WO2020029508A1 - 压缩机的控制方法及冷媒循环系统 - Google Patents

压缩机的控制方法及冷媒循环系统 Download PDF

Info

Publication number
WO2020029508A1
WO2020029508A1 PCT/CN2018/122218 CN2018122218W WO2020029508A1 WO 2020029508 A1 WO2020029508 A1 WO 2020029508A1 CN 2018122218 W CN2018122218 W CN 2018122218W WO 2020029508 A1 WO2020029508 A1 WO 2020029508A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
working volume
control instruction
control
current working
Prior art date
Application number
PCT/CN2018/122218
Other languages
English (en)
French (fr)
Inventor
李洋
贺小林
刘文斌
郑晓娜
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US17/260,269 priority Critical patent/US11841011B2/en
Priority to EP18929726.0A priority patent/EP3809060A4/en
Publication of WO2020029508A1 publication Critical patent/WO2020029508A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/005Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/007Installations or systems with two or more pumps or pump cylinders, wherein the flow-path through the stages can be changed, e.g. from series to parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/02Stopping, starting, unloading or idling control
    • F04B49/03Stopping, starting, unloading or idling control by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • F04B49/106Responsive to pumped volume
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/225Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves with throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B51/00Testing machines, pumps, or pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/08Cylinder or housing parameters
    • F04B2201/0807Number of working cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/08Cylinder or housing parameters
    • F04B2201/0808Size of the dead volume
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0201Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0202Voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0204Frequency of the electric current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/09Flow through the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2207/00External parameters
    • F04B2207/70Warnings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2207/00External parameters
    • F04B2207/70Warnings
    • F04B2207/703Stopping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/074Details of compressors or related parts with multiple cylinders

Definitions

  • the present application relates to the field of intelligent control technology, and in particular, to a control method of a compressor and a refrigerant circulation system.
  • the traditional compressors are mostly two-cylinder compressors.
  • the traditional control methods for changing the two-cylinder compressors include: the control device selects the optimal operating frequency and operating volume according to the current operating capacity requirements and the optimal capability curve of the air-conditioning unit. When the control device determines that a volume change is required based on the operating capacity of the air-conditioning unit, the control device controls the valve body movement of the compressor, and sends the command of the switched cylinder to the drive controller, and the drive controller switches the corresponding after receiving the command control program.
  • one of the objectives of the present application is to provide a compressor control method and a refrigerant circulation system, so as to solve the problem that the compressor operates in a state in which its operating state does not match the control command in the prior art, resulting in unstable operation. 2. Poor operation reliability and even downtime.
  • a compressor control method After the compressor completes the change of the working volume according to the received control instruction, the compressor judges the operating state of the compressor.
  • the compressor includes a drive controller, and the drive controller is connected to a control device that issues the control instruction.
  • the compressor has an operating fault
  • the drive controller controls the compressor to stop running, and / or the control device controls an alarm device connected to the compressor to perform a fault alarm.
  • the compressor has a plurality of cylinders and a control unit connected to the plurality of cylinders.
  • the control unit controls the number of the cylinders participating in the operation of the plurality of cylinders. To change the working volume of the compressor.
  • the compressor includes two cylinders; and / or,
  • the control unit includes a control valve.
  • the compressor includes a compressor body and a drive controller connected to the compressor body.
  • the drive controller is connected to a control device that issues the control instruction. If the drive controller receives In the process of the control instruction and running for a predetermined waiting period, if the working volume of the compressor has not changed, it is determined that the working volume of the compressor has changed.
  • the compressor includes a compressor body and a drive controller connected to the compressor body;
  • a method for determining whether the current working volume state of the compressor matches the control instruction includes:
  • the parameter Y of the drive controller is collected every first predetermined time interval, the collected parameter Y is stored every second predetermined time interval, and the current working volume state of the compressor is judged according to the parameter Y Whether it matches the control instruction.
  • the parameters of the driving controller include current, voltage and / or power of the driving controller.
  • the drive controller is connected to a control device that issues the control instruction.
  • the control device includes a storage unit having a plurality of temporary storage variables X1 with an initial value of zero arranged in order. , X2, ..., Xn.
  • a method of collecting the parameter Y of the drive controller every first predetermined time interval, and a method of storing the collected parameter Y every second predetermined time interval includes:
  • the parameter Y of the drive controller is collected at the last moment of each of the first predetermined durations; each interval between the second predetermined durations, in order from front to back, The value of the latter one of the temporarily stored variables is assigned to the previous temporarily stored variable, and the value of the parameter Y collected at the last moment of the second predetermined duration is assigned to the temporarily stored variable.
  • the variable Xn is stored, wherein the second predetermined duration is an integer multiple of the first predetermined duration.
  • a method for determining whether the current working volume state of the compressor matches the control instruction according to the parameters includes:
  • the predetermined value includes a first predetermined value r1
  • the compressor includes two cylinders.
  • the control instruction is a single-cylinder operation of the compressor, according to the ratio r and the The relationship of the first predetermined value r1 determines whether the current working volume state of the compressor matches the control instruction, and the determining method includes:
  • the current working volume state of the compressor is single-cylinder operation, and the current working volume state of the compressor matches the control instruction.
  • the predetermined value includes a second predetermined value r2
  • the compressor is judged according to a relationship between the ratio r and the second predetermined value r2 Whether the current state of the working volume matches the control instruction, the judgment method includes:
  • the current working volume state of the compressor is a two-cylinder operation, and the current working volume state of the compressor matches the control instruction.
  • a relationship between the first predetermined value r1 and the second predetermined value r2 is that r1 is greater than r2.
  • a refrigerant circulation system includes a compressor and a control device, and the compressor is controlled by using the compressor control method as described above.
  • the compressor control method and the refrigerant circulation system controlled by the control method in the present application can determine whether the current working volume state of the compressor matches the control instruction, and perform timely processing according to the judgment result, thereby improving the compressor.
  • control method in this application to control the compressor can effectively avoid the instability and failure protection of the compressor's working process caused by the failure or failure of the control valve of the compressor.
  • FIG. 1 shows a flowchart of a method for controlling a compressor according to a specific embodiment of the present application.
  • the present application provides a method for controlling a compressor.
  • the compressor is applied to a refrigerant circulation system such as an air conditioner, and controls the compressor of the refrigerant circulation system.
  • the working volume of the compressor can be adjusted.
  • the working volume refers to the volume in a changing state involved in the working process of the compressor, not the maximum volume of the compressor.
  • the compressor may be an inverter compressor.
  • the inverter compressor includes a compressor body and a drive controller connected to the compressor body.
  • a detection device and a controller can be installed on the fixed-frequency compressor to control the fixed-frequency compressor using the control method in this application.
  • the compressor includes a compressor body and a drive controller.
  • the compressor body is provided with a control unit.
  • the control unit includes a control valve.
  • the control valve is an electromagnetic control valve. It can control the working volume of the compressor body participating in the compressor work.
  • the control valve and the drive controller are respectively connected to the control device of the air conditioner.
  • the control device can control the commutation of the control valve and other states to change the working volume of the compressor.
  • the control device can also send control commands to the drive controller to drive
  • the controller can control the compressor body to use different control programs for control according to the received control instructions.
  • the control device controls the control unit of the compressor to adjust the volume of the compressor in Improve the low-load energy efficiency while reducing the minimum cooling capacity.
  • the control device will control the control valve according to the user's instructions to change the volume of the compressor.
  • the drive controller receives the control instruction of the control device and runs for a predetermined waiting time
  • the working volume of the compressor has not changed.
  • the reason for the failure of the compressor working volume may be that the control valve has not been operated or the control valve has been operated, but the volume of the compressor has not been changed due to reasons such as jamming.
  • the control device controls the alarm device connected to it to perform a failure alarm about the failure of the volume change. Specifically, a failure alarm for the failure of the compressor to cut the cylinder can be performed to remind the relevant technicians or users to check the compressor and the control valve. To determine if it has been damaged.
  • the control valve operates to cause the compressor's working volume to change, and then judges the operating state of the compressor. Specifically, it is determined whether the current working volume state of the compressor matches the control instruction, and if it is, it is determined that the compressor is operating normally; if not, it is determined that the compressor has an operation failure.
  • the control device controls the compressor to stop running, and / or, the control device controls the alarm device connected to the compressor to perform a fault alarm. If the compressor fails, it means that the control valve is faulty, and the alarm device will give a fault alarm so that relevant operators can perform relevant inspection and maintenance on the control valve.
  • the control method is shielded, and the operating state of the compressor is not judged to ensure control reliability.
  • the method for determining whether the working volume of the compressor has changed includes judging by a sudden increase or decrease in current, voltage, and / or frequency of the compressor, and then determining that the volume of the compressor changes. Alternatively, it can also be judged that the capacity of the compressor has changed by the sudden increase or decrease in the difference between the discharge pressure and the suction pressure of the compressor. If none of the parameters detected by the above method changes during the detection process, the working volume of the compressor has not changed.
  • the compressor has a plurality of cylinders and a control valve connected to the plurality of cylinders.
  • the compressor has two cylinders, and the control valve participates by controlling the two cylinders.
  • the number of operating cylinders changes the working volume of the compressor, that is, the single-cylinder operation or the dual-cylinder operation of the compressor can be achieved by controlling the control valve.
  • the control method in this application includes:
  • the parameter Y of the drive controller is collected every first predetermined time interval, and the collected parameter Y is stored every second predetermined time interval, and it is determined whether the current working volume state of the compressor matches the control instruction according to the parameter Y.
  • the first predetermined time period is shorter than the second predetermined time period for multiple acquisitions, and the collected parameter Y can also be used in other control processes, and the control reliability is further improved.
  • Each first predetermined time period is a detection period, and the parameter Y of the driving controller is collected once in a detection period.
  • the parameters of the driving controller include the current, voltage, and / or power of the driving controller.
  • the number of collection cycles is pre-stored in the control device, and the number of collection cycles is too small to ensure the stability and reliability of the control process, and it is not possible to determine whether the current working volume state of the compressor matches the control instruction. . If the number of collection times is too large, on the one hand, resources are wasted, on the other hand, it may cause the compressor to run in a fault state, which will affect the user experience and cause damage to the compressor. Therefore, the number of acquisition cycles can be four.
  • the drive controller includes a storage unit having a plurality of temporary storage variables X1, X2,..., Xn with an initial value of zero arranged in order.
  • the number of temporary storage variables is set according to the number of collection cycles. Since the number of collections can be four, the temporary storage variables include X1, X2, and X3.
  • the method of collecting the parameter Y of the drive controller every first predetermined time interval, and storing the collected parameters every second predetermined time interval includes:
  • the parameter Y of the drive controller is collected at the last moment of each first predetermined duration; every second predetermined duration, the adjacent two temporary variables in the storage unit are stored in the order from front to back.
  • the value of the last temporary variable is assigned to the previous temporary variable, and the value of the parameter Y collected at the last moment of the second predetermined duration every interval is assigned to the temporary variable Xn, where the second predetermined duration is the first An integer multiple of the predetermined duration, the first predetermined duration may be equal to the second predetermined duration.
  • the method for determining whether the current working volume state of the compressor matches the control instruction according to the parameters includes:
  • the predetermined value includes a first predetermined value r1 and a second predetermined value r2 according to the number of the compressor cylinders as the compressor's current working volume in the control instruction.
  • the specific values of the first predetermined value r1 and the second predetermined r2 change according to the capacity of the compressor.
  • the specific determination process can be obtained through empirical values or multiple experiments.
  • the control instruction is a single-cylinder operation of the compressor, it is determined whether the current working volume state of the compressor matches the control instruction according to the relationship between the ratio r and the first predetermined value r1.
  • the judgment method includes:
  • the current working volume state of the compressor is single-cylinder operation, and the current working volume state of the compressor matches the control instruction.
  • the judgment method includes:
  • the current working volume state of the compressor is double-cylinder operation, and the current working volume state of the compressor matches the control instruction.
  • the first predetermined value r1 is greater than the second predetermined value r2.
  • the range of the first predetermined value r1 is 1.3 to 1.6
  • the range of the second predetermined value r2 is 0.6 to 0.8. It should be noted here that the ranges of the first predetermined value r1 and the second predetermined value r2 of different variable displacement compressors are different.
  • the present application also provides a refrigerant circulation system, including a control device and a compressor.
  • the refrigerant circulation system uses the above control method to control the compressor to avoid the compressor's control valve failure causing the compressor to miscut or fail to cut the cylinder.
  • the control process of the refrigerant circulation system is unstable and various protection states appear, which causes the problem of low reliability of the operation of the refrigerant circulation system.

Abstract

一种压缩机的控制方法及冷媒循环系统,压缩机根据接收到的控制指令完成工作容积变化后,对压缩机的运行状态进行判断,判断压缩机的当前工作容积状态是否与控制指令相匹配,若是,则判定压缩机运行正常;若否,则判定压缩机出现运行故障。该压缩机的控制方法及使用该控制方法进行控制的冷媒循环系统,能够判断出压缩机的当前工作容积状态是否与控制指令相匹配,并根据判断结果及时进行处理,提高了压缩机工作过程的稳定性和可靠性,进而提高冷媒循环系统的可靠性。

Description

压缩机的控制方法及冷媒循环系统
相关申请
本申请要求2018年08月06日申请的,申请号为201810883844.3,名称为“一种压缩机的控制方法及冷媒循环系统”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及智能控制技术领域,具体涉及一种压缩机的控制方法及冷媒循环系统。
背景技术
为了提高空调机组在低负荷状态下的能效,并在提高能效的同时降低最小制冷量,传统的空调机组使用工作容积能够发生变化的压缩机进行工作,以根据空调机组运行能力的不同切换成不同的工作容积,进而提高能效。
传统的压缩机大多为双缸压缩机,传统的改变双缸压缩机的控制方法包括:控制装置根据当前空调机组的运行能力需求和最优能力曲线选择最佳的运行频率和运行容积。当控制装置根据空调机组的运行能力判断为需要进行容积改变时,控制装置控制压缩机的阀体动作,同时将切换后的缸体指令发送给驱动控制器,驱动控制器接收到指令后切换对应控制程序。
采用上述的控制方法对压缩机进行控制时,如果由于某种原因造成压缩机的阀体发生损坏,则可能会出现在没有工作容积需求改变时自动对压缩机的工作容积进行改变,或者在控制装置发出压缩机工作容积改变命令后不能成功对压缩机的容积进行改变,进而造成压缩机的控制程序与压缩机的容积不匹配,从而导致空调机组运行不稳定,严重时空调机组出现停机现象。不仅极大地降低了空调机组的运行可靠性,还影响了用户的使用体验,降低了用户满意度。
发明内容
有鉴于此,本申请的目的之一在于提供一种压缩机的控制方法及冷媒循环系统,以解决现有技术中压缩机在其运行状态与控制指令不匹配的状态下运行,造成运行不稳定、运行可靠性差,甚至停机的问题。
为达到上述目的,一方面,本申请采用以下技术方案:
一种压缩机的控制方法,压缩机根据接收到的控制指令完成工作容积变化后,对所述压缩机的运行状态进行判断,
判断所述压缩机的当前工作容积状态是否与所述控制指令相匹配,若是,则判定所述压缩机运行正常;
若否,则判定所述压缩机出现运行故障。
在一实施例中,所述压缩机包括驱动控制器,所述驱动控制器与发出所述控制指令的控制装置相连,当所述压缩机出现运行故障时,
所述驱动控制器控制所述压缩机停止运行,和/或,所述控制装置控制与其相连的报警装置进行故障报警。
在一实施例中,所述压缩机具有多个缸体和与所述多个缸体相连的控制单元,所述控制单元通过控制所述多个缸体中参与运行的所述缸体的数量来改变所述压缩机的工作容积。
在一实施例中,所述压缩机包括两个缸体;和/或,
所述控制单元包括控制阀。
在一实施例中,所述压缩机包括压缩机本体和与所述压缩机本体相连的驱动控制器,所述驱动控制器与发出所述控制指令的控制装置相连,若所述驱动控制器接收到所述控制指令并运行预定等待时长过程中,所述压缩机的工作容积始终没有变化,则判定所述压缩机工作容积变化故障。
在一实施例中,所述驱动控制器接收到所述控制指令的时刻至所述压缩机执行工作容积变化完成的时刻,对所述控制方法进行屏蔽,不对所述压缩机的运行状态进行判断。
在一实施例中,所述压缩机包括压缩机本体和与所述压缩机本体相连的驱动控制器;
判断所述压缩机的当前工作容积状态是否与所述控制指令相匹配的方法包括:
每间隔第一预定时长对所述驱动控制器的参数Y进行采集,每间隔第二预定时长对采集到的所述参数Y进行存储,根据所述参数Y判断所述压缩机的当前工作容积状态是否与所述控制指令相匹配。
在一实施例中,所述驱动控制器的参数包括所述驱动控制器的电流、电压和/或功率。
在一实施例中,所述驱动控制器与发出所述控制指令的控制装置相连,所述控制装置包括存储单元,所述存储单元具有按顺序排列的初始值为零的多个暂存变量X1、X2、...、Xn。
每间隔第一预定时长对所述驱动控制器的参数Y进行采集,每间隔第二预定时长对采集到的所述参数Y进行存储的方法包括:
在每个所述第一预定时长的最后时刻对所述驱动控制器的参数Y进行采集;每间隔所述第二预定时长,按照由前至后的顺序,将存储单元中的相邻的两个所述暂存变量中的后一个所述暂存变量的数值赋给前一个所述暂存变量,并将所述第二预定时长的最后时刻采集到的所述参数Y的数值赋给暂存变量Xn,其中,所述第二预定时长是所述第一预定时长的整数倍。
在一实施例中,根据所述参数判断所述压缩机的当前工作容积状态是否与所述控制指令相匹配的方法包括:
计算比值r=Y/X1,根据所述比值r与预定值的关系判断所述压缩机的当前工作容积状态是否与所述控制指令相匹配。
在一实施例中,所述预定值包括第一预定值r1,所述压缩机包括两个缸体,当所述控制指令为所述压缩机单缸运行时,根据所述比值r与所述第一预定值r1的关系判断所述压缩机的当前工作容积状态是否与所述控制指令相匹配,判断方法包括:
判断所述比值r是否大于所述第一预定值r1,若是,则所述压缩机的当前工作容积状态为双缸运行,所述压缩机的当前工作容积状态与所述控制指令不匹配;
若否,则所述压缩机的当前工作容积状态为单缸运行,所述压缩机的当前工作容积状态与所述控制指令匹配。
在一实施例中,所述预定值包括第二预定值r2,当所述控制指令为所述压缩机双缸运行时,根据比值r与所述第二预定值r2的关系判断所述压缩机的当前工作容积状态是否与所述控制指令相匹配,判断方法包括:
判断所述比值r是否小于所述第二预定值r2,若是,则所述压缩机的当前工作容积状态为单缸运行,所述压缩机的当前工作容积状态与所述控制指令不匹配;
若否,则所述压缩机的当前工作容积状态为双缸运行,所述压缩机的当前工作容积状态与所述控制指令匹配。
在一实施例中,所述第一预定值r1与所述第二预定值r2之间的关系为r1大于r2。
为达上述目的,另一方面,本申请采用以下技术方案:
一种冷媒循环系统,包括压缩机和控制装置,采用如上所述的压缩机的控制方法对所述压缩机进行控制。
本申请中的压缩机的控制方法及使用该控制方法进行控制的冷媒循环系统,能够判断出压缩机的当前工作容积状态是否与控制指令相匹配,并根据判断结果及时进行处理,提高了压缩机工作过程的稳定性和可靠性,进而提高冷媒循环系统的可靠性。
使用本申请中的控制方法对压缩机进行控制,能够有效避免因压缩机的控制阀出现故 障或失效导致的压缩机工作过程不稳定及故障保护。
附图说明
通过以下参照附图对本申请实施例的描述,本申请的上述以及其它目的、特征和优点将更为清楚,在附图中:
图1示出本申请具体实施方式提供的压缩机的控制方法的流程图。
具体实施方式
以下基于实施例对本申请进行描述,本领域普通技术人员应当理解,在此提供的附图都是为了说明的目的,并且附图不一定是按比例绘制的。
除非上下文明确要求,否则整个说明书和权利要求书中的“包括”、“包含”等类似词语应当解释为包含的含义而不是排他或穷举的含义;也就是说,是“包括但不限于”的含义。
在本申请的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
如图1所示,本申请提供了一种压缩机的控制方法,该压缩机应用在空调等冷媒循环系统中,对冷媒循环系统的压缩机进行控制。其中,压缩机的工作容积能够进行调节,工作容积是指参与到压缩机工作过程中的处于变化状态的容积,并非指压缩机的最大容积。压缩机可以为变频压缩机,变频压缩机包括压缩机本体和与压缩机本体相连的驱动控制器。当压缩机为容积可变的定频压缩机时,在定频压缩机上安装检测装置和控制器即可使用本申请中的控制方法对定频压缩机进行控制。
下面以空调上的压缩机为例,对本申请中的压缩机的控制方法进行详细的说明。压缩机包括压缩机本体和驱动控制器,压缩机本体上设置有控制单元,在一实施例中,控制单元包括控制阀,在一实施例中,控制阀为电磁控制阀,通过控制阀的动作能够控制压缩机本体参与压缩机工作的工作容积。控制阀和驱动控制器分别与空调的控制装置相连,控制装置能够对控制阀的换向等状态进行控制,以改变压缩机的工作容积,控制装置还能够将控制指令发送给驱动控制器,驱动控制器能够根据接收到的控制指令,控制压缩机本体采用不同的控制程序进行控制。当用户通过空调的控制器将空调的运行模式设置为比如低负荷运行模式等能耗较低的模式时,控制装置根据用户的设置控制压缩机的控制单元对压缩机的容积进行调整,以在提高低负荷能效的同时减低最小制冷量,此时控制装置会根据用 户的指令对控制阀进行控制,以变化压缩机的容积。
进一步地,驱动控制器接收到控制装置的控制指令并运行预定等待时长过程中,若压缩机的工作容积始终没有发生变化,则说明压缩机工作容积变化发生故障。造成压缩机工作容积变化发生故障的原因可能是控制阀一直没有动作,或者是控制阀进行动作,但压缩机的容积由于比如卡住等原因没有进行改变。此时,控制装置控制与其相连的报警装置进行关于容积改变失败的故障报警,具体地,可以进行压缩机切缸失败的故障报警,以提醒相关技术人员或用户对压缩机以及控制阀进行检查,以确定其是否发生损坏。如果在驱动控制器接收到控制装置的控制指令并运行预定等待时长过程中的任意时刻,控制阀进行动作使得压缩机的工作容积变化后,则对压缩机的运行状态进行判断。具体地,判断压缩机的当前工作容积状态是否与控制指令相匹配,若是,则判定压缩机运行正常;若否,则判定压缩机出现运行故障。当压缩机出现运行故障时,控制装置控制压缩机停止运行,和/或,控制装置控制与其相连的报警装置进行故障报警。如果压缩机出现运行故障,则说明控制阀出现故障,报警装置进行故障报警,以便相关操作人员对控制阀进行相关检测和维修。另外,由于从控制装置发出控制指令至压缩机的工作容积发生变化完成后这段时间中,必定会出现压缩机的当前工作容积与控制指令不符的情况。因此,从驱动控制器接收到控制指令的时刻至压缩机执行工作容积变化完成的时刻,对控制方法进行屏蔽,不对压缩机的运行状态进行判断,以保证控制可靠性。其中,判断压缩机的工作容积是否发生变化的方法包括通过压缩机的比如电流、电压和/或频率的突然变大或变小来判断,进而确定压缩机的容积出现变化。或者,还可以通过压缩机的排气压力和吸气压力之差突然变大或变小来判断压缩机的容积发生了改变。如果在检测过程中上述方法检测的参数均没有发生变化,说明压缩机的工作容积没有发生变化。
在一个具体的实施例中,压缩机具有多个缸体和与多个缸体相连的控制阀,在一实施例中,压缩机具有两个缸体,控制阀通过控制两个缸体中参与运行的缸体的数量来改变压缩机的工作容积,也即通过控制控制阀能够实现压缩机单缸运行或双缸运行。为了准确的判断压缩机的当前工作容积状态是否与控制指令相匹配,本申请中的控制方法包括:
每间隔第一预定时长对驱动控制器的参数Y进行采集,每间隔第二预定时长对采集到的参数Y进行存储,根据参数Y判断压缩机的当前工作容积状态是否与控制指令相匹配。在一实施例中,第一预定时长小于第二预定时长,以便进行多次采集,采集到的参数Y还可以在进行其他控制过程中使用,并进一步提高控制可靠性。
每一个第一预定时长的时间长度内为一个检测周期,在一个检测周期中采集一次驱动控制器的参数Y,驱动控制器的参数包括驱动控制器的电流、电压和/或功率。采集周期的 次数是预存在控制装置中的,采集周期的次数太少不能够保证控制过程的稳定性和可靠性,进而不能很好的判断出压缩机的当前工作容积状态是否与控制指令相匹配。如果采集周次的次数太大,一方面浪费资源,另一方面有可能导致压缩机以故障状态运行时间过程,影响用户体验的同时也对压缩机造成了损害。因此,采集周期的次数可以为4次。
驱动控制器包括存储单元,存储单元具有按顺序排列的初始值为零的多个暂存变量X1、X2、...、Xn。其中,暂存变量的数量根据采集周期的次数进行相应设置,由于采集次数可以为4次,因此暂存变量包括X1、X2和X3。进一步地,每间隔第一预定时长对驱动控制器的参数Y进行采集,每间隔第二预定时长对采集到的参数进行存储的方法包括:
在每个第一预定时长的最后时刻对驱动控制器的参数Y进行采集;每间隔第二预定时长,按照由前至后的顺序,将存储单元中的相邻的两个暂存变量中的后一个暂存变量的数值赋给前一个暂存变量,并将在每间隔第二预定时长的最后时刻采集到的参数Y的数值赋给暂存变量Xn,其中,第二预定时长是第一预定时长的整数倍,第一预定时长可以与第二预定时长相等。具体地,在本实施例中,在第一个采集周期中,将采集到的参数Y的数值Y1赋给X3,那么存储单元中的X1=0、X2=0、X3=Y1;在第二采集周期中,将采集到的参数Y的数值Y2赋给X3,将X3的数值赋给X2,那么存储单元中的X1=0、X2=Y1、X3=Y2;在第三个采集周期中将采集到的参数Y的数值Y3赋给X3,将X3的数值赋给X2,将X2的数值赋给X1,那么存储单元中的X1=Y1、X2=Y2、X3=Y3。在第四个采集周期中,采集到参数Y4。
更进一步地,根据参数判断压缩机的当前工作容积状态是否与控制指令相匹配的方法包括:
计算比值r=Y/X1,根据比值r与预定值的关系判断压缩机的当前工作容积状态是否与控制指令相匹配。以上述实施例为例,r=Y4/X1。在此需要说明的是,在计算比值时X1不能为0,以保证比值计算的可靠性,进而保证上述方法能够实施。将Xn的初始值设置为0,能够保证至少要进行4次参数Y的存储,以保证控制方法的可靠性和完整性。
具体地,预定值根据控制指令中的作为压缩机当前工作容积的压缩机缸体的数量不同包括第一预定值r1和第二预定值r2。第一预定值r1和第二预定r2的具体数值根据压缩机的容量不同发生变化,其具体的确定过程可以通过经验值或是多次试验获得。当控制指令为压缩机单缸运行时,根据比值r与第一预定值r1的关系判断压缩机的当前工作容积状态是否与控制指令相匹配,判断方法包括:
判断比值r是否大于第一预定值r1,若是,则压缩机的当前工作容积状态为双缸运行,压缩机的当前工作容积状态与控制指令不匹配;
若否,则压缩机的当前工作容积状态为单缸运行,压缩机的当前工作容积状态与控制指令匹配。
当控制指令为压缩机双缸运行时,根据比值r与第二预定值r2的关系判断压缩机的当前工作容积状态是否与控制指令相匹配,判断方法包括:
判断比值r是否小于第二预定值r2,若是,则压缩机的当前工作容积状态为单缸运行,压缩机的当前工作容积状态与控制指令不匹配;
若否,则压缩机的当前工作容积状态为双缸运行,压缩机的当前工作容积状态与控制指令匹配。
其中,第一预定值r1大于第二预定值r2,在一实施例中,第一预定值r1的范围为1.3至1.6,第二预定值r2的范围为0.6至0.8。在此需要说明的是,不同的变容积压缩机的第一预定值r1和第二预定值r2的范围不同。
本申请还提供了一种冷媒循环系统,包括控制装置和压缩机,该冷媒循环系统采用上述控制方法对压缩机进行控制,以避免压缩机的控制阀失效引起压缩机误切缸或无法切缸,从而导致冷媒循环系统控制过程不稳定并出现各种保护状态,造成冷媒循环系统运行可靠性低的问题。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各方案可以自由地组合、叠加。
以上仅为本申请的实施例,并不用于限制本申请,对于本领域技术人员而言,本申请可以有各种改动和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种压缩机的控制方法,其特征在于,压缩机根据接收到的控制指令完成工作容积变化后,对所述压缩机的运行状态进行判断,
    判断所述压缩机的当前工作容积状态是否与所述控制指令相匹配,若是,则判定所述压缩机运行正常;
    若否,则判定所述压缩机出现运行故障。
  2. 根据权利要求1所述的压缩机的控制方法,其特征在于,所述压缩机包括驱动控制器,所述驱动控制器与发出所述控制指令的控制装置相连,当所述压缩机出现运行故障时,
    所述驱动控制器控制所述压缩机停止运行,和/或,所述控制装置控制与其相连的报警装置进行故障报警。
  3. 根据权利要求1所述的压缩机的控制方法,其特征在于,所述压缩机具有多个缸体和与所述多个缸体相连的控制单元,所述控制单元通过控制所述多个缸体中参与运行的所述缸体的数量来改变所述压缩机的工作容积。
  4. 根据权利要求3所述的压缩机的控制方法,其特征在于,所述压缩机包括两个缸体;和/或,
    所述控制单元包括控制阀。
  5. 根据权利要求1所述的压缩机的控制方法,其特征在于,所述压缩机包括压缩机本体和与所述压缩机本体相连的驱动控制器,所述驱动控制器与发出所述控制指令的控制装置相连,若所述驱动控制器接收到所述控制指令并运行预定等待时长过程中,所述压缩机的工作容积始终没有变化,则判定所述压缩机工作容积变化故障。
  6. 根据权利要求5所述的压缩机的控制方法,其特征在于,所述驱动控制器接收到所述控制指令的时刻至所述压缩机执行工作容积变化完成的时刻,对所述控制方法进行屏蔽,不对所述压缩机的运行状态进行判断。
  7. 根据权利要求1至6任一项所述的压缩机的控制方法,其特征在于,所述压缩机包括压缩机本体和与所述压缩机本体相连的驱动控制器;
    判断所述压缩机的当前工作容积状态是否与所述控制指令相匹配的方法包括:
    每间隔第一预定时长对所述驱动控制器的参数Y进行采集,每间隔第二预定时长对采集到的所述参数Y进行存储,根据所述参数Y判断所述压缩机的当前工作容积状态是否与所述控制指令相匹配。
  8. 根据权利要求7所述的压缩机的控制方法,其特征在于,所述驱动控制器的参数 包括所述驱动控制器的电流、电压和/或功率。
  9. 根据权利要求7所述的压缩机的控制方法,其特征在于,所述驱动控制器与发出所述控制指令的控制装置相连,所述驱动控制器包括存储单元,所述存储单元具有按顺序排列的初始值为零的多个暂存变量X1、X2、…、Xn,
    每间隔第一预定时长对所述驱动控制器的参数Y进行采集,每间隔第二预定时长对采集到的所述参数Y进行存储的方法包括:
    在每个所述第一预定时长的最后时刻对所述驱动控制器的参数Y进行采集;每间隔所述第二预定时长,按照由前至后的顺序,将存储单元中的相邻的两个所述暂存变量中的后一个所述暂存变量的数值赋给前一个所述暂存变量,并将所述第二预定时长的最后时刻采集到的所述参数Y的数值赋给暂存变量Xn,其中,所述第二预定时长是所述第一预定时长的整数倍。
  10. 根据权利要求9所述的压缩机的控制方法,其特征在于,根据所述参数判断所述压缩机的当前工作容积状态是否与所述控制指令相匹配的方法包括:
    计算比值r=Y/X1,根据比值r与预定值的关系判断所述压缩机的当前工作容积状态是否与所述控制指令相匹配。
  11. 根据权利要求10所述的压缩机的控制方法,其特征在于,所述预定值包括第一预定值r1,所述压缩机包括两个缸体,当所述控制指令为所述压缩机单缸运行时,根据比值r与所述第一预定值r1的关系判断所述压缩机的当前工作容积状态是否与所述控制指令相匹配,判断方法包括:
    判断所述比值r是否大于所述第一预定值r1,若是,则所述压缩机的当前工作容积状态为双缸运行,所述压缩机的当前工作容积状态与所述控制指令不匹配;
    若否,则所述压缩机的当前工作容积状态为单缸运行,所述压缩机的当前工作容积状态与所述控制指令匹配。
  12. 根据权利要求11所述的压缩机的控制方法,其特征在于,所述预定值包括第二预定值r2,当所述控制指令为所述压缩机双缸运行时,根据比值r与所述第二预定值r2的关系判断所述压缩机的当前工作容积状态是否与所述控制指令相匹配,判断方法包括:
    判断所述比值r是否小于所述第二预定值r2,若是,则所述压缩机的当前工作容积状态为单缸运行,所述压缩机的当前工作容积状态与所述控制指令不匹配;
    若否,则所述压缩机的当前工作容积状态为双缸运行,所述压缩机的当前工作容积状态与所述控制指令匹配。
  13. 根据权利要求12所述的压缩机的控制方法,其特征在于,所述第一预定值r1与 所述第二预定值r2之间的关系为r1大于r2。
  14. 一种冷媒循环系统,包括压缩机和控制装置,其特征在于,采用如权利要求1至13任一项所述的压缩机的控制方法对所述压缩机进行控制。
PCT/CN2018/122218 2018-08-06 2018-12-20 压缩机的控制方法及冷媒循环系统 WO2020029508A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/260,269 US11841011B2 (en) 2018-08-06 2018-12-20 Control method of compressor and refrigerant circulation system
EP18929726.0A EP3809060A4 (en) 2018-08-06 2018-12-20 METHOD AND DEVICE FOR CONTROLLING A COMPRESSOR AND COOLANT CIRCULATION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810883844.3A CN109269039B (zh) 2018-08-06 2018-08-06 一种压缩机的控制方法及冷媒循环系统
CN201810883844.3 2018-08-06

Publications (1)

Publication Number Publication Date
WO2020029508A1 true WO2020029508A1 (zh) 2020-02-13

Family

ID=65153118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122218 WO2020029508A1 (zh) 2018-08-06 2018-12-20 压缩机的控制方法及冷媒循环系统

Country Status (4)

Country Link
US (1) US11841011B2 (zh)
EP (1) EP3809060A4 (zh)
CN (1) CN109269039B (zh)
WO (1) WO2020029508A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113587363B (zh) * 2021-08-04 2022-07-26 广东美的暖通设备有限公司 压缩机故障检测方法、装置、计算设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080059910A (ko) * 2006-12-26 2008-07-01 엘지전자 주식회사 멀티형 공기조화기 및 그 제어방법
CN103062866A (zh) * 2013-01-04 2013-04-24 广东美的制冷设备有限公司 节能控制方法、系统及空调器
CN104654516A (zh) * 2013-11-21 2015-05-27 珠海格力电器股份有限公司 变频变容压缩机的控制方法及系统
CN104729172A (zh) * 2013-12-23 2015-06-24 珠海格力电器股份有限公司 空调器及其容量变化的判断方法
CN104729138A (zh) * 2013-12-23 2015-06-24 珠海格力电器股份有限公司 空调器及其容量变化的判断方法
CN106403349A (zh) * 2016-11-25 2017-02-15 广东美的制冷设备有限公司 一种双缸变容空调系统及控制方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062696A (ja) * 1992-06-16 1994-01-11 Hitachi Ltd 圧縮機用メンテナンス装置
US5600961A (en) * 1994-09-07 1997-02-11 General Electric Company Refrigeration system with dual cylinder compressor
US6123510A (en) 1998-01-30 2000-09-26 Ingersoll-Rand Company Method for controlling fluid flow through a compressed fluid system
JP2000205140A (ja) * 1999-01-06 2000-07-25 Ishikawajima Harima Heavy Ind Co Ltd 圧縮機の予防保全方法及び装置
JP2004053180A (ja) * 2002-07-23 2004-02-19 Sanden Corp 可変容量圧縮機を用いた空調装置
CN101012833A (zh) * 2007-02-04 2007-08-08 美的集团有限公司 旋转压缩机的控制方法
JP2009185795A (ja) * 2008-02-11 2009-08-20 Denso Corp 圧縮機の故障診断方法および故障診断装置
JP5058324B2 (ja) * 2010-10-14 2012-10-24 三菱電機株式会社 冷凍サイクル装置
CN102155407A (zh) * 2011-04-21 2011-08-17 西安交通大学 单缸双作用旋转式压缩机
US20130280095A1 (en) * 2012-04-20 2013-10-24 General Electric Company Method and system for reciprocating compressor starting
CN103867443B (zh) * 2012-12-13 2016-04-27 上海日立电器有限公司 单缸变频压缩机的变容量控制方法
CN105020138B (zh) * 2014-04-17 2017-11-21 珠海格力节能环保制冷技术研究中心有限公司 双缸变容压缩机及控制方法
CN104047843B (zh) * 2014-05-27 2016-10-26 珠海格力电器股份有限公司 变频与变容压缩机的单双缸切换方法
CN205401122U (zh) * 2016-02-24 2016-07-27 珠海格力节能环保制冷技术研究中心有限公司 多缸双级变容压缩机系统
EP3578821B1 (en) * 2017-01-31 2023-08-16 Hitachi Industrial Equipment Systems Co., Ltd. Rotary displacement compressor
CN108800481B (zh) * 2018-08-17 2019-04-26 珠海格力电器股份有限公司 一种控制压缩机切缸的方法、装置及机组、空调系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080059910A (ko) * 2006-12-26 2008-07-01 엘지전자 주식회사 멀티형 공기조화기 및 그 제어방법
CN103062866A (zh) * 2013-01-04 2013-04-24 广东美的制冷设备有限公司 节能控制方法、系统及空调器
CN104654516A (zh) * 2013-11-21 2015-05-27 珠海格力电器股份有限公司 变频变容压缩机的控制方法及系统
CN104729172A (zh) * 2013-12-23 2015-06-24 珠海格力电器股份有限公司 空调器及其容量变化的判断方法
CN104729138A (zh) * 2013-12-23 2015-06-24 珠海格力电器股份有限公司 空调器及其容量变化的判断方法
CN106403349A (zh) * 2016-11-25 2017-02-15 广东美的制冷设备有限公司 一种双缸变容空调系统及控制方法

Also Published As

Publication number Publication date
CN109269039B (zh) 2020-11-10
US11841011B2 (en) 2023-12-12
EP3809060A4 (en) 2021-08-25
US20210301812A1 (en) 2021-09-30
CN109269039A (zh) 2019-01-25
EP3809060A1 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
CN104566773B (zh) 多联空调的容量控制方法及控制系统
CN109812920B (zh) 一种空调器多压缩机启停的控制方法、装置及多联机系统
CN104180563A (zh) 多联机系统制热时的回油方法
CN104110922B (zh) 一种热泵系统及其启动控制方法
CN110186150B (zh) 运行控制方法、控制装置、空调器和计算机可读存储介质
CN110173861B (zh) 运行控制方法、控制装置、空调器和计算机可读存储介质
CN110686390B (zh) 一种变频器防止主板凝露的控制方法、系统及空调
CN105465956B (zh) 一种双缸变容空调器的控制方法
WO2020057149A1 (zh) 空调系统及其控制方法
CN104764170B (zh) 热泵启停控制方法和装置及空调器
WO2020029508A1 (zh) 压缩机的控制方法及冷媒循环系统
CN106016605A (zh) 一种基于遗传算法的并联冷却泵控制方法及其装置
US11835040B2 (en) Method and device for controlling capacity change of compressor, and smart home appliance
CN110779160A (zh) 运行控制方法、装置、空调器以及存储介质
CN106642777B (zh) 双缸压缩机空调器及其制冷方法
CN108019890B (zh) 空调能效控制方法、装置及空调系统
US11486384B2 (en) Compressor control method, control apparatus and control system
CN110186149B (zh) 运行控制方法、控制装置、空调器和计算机可读存储介质
CN105674646A (zh) 制冷设备的除霜控制方法、装置及空调器
CN112212471B (zh) 空调系统及其压缩机控制方法
WO2020073488A1 (zh) 一种控制压缩机切缸的方法、装置及机组、空调系统
CN106765885A (zh) 双缸压缩机空调器及其制冷方法
CN109028453B (zh) 空调器以及空调器控制方法
CN113654178B (zh) 空调压缩机启动方法
CN110953698B (zh) 变频空调的载波频率控制方法及变频空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018929726

Country of ref document: EP

Effective date: 20210112

NENP Non-entry into the national phase

Ref country code: DE