b)는 프레임(111)에 고정된다. 전방 차단부(111b)는 한 쌍의 보조 휠(125(L), 125(R))의 사이 공간의 상측부의 일부를 커버하며 배치된다.
전방 차단부(111b)는 프레임(111)의 다른 부분의 하측면에 비해 하측으로 돌출되는 돌출 리브(111ba)를 포함한다. 돌출 리브(111ba)는 전후 방향으로 연장된다. 돌출 리브(111ba)의 상단부는 프레임(111)에 고정되고, 돌출 리브(111ba)의 하단부는 자유단을 형성한다.
복수의 돌출 리브(111ba)가 좌우 방향으로 이격되어 배치될 수 있다. 복수의 돌출 리브(111ba)가 서로 평행하게 배치될 수 있다. 인접하는 2개의 돌출 리브(111ba)사이에 틈이 형성된다.
돌출 리브(111ba)의 전방면은 라운드지게 형성된다. 돌출 리브(111ba)의 전방면은 돌출 리브(111ba)의 하측면에서 부터 전방으로 갈수록 라운드지게 상측으로 꺾이는 표면을 형성한다. 이러한 돌출 리브(111ba)의 전방면의 형상을 이용하여, 이동 로봇(100)이 전방으로 이동할 때 돌출 리브(111ba)는 소정 기준 이하의 하부 장애물을 쉽게 타고 넘어갈 수 있다.
전방 차단부(111b)는 강성을 보조하는 보조 리브(111bb)를 포함한다. 인접하는 2개의 돌출 리브(111ba)의 상단부의 사이에, 전방 차단부(111b)의 강성을 보강하기 위한 보조 리브(111bb)가 배치된다. 보조 리브(111bb)는 하측으로 돌출되고 격자형으로 연장되어 형성될 수 있다.
프레임(111)에는 보조 휠(125)을 회전 가능하게 지지하는 캐스터(미도 시)가 배치된다. 캐스터는 프레임(111)에 대해 회전 가능하게 배치된다. 캐스터는 수직 축을 중심으로 회전 가능하게 구비된다. 캐스터는 프레임(111)의 하측에 배치된다. 한 쌍의 보조 휠(125)에 대응하는 한 쌍의 캐스터가 구비된다.
바디(110)는 프레임(111)을 상측에서 덮어주는 케이스(112)를 포함한다. 케이스(112)는 이동 로봇(100)의 상측면 및 전/후/좌/우 측면을 형성한다.
바디(110)는 케이스(112)를 프레임(111)에 고정시키는 케이스연결부(미도 시)를 포함할 수 있다. 케이스연결부의 상단에 케이스(112)에 고정될 수 있다. 케이스연결부는 프레임(111)에 유동 가능하게 배치될 수 있다. 케이스연결부는 프레임(111)에 대해 상하 방향으로만 유동 가능하게 배치될 수 있다. 케이스연결부는 소정 범위 내에서만 유동 가능하게 구비될 수 있다. 케이스연결부는 케이스(112)와 일체로 유동한다. 이에 따라, 케이스(112)는 프레임(111)에 대해 유동이 가능하다.
바디(110)는 전방부에 배치되는 범퍼(112b)를 포함한다. 범퍼(112b)는 외부의 장애물과 접촉 시 충격을 흡수해 주는 기능을 수행한다. 범퍼(112b) 정면부에는, 후측으로 함몰되어 좌우 방향으로 길게 형성된 범퍼홈이 형성될 수 있다. 복수의 범퍼 홈이 상하 방향으로 이격되어 배치될 수 있다. 돌출 리브(111ba)의 하단이 보조 리브(111bb)의 하단보다 더 낮은 위치에 배치된다.
범퍼(112b)는 전방면 및 좌우 측면이 서로 연결되어 형성된다. 범퍼(112b)의 전방면 및 측면은 라운드지게 연결된다.
바디(110)는 범퍼(112b)의 외표면을 감싸며 배치되는 범퍼 보조부(112c)를 포함할 수 있다. 범퍼 보조부(112c)는 범퍼(112b)에 결합된다. 범퍼 보조부(112c)는 범퍼(112b)의 전방면의 하부 및 좌우 측면의 하부를 감싸준다. 범퍼 보조부(112c)는 범퍼(112b)의 전방면 및 좌우 측면의 하반부를 덮어줄 수 있다.
범퍼 보조부(112c)의 전단면은 범퍼(112b)의 전단면보다 전방에 배치된다. 범퍼 보조부(112c)는 범퍼(112b)의 표면에서 돌출된 표면을 형성한다.
범퍼 보조부(112c)는 고무 등 충격 흡수에 유리한 재질로 형성될 수 있다. 범퍼 보조부(112c)는 플렉서블(flexible)한 재질로 형성될 수 있다.
프레임(111)에는, 범퍼(112b)가 고정되는 유동 고정부(미도 시)가 구비될 수 있다. 유동 고정부는 프레임(111)의 상측으로 돌출되게 배치될 수 있다. 유동 고정부의 상단부에 범퍼(112b)가 고정될 수 있다.
범퍼(112b)는 프레임(111)에 대해 소정 범위 내 유동 가능하게 배치될 수 있다. 범퍼(112b)는 유동 고정부에 고정되어 유동 고정부와 일체로 유동할 수 있다.
유동 고정부는 프레임(111)에 유동 가능하게 배치될 수 있다. 유동 고정부는 가상의 회전축을 중심으로, 유동 고정부가 프레임(111)에 대해 소정 범위 내 회전 가능하게 구비될 수 있다. 이에 따라, 범퍼(112b)는 프레임(111)에 대해 유동 고정부와 일체로 회전 가능하게 구비될 수 있다.
바디(110)는 손잡이(113)를 포함한다. 손잡이(113)는 케이스(112)의 후측부에 배치될 수 있다.
바디(110)는 배터리를 인출입하기 위한 배터리 투입부(114)를 포함한다. 배터리 투입부(114)는 프레임(111)의 하측면에 배치될 수 있다. 배터리 투입부(114)는 프레임(111)의 후측부에 배치될 수 있다.
바디(110)는 이동 로봇(100)의 전원을 On/Off하기 위한 전원 스위치(115)를 포함한다. 전원 스위치(115)는 프레임(111)의 하측면에 배치될 수 있다.
바디(110)는 블레이드(131)의 중앙부의 하측을 가려주는 블레이드 보호부(116)를 포함한다. 블레이드 보호부(116)는 블레이드(131)의 원심 방향 부분의 날이 노출되되 블레이드(131)의 중앙부가 가려지도록 구비된다.
바디(110)는 높이 조절부(156)및 높이 표시부(157)가 배치된 부분을 개폐시키는 제1 개폐부(117)를 포함한다. 제1 개폐부(117)는 케이스(112)에 힌지(hinge) 결합되어, 열림 동작 및 닫힘 동작이 가능하게 구비된다. 제1 개폐부(117)는 케이스(112)의 상측면에 배치된다.
제1 개폐부(117)는 판형으로 형성되어, 닫힘 상태에서 높이 조절부(156)및 높이 표시부(157)의 상측을 덮어준다.
바디(110)는 디스플레이 모듈(165)및 입력부(164)가 배치된 부분을 개폐시키는 제2 개폐부(118)를 포함한다. 제2 개폐부(118)는 케이스(112)에 힌지 결합되어, 열림 동작 및 닫힘 동작이 가능하게 구비된다. 제2 개폐부(118)는 케이스(112)의 상측면에 배치된다. 제2 개폐부(118)는 제1 개폐부(117)의 후방에 배치된다.
제2 개폐부(118)는 판형으로 형성되어, 닫힘 상태에서 디스플레이 모듈(165) 및 입력부(164)를 덮어준다.
제2 개폐부(118)의 열림 가능 각도 는 제1 개폐부(117)의 열림 가능 각도 에 비해 작도록, 기설정된다. 이를 통해, 제2 개폐부(118)의 열림 상태에서도 , 사용자가 제1 개폐부(117)를 쉽게 열게 해주고, 사용자가 쉽게 높이 조절부(156)를 조작할 수 있게 해준다. 또한, 제2 개폐부(118)의 열림 상태에서도 , 사용자가 높이 표시부(157)의 내용을 시각적으로 확인할 수 있게 해준다.
예를 들어, 제1 개폐부(117)의 열림 가능 각도 는 닫힘 상태를 기준으로 약 80 내지 90도 정도 가 되도록 구비될 수 있다. 예를 들어, 제2 개폐부(118)의 열림 가능 각도 는 닫힘 상태를 기준으로 약 45 내지 60도 정도 가 되도록 구비될 수 있다.
제1 개폐부(117)는 전단부를 중심으로 후단부가 상측으로 들어올려져 열림 동작하고, 제2 개폐부(118)는 전단부를 중심으로 후단부가 상측으로 들어올려져 열림 동작한다. 이를 통해, 잔디 깎기 로봇(100)이 전방으로 이동할 때에도 안전한 지역인 잔디 깎기 로봇(100)의 후방에서, 사용자가 제1 개폐부(117)및 제2 개폐부(118)를 여닫을 수 있다. 또한, 이를 통해, 제1 개폐부(117)의 열림 동작과 제2 개폐부(118)의 열림 동작이 서로 간섭되지 않게 할 수 있다.
제1 개폐부(117)의 전단부에서 좌우 방향으로 연장된 회전축을 중심으로, 제1 개폐부(117)가 케이스(112)에 대해 회전 동작 가능하게 구비될 수 있다. 제2 개폐부(118)의 전단부에서 좌우 방향으로 연장된 회전축을 중심으로, 제2 개폐부(118)가 케이스(112)에 대해 회전 동작 가능하게 구비될 수 있다.
바디(110)는, 제1 구동 모터(123(L))를 내부에 수용하는 제1모터 하우징(119a)과, 제2 구동 모터(123(R))를 내부에 수용하는 제2모터 하우징(119b)을 포함할 수 있다. 제1모터 하우징(119a)은 프레임(111)의 좌측에 고정되고, 제2모터 하우징(119b)은 프레임의 우측에 고정될 수 있다. 제1모터 하우징(119a)의 우단이 프레임(111)에 고정된다. 제2모터 하우징(119b)의 좌단이 프레임(111)에 고정된다.
제1모터 하우징(119a)은 전체적으로 좌우로 높이를 형성하는 원통형으로 형성된다. 제2모터 하우징(119b)은 전체적으로 좌우로 높이를 형성하는 원통형으로 형성된다.
주행부(120)는 구동 모터 모듈(123)의 구동력에 의해 회전하는 구동휠(121)을 포함한다. 주행부(120)는 , 구동 모터 모듈(123)의 구동력에 의해 회전하는 적어도 한 쌍의 구동휠(121)을 포함할 수 있다. 구동 휠(121)은, 각각 독립적으로 회전 가능하게 좌우에 구비되는 제1휠(121(L))및 제2휠(121(R))을 포함한다. 제1휠(121(L))는 좌측에 배치되고, 제2휠(121(R))는 우측에 배치된다. 제1휠(121(L))및 제2휠(121(R))은 좌우로 이격 배치된다. 제1휠(121(L))및 제2휠(121(R))은 바디(110)의 후측 하방부에 배치된다.
제1휠(121(L))및 제2휠(121(R))은 바디(110)가 지면에 대해 회전 운동 및 전진 운동이 가능하도록 각각 독립적으로 회전 가능하게 구비된다. 예를 들어, 제1휠(121(L))과 제2휠(121(R))이 같은 회전 속도 로 회전할 때, 바디(110)는 지면에 대해 전진 운동할 수 있다. 예를 들어, 제1휠(121(L))의 회전 속도 가 제2휠(121(R))의 회전 속도 보다 빠르거나 제1휠(121(L))의 회전 방향 및 제2휠(121(R))의 회전 방향이 서로 다를 때, 바디(110)는 지면에 대해 회전 운동을 할 수 있다.
제1휠(121(L))및 제2휠(121(R))은 보조 휠(125)보다 크게 형성될 수 있다. 제1휠(121(L))의 중심부에 제1 구동 모터(123(L))의 축이 고정될 수 있고, 제2휠(121(R))의 중심부에 제2 구동 모터(123(R))의 축이 고정될 수 있다.
구동 휠(121)은 지면과 접촉하는 휠 외주부(121b)를 포함한다. 예를 들어, 휠 외주부(121b)는 타이어일 수 있다. 휠 외주부(121b)에는 지면과의 마찰력을 상승시키기 위한 복수의 돌기가 형성될 수 있다.
구동 휠(121)은 휠 외주부(121b)를 고정시키고 모터(123)의 동력을 전달받는 휠 프레임(미도 시)을 포함할 수 있다. 휠 프레임의 중앙부에 모터(123)의 축이 고정되어, 회전력을 전달받을 수 있다. 휠 외주부(121b)는 휠 프레임의 둘레를 감싸며 배치된다.
구동 휠(121)은 휠 프레임의 외측 표면을 덮어주는 휠 커버(121a)를 포함한다. 휠 커버(121a)는 휠 프레임을 기준으로 모터(123)가 배치된 방향의 반대 방향에 배치된다. 휠 커버(121a)는 휠 외주부(121b)의 중앙부에 배치된다.
주행부(120는 구동력을 발생시키는 구동 모터 모듈(123)을 포함한다. 구동 휠(121)에 구동력을 제공하는 구동 모터 모듈(123)을 포함한다. 구동 모터 모듈(123)은, 제1휠(121(L))의 구동력을 제공하는 제1 구동 모터(123(L))와, 제2휠(121(R))의 구동력을 제공하는 제2 구동 모터(123(R))를 포함한다. 제1 구동 모터(123(L))와 제2 구동 모터(123(R))는 좌우로 이격되어 배치될 수 있다. 제1 구동 모터(123(L))는 제2 구동 모터(123(R))의 좌측에 배치될 수 있다.
제1 구동 모터(123(L))및 제2 구동 모터(123(R))는 바디(110)의 하측부에 배치될 수 있다. 제1 구동 모터(123(L))및 제2 구동 모터(123(R))는 바디(110)의 후방부에 배치될 수 있다.
제1 구동 모터(123(L))는 제1휠(121(L))의 우측에 배치되고, 제2 구동 모터(123(R))는 제2휠(121(R))의 좌측에 배치될 수 있다. 제1 구동 모터(123(L))및 제2 구동 모터(123(R))는 바디(110)에 고정된다.
제1 구동 모터(123(L))는 제1모터 하우징(119a)의 내부에 배치되어, 좌측으로 모터축이 돌출되게 구비될 수 있다. 제2 구동 모터(123(R))는 제2모터 하우징(119b)의 내부에 배치되어, 우측으로 모터축이 돌출되게 구비될 수 있다.
본 실시예에서는 제1휠(121(L))및 제2휠(121(R))이 각각 제1 구동 모터(123(L))의 회전축 및 제2 구동 모터(123(R))의 회전축에 직접 연결되나, 제1휠(121(L))및 제2휠(121(R))에 샤프트 등의 부품이 연결될 수도 있고, 기어나 체인 등에 의해 모터(123(L), 123(R))의 회전력이 휠(121a, 120b)에 전달되게 구현될 수도 있다.
주행부(120)는, 구동 휠(121)과 함께 바디(110)를 지지하는 보조 휠(125)을 포함할 수 있다. 보조 휠(125)은 블레이드(131)의 전방에 배치될 수 있다. 보조 휠(125)은 모터에 의한 구동력을 전달받지 않는 휠로서, 바디(110)를 지면에 대해 보조적으로 지지하는 역할을 한다. 보조 휠(125)의 회전축을 지지하는 캐스터는 수직한 축에 대해 회전 가능하게 프레임(111)에 결합된다. 좌측에 배치된 제1보조 휠(125(L))과 우측에 배치된 제2보조 휠(125(R))이 구비될 수 있다.
작업부(130)는 소정의 작업을 수행하도록 구비된다. 작업부(130)는 바디(110)에 배치된다.
일 예로, 작업부(130)는 청소나 잔디 깎기 등의 작업을 수행하도록 구비될 수 있다. 다른 예로, 작업부(130)는 물건의 운반이나 물건 찾기 등의 작업을 수행하도록 구비될 수도 있다. 또 다른 예로, 작업부(130)는 주변의 외부 침입자나 위험 상황 등을 감지하는 보안 기능을 수행할 수 있다.
본 실시예에서는 작업부(130)가 잔디 깎기를 수행하는 것으로 설명하나, 작업부(130)의 작업의 종류는 여러 가지 예시가 있을 수 있으며, 본 설명의 예시로 제한될 필요가 없다.
작업부(130)는 잔디를 깎기 위해 회전 가능하게 구비된 블레이드(131)를 포함할 수 있다. 작업부(130)는 블레이드(131)의 회전력을 제공하는 블레이드 모터(132)를 포함할 수 있다.
블레이드(131)는 구동 휠(121)과 보조 휠(125)의 사이에 배치된다. 블레이드(131)는 바디(110)의 하측부에 배치된다. 블레이드(131)는 바디(110)의 하측에서 노출되도록 구비된다. 블레이드(131)는 상하 방향으로 연장된 회전축을 중심으로 회전하여, 잔디를 깎는다.
블레이드 모터(132)는 제1휠(121(L))및 제2휠(121(R))의 전방에 배치될 수 있다. 블레이드 모터(132)는 바디(110)의 내부 공간 내에서 중앙부의 하측에 배치된다.
블레이드 모터(132)는 보조 휠(125)의 후측에 배치될 수 있다. 블레이드 모터(132)는 바디(110)의 하측부에 배치될 수 있다. 모터축의 회전력은 기어 등의 구조를 이용하여 블레이드(131)에 전달된다.
이동 로봇(100)은 구동 모터 모듈(123)에 전원을 공급하는 배터리(미도 시)를 포함한다. 배터리는 제1 구동 모터(123(L))에 전원을 제공한다. 배터리는 제2 구동 모터(123(R))에 전원을 제공한다. 배터리는 블레이드 모터(132)에 전원을 공급할 수 있다. 배터리는, 제어부(190), 방위각 센서(176)및 출력부(165)에 전원을 제공할 수 있다. 배터리는 바디(110)의 내부 공간 내에서 후측부의 하측에 배치될 수 있다.
이동 로봇(100)은 지면에 대한 블레이드(131)의 높이를 변경 가능하게 구비되어, 잔디의 깎는 높이를 변경할 수 있다. 이동 로봇(100)은 사용자가 블레이드(131)의 높이를 변경하기 위한 높이 조절부(156)를 포함한다. 높이 조절부(156)는 회전 가능한 다이얼을 포함하여, 다이얼을 회전시킴으로써 블레이드(131)의 높이를 변경시킬 수 있다.
이동 로봇(100)은 블레이드(131)의 높이의 수준을 표시해주는 높이 표시부(157)를 포함한다. 높이 조절부(156)의 조작에 따라 블레이드(131)의 높이가 변경되면, 높이 표시부(157)가 표시하는 높이 수준도 같이 변경된다. 예를 들어, 높이 표시부(157)에는 현재의 블레이드(131)높이 상태로 이동 로봇(100)이 잔디 깎기를 수행한 후 예상되는 잔디의 높이 값이 표시될 수 있다.
이동 로봇(100)은 도킹 기기(200)에 도킹 시, 도킹 기기(200)와 연결되는 도킹 삽입부(158)를 포함한다. 도킹 삽입부(158)는 도킹 기기(200)의 도킹 연결부(210)가 삽입되도록 함몰되게 구비된다. 도킹 삽입부(158)는 바디(110)의 정면부에 배치된다. 도킹 삽입부(158)와 도킹 연결부(210)의 연결에 의해, 이동 로봇(100)이 충전 시 정확한 위치가 안내될 수 있다.
이동 로봇(100)은, 도킹 삽입부(158)가 도킹 연결부(210)에 삽입된 상태에서, 후술할 충전 단자(211)와 접촉 가능한 위치에 배치되는 충전 대응 단자(159)를 포함할 수 있다. 충전 대응 단자(159)는 한 쌍의 충전 단자(211)(211a, 211b)와 대응되는 위치에 배치되는 한 쌍의 충전 대응 단자(159a, 159b)를 포함할 수 있다. 한 쌍의 충전 대응 단자(159a, 159b)는 도킹 삽입부(158)를 사이에 두고 좌우로 배치될 수 있다.
도킹 삽입부(158)와 한 쌍의 충전 단자(211)(211a, 211b)를 개폐 가능하게 덮어주는 단자 커버(미도 시)가 구비될 수 있다. 이동 로봇(100)의 주행 시, 단자 커버는 도킹 삽입부(158)와 한 쌍의 충전 단자(211)(211a, 211b)를 가려줄 수 있다. 이동 로봇(100)이 도킹 기기(200)와 연결 시, 단자 커버가 열려 도킹 삽입부(158)와 한 쌍의 충전 단자(211)(211a, 211b)가 노출될 수 있다.
한편, 도 5 및 도 6을 참고하여, 도킹 기기(200)는 바닥에 배치되는 도킹 베이스(230)와, 도킹 베이스(230)의 전방부에서 상측으로 돌출된 도킹 지지부(220)를 포함한다.
도킹 베이스(230)는 수평방향과 나란한 면을 정의한다. 도킹 베이스(230)는 이동 로봇(100)이 안착될 수 있는 판 형상이다. 도킹 지지부(220)는 도킹 베이스(230)에서 수평방향과 교차되는 방향으로 연장된다.
이동 로봇(100)의 충전시, 도킹 삽입부(158)에 삽입되는 도킹 연결부(210)를 포함한다. 도킹 연결부(210)는 도킹 지지부(220)에서 후방으로 돌출될 수 있다.
도킹 연결부(210)는 상하 방향의 두께가 좌우 방향의 폭보다 작게 형성될 수 있다. 도킹 연결부(210)의 좌우 방향 폭은 후측으로 갈수록 좁아지게 형성될 수 있다. 상측에서 바라볼 때, 도킹 연결부(210)는 전체적으로 사다리꼴이다. 도킹 연결부(210)는 좌우 대칭된 형상으로 형성된다. 도킹 연결부(210)의 후방부는 자유단을 형성하고, 도킹 연결부(210)의 전방부는 도킹 지지부(220)에 고정된다. 도킹 연결부(210)의 후방부는 라운드진 형상으로 형성될 수 있다.
도킹 연결부(210)가 도킹 삽입부(158)에 완전히 삽입되면, 이동 로봇(100)의 도킹 기기(200)에 의한 충전이 이루어질 수 있다.
도킹 기기(200)는 이동 로봇(100)을 충전시키기 위한 충전 단자(211)를 포함한다. 충전 단자(211)와 이동 로봇(100)의 충전 대응 단자(159)가 접촉하여, 도킹 기기(200)로부터 이동 로봇(100)으로 충전을 위한 전원이 공급될 수 있다.
충전 단자(211)는 후측을 바라보는 접촉면을 포함하고, 충전 대응 단자(159)는 전방을 바라보는 접촉 대응면을 포함한다. 충전 단자(211)의 접촉면과 충전 대응 단자(159)의 접촉 대응면이 접촉함으로써, 도킹 기기(200)의 전원이 이동 로봇(100) 연결된다.
충전 단자(211)는 +극 및 -극을 형성하는 한 쌍의 충전 단자(211)(211a, 211b)를 포함할 수 있다. 제1충전 단자(211a)는 제1충전 대응 단자(159a)와 접촉하게 구비되고, 제2충전 단자(211b)는 제2충전 대응 단자(159b)에 접촉하게 구비된다.
한 쌍의 충전 단자(211a, 211b)는 도킹 연결부(210)를 사이에 두고 배치될 수 있다. 한 쌍의 충전 단자(211a, 211b)는 도킹 연결부(210)의 좌우에 배치될 수 있다.
도킹 베이스(230)는 이동 로봇(100)의 구동 휠(121)및 보조 휠(125)이 올라서는 휠 가드(232)를 포함한다. 휠 가드(232)는 , 제1보조 휠(125)의 이동을 안내하는 제1휠 가드(232a)와, 제2보조 휠(125)의 이동을 안내하는 제2휠 가드(232b)를 포함한다. 제1휠 가드(232a)와 제2휠 가드(232b)의 사이에는 상측으로 볼록한 중앙 베이스(231)가 배치된다. 도킹 베이스(230)는 제1휠(121(L))및 제2휠(121(R))의 미끄럼을 방지하기 위한 슬립 방지부(234)를 포함한다. 슬립 방지부(234)는 상측으로 돌출된 복수의 돌기를 포함할 수 있다.
한편, 이동 로봇(100)의 주행 영역의 경계를 설정하기 위한 경계 와이어(290)가 구현될 수 있다. 경계 와이어(290)는 소정의 경계 신호를 발생시킬 수 있다. 이동 로봇(100)은 경계 신호를 감지하여, 경계 와이어(290)에 의해 설정된 주행 영역의 경계를 인식할 수 있다.
예를 들어, 경계 와이어(290)를 따라 소정의 전류가 흐르도록 하여, 경계 와이어(290) 주변에 자기장을 발생시킬 수 있다. 여기서, 발생된 자기장이 경계 신호다. 경계 와이어(290)에 소정의 변화 패턴을 가진 교류가 흐르도록 하여, 경계 와이어(290) 주변에 발생된 자기장이 소정의 변화 패턴을 가지며 변화할 수 있다. 이동 로봇(100)은 자기장을 감지하는 경계 신호 감지부(177)를 이용하여, 경계 와이어(290)에 소정 거리 이내로 근접하였음을 인식할 수 있고, 이를 통해 경계 와이어(290)에 의해 설정된 경계 내의 주행 영역에서만 주행을 할 수 있다.
경계 와이어(290)는 기준 와이어(270)와 구별되는 방향으로 자기장을 생성할 수 있다. 예를 들면, 경계 와이어(290)는 수평면에 실질적으로 평행하게 배치될 수 있다. 여기서, 실질적으로 평행하다 함은 수학적 의미의 완전한 평행과 일정한 수준의 오차를 포함하는 공학적 의미에서 평행을 포함할 수 있다.
경계 와이어(290)에 소정의 전류를 보내주는 역할을 도킹 기기(200)가 할 수 있다. 도킹 기기(200)는 경계 와이어(290)와 연결되는 와이어 단자(250)를 포함할 수 있다. 경계 와이어(290)의 양단이 각각 제1 와이어 단자(250a) 및 제2 와이어 단자(250b)에 연결될 수 있다. 경계 와이어(290)와 와이어 단자(250)의 연결을 통해, 도킹 기기(200)의 전원이 경계 와이어(290)에 전류를 공급할 수 있다.
와이어 단자(250)는 도킹 기기(200)의 전방(F)에 배치될 수 있다. 즉, 와이어 단자(250)는 도킹 연결부(210)가 돌출된 방향의 반대 방향 측에 배치될 수 있다. 와이어 단자(250)는 도킹 지지부(220)에 배치될 수 있다. 제1 와이어 단자(250a) 및 제2 와이어 단자(250b)는 좌우로 이격되어 배치될 수 있다.
도킹 기기(200)는 와이어 단자(250)를 개폐 가능하게 덮어주는 와이어 단자 개폐부(240)를 포함할 수 있다. 와이어 단자 개폐부(240)는 도킹 지지부(220)의 전방(F)에 배치될 수 있다. 와이어 단자 개폐부(240)는 도킹 지지부(220)에 힌지 결합되어, 회전 동작을 통해 개폐 동작을 하도록 기 설정될 수 있다.
한편, 이동 로봇(100)에게 도킹 기기(200)의 위치를 인식시키기 위한 기준 와이어(270)가 구현될 수 있다. 기준 와이어(270)는 소정의 도킹 위치 신호를 발생시킬 수 있다. 이동 로봇(100)은 도킹 위치 신호를 감지하여, 기준 와이어(270)에 의해 도킹 기기(200)의 위치를 인식하고, 복귀 명령 또는 충전이 필요 할 때, 인식된 도킹 기기(200)의 위치로 복귀할 수 있다. 이러한, 도킹 기기(200)의 위치는 이동 로봇(100)의 주행의 기준점이 될 수도 있다.
기준 와이어(270)는 전기가 흐를 수 있는 도전성의 재질로 형성된다. 기준 와이어(270)는 후술하는 도킹 기기(200)의 전원과 연결될 수 있다.
예를 들어, 기준 와이어(270)를 따라 소정의 전류가 흐르도록 하여, 기준 와이어(270) 주변에 자기장을 발생시킬 수 있다. 여기서, 발생된 자기장이 도킹 위치 신호다. 기준 와이어(270)에 소정의 변화 패턴을 가진 교류가 흐르도록 하여, 기준 와이어(270) 주변에 발생된 자기장이 소정의 변화 패턴을 가지며 변화할 수 있다. 이동 로봇(100)은 자기장을 감지하는 경계 신호 감지부(177)를 이용하여, 기준 와이어(270)에 소정 거리 이내로 근접하였음을 인식할 수 있고, 이를 통해 기준 와이어(270)에 의해 설정된 도킹 기기(200)의 위치로 복귀할 수 있다.
기준 와이어(270)는 경계 와이어(290)와 구별된는 방향으로 자기장을 생성할 수 있다. 예를 들면, 기준 와이어(270)는 수평방향과 교차되는 방향으로 연장될 수 있다. 바람직하게는 기준 와이어(270)는 수평방향과 직교하는 상하 방향으로 연장될 수 있다.
기준 와이어(270)는 도킹 기기(200)에 설치될 수 있다. 기준 와이어(270)는 도킹 기기(200)에서 다양한 위치에 배치될 수 있다.
도 7a은 본 발명의 제1 실시예에 따른 기준 와이어(270)를 후방에서 바라본 도면, 도 7b는 본 발명의 제1 실시예에 따른 기준 와이어(270)를 일 측방에서 바라본 도면이다.
도 6, 도 7a 및 도 7b를 참조하면, 제1 실시예에 따른 기준 와이어(270)는 도킹 지지부(220)의 내부에 배치될 수 있다. 기준 와이어(270)는 수평 방향이 자기장 신호를 발생시켜야 하므로, 기준 와이어(270)는 수직 방향으로 연장되게 배치된다. 기준 와이어(270)가 도킹 베이스(230)에 배치되면, 도킹 베이스(230)의 두께가 매우 두꺼워 지는 단점이 존재한다.
기준 와이어(270)는 적어도 수평방향과 교차되는 방향으로 연장되는 수직 부분(271)을 포함할 수 있다. 수직 부분(271)은 상하 방향(UD)과 실질적으로 평형하게 배치될 수 있다.
기준 와이어(270)의 수직 부분(271)에서 입력되는 전기의 방향은 상부에서 하부 방향으로 진행되거나, 하부에서 상부방향으로 진행될 수 있다.
수직 부분(271)은 도킹 기기(200)의 주변 영역 전체에서 일정 이상의 도킹 위치 신호를 발생시키기 위해 복수 개가 배치될 수 있다. 예를 들면, 수직 부분(271)은 제1 수직 부분(271a)과, 제1 수직 부분(271a)에서 이격되어 배치되는 제2 수직 부분(271b)을 포함할 수 있다. 물론, 수직 부분(271)은 제1 수직 부분(271a)과 제2 수직 부분(271b) 중 어느 하나 만을 포함할 수도 있다.
제1 수직 부분(271a)과 제2 수직 부분(271b)은 좌우 방향으로 이격되어 배치된다. 제1 수직 부분(271a)은 도킹 지지부(220)의 우측 단에 인접하여 배치되고, 제2 수직 부분(271b)은 도킹 지지부(220)의 좌측 단에 인접하여 배치될 수 있다. 제1 수직 부분(271a)과 제2 수직 부분(271b)이 도킹 지지부(220)의 양단에 인접하여 배치되면, 기준 와이어(270)에 의해 자기장이 발생하는 영역이 도킹 기기(200) 주변으로 최대한 확장되게 된다.
제1 수직 부분(271a)과 제2 수직 부분(271b)의 전류의 진행 방향은 동일하거나 상이할 수 있다. 바람직하게는 제1 수직 부분(271a)이 상부에서 하부 방향으로 전기가 흐르는 경우, 제2 수직 부분(271b)은 하부에서 상부 방향으로 전기가 흐를 수 있다.
제1 수직 부분(271a)과 제2 수직 부분(271b)의 전기장의 강도를 보강하기 위해, 제1 수직 부분(271a)과 제2 수직 부분(271b)은 각각 복수 개가 구비될 수 있다. 제1 수직 부분(271a)과 제2 수직 부분(271b)은 여러 개의 와이어의 집합체일 수 있고, 제1 수직 부분(271a)과 제2 수직 부분(271b)이 일정한 배치를 가질 수도 있다. 물론, 제1 수직 부분(271a)과 제2 수직 부분(271b)은 단수 개가 배치될 수도 있다.
예를 들면, 복수 개의 제1 수직 부분(271a)은 전후 방향으로 연장되는 라인을 따라 열을 이루게 배치되고, 복수 개의 제2 수직 부분(271b)은 전후 방향으로 연장되는 라인을 따라 열을 이루게 배치될 수 있다.
복수 개의 제1 수직 부분(271a)과, 제2 수직 부분(271b)이 도킹 지지부(220)의 좌우 방향 양단에 배치되고, 전후 방향으로 열을 이루어 배치되게 되면, 복수 개의 제1 수직 부분(271a)과 제2 수직 부분(271b) 사이에 충전 단자(211), 도킹 연결부(210)가 배치될 수 있다. 복수 개의 제1 수직 부분(271a)과 제2 수직 부분(271b) 사이에 충전 단자(211), 도킹 연결부(210)가 배치되면, 충전 단자(211)와 도킹 연결부(210)의 구성을 바꾸지 않고, 기준 와이어(270)를 배치할 수 있는 이점이 존재한다.
복수 개의 제1 수직 부분(271a)과 제2 수직 부분(271b)은 서로 전기적으로 연결되거나, 별도의 전원에서 전기를 공급 받을 수 있다. 기준 와이어(270)에 소정의 전류를 보내주는 역할을 도킹 기기(200)가 할 수 있다. 도킹 기기(200)는 기준 와이어(270)와 연결되는 와이어 단자(250)를 포함할 수 있다. 기준 와이어(270)의 양단이 각각 제1 와이어 단자(250a) 및 제2 와이어 단자(250b)에 연결될 수 있다. 기준 와이어(270)와 와이어 단자(250)의 연결을 통해, 도킹 기기(200)의 전원이 기준 와이어(270)에 전류를 공급할 수 있다.
구체적으로, 복수의 제1 수직 부분(271a)의 양단이 각각 제1 와이어 단자(250a) 및 제2 와이어 단자(250b)에 연결되고, 복수의 제2 수직 부분(271b)의 양단이 각각 제1 와이어 단자(250a) 및 제2 와이어 단자(250b)에 연결될 수 있다.
물론, 다른 예에 따른 기준 와이어(270)는 수평 부분(미도시)을 더 포함할 수 있다. 이 때, 기준 와이어(270)는 제1 수직 부분(271a)과 제2 수직 부분(271b)이 서로 연결되어 하나의 전원에서 전원을 공급받는 구조를 가질 수 있다.
도 8은 도 1의 이동 로봇(100)의 제어 관계를 나타낸 블록도 이다.
한편, 도 13을 참고하면, 이동 로봇(100)은 사용자의 각종 지시를 입력할 수 있는 입력부(164)를 포함할 수 있다. 입력부(164)는 버튼, 다이얼, 터치형 디스플레이 등을 포함할 수 있다. 입력부(164)는 음성 인식을 위한 마이크(미도 시)를 포함할 수 있다. 본 실시예에서, 케이스(112)의 상측부에 다수의 버튼이 배치된다.
이동 로봇(100)은 사용자에게 각종 정보를 출력해주는 출력부(165)를 포함할 수 있다. 출력부(165)는 시각적 정보를 출력하는 디스플레이 모듈을 포함할 수 있다. 출력부(165)는 청각적 정보를 출력하는 스피커(미도 시)를 포함할 수 있다.
본 실시예에서, 디스플레이 모듈(165)은 상측 방향으로 화상을 출력한다. 디스플레이 모듈(165)은 케이스(112)의 상측부에 배치된다. 일 예로, 디스플레이 모듈(165)은 액정 표시(LCD: Thin film transistor liquid-crystal display)패널을 포함할 수 있다. 그 밖에도 , 디스플레이 모듈(165)은, 플라스마 디스플레이 패널(plasma display panel)또는 유기 발광 디스플레이 패널(organic light emitting diode display panel) 등의 다양한 디스플레이 패널을 이용하여, 구현될 수 있다.
이동 로봇(100)은 각종 정보를 저장하는 저장부(166)를 포함한다. 저장부(166)는 이동 로봇(100)의 제어에 필요한 각종 정보들을 기록하는 것으로, 휘발성 또는 비휘발성 기록 매체를 포함할 수 있다. 저장부(166)는 입력부(164)로부터 입력되거나 통신부(167) 수신한 정보를 저장할 수 있다. 저장부(166)는 이동 로봇(100)의 제어를 위한 프로그램이 저장할 수 있다.
이동 로봇(100)은 외부의 기기(단말기 등), 서버, 공유기 등과 통신하기 위한 통신부(167)를 포함할 수 있다. 예를 들어, 통신부(167)는 IEEE 802.11 WLAN, IEEE 802.15 WPAN, UWB, Wi-Fi, Zigbee, Z-wave, Blue-Tooth 등과 같은 무선 통신 기술로 무선 통신하게 구현될 수 있다. 통신부는 통신하고자 하는 다른 장치 또는 서버의 통신 방식이 무엇인지에 따라 달라질 수 있다.
이동 로봇(100)은 이동 로봇(100)의 상태나 이동 로봇(100)외부의 환경과 관련된 정보를 감지하는 센싱부(170)를 포함한다. 센싱부(170)는 , 원격 신호 감지부(171), 장애물 감지부(172), 레인 감지부(173), 케이스 유동 센서(174), 범퍼 센서(175), 방위각 센서(176), 경계 신호 감지부(177), GPS 감지부(178) 및 낭떠러지 감지부(179) 중 적어도 하나를 포함할 수 있다.
원격 신호 감지부(171)는 외부의 원격 신호를 수신한다. 외부의 리모트 컨트롤러에 의한 원격 신호가 송신되면, 원격 신호 감지부(171)가 원격 신호를 수신할 수 있다. 예를 들어, 원격 신호는 적외선 신호일 수 있다. 원격 신호 감지부(171)에 의해 수신된 신호는 제어부(190)에 의해 처리될 수 있다.
복수의 원격 신호 감지부(171)가 구비될 수 있다. 복수의 원격 신호 감지부(171)는, 바디(110)의 전방부에 배치된 제1원격 신호 감지부(171a)와, 바디(110)의 후방부에 배치된 제2원격 신호 감지부(171b)를 포함할 수 있다. 제1원격 신호 감지부(171a)는 전방으로부터 송신되는 원격 신호를 수신한다. 제2원격 신호 감지부(171b)는 후방으로부터 송신되는 원격 신호를 수신한다.
장애물 감지부(172)는 이동 로봇(100)의 주변의 장애물을 감지한다. 장애물 감지부(172)는 전방의 장애물을 감지할 수 있다. 복수의 장애물 감지부(172a, 172b, 172c)가 구비될 수 있다. 장애물 감지부(172)는 바디(110)의 전방면에 배치된다. 장애물 감지부(172)는 프레임(111)보다 상측에 배치된다. 장애물 감지부(172)는, 적외선 센서, 초음파 센서, RF 센서, 지자기 센서, PSD(Position Sensitive Device) 센서 등을 포함할 수 있다.
레인 감지부(173)는 이동 로봇(100)이 놓여진 환경에서 비가 올 경우, 비(rain)를 감지한다. 레인 감지부(173)는 케이스(112)에 배치될 수 있다.
케이스 유동 센서(174)는 케이스 연결부의 유동을 감지한다. 프레임(111)에 대해 케이스(112)가 상측으로 들어올려지면, 케이스연결부가 상측으로 유동하게 되고, 케이스 유동 센서(174)가 케이스(112)의 들어올려짐을 감지하게 된다. 케이스 유동 센서(174)가 케이스(112)의 들어올려짐을 감지하면, 제어부(190)는 블레이드(131)의 동작을 정지시키도록 제어할 수 있다. 예를 들어, 사용자가 케이스(112)를 들어올리거나 상당한 크기의 하부 장애물이 케이스(112)를 들어올리는 상황 발생시, 케이스 유동 센서(174)가 이를 감지할 수 있다.
범퍼 센서(175)는 유동 고정부의 회전을 감지할 수 있다. 예를 들어, 유동 고정부의 하부의 일측에 자석을 배치하고, 프레임(111)에 자석의 자기장의 변화를 감지하는 센서를 배치할 수 있다. 유동 고정부가 회전시 센서가 자석의 자기장 변화를 감지함으로써, 유동 고정부의 회전을 감지하는 범퍼 센서(175)가 구현될 수 있다. 범퍼(112b)가 외부의 장애물에 충돌하면, 범퍼(112b)와 일체로 유동 고정부가 회전한다. 범퍼 센서(175)가 유동 고정부의 회전을 감지함으로써, 범퍼(112b)의 충격을 감지할 수 있다.
센싱부(20)는 주행면(S)의 경사에 대한 기울기 정보를 획득하는 기울기 정보 획득부(180)를 포함한다. 기울기 정보 획득부(180)는 바디(110)의 기울기를 감지함으로써, 바디(110)가 올려진 주행면(S)의 경사에 대한 기울기 정보를 획득할 수 있다. 예를 들어, 기울기 정보 획득부(180)는 자이로 센싱 모듈(176a)를 포함할 수 있다. 기울기 정보 획득부(180)는 자이로 센싱 모듈(176a)의 감지 신호를 기울기 정보로 변환하는 처리 모듈(미도 시)을 포함할 수 있다. 처리 모듈은 제어부(190)의 일부로서, 알고리즘이나 프로그램으로 구현될 수 있다. 다른 예로, 기울기 정보 획득부(180)는 자기장 센싱 모듈(176c)를 포함하여, 지구의 자기장에 대한 감지 정보를 근거로 하여 기울기 정보를 획득할 수도 잇다.
자이로 센싱 모듈(176a)는 바디(30)의 수평면에 대한 회전 각속도 에 대한 정보를 획득할 수 있다. 구체적으로 자이로 센싱 모듈(176a)는 수평면에 평행하고 서로 직교하는 X축 및 Y축을 중심으로 한 회전 각속도 를 감지할 수 있다. 처리 모듈을 통해 X축에 대한 회전 각속도 (롤)와 Y축에 대한 회전 각속도 (피치)를 합성하여, 수평면에 대한 회전 각속도 를 산출할 수 있다. 처리 모듈을 통해 회전 각속도 를 적분하여, 기울기 값을 산출할 수 있다.
자이로 센싱 모듈(176a)는 정해진 기준 방향을 감지할 수 있다. 기울기 정보 획득부(180)는 기준 방향을 근거로 하여 기울기 정보를 획득할 수 있다.
방위각 센서(AHRS)(176)는 자이로(gyro) 센싱 기능을 구비할 수 있다. 방위각 센서(176)은 가속도 센싱 기능을 더 구비할 수 있다. 방위각 센서(176)는 자기장 센싱 기능을 더 구비할 수 있다.
방위각 센서(176)는 자이로(Gyro) 센싱을 수행하는 자이로 센싱 모듈(176a)를 포함할 수 있다. 자이로 센싱 모듈(176a)은 바디(110)의 수평의 회전 속도 를 감지할 수 있다. 자이로 센싱 모듈(176a)은 바디(110)의 수평면에 대한 기울임 속도 를 감지할 수 있다.
자이로 센싱 모듈(176a)는 서로 직교하는 공간 좌표계의 3개의 축에 대한 자이로(Gyro) 센싱 기능을 구비할 수 있다. 자이로 센싱 모듈(176a)에서 수집된 정보는 롤(Roll), 피치(Pitch) 및 요(Yaw) 정보일 수 있다. 처리 모듈은, 롤링(roll), 피칭(pitch), 요(yaw) 각속도 를 적분하여 청소기(1, 1')(또는 바디)의 방향각의 산출이 가능하다.
방위각 센서(176)는 가속도 센싱을 수행하는 가속도 센싱 모듈(176b)을 포함할 수 있다. 가속도 센싱 모듈(176b)는 서로 직교하는 공간 좌표계의 3개의 축에 대한 가속도 센싱 기능을 구비할 수 있다. 소정의 처리 모듈이 가속도 를 적분함으로써 속도 를 산출하고, 속도 를 적분함으로써 이동 거리를 산출할 수 있다.
방위각 센서(176)는 자기장 센싱을 수행하는 자기장 센싱 모듈(176c)을 포함할 수 있다. 자기장 센싱 모듈(176c)은 서로 직교하는 공간 좌표계의 3개의 축에 대한 자기장 센싱 기능을 구비할 수 있다. 자기장 센싱 모듈(176c)은 지구의 자기장을 감지할 수 있다.
경계 신호 감지부(177)는 경계 와이어(290)의 경계 신호 또는/및 기준 와이어(270)의 도킹 위치 신호를 감지한다.
경계 신호 감지부(177)는 바디(110)의 전방부에 배치될 수 있다. 이를 통해, 이동 로봇(100)의 주된 주행 방향인 전방으로 이동하면서, 주행 영역의 경계를 조기에 감지할 수 있다. 경계 신호 감지부(177)는 범퍼(112b)의 내측 공간에 배치될 수 있다.
경계 신호 감지부(177)는 좌우로 이격되어 배치되는 제1 경계 신호 감지부(177a) 및 제2 경계 신호 감지부(177b)를 포함할 수 있다. 제1 경계 신호 감지부(177a) 및 제2 경계 신호 감지부(177b)는 바디(110)의 전방부에 배치될 수 있다.
예를 들면, 경계 신호 감지부(177)는 자기장 센서를 포함한다. 경계 신호 감지부(177)는, 자기장의 변화를 감지하도록 코일을 이용하여 구현될 수 있다. 경계 신호 감지부(177)는 적어도 수평 방향의 자기장을 감지할 수 있다. 경계 신호 감지부(177)는 공간상 서로 직교하는 3개의 축에 대한 자기장을 감지할 수 있다.
구체적으로, 제1 경계 신호 감지부(177a)는 제2 경계 신호 감지부(177b)와 직교되는 방향의 자기장 신호를 감지할 수 있다. 제1 경계 신호 감지부(177a) 및 제2 경계 신호 감지부(177b)는 서로 직교되는 방향의 자기장 신호를 감지하고, 감지된 자기장 신호 값을 조합하여서, 공간상 서로 직교하는 3개 축에 대한 자기장을 감지할 수 있다.
경계 신호 감지부(177)는 공간상 서로 직교하는 3개 축에 대한 자기장을 감지하게 되면, 3개 축에 대한 합 벡터 값으로 자기장의 방향을 결정하고, 이러한 자기장의 방향이 수평 방향에 가까우면 도킹 위치 신호 인식하고, 수직 방향에 가까우면 경계 신호로 인식할 수 있다.
또한, 경계 신호 감지부(177)는 인접 경계 신호와 제1 주행 영역(A1) 및 제2 주행 영역(A2)의 경계 신호를 자기장의 세기 차이로 구별하고, 인접 경계 신호와 도킹 위치 신호를 자기장의 방향 차이로 구별할 수 있다. 구체적으로, 제1 주행 영역(A1)의 제1 경계 와이어(291)와 제2 주행 영역(A2)의 제2 경계 와이어(292)가 적어도 일부 또는 전부가 서로 중첩되고, 서로 같은 방향으로 전류가 인가되면, 각 제1 경계 와이어(291) 및 제2 경계 와이어(292)에서 발생되는 자기장 보다 큰 세기를 가지는 자기장이 발생되게 되고, 자기장의 세기 차이로 각 신호를 구별할 수 있다.
다른 예로, 경계 신호 감지부(177)는 인접 경계 신호와 제1 주행 영역(A1) 및 제2 주행 영역(A2)의 경계 신호를 자기장 분포의 차이로 구별할 수 있다. 구체적으로, 제1 주행 영역(A1)의 제1 경계 와이어(291) 및 제2 주행 영역(A2)의 제2 경계 와이어(292)의 일부가 서로 일정한 걸리 이내에 배치되면 같은 방향 또는 다른 방향으로 전류가 인가되면, 경계 신호 감지부(177)는 평면 좌표 상의 기설정된 거리 이내에서 자기장의 세기가 복수 개의 피크를 가지는 것을 감지하여 인접 경계 신호로 인지할 수 있다.
GPS 감지부(178)는 GPS(Global Positioning System) 신호를 감지하기 위해 구비될 수 있다. GPS 감지부(178)는 PCB를 이용하여 구현될 수 있다.
낭떠러지 감지부(179)는 주행면에 낭떠러지의 존재 여부를 감지한다. 낭떠러지 감지부(179)는 바디(110)의 전방부에 배치되어, 이동 로봇(100)의 전방에 낭떠러지 유무를 감지할 수 있다.
센싱부(170)은 제1 개폐부(117) 및 제2 개폐부(118) 중 적어도 하나의 개폐 여부를 감지하는 개폐 감지부(미도 시)를 포함할 수 있다. 개폐 감지부는 케이스(112)에 배치될 수 있다.
이동 로봇(100)은 자율 주행을 제어하는 제어부(190)를 포함한다. 제어부(190)는 센싱부(170)의 신호를 처리할 수 있다. 제어부(190)는 입력부(164)의 신호를 처리할 수 있다.
제어부(190)는 제1 구동 모터(123(L))및 제2 구동 모터(123(R))의 구동을 제어할 수 있다. 제어부(190)는 블레이드 모터(132)의 구동을 제어할 수 있다. 제어부(190)는 출력부(165)의 출력을 제어할 수 있다.
제어부(190)는 바디(110)의 내부 공간에 배치되는 메인 보드(미도 시)를 포함한다. 메인 보드는 PCB를 의미한다.
제어부(190)는 이동 로봇(100)의 자율 주행을 제어할 수 있다. 제어부(190)는 입력부(164)로부터 수신한 신호를 근거로 하여 주행부(120)의 구동을 제어할 수 있다. 제어부(190)는 센싱부(170)로부터 수신한 신호를 근거로 하여 주행부(120)의 구동을 제어할 수 있다.
또한, 제어부(190)는 경계 신호 감지부(177)의 신호를 처리할 수 있다. 구체적으로, 제어부(190)는 경계 신호 감지부(177)에서 도킹 위치 신호가 감지되는 경우, 도킹 위치 신호가 감지된 위치를 기준점으로 설정할 수 있다. 제어부(190)는 도킹 위치 신호에 의해 결정된 기준점으로 복귀 명령이 입력되면, 이동 로봇(100)을 기준점으로 주행되게 할 수 있다.
또한, 제어부(190)는 경계 신호 감지부(177)에서 경계 신호가 감지되는 경우, 경계 신호가 감지된 위치를 주행 영역의 경계로 설정할 수 있다. 제어부(190)는 주행 영역의 경계 내에서 이동 로봇(100)을 주행시킬 수 있다.
이하, 본 명세서에서 사용되는 패턴 주행, 방향각의 정의하도록 한다.
도 9는 본 발명의 일 실시예에 따른 이동 로봇의 패턴 주행을 설명하는 도면이다.
도 9를 참조하면, 패턴 주행은 설정된 장축(LA)을 따라 직선 주행하고, 장축(LA)의 일단에서 주행 방향을 장축(LA)과 교차되게 변경하여, 장축(LA) 보다 짧게 설정된 단축(SA)을 따라 직선 주행하고, 단축(SA)의 일단에서 주행 방향을 단축(SA)과 대략 90도로 교차되게 변경하여 설정된 장축(LA)만큼 주행하는 것을 반복하는 것을 의미할 수 있다. 여기서, 장축(LA)과 단축(SA)이 이루는 각도는 88° 내지 92°인 것이 바람직하다. 다수의 장축(LA)끼리는 서로 평행하고, 다수의 단축(SA)끼리는 서로 평행한 것이 바람직하다. 물론, 장축(LA) 및 단축(SA)은 수학적 의미의 직선을 의미하는 것은 아니고, 직선에 가까운 곡선을 포함하는 개념이다.
또한 패턴 주행은 장애물이 나올 때까지, 또는 주행 영역의 경계와 만날 때 까지 설정된 장축(LA)을 따라 직선 주행하다가 장애물 도는 주행 영역의 경계를 만나는 경우, 주행 방향을 장축(LA)과 교차되게 변경하여, 장축(LA) 보다 짧게 설정된 단축(SA)을 따라 직선 주행하고, 단축(SA)의 일단에서 주행 방향을 단축(SA)과 대략 90도를 교차되게 변경하여 장애물이 나올 때까지, 또는 주행 영역의 경계와 만날 때 까지 설정된 장축(LA)을 따라 주행하는 것을 반복하는 것을 의미할 수도 있다.
여기서, 단축(SA)의 반향은 진행방향이 되고, 장축(LA)의 방향은 패턴 주행의 방향각(θ1) 방향이 된다. 여기서, 장축(LA)과 단축(SA)의 길이는 제한이 없지만, 장축(LA)의 길이는 20미터 내지 30미터로 설정되고, 단축(SA)의 길이는 바디의 길이 대비 0.5배 내지 2배 사이에서 설정되는 것이 바람직하다.
여기서, 방향각은 장축(LA)이 기준선(ST)과 이루는 각도를 의미한다. 방향각은 기준선(ST)에서 시계방향으로 측정한다. 여기서, 기준선(ST)과 측정 방향은 바뀔 수도 있다. 일 예로, 도 9에서, 패턴 주행의 방향각은 90 ° 이고, 진행방향은 후방에서 전방방향이다. 진행방향의 방향각은 180 ° 이다.
방향각과 진행방향각은 방위각 센서(176)의 센싱 값으로 산정될 수 있고, 이동 로봇의 이동 거리는 방위각 센서(176) 및 GPS 감지부(178)의 센싱 값으로 산정될 수 있다.
도 10은 주행 영역을 와이어에 의해 정의된 주행 영역과, 제1 주행 영역(A1) 및 제2 주행 영역(A2)을 도시하고 있다.
이동 로봇은 와이어의 경계신호를 따라 주행하면, 주행 영역을 맵핑한다. 제어부(190)는 경계 신호를 바탕으로 주행영역을 정의하고, 주행영역을 적어도 제1 주행 영역(A1) 및 제2 주행 영역(A2)을 포함하는 복수의 주행영역으로 분할할 수 있다. 여기서, 복수의 주행영역으로 분할하는 방법은 다양한 방법이 사용될 수 있다.
일 예로, 도 10에 도시하는 바와 같이, 주행영역을 제1 주행 영역(A1)과 제2 주행 영역(A2)으로 분할할 수 있다. 여기서, 경계 와이어(290)는 제1 주행 영역(A1)의 경계의 일부를 정의하는 제1 경계 와이어(291) 및 제1 주행 영역(A1)의 경계의 일부를 정의하는 제2 경계 와이어(292)를 포함할 수 있다.
도 11은 이동 로봇이 제1 주행 영역(A1)을 제1 패턴 주행하는 것을 도시하고 있는 도면이다.
도 11을 참고하면, 제어부(190)는, 이동 로봇이 제1 주행 영역(A1)을 제1 방향각으로 제1 패턴주행하도록 주행부를 제어한다. 구체적으로, 제어부(190)는 이동 로봇을 충전대에서 경계 와이어(290)를 따라 제1 주행 영역(A1)의 주행 시작점으로 이동을 하게 제어한다. 여기서, 제1 주행 영역(A1)의 주행 시작점은 와이어의 곡률 값이 기 설정된 값 이하를 가지고, 제1 주행 영역(A1)의 형상을 고려하여 효율적인 패턴 주행이 가능한 위치다. 더욱 구체적으로, 본 발명에서, 제1 주행 영역(A1)의 주행 시작점은 제1 주행 영역(A1)의 하단에 위치되고 좌우 방향과 나란하게 배치된 경계 와이어(290)의 하단 부분(291c)의 중앙일 수 있다.
제어부(190)는 이동 로봇이 제1 주행 영역(A1)의 주행 시작점에서 제1 방향각으로 제1 패턴 주행을 하도록 정의한다. 구체적으로, 제1 패턴 주행의 제1 방향각은 88 ° 내지 92 °이고, 제1 패턴 주행의 진행 방향각은 358° 내지 2 ° 일수 있다. 이동 로봇은 좌우 방향을 장축(LA)으로 하고, 하상방향을 단축(SA)방향으로 하여 제1 주행 영역(A1)을 패턴 주행할 수 있다.
효율적인 패턴 주행을 위해, 제1 방향각은 제1 패턴주행의 주행 시작점에 인접한 주행영역의 경계와 나란하게 산정될 수 있다. 구체적으로, 제어부(190)는 경계 와이어(290)의 하단 부분(291c)과 나란한 제1 방향각을 산정할 수 있다.
제어부(190)는 제1 주행 영역(A1)의 주행을 완료하면, 제2 패턴주행을 하도록 주행부를 제어할 수 있다. 여기서, 제1 주행 영역(A1)의 주행을 완료한다 함은, 이동 로봇의 진행방향으로의 총 이동 거기가 기 설정된 값에 도달하거나, 이동 로봇의 진행방향의 전방에 제1 주행 영역(A1)의 경계가 인접한 경우를 의미할 수 있다.
구체적으로, 도 11에 도시된 바와 같이, 제어부(190)는 이동 로봇이 단축(SA)방향으로 이동 할 때, 제1 주행 영역(A1)의 경계 와이어의 상단 부분(291a)과 일정 거리 이내로 진입한 경우, 제1 주행 영역(A1)의 주행을 완료했다고 판단할 수 있다.
도 12를 참조하면, 제어부(190)는 이동 로봇이 제1 주행 영역(A1)의 주행을 완료 한 후, 제1 방향각과 교차되는 제2 방향각으로 제2 패턴주행하도록 주행부를 제어한다.
구체적으로, 제어부(190)는 이동 로봇은 이동 로봇이 제1 주행 영역(A1)의 주행을 완료한 자리에서, 제2 패턴주행을 시작하도록 주행부를 제어할 수 있다. 즉, 이동로봇은 제1 주행 영역(A1)의 주행을 완료했다고 판단하면, 더 이상 이동하지 않고, 제자리에서 회전하면서, 제2 방향각을 맞추고 제2 패턴주행을 시작할 수 있다.
제어부(190)는 제2 패턴주행의 제2 방향각을 제1 방향각과 교차되는 방향에서 랜덤하게 산정할 수 있다. 예를 들면, 제1 방향각과 제2 방향각 사이의 각도는 88° 내지 92° 일 수 있다. 바람직하게는, 제1 방향각과 제2 방향각 사이의 각도는 90 °일 수 있다. 더욱 구체적으로, 제어부(190)는, 제1 방향각과 85 ° 내지 95 ° 사이의 각도를 가지는 값들 중 랜덤하게 선택된 하나의 값을 제2 방향각으로 산정할 수 있다.
구체적으로, 제2 패턴 주행의 제2 방향각은 358 ° 내지 2 °이고, 제2 패턴 주행의 진행 방향각은 88° 내지 92 ° 일수 있다. 이동 로봇은 상하 방향을 장축(LA)으로 하고, 좌우방향을 단축(SA)방향으로 하여 패턴 주행할 수 있다.
효율적인 패턴 주행을 위해, 제2 방향각은 제2 패턴주행의 주행 시작점에 인접한 주행영역의 경계와 나란하게 산정될 수 있다. 구체적으로, 제어부(190)는 경계 와이어(290)의 좌단 부분(291b)과 나란한 제2 방향각을 산정할 수 있다.
제2 패턴주행의 진행방향은 제한이 없지만, 주행을 완료한 제1 주행 영역(A1)을 벗어나서 다음 목표인 제2 주행 영역(A2) 방향으로 나아가는 방향인 것이 바람직하다. 예를 들면, 제2 패턴주행의 진행방향은 제1 패턴주행의 종점에서 인접한 주행영역의 경계에서 멀어지는 방향이거나, 제1 주행 영역(A1)에서 멀어지는 방향일 수 있다.
다른 예로, 제2 패턴주행의 진행방향은 제1 패턴주행의 종점에서 제2 주행 영역(A2)의 중심을 연결한 가상의 선에서 제2 주행 영역(A2)의 중심을 향한 방향이 선택될 수 있다. 또는, 제2 패턴주행의 진행방향은 제1 패턴주행의 종점에서 제2 주행 영역(A2)의 중심을 연결한 가상의 선에서 제2 주행 영역(A2)의 중심을 향한 방향과 20도 이내의 예각을 이루는 방향이 선택될 수 있다.
따라서, 이동 로봇은 제1 주행 영역(A1)의 작업을 완료 후에 다시 충전대로 복귀하지 않고 연속적으로 작업을 수행하여서, 사용자에게 주는 신뢰감을 향상시킬 수 있고, 맵 상에 정확인 위치 인식을 위해 자주 충전대로 복귀하지 않으므로, 충전대로 이동하는 와이어 주변의 훼손을 방지할 수 있는 이점이 존재한다.
이동 로봇은 방향각을 전환하여 계속적으로 주행을 계속적으로 하게 되면, 제2 주행 영역(A2)의 전부 또는 일부를 주행하게 된다.
따라서, 선행문헌 미국공개특허고보 제20180064024호에서 주행 영역의 정점 등을 기준으로 다수의 영역으로 분할하여 작업하면 효과적이고 균등한 작업을 수행할 수 없는 문제점을 해결할 수 있다.
이하, 도 13을 참조하여, 호밍 주행을 설명한다.
호밍 주행은 이동 로봇(100)이 도킹 기기(200)로 복귀 하는 주행을 의미한다. 제어부(190)는 호밍 신호 수신 시에, 호밍 주행을 실행할 수 있다
제어부(190)는 이동로봇이 제1 패턴주행을 시작하고 기 설정된 시간이 경과되면, 도킹기기로 복귀하도록 주행부를 제어할 수 있다. 이동 로봇이 주행을 시작하고 나면 배터리의 소비량으로 계산된 작동시간이 설정되고, 그 설정시간이 경과되면 이동 로봇은 도킹기기로 복귀하여 충전할 수 있다.
물론, 제어부(190)는 이동로봇이 패턴주행 중에 배터리 잔량이 부족하다고 판단되면, 도킹기기로 복귀하도록 주행부를 제어할 수도 있다.
제어부(190)는 경계 신호 감지부(177)에서 입력된 경계 신호인 자기장의 분포를 통해 이동 로봇(100)이 주행할 기준 선이 되는 경계 라인(290)을 정의한다. 또한, 명세서에서 이동 로봇(100)이 경계 신호를 따라 주행한다 함은 이동 로봇(100)이 경계 라인(290)을 따라 주행하는 것을 의미한다.
이동 로봇(100)이 호밍 주행 시에 경계 라인(290)을 따라 반복적으로 주행하는 경우, 반복 주행에 의해 땅이 파이게 되는 문제가 발생하므로, 이동 로봇(100)은 경계 라인(290)을 따라 주행하면서 랜덤한 주행 경로로 주행할 수 있다.
구체적으로, 제어부(190)는 호밍 주행 시에, 바디가 경계 라인(290)을 중심축으로 설정된 호밍 주행 영역 내에서 랜덤 횟수만큼 주행 방향을 전환하도록 주행부를 제어할 수 있다. 여기서, 호밍 주행 영역은 경계 라인(290)을 중심축으로 하는 닫힌 영역으로 정의될 수 있다. 더욱 구체적으로, 호밍 주행 영역은 경계 라인(290)을 사이에 두고 경계 라인(290)과 평행한 제1 호밍 경계라인(미도시) 및 제2 호밍 경계라인(미도시)이 정의되고 제1 호밍 경계라인과 제2 호밍 경계라인 사이의 영역으로 정의될 수 있다.
이동 로봇(100)이 호밍 주행 영역 내에서 랜덤 한 횟수로 방향이 전환되면서, 이동되므로, 호밍 주행 시에 지면이 손상될 가능성이 줄어든다.
이하, 도 14를 참조하여, 본 발명의 실시예들에 따른 이동 로봇의 제어방법을 설명하면 다음과 같다. 제어방법은, 실시예에 따라 제어부(190)에 의해서만 수행될 수도 있고, 제어부(190)와 단말기 또는 서버에 의해 수행될 수도 있다. 본 발명은, 제어방법의 각 단계를 구현하는 컴퓨터 프로그램이 될 수도 있고, 제어방법을 구현하기 위한 프로그램이 기록된 기록매체가 될 수도 있다. ‘기록매체’는 컴퓨터로 판독 가능한 기록매체를 의미한다. 본 발명은, 하드웨어와 소프트웨어를 모두 포함하는 시스템이 될 수도 있다.
몇 가지 실시예들에서는 단계들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능하다. 예컨대, 잇달아 도시되어 있는 두 개의 단계들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 단계들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
본 발명의 일 실시예에 따른 이동 로봇(100)의 제어방법은 먼저 경계 신호를 감지한다. 이동 로봇(100)은 경계 신호를 바탕으로 주행영역을 정의하고, 주행 영역을 적어도 제1 주행 영역(A1) 및 제2 주행 영역(A2)으로 분할하는 분할 단계, 이동 로봇이 제1 주행 영역(A1)을 제1 방향각으로 제1 패턴주행하는 제1 패턴 주행 단계 및 이동 로봇이 제1 패턴 주행을 완료 후에, 제1 방향각과 교차되는 제2 방향각으로 제2 패턴주행 하는 제2 패턴 주행 단계를 포함한다.
분할 단계에서, 이동 로봇은 경계 신호를 감지하면서 주행을 한다 (S110). 이동 로봇은 경계 신호를 바탕으로 주행영역을 정의하고, 주행 영역을 적어도 제1 주행 영역(A1) 및 제2 주행 영역(A2)으로 분할한다(S120).
분할 단계 이후, 이동 로봇은 도킹기기에서 주행 영역의 경계를 따라 제1 패턴 주행의 시작점으로 이동한다(S130).
이동 로봇은 제1 패턴 주행 시작점에서 제1 주행 영역(A1)을 제1 방향각으로 제1 패턴 주행한다(S141).
이동 로봇은 제1 주행 영역(A1)에서 제1 패턴 주행을 완료여부를 판단하고(S143), 제1 패턴 주행을 완료했다고 판단되면, 제1 방향각과 교차되는 제2 방향각으로 제2 패턴 주행한다(S145).
물론, 이동 로봇은 제1 패턴 주행 및 제2 패턴 주행과 동시에 또는 이시에 사용자의 호밍 명령, 주행시간이 기 설정된 시간을 경과하는 경우(S151), 이동 로봇(100)의 배터리 부족을 감지하는 경우(S153), 호밍 주행 모드를 시작할 수 있다.
호밍 주행 모드에서, 이동 로봇(100)은 경계 신호가 감지되면 경계 신호를 따라 주행한다(S155).
100: 이동 로봇 110: 바디
120: 주행부 130: 작업부
170: 센싱부 180: 기울기 정보 획득부
190: 제어부 200: 도킹 기기(200)
270: 기준 와이어 290: 경계 와이어

Claims (16)

  1. 외관을 형성하는 바디;
    상기 바디를 이동시키는 주행부;
    주행영역의 경계에서 발생하는 경계 신호를 감지하는 경계 신호 감지부;
    상기 바디의 방향각을 산출하는 방위각 센서; 및
    상기 경계 신호를 바탕으로 상기 주행영역을 정의하고, 상기 주행영역을 적어도 제1 주행영역 및 제2 주행영역을 포함하는 복수의 주행영역으로 분할하는 제어부를 포함하고,
    상기 제어부는,
    이동 로봇이 상기 제1 주행영역을 제1 방향각으로 제1 패턴주행하고, 상기 제1 주행영역의 주행을 완료 한 후, 상기 제1 방향각과 교차되는 제2 방향각으로 제2 패턴주행하도록 상기 주행부를 제어하는 이동 로봇.
  2. 제1항에 있어서,
    상기 제1 방향각과 상기 제2 방향각 사이의 각도는 88° 내지 92° 인 이동 로봇.
  3. 제1항에 있어서,
    상기 제어부는, 상기 제2 방향각을 랜덤하게 산출하는 이동 로봇.
  4. 제1항에 있어서,
    상기 제어부는, 상기 제1 방향각과 85 ° 내지 95 ° 사이의 각도를 가지는 값들 중 랜덤하게 선택된 하나의 값을 제2 방향각으로 산정하는 이동 로봇.
  5. 제1항에 있어서,
    상기 제어부는, 상기 이동 로봇이 상기 제1 주행영역의 주행을 완료한 자리에서, 상기 제2 패턴주행을 하도록 상기 주행부를 제어하는 이동 로봇.
  6. 제1항에 있어서,
    상기 제1 방향각이 상기 제1 패턴주행의 주행 시작점에 인접한 상기 주행영역의 경계와 나란하게 산정되는 이동 로봇.
  7. 제1항에 있어서,
    상기 경계 신호 감지부는 도킹 기기에서 발생하는 도킹 위치 신호를 감지하고,
    상기 제어부는,
    상기 이동로봇이 상기 제1 패턴주행을 시작하고 기 설정된 시간이 경과되면, 상기 도킹기기로 복귀하도록 상기 주행부를 제어하는 이동 로봇.
  8. 제1항에 있어서,
    상기 경계 신호 감지부는 도킹 기기에서 발생하는 도킹 위치 신호를 감지하고,
    상기 제어부는,
    상기 이동로봇이 상기 패턴주행 중에 배터리 잔량이 부족하다고 판단되면, 상기 도킹기기로 복귀하도록 상기 주행부를 제어하는 이동 로봇.
  9. 제7항 또는 제8항에 있어서,
    상기 경계 신호 감지부는 상기 도킹 위치 신호와, 상기 경계 신호를 자기장의 방향 차이로 구별하는 이동 로봇.
  10. 제1항에 있어서,
    상기 제2 패턴주행의 진행방향은 상기 제1 패턴주행의 종점에서 인접한 상기 주행영역의 경계에서 멀어지는 방향인 이동 로봇.
  11. 제1항에 있어서,
    상기 제2 패턴주행의 진행방향은 상기 제1 주행 영역에서 멀어지는 방향인 이동 로봇.
  12. 제1항에 있어서,
    상기 경계 신호 감지부는 자기장 센서를 포함하는 이동 로봇.
  13. 경계 신호를 바탕으로 주행영역을 정의하고, 상기 주행 영역을 적어도 제1 주행영역 및 제2 주행영역으로 분할하는 분할 단계;
    이동 로봇이 상기 제1 주행영역을 제1 방향각으로 제1 패턴주행하는 제1 패턴 주행 단계; 및
    상기 이동 로봇이 상기 제1 패턴 주행을 완료 후에, 상기 제1 방향각과 교차되는 제2 방향각으로 제2 패턴주행 하는 제2 패턴 주행 단계를 포함하는 이동 로봇의 제어방법.
  14. 제13항에 있어서,
    상기 제1 패턴 주행 단계 전에, 상기 이동 로봇이 도킹기기에서 상기 주행 영역의 경계를 따라 상기 제1 패턴 주행의 시작점으로 이동하는 이동 단계를 더 포함하는 이동 로봇의 제어방법.
  15. 제13항에 있어서,
    상기 이동로봇은 상기 제1 패턴주행을 시작하고 기 설정된 시간이 경과되면, 도킹기기로 복귀하는 호밍 단계를 더 포함하는 이동 로봇의 제어방법.
  16. 제13항에 있어서,
    상기 이동로봇은 상기 패턴주행 중에 배터리 잔량이 부족하다고 판단되면, 도킹기기로 복귀하는 호밍 단계를 더 포함하는 이동 로봇의 제어방법.
KR1020190040038A 2018-04-06 2019-04-05 이동로봇과 이동로봇의 제어방법 KR20190123677A (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020190040038A KR20190123677A (ko) 2018-04-06 2019-04-05 이동로봇과 이동로봇의 제어방법
EP19780807.4A EP3778146B1 (en) 2018-04-06 2019-04-05 Mobile robot and method for controlling mobile robot
AU2019247309A AU2019247309B2 (en) 2018-04-06 2019-04-05 Mobile robot and method for controlling mobile robot
PCT/KR2019/004057 WO2019194631A1 (ko) 2018-04-06 2019-04-05 이동로봇과 이동로봇의 제어방법
US17/045,529 US20210165416A1 (en) 2018-04-06 2019-04-05 Moving robot and control method of moving robot
KR1020210085632A KR20210084392A (ko) 2018-04-06 2021-06-30 이동로봇과 이동로봇의 제어방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862653567P 2018-04-06 2018-04-06
US62/653,567 2018-04-06
KR1020190040038A KR20190123677A (ko) 2018-04-06 2019-04-05 이동로봇과 이동로봇의 제어방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020210085632A Division KR20210084392A (ko) 2018-04-06 2021-06-30 이동로봇과 이동로봇의 제어방법

Publications (1)

Publication Number Publication Date
KR20190123677A true KR20190123677A (ko) 2019-11-01

Family

ID=68100917

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020190040038A KR20190123677A (ko) 2018-04-06 2019-04-05 이동로봇과 이동로봇의 제어방법
KR1020210085632A KR20210084392A (ko) 2018-04-06 2021-06-30 이동로봇과 이동로봇의 제어방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210085632A KR20210084392A (ko) 2018-04-06 2021-06-30 이동로봇과 이동로봇의 제어방법

Country Status (5)

Country Link
US (1) US20210165416A1 (ko)
EP (1) EP3778146B1 (ko)
KR (2) KR20190123677A (ko)
AU (1) AU2019247309B2 (ko)
WO (1) WO2019194631A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210040613A (ko) 2019-10-04 2021-04-14 삼성전자주식회사 전자 장치 및 그의 제어 방법
CN214100905U (zh) * 2020-11-30 2021-08-31 纳恩博(北京)科技有限公司 一种自移动设备充电桩及充电系统
WO2022127525A1 (zh) * 2020-12-14 2022-06-23 南京泉峰科技有限公司 自驱动设备系统和充电站

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150125508A (ko) 2014-04-30 2015-11-09 엘지전자 주식회사 잔디 깎기 로봇 및 그 제어 방법
US20180064024A1 (en) 2016-09-05 2018-03-08 Lg Electronics Inc. Moving robot and control method thereof

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0313611A (ja) * 1989-06-07 1991-01-22 Toshiba Corp 自動清掃装置
US6142252A (en) * 1996-07-11 2000-11-07 Minolta Co., Ltd. Autonomous vehicle that runs while recognizing work area configuration, and method of selecting route
KR100600487B1 (ko) * 2004-10-12 2006-07-13 삼성광주전자 주식회사 로봇 청소기의 좌표보정방법 및 이를 이용한 로봇 청소기시스템
KR100645815B1 (ko) * 2005-07-14 2006-11-23 엘지전자 주식회사 이동 로봇의 주행 제어 방법
JP4195894B2 (ja) * 2006-03-30 2008-12-17 株式会社東芝 ドッキングシステム
KR101227859B1 (ko) * 2007-08-30 2013-01-31 삼성전자주식회사 로봇 청소기의 제어방법
WO2009057918A1 (en) * 2007-10-30 2009-05-07 Lg Electronics Inc. Detecting apparatus of robot cleaner and controlling method of robot cleaner
KR101412582B1 (ko) * 2008-01-02 2014-06-26 엘지전자 주식회사 로봇 청소기 및 그 제어 방법
US8961695B2 (en) * 2008-04-24 2015-02-24 Irobot Corporation Mobile robot for cleaning
US9471063B2 (en) * 2011-08-11 2016-10-18 Chien Ouyang Robotic lawn mower with network sensors
DE102011083309A1 (de) * 2011-09-23 2013-03-28 Robert Bosch Gmbh Autonomes Arbeitsgerät
US9573275B2 (en) * 2013-11-12 2017-02-21 Husqvarna Ab Navigation for a robotic working tool
CN104737698A (zh) * 2013-12-27 2015-07-01 苏州宝时得电动工具有限公司 自动割草机
KR101513050B1 (ko) * 2014-01-29 2015-04-17 엘지전자 주식회사 잔디 깎기 로봇 및 그 제어 방법
WO2016002082A1 (ja) * 2014-07-04 2016-01-07 マミヤ・オーピー株式会社 作業機械、作業機械の走行経路生成のための装置、方法、プログラム、プログラムを記録した記録媒体、作業機械の走行制御装置
JP6080887B2 (ja) * 2015-03-27 2017-02-15 本田技研工業株式会社 充電ステーションおよび無人作業車の充電ステーション誘導装置
JP6038990B2 (ja) * 2015-03-27 2016-12-07 本田技研工業株式会社 無人作業車の制御装置
KR102430445B1 (ko) * 2015-04-28 2022-08-08 엘지전자 주식회사 이동 로봇 및 그 제어방법
EP3392729B1 (en) * 2015-12-17 2021-10-27 Positec Power Tools (Suzhou) Co., Ltd Auto-movement robot system
JP6263567B2 (ja) * 2016-03-31 2018-01-17 本田技研工業株式会社 自律走行作業車の制御装置
EP3503205B1 (en) * 2016-08-19 2021-05-12 Positec Power Tools (Suzhou) Co., Ltd Automatic working system
KR20180064024A (ko) 2016-12-05 2018-06-14 (주)코반케미칼 그라데이션 장식필름 및 그 제조방법
WO2018108180A1 (zh) * 2016-12-15 2018-06-21 苏州宝时得电动工具有限公司 自移动设备的工作区域的分区方法、装置和电子设备
WO2018142483A1 (ja) * 2017-01-31 2018-08-09 本田技研工業株式会社 無人作業システム、管理サーバー、及び無人作業機

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150125508A (ko) 2014-04-30 2015-11-09 엘지전자 주식회사 잔디 깎기 로봇 및 그 제어 방법
US20180064024A1 (en) 2016-09-05 2018-03-08 Lg Electronics Inc. Moving robot and control method thereof

Also Published As

Publication number Publication date
US20210165416A1 (en) 2021-06-03
EP3778146A1 (en) 2021-02-17
KR20210084392A (ko) 2021-07-07
WO2019194631A1 (ko) 2019-10-10
AU2019247309B2 (en) 2022-05-19
EP3778146A4 (en) 2022-01-19
AU2019247309A1 (en) 2020-11-26
EP3778146B1 (en) 2023-05-31

Similar Documents

Publication Publication Date Title
KR102090649B1 (ko) 이동로봇과 이동로봇 시스템
KR102306030B1 (ko) 이동로봇과 이동로봇의 제어방법
KR102272676B1 (ko) 이동 로봇과 이동 로봇 시스템
KR102106100B1 (ko) 이동 로봇
KR102489617B1 (ko) 이동 로봇과 이동 로봇 시스템
KR20210084392A (ko) 이동로봇과 이동로봇의 제어방법
KR102489615B1 (ko) 이동로봇과 이동로봇 시스템
KR102489616B1 (ko) 이동 로봇과 이동 로봇 시스템
KR102489618B1 (ko) 이동 로봇과 이동 로봇 시스템
KR20190109609A (ko) 이동로봇과 도킹기기 이들을 포함하는 이동로봇 시스템
KR102317722B1 (ko) 이동로봇
KR20220025602A (ko) 이동 로봇 및 그 제어방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X601 Decision of rejection after re-examination
A107 Divisional application of patent
A107 Divisional application of patent
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2021101001677; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20210630

Effective date: 20220421