WO2020029979A1 - 植入体的装载装置 - Google Patents

植入体的装载装置 Download PDF

Info

Publication number
WO2020029979A1
WO2020029979A1 PCT/CN2019/099518 CN2019099518W WO2020029979A1 WO 2020029979 A1 WO2020029979 A1 WO 2020029979A1 CN 2019099518 W CN2019099518 W CN 2019099518W WO 2020029979 A1 WO2020029979 A1 WO 2020029979A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
inner cavity
implant
diameter
section
Prior art date
Application number
PCT/CN2019/099518
Other languages
English (en)
French (fr)
Inventor
黄峰
赵婧
陈国明
李�雨
Original Assignee
上海微创心通医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创心通医疗科技有限公司 filed Critical 上海微创心通医疗科技有限公司
Publication of WO2020029979A1 publication Critical patent/WO2020029979A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2436Deployment by retracting a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts

Definitions

  • the invention relates to the technical field of medical instruments, and in particular, to a loading device for an implant.
  • Transcatheter aortic valve implantation is a new valve replacement technology.
  • the principle is to load a valve prosthesis into the delivery system and deliver it to the root of the aorta via a catheter.
  • the stent release can ensure that the valve is fixed to the aortic valve annulus.
  • the function of the prosthetic valve is reduced, and the heart function of the patient is improved.
  • This technology can treat aortic valvular disease without opening the chest and beating the heart, eliminating the huge trauma caused by previous surgical thoracotomy and cardiac arrest.
  • This technique requires the stent to be compressed to a small diameter to be loaded into the catheter of the conveyor.
  • a guide cap is usually used in conjunction with the guide seat to perform preliminary compression, and then the lumen of the guide seat is used to further compress the inflow stent of the stent until the valve prosthesis is fully squeezed.
  • the transitional arc opening at the inlet end of the inner cavity of the guide seat is large, which is prone to "sharp corners.” That is, the inflow channel of the bracket forms an obtuse angle with the inlet end of the inner cavity of the guide seat.
  • the stent is easy to tilt, damage or valve damage due to uneven compression or local accidental bending, resulting in difficult loading staff operation, low loading efficiency, and ultimately the function of the stent or valve Defects or reduced service life may not even allow the implant to work properly.
  • the length of the operation will increase the risk of the operation.
  • this type of loading tool is only suitable for a single specification of the bracket, which has a high production cost, a complicated structure, and a complicated operation process.
  • the purpose of the present invention is to provide a loading device to prevent the bracket from being damaged during loading, and in particular to prevent the inflow channel of the bracket from being bent when being held by the loading tool, resulting in tilting, damage or breakage of the bracket.
  • the present invention provides an implant loading device, including: a guide cover and a guide seat, the guide cover being detachably connected to the guide seat;
  • the guide cover has a first inner cavity, the first inner cavity penetrates the guide cover, and a diameter of at least a section of the first inner cavity gradually decreases;
  • the guide seat has a second inner cavity, the second inner cavity penetrates the guide seat, and at least a section of the second inner cavity is an oblique straight structure with a gradually decreasing diameter, and the oblique straight structure includes successive crossings
  • the at least one inclined section of the internal cavity is provided with at least one straight section of the internal cavity.
  • the cavity wall of the at least one inclined section of the internal cavity is at an acute angle with the axis of the guide seat.
  • the axis of the guide base is parallel.
  • the guide cover includes an outlet portion, a compression portion, and an inlet portion which are sequentially connected.
  • the first inner cavity includes a first compression region and a second compression region that are in communication with each other, and an inlet end diameter of the first compression region is larger than an outlet end diameter of the second compression region.
  • the generatrices of the inner surface of the second compression region are curved.
  • the guide base includes a guide post, a connection section, and a base, and the guide post is provided on the base through the connection section.
  • a diameter of one end of the guide pillar connected to the base is greater than a diameter of the other end.
  • a groove is provided around the outer surface of the guide post inside the connecting section.
  • the second inner cavity includes a third compression region and a fourth compression region that are interconnected, the third compression region is the oblique straight structure, and an entrance end diameter of the third compression region is larger than the diameter The exit end diameter of the fourth compression zone.
  • the oblique and straight structure is integrated with the second internal cavity or detachably disposed in the second internal cavity.
  • the guide cover is sleeved on the guide base by a static friction connection method or a snap connection method.
  • At least a section penetrating the second inner cavity of the guide seat is an oblique straight structure with a gradually decreasing diameter.
  • the stent When entering the oblique section of the lumen, although each section will be subject to resistance, the stent is compressed to a small extent and can achieve a smooth transition. Furthermore, the oblique and straight structure can effectively decompose the resistance and avoid the tilt and damage of the implant caused by uneven compression or local accidental bending; and the oblique and straight structure adopts a multilayer inner diameter gradually decreasing design, which is suitable for different Specs of implants.
  • FIG. 1 is a schematic diagram of a process of pressing and holding a valve prosthesis with an existing loading tool
  • FIG. 2 is a schematic perspective structural diagram of a guide cover portion in a loading device of the present invention
  • FIG. 3 is a side sectional view of a guide cover portion in the loading device of the present invention.
  • FIG. 4 is a schematic perspective structural view of a guide seat portion in a loading device of the present invention.
  • FIG. 5 is a side sectional view of a guide seat portion in a loading device of the present invention.
  • FIG. 6 is a detailed view of a side sectional view of a guide seat portion in a loading device of the present invention.
  • 7-8 is a side sectional view of the second compression region T21 of the guide seat portion in the loading device of the present invention.
  • FIG. 9 is a schematic structural diagram of an implant in an embodiment of the present invention.
  • 10-11 are schematic diagrams of a process of loading an implant by a loading device of the present invention.
  • the inventor's research found that, as shown in FIG. 1, when the implant 3 '(such as a valve prosthesis) is pressed and held with an existing loading tool, the compression region T' of the guide seat 2 '(that is, the inner part of the guide seat 2') (Cavity) has a large opening, which is prone to "sharp corners," that is, the tip of the inflow channel 3'2 in the implant 3 'and the arc of the inner cavity in the guide seat 2' form an obtuse angle, and the compression resistance F It is large, and the ratio of the inflow channel 3'2 to be compressed under the interference of the resistance F is also large (D ⁇ d). In this way, the stent of the implant 3 'is inclined, damaged or the valve is easily damaged due to uneven compression or local accidental bending.
  • the present invention provides an implant loading device, which includes: a guide cover 1 and a guide base 2, the guide cover 1 and the guide base 2 are detachably connected;
  • the guide cover 1 has a first inner cavity T1, the first inner cavity T1 penetrates the guide cover 1, and a diameter of at least a section of the first inner cavity T1 gradually decreases;
  • the guide base 2 has a second inner cavity T2, the second inner cavity T2 penetrates the guide base 2, and at least a section of the second inner cavity T2 is an oblique straight structure with a gradually decreasing diameter (in the embodiment of the present application, the diameter gradually becomes smaller
  • the oblique straight structure includes a case where the diameter of the partially oblique straight structure becomes smaller and the diameter of the partially oblique straight structure does not change).
  • the oblique straight structure includes a plurality of internal cavity oblique sections A (A1, A2, A3, ...
  • the internal cavity straight section B (B1, B2, B3 ...), that is, the oblique straight structure includes the internal cavity inclined section A and the internal cavity straight section B, wherein the internal cavity inclined section A and the internal cavity straight
  • the number of segments B is at least one.
  • Straight sections B are arranged in order in an intersecting order; or, they are arranged in order in accordance with the order of a lumen straight section B, a lumen oblique section A, a lumen straight section B, a lumen oblique section A ...
  • the number of the segment A and the lumen straight segment B may be equal or unequal.
  • the number of the lumen oblique segment A is one more than the number of the lumen straight segment B.
  • the cavity wall of the lumen oblique segment A (A1, A2, A3, ...) is at an acute angle with the axis of the guide seat 2 (as shown in FIG. 8, the lumen oblique segment A2 is at an acute angle ⁇ with the axis), where each lumen The acute angle between the oblique section A (A1, A2, A3, ...) and the axis of the guide seat 2 may be equal or unequal.
  • the cavity wall of the straight section B (B1, B2, B3, ...) and the guide The axis of the seat 2 is parallel.
  • the inflow channel of the implant is entering In the oblique and straight structure, firstly, under the action of radial external force, it enters the internal cavity inclined section A (x) whose diameter is slightly smaller than the diameter of the opening of the inflow channel, and then enters the internal cavity straight section B (x) and the internal cavity diagonally arranged in sequence.
  • Segment A (x + 1), the angle of the inflow channel and the straight segment B of the lumen is almost zero, so the movement of the implant in the straight segment B of the lumen is almost free of resistance.
  • the oblique and straight structure When entering the slant segment A of the lumen, Although each segment is subject to resistance, the stent is compressed to a small extent, and a smooth transition can be achieved. Therefore, adopting the oblique and straight structure can effectively decompose the resistance and avoid tilting, damage or valve damage of the implant stent caused by uneven compression or local accidental bending; and the oblique and straight structure adopts a multilayer inner diameter gradually decreasing design , Suitable for implants of different specifications.
  • the value range of x is an integer greater than or equal to 1.
  • the guide cover 1 is a funnel-shaped structure, and includes an outlet portion 11, a compression portion 12, and an inlet portion 13 connected in this order, and along the direction of the inlet portion 13 to the direction of the outlet portion 11, the compression portion 12 (The diameter of the portion of the first inner cavity T1 located in the compression portion 12 is gradually reduced, that is, the diameters of the first compression region T11 and the second compression region T12 are gradually decreased as shown in FIG. 3); the outlet portion 11
  • the inner tube 41 of the delivery system 4 is used to enter and the outflow tract 31 of the implant 3 (such as a valve stent) is extended.
  • the inner surface of the outlet portion 11 is a rotating surface, and the generatrix of the rotating surface is a straight line.
  • the cavity T1 is used for the first compression of the implant 3; the guide cover 1 is detachably connected to the guide seat 2 through the entrance portion 13.
  • the implant 3 is a valve stent, which includes an inflow channel 32, an outflow channel 31, and a mounting ear 33 connected in order.
  • the implant 3 is loaded into the delivery system 4 through a loading device, and is contracted.
  • the catheter of the delivery system 4 is introduced into the body to the target area, and then released, and is deployed into the state shown in FIG. 9.
  • the present invention has no particular limitation on the material for manufacturing the valve stent, and may be any material existing in the art.
  • a shape memory alloy material is used to make the valve stent.
  • the implant 3 uses a valve stent as an example to explain the invention, but the valve stent is not a limitation on the implant 3.
  • a valve stent such as a heart valve stent, may be configured for transcatheter implantation.
  • this embodiment illustrates a common valve stent geometry, the present invention is not limited to any particular valve stent geometry.
  • the first inner cavity T1 includes at least a first compression region T11 and a second compression region T12 that are communicated with each other.
  • the diameter of the inlet end AA of the first compression region T11 is larger than the outlet of the second compression region T12.
  • the diameter of the end BB, during loading, the first compression region T11 and the second compression region T12 perform the first compression of the implant 3, that is, the preliminary compression.
  • the first compression region T11 and the second compression region T12 are both spaces defined by the inner surface of the guide cover 1.
  • the inner surface is a rotating surface, and the generatrix of the rotating surface is a straight line or a curve.
  • the second compression region T12 The generatrices of the inner surface are curved, which can better maintain the opening diameter of the outflow tract 31 in the implant 3.
  • the first inner cavity T1 further includes other regions, and details are not described herein again.
  • the inlet portion 13 may be divided into an axially connected connection area and a fixed area (not shown in the figure).
  • the connection area is cylindrical, and its inner diameter is equal to the diameter of the inlet end AA of the first compression area T11;
  • the fixed area is located at the entrance end of the connection area.
  • the outer diameter of the fixed area is greater than the outer diameter of the connection area.
  • the inner diameter of the fixed area is equal to the inner diameter of the connection area.
  • the guide base 2 includes a guide post 21, a connecting section 22, and a base 23.
  • the guide post 21 is provided on the guide base 23 through the connecting section 22.
  • the second inner cavity T2 penetrates the guide base 2 and the second At least one section of the inner cavity T2 is an oblique straight structure with a gradually decreasing inner diameter.
  • a funnel-shaped guide post 21 is provided on the base 23, and the diameter of one end of the guide post 21 connected to the base 23 is greater than the diameter of the other end (here, the free end), that is, the guide A diameter of an end of the pillar 21 near the base 23 is larger than a diameter of the other end far from the base 23.
  • the ratio of the height of the guide pillar 21 to the height of the guide cover 1 ranges from 0.6: 1 to 2: 1.
  • the connecting section 22 on the guide base 2 is cylindrical, and the outer surface of the connecting section 22 may be a smooth surface, a matte surface, or the like.
  • the guide cover 1 can slide along the connecting section 22 of the guide base 2 toward the base 23, and the guide cover 1 can be sleeved and fixed on the guide base 2 by means of static friction connection or snap connection.
  • a groove S is provided around the outer surface of the guide post 21 inside the connecting section 22.
  • the groove S is provided around the outer surface of the guide post 21 and is recessed inside the connecting section 22.
  • the inner diameter of the groove S is preferably slightly larger than the diameter of the inflow channel 32.
  • the ratio of the inner diameter of the groove S to the diameter of the tail of the implant 3 is 1: 1 to 2: 1, and the width of the groove S is 1 to 5 mm (that is, the difference between the outer diameter and the inner diameter of the groove S is preferably between 1 to 5 mm).
  • the second lumen T2 penetrating the entire guide seat 2 can accommodate the inner tube 41 of the delivery system 4.
  • the second lumen T2 is used for the second compression of the implant 3, and when implanted When the body 3 is loaded, the second lumen T2 can pre-compress the inflow channel 32 of the implant 3, which is helpful for loading.
  • the compression zone T 'formed by the inner cavity of the guide seat 2' is a funnel shape with an arc-shaped bus bar, which is sequentially divided into an auxiliary compression zone from the inlet end aa to the outlet end bb.
  • T'2 and the main compression zone T'1 the diameter size of the inlet end aa is the largest. From the auxiliary compression zone T'2 to the main compression zone T'1, the diameter size gradually becomes smaller.
  • the inflow channel 3'2 of the implant 3 '(such as a valve stent) enters the auxiliary compression zone T'2 for compression, the sharp angle of the inflow channel 3'2 first touches the O point, and the inflow channel 3'2 receives the inner cavity.
  • the direction of the force F of the wall and its direction of movement form an obtuse angle, and the inflow channel 3'2 in the implant 3 'needs to be compressed from the diameter D to the diameter d under the interference of the force F.
  • the compression degree is large.
  • the inflow channel 3'2 is easily broken, which causes the loading failure.
  • the second inner cavity T2 includes a third compression region T21 and a fourth compression region T22 which are communicated with each other.
  • the diameter of the entrance end AA ′ of the third compression region T21 is greater than The diameter of the exit end BB ′ of the fourth compression region T22, the third compression region T21 is an auxiliary compression region, and the fourth compression region T22 is a main compression region.
  • the third compression zone T21 is an oblique straight structure with a gradually decreasing diameter.
  • the oblique straight structure includes a plurality of internal cavity inclined sections A (A1, A2, A3, ...) and The lumen straight section B (B1, B2, B3 ...), the lumen inclined section A (A1, A2, A3, ...) is the entrance area, and the lumen inclined section A (A1, A2, A3, 7)
  • the cavity wall and the axis of the guide seat 2 are at an acute angle, and the inner cavity inclined section A forms a circular truncated cavity. As shown in FIG.
  • the inner cavity inclined section A2 and the axis of the guide holder 2 are at an acute angle ⁇ ; the inner cavity straight section B ( B1, B2, B3 ...) are transition areas.
  • the cavity wall of the straight cavity B (B1, B2, B3 %) is parallel to the axis of the guide seat 2, and the inclined cavity B of the cavity forms a cylindrical cavity.
  • the user applies a radial force F0 to the inflow channel 32 of the implant 3 to make it enter the third compression.
  • the internal cavity inclined section A1 of the entrance area is first entered.
  • the inlet diameter D of the internal cavity inclined section A1 is slightly smaller than the opening diameter of the inflow channel 32, so the force F0 to be applied is small.
  • the inflow channel 32 enters the internal cavity diagonal. After segment A1, it moves to the inner cavity straight segment B1. Although it is subject to resistance F, the diameter of the inflow channel 32 transitions from D to d1 with a small amount of change and a smooth transition can be achieved.
  • the inflow passage 32 enters the inner cavity straight section.
  • the angle of the sharp angle of the inflow channel 32 and the straight section of the lumen B1 is almost 0 °, so in this section, the movement of the implant 3 is hardly interfered by the guide seat 2; thereafter, the inflow channel 32 enters again The internal cavity inclined section A2, similarly, despite the resistance, the diameter of the inflow channel 32 is reduced from d1 to d2 with a small amount of change, and a smooth transition can be achieved.
  • the inflow channel 32 enters B2 ... until it enters the first At the entrance end of the four compression zones T22, the diameter of the inflow channel 32 is compressed to d, and finally the implant 3 is completely Compressed into the sheath 43 of the delivery system 4.
  • the inflow tract 32 of the implant 3 when the inflow tract 32 of the implant 3 enters the third compression zone T21, it first enters the lumen inclined section A (x) with a diameter slightly smaller than the opening diameter of the inflow tract 32 under the action of a radial external force F0. , And then enter B (x), A (x + 1), B (x + 1) ...
  • the angle of the sharp angle of the inflow channel 32 and the straight section B of the lumen is almost 0 °, so the movement of the implant 3 in this section is hardly interfered by the lumen T of the guide seat 2.
  • the degree of compression of the implant is small Can achieve a smooth transition.
  • the axial length of the inclined section A and the straight section B of the inner cavity is short, and the transition is easier.
  • the inclined straight structure can also be made as a separate oblique straight component, which is detachably connected to the second inner cavity T2, and is clamped on the guide seat 2 when in use.
  • the outer wall of the oblique and straight component closely fits the third compression zone T21, and the inner wall is provided with a cavity inclined section A in the inlet area and a cavity straight section B in the transition area.
  • the implants 3 of different specifications can use oblique and straight parts of different sizes.
  • the inner diameter of the entrance portion 13 in the guide cover 1 is matched with the outer diameter of the connecting section 22 in the guide base 2 so that the guide cover 1 is detachably sleeved on the guide base 2.
  • the guide cover 1 is connected by static friction.
  • it is sleeved on the guide base 2 in a snap connection manner. As shown in FIG. 10, when the guide cover 1 is sleeved on the guide base 2, the entrance portion 13 of the guide cover 1 is just snapped on the connecting section 22 of the guide base 2.
  • Both the guide cover 1 and the guide seat 2 in the loading device according to the present invention may be made of a transparent plastic material suitable for medical instruments. Of course, other transparent or non-transparent materials can also be used.
  • the loading device made of transparent material helps the operator to observe the conditions of the implant 3 and the delivery system 4 inside the loading device.
  • the present invention also provides an implant loading method for the loading device.
  • the end near the operator is defined as the proximal end, and the end remote from the operator is defined as the distal end.
  • the loading method includes steps:
  • a delivery system 4 is provided.
  • the delivery system 4 includes an inner tube 41, a fixing ear 42 provided on the inner tube 41, and a sheath tube 43 sleeved outside the inner tube 41.
  • the sheath tube 43 is retracted proximally to expose the inner side.
  • the tube 41 and the fixing ear 42 pass the inner tube 41 through the second inner cavity T2 in a direction in which the inner diameter of the inclined and straight structure gradually increases, and further advance the guide seat 2 toward the guide cover 1.
  • the implant 3 The mounting ears 33 are fixed on the fixing ears 42;
  • the sheath 43 is advanced to the distal end, and the implant 3 is partially pressed into the sheath 43;
  • Adjust the guide seat 2 by 180 degrees, pass the inner tube 41 through the second inner cavity T2 of the guide seat 2 in a direction in which the inner diameter of the oblique and straight structure gradually decreases, and at the same time, advance the sheath tube 43 to the distal end so that The implant 3 is crimped into the sheath 43;
  • step S1 when using the loading device of the present invention to load the implant 3 into the delivery system 4, first, step S1 is performed: the implant 3 is set outside the guide seat 2, that is, the implant 3 The inflow channel 32 is placed in the groove S of the guide seat 2, the implant 3 is set outside the guide post 21, and at the same time, the guide cover 1 is placed outside the implant 3; then the guide seat 2 is advanced toward the guide cover 1. , So that the implant 3 passes through the first lumen T1 in a direction in which the diameter of the first lumen T1 gradually decreases, and at the same time, the guide cover 1 is sleeved outside the guide seat 2 to initially compress the implant 3.
  • the outflow tract 31 of the implant 3 first enters the first compression region T11 and the second compression region T12 in order.
  • the guide column 21 of the guide seat 2 can make The end of the outflow channel 31 maintains a proper compression ratio to prevent the outflow channel 31 from being deformed due to excessive compression, resulting in that the subsequent hanging ears 33 cannot fit well with the fixing ears 42 of the delivery system 4.
  • step S2 is performed: the delivery system 4 is provided, the handle of the delivery system 4 is operated, the outer tube 43 of the delivery system 4 is retracted to the proximal end, the fixing ear 42 on the inner tube 41 is exposed, and the inner tube 41 is along the The direction in which the inner diameter of the oblique straight structure gradually increases (that is, the direction of the guide post 21 to the base 23) passes through the second inner cavity T2; then, the guide base 2 is advanced toward the guide cover 1, and the guide cover 1 and the guide base 2 can be engaged with each other. Or it is fixed. At this time, the hanging ears 33 of the implant 3 come out from the outlet portion 11 of the guide cover 1 and are fixed on the fixing ears 42.
  • the delivery system 4 for delivering the implant 3 includes a handle (not shown), an inner tube 41, a fixing ear 42 provided on the inner tube 41, and a sleeve set on the inner tube 41.
  • steps S3-S4 first operate the handle of the delivery system 4 to advance the sheath tube 43 in the forward direction of the inner tube 41 in step S2, so that the initially compressed implant 3 is partially pressed into the sheath tube 43 ; Then, the guide cover 1 is separated from the guide base 2 to expose the implant 3, and the implant 3 is arranged. Organizing the structure of the implant 3 (such as the leaflets of a valve stent) can reduce the structural damage of the implant 3 by subsequent crimping.
  • steps S5-S6 adjust the guide seat 2 by 180 degrees, and operate the handle of the conveying system 4 to move the inner tube 41 in a direction in which the inner diameter of the oblique straight structure gradually decreases (that is, from the base 23 to the guide post 21). (Direction) through the second lumen T2 of the guide seat 2, and then advance the sheath 43 to the distal end so that the implant 3 is pressed into the sheath 43; remove the guide seat 2, and operate the handle of the delivery system 4 , The sheath tube 43 is further advanced toward the distal end (that is, the forward direction of the inner tube 41), so that the implant 3 is completely pressed into the sheath tube 43.
  • the loading method and process of the loading device are simpler and more effective.
  • At least a section of the second inner cavity penetrating the guide seat is a gradually-inclined structure with a gradually decreasing diameter, and the inflow channel of the implant is entering the oblique structure.
  • a straight structure first, under the action of a radial external force, it enters an inclined section of the lumen slightly smaller than the diameter of the opening of the inflow channel, and then enters the straight section of the internal cavity and the inclined section of the internal cavity in turn, and the sharp angle of the inflow channel and the internal cavity The angle of the straight segment is almost zero, so the movement of the implant in the straight segment of the lumen is almost free of resistance.
  • the oblique straight structure adopts a multi-layered inner diameter gradually decreasing design, Suitable for implants of different specifications; the loading device has relatively simple operation and high loading efficiency.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

一种植入体(3)的装载装置,装载装置包括:引导盖(1)及引导座(2),引导盖(1)与引导座(2)可拆卸连接;引导盖(1)具有第一内腔(T1),第一内腔(T1)贯通引导盖(1),第一内腔(T1)中至少一段的直径逐渐变小;引导座(2)具有第二内腔(T2),第二内腔(T2)贯通引导座(2),第二内腔(T2)中至少一段为直径逐渐变小的斜直结构,斜直结构包括依次交叉设置的至少一个内腔斜段(A)与至少一个内腔直段(B),内腔斜段(A)的腔壁与引导座(2)的轴线呈锐角,内腔直段(B)的腔壁与引导座(2)的轴线平行。装载装置可以分解植入体(3)装载时受到的压缩阻力,避免植入体(3)在装载时受损,特别是防止植入体(3)的流入道(32)尖端在被装载工具压握时,弯折而造成结构损坏;且操作简单、装载效率高、对不同规格的植入体(3)具有普适性。

Description

植入体的装载装置 技术领域
本发明涉及医疗器械技术领域,尤其是涉及一种植入体的装载装置。
背景技术
经导管主动脉瓣置入术是一种全新的瓣膜置换技术,其原理是将瓣膜假体装载到输送系统内,经导管输送到主动脉根部,支架释放能够确保瓣膜被固定到主动脉瓣环处,替代功能退化的原瓣膜,使病人心脏功能得到改善。这项技术,可以在不开胸、心脏不停跳的情况下治疗主动脉瓣瓣膜病,免去了以前外科开胸术、心脏停跳对病人造成的巨大创伤。
这项技术需要将支架压缩到很小的直径以载入输送器的导管中。使用装载工具装载瓣膜假体时,通常使用引导盖与引导座配合做初步压缩,再用引导座的内腔对支架的流入道做进一步压缩,直到瓣膜假体被完全压握。对于传统的装载工具,引导座内腔的进口端的过渡圆弧开口较大,容易产生“尖角碰尖角”的情况,即支架的流入道与引导座内腔的进口端形成钝角,需要克服很大的阻力做很大程度的压缩,支架容易因为压缩不均匀或局部意外弯折而造成支架倾斜、损伤或瓣膜破损,导致装载人员操作困难,装载效率低,最终导致支架或瓣膜的功能有缺陷或使用寿命降低,甚至可能无法正常植入工作,同时,手术的时间过长会增加手术风险。此外,这类装载工具只适用于某单一规格的支架,制作成本高,且结构复杂,操作流程繁琐。
因此,急需一种操作简单、装载效率高、装载成功率大,对不同规格的支架具有普适性的装载装置。
发明内容
本发明的目的在于提供一种装载装置,以避免支架在装载时受损,特别是防止支架的流入道在被装载工具压握时弯折,而造成的支架倾斜、损伤或破损。
为了达到上述目的,本发明提供了一种植入体的装载装置,包括:引导 盖及引导座,所述引导盖与所述引导座可拆卸连接;
所述引导盖具有第一内腔,所述第一内腔贯通所述引导盖,且所述第一内腔中至少一段的直径逐渐变小;
所述引导座具有第二内腔,所述第二内腔贯通所述引导座,且所述第二内腔中至少一段为直径逐渐变小的斜直结构,所述斜直结构包括依次交叉设置的至少一个内腔斜段与至少一个内腔直段,所述至少一个内腔斜段的腔壁与所述引导座的轴线呈锐角,所述至少一个内腔直段的腔壁与所述引导座的轴线平行。
可选的,所述引导盖包括依次相连的出口部、压缩部及入口部。
可选的,所述第一内腔包括相互连通的第一压缩区和第二压缩区,所述第一压缩区的入口端直径大于所述第二压缩区的出口端直径。
可选的,所述第二压缩区的内表面的母线为曲线。
可选的,所述引导座包括引导柱、连接段及底座,所述引导柱通过所述连接段设置在所述底座上。
可选的,所述引导柱与所述底座相连的一端的直径大于另一端的直径。
可选的,在所述连接段内部,围绕所述引导柱的外表面设置有凹槽。
可选的,所述第二内腔包括相互连通的第三压缩区和第四压缩区,所述第三压缩区为所述斜直结构,所述第三压缩区的入口端直径大于所述第四压缩区的出口端直径。
可选的,所述斜直结构与所述第二内腔一体化或者可拆卸地设置在所述第二内腔中。
可选的,所述引导盖通过静摩擦连接方式或者卡扣连接方式套设在所述引导座上。
在本发明所提供的植入体的装载装置中,贯通所述引导座的第二内腔的至少一段为直径逐渐变小的斜直结构,植入体的流入道在进入该斜直结构时,首先在径向外力的作用下进入直径略小于流入道开口直径的内腔斜段,然后依次进入交叉设置的内腔直段与内腔斜段,流入道的尖角与内腔直段的角度几乎为零,所以植入体在内腔直段的运动几乎不受阻力,在进入内腔斜段时, 虽然每段都会受到阻力,但是由于支架受压缩的程度小,可以做到平滑过渡,进而采用该斜直结构,能有效分解阻力,避免压缩不均匀或局部意外弯折而造成植入体的倾斜、损伤;而且该斜直结构采用多层内径逐渐变小的设计,适用于不同规格的植入体。
附图说明
图1为现有装载工具压握瓣膜假体的过程示意图;
图2为本发明装载装置中引导盖部分的立体结构示意图;
图3为本发明装载装置中引导盖部分的侧面剖视图;
图4为本发明装载装置中引导座部分的立体结构示意图;
图5为本发明装载装置中引导座部分的侧面剖视图;
图6为本发明装载装置中引导座部分的侧面剖视图的详图;
图7-8为本发明装载装置中引导座部分的第二压缩区T21的侧面剖视图;
图9为本发明一实施例中植入体的结构示意图;
图10-11为本发明的装载装置装载植入体的过程示意图;
其中,1-引导盖,11-出口部,12-压缩部,13-入口部,2、2’-引导座,21-引导柱,22-连接段,23-底座,3、3’-植入体,31-流出道,32、3’2-流入道,33-挂耳,4-输送系统,41-内管,42-固定耳,43-鞘管,T’-压缩区,T’1-主压缩区,T2’-辅助压缩区,T1-第一内腔,T11-第一压缩区,T12-第二压缩区,T2-第二内腔,T21-第三压缩区,T22-第四压缩区,aa-压缩区T’的进口端,AA-第一压缩区T11的进口端,AA’-第三压缩区T21的进口端,A1、A2、A3、A4、A5-内腔斜段,bb-压缩区T’的出口端,BB-第二压缩区T12的出口端,BB’-第四压缩区T22的出口端,B1、B2、B3、B4-内腔直段,F-阻力,S-凹槽。
具体实施方式
发明人研究发现:如图1所示,在使用现有的装载工具压握植入体3’(如瓣膜假体)时,引导座2’的压缩区T’(即引导座2’的内腔)的开口较大,容 易产生“尖角碰尖角”的情况,即植入体3’中流入道3’2的尖端与引导座2’中内腔的圆弧形成钝角,压缩阻力F很大,且流入道3’2在该阻力F的干涉下需要被压缩的比例也很大(D→d)。如此,容易因为压缩不均匀或局部意外弯折而造成植入体3’的支架倾斜、损伤或瓣膜破损。
基于此,如图2-8所示,本发明提出一种植入体的装载装置,包括:引导盖1及引导座2,引导盖1与引导座2可拆卸连接;
引导盖1具有第一内腔T1,第一内腔T1贯通引导盖1,且第一内腔T1中至少一段的直径逐渐变小;
引导座2具有第二内腔T2,第二内腔T2贯通引导座2,且第二内腔T2中至少一段为直径逐渐变小的斜直结构(在本申请实施例中,直径逐渐变小的斜直结构包括部分斜直结构的直径变小且部分斜直结构的直径不变的情况),该斜直结构包括多个依次交叉设置的内腔斜段A(A1、A2、A3、……)与内腔直段B(B1、B2、B3……),即该斜直结构包括交叉设置的内腔斜段A与内腔直段B,其中,内腔斜段A和内腔直段B的数量均为至少一个,在内腔斜段A和内腔直段B的数量均为多个时,按照内腔斜段A、内腔直段B、内腔斜段A、内腔直段B……的顺序依次交叉设置;或者,按照内腔直段B、内腔斜段A、内腔直段B、内腔斜段A……的顺序依次交叉设置,其中,内腔斜段A和内腔直段B的数量可以相等也可以不相等,例如内腔斜段A的数量较内腔直段B的数量多一个等。内腔斜段A(A1、A2、A3、……)的腔壁与引导座2的轴线呈锐角(如图8所示,内腔斜段A2与轴线呈锐角α),其中,各内腔斜段A(A1、A2、A3、……)与引导座2的轴线所呈的锐角可以相等,也可以不相等,内腔直段B(B1、B2、B3……)的腔壁与引导座2的轴线平行。
在本发明的植入体的装载装置中,贯通引导座2的第二内腔T2的至少一段为直径逐渐变小的斜直结构,在本申请实施例中,植入体的流入道在进入该斜直结构时,首先在径向外力的作用下进入直径略小于流入道开口直径的内腔斜段A(x),然后依次进入交叉设置的内腔直段B(x)与内腔斜段A(x+1),流入道的尖角与内腔直段B的角度几乎为零,所以植入体在内腔直段B的运 动几乎不受阻力,在进入内腔斜段A时,虽然每段都会受到阻力,但是由于支架受压缩的程度小,可以做到平滑过渡。因此,采用该斜直结构,能有效分解阻力,避免压缩不均匀或局部意外弯折而造成植入体的支架倾斜、损伤或瓣膜破损;而且该斜直结构采用多层内径逐渐变小的设计,适用于不同规格的植入体。此处,x的取值范围为大于等于1的整数。
下面将结合示意图对本发明的具体实施方式进行更详细的描述。根据下列描述和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
具体的,如图2-3所示,引导盖1为漏斗状结构,包括依次相连的出口部11、压缩部12及入口部13,且沿入口部13方向到出口部11方向,压缩部12的内径逐渐收缩(第一内腔T1位于压缩部12的部分的直径逐渐变小,即如图3所示的第一压缩区T11和第二压缩区T12的直径逐渐变小);出口部11用于输送系统4的内管41的进入和植入体3(如瓣膜支架)的流出道31的伸出,出口部11的内表面为旋转面,该旋转面的母线为直线;第一内腔T1用于植入体3的第一次压缩;引导盖1通过入口部13与引导座2可拆卸连接。
可选的,如图9所示,植入体3为瓣膜支架,包括依次相连的流入道32、流出道31及挂耳33,植入体3经过装载装置装载到输送系统4中,在收缩状态下由输送系统4的导管送入体内至目标区域,然后释放,展开成如图9所示的状态。本发明对瓣膜支架的制作材料没有特别的限制,可以是本领域现有任意一种材料,可选的,采用形状记忆合金材料制作瓣膜支架。
其中,植入体3采用瓣膜支架作为示例来解释发明,但是瓣膜支架不是对植入体3的限制。瓣膜支架例如心脏瓣膜支架,可被配置于经导管植入体内。虽然本实施例示出了一种常见的瓣膜支架的几何形状,但本发明并不限于任何特定的瓣膜支架几何形状。
具体的,如图3所示,第一内腔T1至少包括相互连通的第一压缩区T11和第二压缩区T12,第一压缩区T11的入口端AA的直径大于第二压缩区T12的出口端BB的直径,装载时,第一压缩区T11和第二压缩区T12对植入体3 进行第一次压缩,即初步压缩。第一压缩区T11和第二压缩区T12均为引导盖1的内表面定义的空间,该内表面为旋转面,该旋转面的母线为直线或曲线,可选的,第二压缩区T12的内表面的母线为曲线,能够更好地保持植入体3中流出道31的开口直径。此外,如图3所示,第一内腔T1还包括其它区域,在此不再赘述。
可选的,入口部13可分为轴向连接的连接区和固定区(图中未标出),该连接区为圆柱形,其内径等于第一压缩区T11的入口端AA的直径;该固定区位于该连接区的入口端,该固定区的外径大于该连接区的外径,该固定区的内径等于该连接区的内径。
如图4-8所示,引导座2包括引导柱21、连接段22和底座23,引导柱21通过连接段22设置在引导座23上,第二内腔T2贯通引导座2,且第二内腔T2中至少一段为内径逐渐变小的斜直结构。
如图4-5所示,呈漏斗状的引导柱21设置于底座23上,且引导柱21与底座23相连的一端的直径大于另一端(在此为自由端)的直径,即所述引导柱21的靠近所述底座23的一端的直径大于远离所述底座23的另一端的直径。可选的,引导柱21的高度和引导盖1的高度比的范围为0.6:1~2:1。
可选的,引导座2上的连接段22为圆柱形,连接段22的外表面可以为光滑面、磨砂面等。引导盖1可以沿着引导座2的连接段22向着底座23的方向滑动,且引导盖1能通过静摩擦连接或者卡扣连接的方式套设固定在引导座2上。
此外,在连接段22内部,围绕引导柱21的外表面设置有凹槽S。如图5-6所示,凹槽S围绕引导柱21的外表面设置,并内凹于连接段22的内部。凹槽S的内径以稍大于流入道32的直径为宜。可选的,凹槽S的内径和植入体3的尾部(即植入体3上流入道32一侧的端部)的直径比例为1:1~2:1,凹槽S的宽度为1~5mm(即凹槽S的外径与内径之差优选介于1~5mm之间)。在使用引导盖1和引导座2压缩植入体3时,使凹槽S容纳植入体3的流入道32,可以进一步降低植入体3在压缩过程中发生扭转和倾斜的概率。
如图5-6所示,贯通整个引导座2的第二内腔T2,能够容纳输送系统4 的内管41,第二内腔T2用于植入体3的第二次压缩,当植入体3装载时,第二内腔T2可以使植入体3的流入道32预压缩,有助于装载的进行。
对于传统的装载工具来说,如图1所示,引导座2’的内腔形成的压缩区T’是母线为弧线的漏斗形,从进口端aa到出口端bb依次分为辅助压缩区T’2和主压缩区T’1,进口端aa的直径尺寸最大,从辅助压缩区T’2到主压缩区T’1,直径尺寸逐渐变小。植入体3’(如瓣膜支架)的流入道3’2进入辅助压缩区T’2进行压缩时,流入道3’2的尖角首先触碰到O点,流入道3’2受到内腔壁的作用力F的方向与其运动方向形成钝角,且植入体3’中的流入道3’2需要在作用力F的干涉下从直径D压缩到直径d,压缩程度大,在这种情况下,流入道3’2易被折损,导致装载失败。
而在本发明中,沿底座23到引导柱21的方向,第二内腔T2包括相互连通的第三压缩区T21和第四压缩区T22,第三压缩区T21的入口端AA’的直径大于第四压缩区T22的出口端BB’的直径,第三压缩区T21为辅助压缩区,第四压缩区T22为主压缩区。
如图6-8所示,第三压缩区T21为直径逐渐变小的斜直结构,该斜直结构包括多个依次交叉设置的内腔斜段A(A1、A2、A3、……)与内腔直段B(B1、B2、B3……),内腔斜段A(A1、A2、A3、……)为进口区,内腔斜段A(A1、A2、A3、……)的腔壁与引导座2的轴线呈锐角,内腔斜段A形成圆台状的内腔,如图8所示,内腔斜段A2与引导座2的轴线呈锐角α;内腔直段B(B1、B2、B3……)为过渡区,内腔直段B(B1、B2、B3……)的腔壁与引导座2的轴线平行,内腔斜段B形成圆柱状的内腔。
使用第二内腔T2对植入体3进行压缩时,如图7-8所示,首先,使用者对植入体3的流入道32施加径向方向的力F0,使其进入第三压缩区T21,先进入进口区的内腔斜段A1,内腔斜段A1的入口直径D略小于流入道32的开口直径,所以需要施加的力F0很小;其次,流入道32进入内腔斜段A1后,向内腔直段B1运动,虽然受到阻力F,但是流入道32的直径由D过渡到d1,变化量较小,可以做到平滑过渡;再次,流入道32进入内腔直段B1后,流入道32的尖角与内腔直段B1的角度几乎为0°,所以在这一段上,植入体3 的运动几乎不受引导座2的干涉;此后,流入道32再进入内腔斜段A2,同样地,虽然受到阻力,但是流入道32的直径由d1压缩到d2的变化量很小,可以做到平滑过渡;最后,流入道32再进入B2……,直到进入第四压缩区T22的入口端,流入道32的直径被压缩到d,最终植入体3被完全压缩到输送系统4的鞘管43内。
总的来说,植入体3的流入道32在进入第三压缩区T21时,首先在径向的外力F0的作用下进入直径略小于流入道32开口直径的内腔斜段A(x),然后依次进入B(x),A(x+1),B(x+1)……在进入内腔直段B时,流入道32的尖角与内腔直段B的角度几乎为0°,所以植入体3在该段的运动几乎不受引导座2内腔T的干涉;在进入内腔斜段A时,虽然每段都会受到阻力,但是由于植入体受压缩的程度小,可以做到平滑过渡。可选的,如图8所示,内腔斜段A和内腔直段B的轴向长度很短,更易于平滑过渡。
可选的,该斜直结构除了为第二内腔T2上的一体化结构,还可以制作成单独的斜直部件,与所述第二内腔T2可拆卸连接,使用时卡在引导座2的第二内腔T2内,该斜直部件的外壁与第三压缩区T21紧密贴合,内壁设有进口区内腔斜段A和过渡区内腔直段B。不同规格的植入体3可以选用不同尺寸的斜直部件。
此外,引导盖1中入口部13的内径与引导座2中连接段22的外径相匹配,以使引导盖1可拆卸地套设在引导座2上,例如,引导盖1通过静摩擦连接方式或者卡扣连接的方式套设在引导座2上。如图10所示,引导盖1套设在引导座2上时,引导盖1的入口部13正好卡设在引导座2的连接段22上。
本发明所述的装载装置中引导盖1和引导座2都可由适用于医疗器械的透明塑料材料制成。当然也可以使用其它透明或非透明的材料。较佳地,使用透明材料制成的装载装置有助于操作人员在装载过程中观察其内部的植入体3和输送系统4的情况。
此外,本发明还针对上述装载装置提供了一种植入体的装载方法,在以下说明中,定义靠近术者的一端为近端,远离术者的一端为远端。所述装载 方法包括步骤:
S1、提供上述植入体装载装置及待装载的植入体3,将植入体3套在引导座2外,同时将引导盖1套于植入体3外,将引导座2向引导盖1推进,使得植入体3的流出道33沿第一内腔T1的直径逐渐减小的方向穿过第一内腔T1,对植入体3进行初步压缩;
S2、提供输送系统4,输送系统4包括内管41、设置在内管41上的固定耳42、套设在内管41外的鞘管43,将鞘管43向近端后撤,露出内管41和固定耳42,将内管41沿所述斜直结构的内径逐渐增大的方向穿过第二内腔T2,将引导座2向引导盖1进一步推进,此时,植入体3的挂耳33固定在固定耳42上;
S3、将鞘管43向远端推进,植入体3被部分压握进鞘管43;
S4、分离引导盖1与引导座2,将引导盖1向近端移动,露出植入体3,并整理植入体3;
S5、将引导座2调整180度,把内管41沿所述斜直结构的内径逐渐减小的方向穿过引导座2的第二内腔T2,同时,向远端推进鞘管43,使得植入体3被压握进鞘管43中;
S6、取下引导座2,将鞘管43向远端继续推进,使植入体3被完全压握进鞘管43中。
参见图10-11,使用本发明的装载装置将植入体3装载入输送系统4时,首先,执行步骤S1:将植入体3套设在引导座2外,即将植入体3的流入道32置于引导座2的凹槽S中,植入体3套设在引导柱21外,同时,将引导盖1套于植入体3外;随后将引导座2向引导盖1推进,使得植入体3沿第一内腔T1的直径逐渐减小的方向穿过第一内腔T1,同时使得引导盖1套于引导座2外,对植入体3进行初步压缩。
在这个过程中,植入体3的流出道31先依次进入第一压缩区T11和第二压缩区T12,当植入体3进入第二压缩区T12后,引导座2的引导柱21可以使流出道31的端部保持合适的压缩比例,防止流出道31因压缩过度而造成形态偏差,导致后续挂耳33无法与输送系统4的固定耳42很好地配合。
其次,执行步骤S2:提供输送系统4,操作输送系统4的手柄,将输送系4的外管43向近端后撤,露出内管41上的固定耳42,并将内管41沿所述斜直结构的内径逐渐增大的方向(即引导柱21到底座23的方向)穿过第二内腔T2;然后,将引导座2向引导盖1推进,引导盖1与引导座2可以咬合或固定,此时植入体3的挂耳33从引导盖1的出口部11穿出,固定在固定耳42上。
可选的,如图11所示,输送植入体3的输送系统4包括手柄(图中未示出)、内管41、设置在内管41上的固定耳42、套设在内管41外的鞘管43及与鞘管43相连接的外管(图中未示出),所述外管与所述手柄相连,所述手柄控制所述外管仅做轴向上的运动,进而所述外管可以驱动鞘管43做轴向运动;植入体3通过挂耳33固定在固定耳42上。
再次,执行步骤S3-S4:先操作输送系统4的手柄,将鞘管43沿步骤S2中内管41的前进方向推进,使得被初步压缩的植入体3被部分压握进鞘管43中;随后,将引导盖1与引导座2分离,露出植入体3,并整理植入体3。整理植入体3的结构(如瓣膜支架的瓣叶),能降低后续压握对植入体3的结构损坏。
最后,执行步骤S5-S6:将引导座2调整180度,并操作输送系统4的手柄,把内管41沿所述斜直结构的内径逐渐减小的方向(即底座23到引导柱21的方向)穿过引导座2的第二内腔T2,然后,向远端推进鞘管43,使得植入体3被压握进鞘管43中;取下引导座2,操作输送系统4的手柄,将鞘管43向远端(即内管41的前进方向)继续推进,使植入体3被完全压握进鞘管43中。
相比于现有技术,该装载装置的装载方法及过程更简单有效。
综上所述,在本发明实施例提供的植入体装载装置中,贯通引导座的第二内腔中至少一段为直径逐渐变小的斜直结构,植入体的流入道在进入该斜直结构时,首先在径向外力的作用下进入直径略小于流入道开口直径的内腔斜段,然后依次进入交叉设置的内腔直段与内腔斜段,流入道的尖角与内腔直段的角度几乎为零,所以植入体在内腔直段的运动几乎不受阻力,在进入 内腔斜段时,虽然每段都会受到阻力,但是由于支架受压缩的程度小,可以做到平滑过渡,进而采用该斜直结构,能有效分解阻力,避免压缩不均匀或局部意外弯折而造成植入体的倾斜、结构损伤;该斜直结构采用多层内径逐渐变小的设计,适用于不同规格的植入体;该装载装置的操作相对简单,装载效率高。
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (10)

  1. 一种植入体的装载装置,其特征在于,包括:引导盖及引导座,所述引导盖与所述引导座可拆卸连接;
    所述引导盖具有第一内腔,所述第一内腔贯通所述引导盖,且所述第一内腔中至少一段的直径逐渐变小;
    所述引导座具有第二内腔,所述第二内腔贯通所述引导座,且所述第二内腔中至少一段为直径逐渐变小的斜直结构,所述斜直结构包括依次交叉设置的至少一个内腔斜段与至少一个内腔直段,所述至少一个内腔斜段的腔壁与所述引导座的轴线呈锐角,所述至少一个内腔直段的腔壁与所述引导座的轴线平行。
  2. 如权利要求1所述的植入体的装载装置,其特征在于,所述引导盖包括依次相连的出口部、压缩部及入口部。
  3. 如权利要求1所述的植入体的装载装置,其特征在于,所述第一内腔包括相互连通的第一压缩区和第二压缩区,所述第一压缩区的入口端直径大于所述第二压缩区的出口端直径。
  4. 如权利要求3所述的植入体的装载装置,其特征在于,所述第二压缩区的内表面的母线为曲线。
  5. 如权利要求1所述的植入体的装载装置,其特征在于,所述引导座包括引导柱、连接段及底座,所述引导柱通过所述连接段设置在所述底座上。
  6. 如权利要求5所述的植入体的装载装置,其特征在于,所述引导柱与所述底座相连的一端的直径大于另一端的直径。
  7. 如权利要求5所述的植入体的装载装置,其特征在于,在所述连接段内部,围绕所述引导柱的外表面设置有凹槽。
  8. 如权利要求1或3所述的植入体的装载装置,其特征在于,所述第二内腔包括相互连通的第三压缩区和第四压缩区,所述第三压缩区为所述斜直结构,所述第三压缩区的入口端直径大于所述第四压缩区的出口端直径。
  9. 如权利要求8所述的植入体的装载装置,其特征在于,所述斜直结构 与所述第二内腔一体化或者可拆卸地设置在所述第二内腔中。
  10. 如权利要求1所述的植入体的装载装置,其特征在于,所述引导盖通过静摩擦连接方式或者卡扣连接方式套设在所述引导座上。
PCT/CN2019/099518 2018-08-09 2019-08-06 植入体的装载装置 WO2020029979A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810904782.XA CN110811927A (zh) 2018-08-09 2018-08-09 植入体的装载装置
CN201810904782.X 2018-08-09

Publications (1)

Publication Number Publication Date
WO2020029979A1 true WO2020029979A1 (zh) 2020-02-13

Family

ID=69414555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099518 WO2020029979A1 (zh) 2018-08-09 2019-08-06 植入体的装载装置

Country Status (2)

Country Link
CN (1) CN110811927A (zh)
WO (1) WO2020029979A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020207365A1 (de) * 2020-06-15 2021-12-16 Siemens Healthcare Gmbh Einfädelunterstützungseinrichtung zum Einfädeln eines Objektes in eine Führungsvorrichtung
CN114191143A (zh) * 2020-09-02 2022-03-18 上海微创心通医疗科技有限公司 植入物的装载工具与医疗装置
CN112315636B (zh) * 2020-11-27 2022-06-03 南京浩衍鼎业科技技术有限公司 一种颅内可降解支架的压握装置系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101176685A (zh) * 2006-11-09 2008-05-14 余俊豪 组合支架移植物和释放系统
CN102917669A (zh) * 2010-06-02 2013-02-06 美敦力公司 人造心脏瓣膜的膨胀和收缩受控的经导管传送系统和方法
WO2013045262A1 (en) * 2011-09-30 2013-04-04 Jenavalve Technology Inc. System and method for loading a stent into a medical delivery system
CN106214288A (zh) * 2012-05-30 2016-12-14 内奥瓦斯克迪亚拉公司 用于向递送系统上装载假体的方法和设备
CN106361467A (zh) * 2015-07-24 2017-02-01 上海微创心通医疗科技有限公司 植入体的装载装置
CN209136986U (zh) * 2018-08-09 2019-07-23 上海微创心通医疗科技有限公司 植入体的装载装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101176685A (zh) * 2006-11-09 2008-05-14 余俊豪 组合支架移植物和释放系统
CN102917669A (zh) * 2010-06-02 2013-02-06 美敦力公司 人造心脏瓣膜的膨胀和收缩受控的经导管传送系统和方法
WO2013045262A1 (en) * 2011-09-30 2013-04-04 Jenavalve Technology Inc. System and method for loading a stent into a medical delivery system
CN106214288A (zh) * 2012-05-30 2016-12-14 内奥瓦斯克迪亚拉公司 用于向递送系统上装载假体的方法和设备
CN106361467A (zh) * 2015-07-24 2017-02-01 上海微创心通医疗科技有限公司 植入体的装载装置
CN209136986U (zh) * 2018-08-09 2019-07-23 上海微创心通医疗科技有限公司 植入体的装载装置

Also Published As

Publication number Publication date
CN110811927A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2020029979A1 (zh) 植入体的装载装置
US10080658B2 (en) Devices and methods for collapsing prosthetic heart valves
EP2898857B1 (en) Implant conveying system
US20230310817A1 (en) Systems, devices, and method for treating a sinus condition
CN104797220B (zh) 鼓膜管和插入装置
CN104586542B (zh) 一种将植入体装载到输送系统中的装置和方法
US10603166B2 (en) Delivery device having a curved shaft and a straightening member for transcatheter aortic valve implantation
CN107072782A (zh) 用于放置在心室中的心脏瓣膜修复装置以及用于植入心脏瓣膜修复装置的递送系统
JP2006519665A (ja) 気管支内デバイスを送達するための装置、方法及びアセンブリ
WO2020151538A1 (zh) 植入物的装载工具、压缩装置及装载系统
CN110575285A (zh) 植入物输送管件和植入物输送系统
US20230248556A1 (en) Control handle, bending control line and implant delivery device
US10905538B2 (en) Lung-volume-reduction elastic implant and lung-volume reduction instrument
CN105283153B (zh) 具有受控柔性的输送导管
WO2023241403A1 (zh) 心室功能辅助装置、输送回收系统及心室功能辅助系统
CN209136986U (zh) 植入体的装载装置
CN109199660A (zh) 一种医用输送装置及其输送系统
JP7358377B2 (ja) インプラント装填装置
US20180360587A1 (en) Catcher
CN208823142U (zh) 用于人造视网膜用钉的手术持针器
WO2021204028A1 (zh) 植入物的装载工具及装载系统
CN211934440U (zh) 输送器及输送系统
CN211325222U (zh) 介入引导装置
CN211355675U (zh) 一种封堵器介入输送装置
CN213641419U (zh) 心脏介入瓣膜的装载装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847243

Country of ref document: EP

Kind code of ref document: A1