WO2020057149A1 - 空调系统及其控制方法 - Google Patents

空调系统及其控制方法 Download PDF

Info

Publication number
WO2020057149A1
WO2020057149A1 PCT/CN2019/086863 CN2019086863W WO2020057149A1 WO 2020057149 A1 WO2020057149 A1 WO 2020057149A1 CN 2019086863 W CN2019086863 W CN 2019086863W WO 2020057149 A1 WO2020057149 A1 WO 2020057149A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
load demand
air conditioning
conditioning system
compressor
Prior art date
Application number
PCT/CN2019/086863
Other languages
English (en)
French (fr)
Inventor
倪毅
刘群波
许克
李龙飞
戎耀鹏
张仲秋
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020057149A1 publication Critical patent/WO2020057149A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values

Definitions

  • the present disclosure relates to the technical field of air conditioning, and in particular, to an air conditioning system and a control method thereof.
  • a compressor capable of variable frequency and variable capacity is currently used in an air-conditioning system.
  • a variable capacity technology is added to the frequency converter compressor to expand the output range of the compressor.
  • Existing compressors are limited by the structure of the compressor body, and from the perspective of ease of control and manufacturing, generally have only two working positions for volume adjustment. Such a compressor still cannot meet the demand of cold capacity regulation in the actual use process.
  • the purpose of the present disclosure is to propose an air conditioning system and a control method thereof, which can better meet the adjustment needs of the air conditioning system during use.
  • an air conditioning system including:
  • a compressor in which a plurality of independent cylinders are provided, and at least two of the plurality of cylinders have different working volumes;
  • the control component is configured to determine whether each of the cylinders is operated according to a load demand of the current indoor unit.
  • the air conditioning system includes a plurality of indoor units, and the load demand is the sum of the capacities of the indoor units that are turned on.
  • the plurality of cylinders includes a first cylinder and a second cylinder
  • the control component is configured to cause the first cylinder to operate independently, the second cylinder to operate alone, or the first and second cylinders to operate simultaneously.
  • the first cylinder has a first working volume
  • the second cylinder has a second working volume
  • the first working volume is smaller than the second working volume
  • the control component is configured to cause the first cylinder to operate alone when the load demand does not exceed the first threshold, to cause the second cylinder to operate alone when the load demand is between the first threshold and the second threshold, and to operate under the load demand
  • the first cylinder and the second cylinder are operated simultaneously without being smaller than the second threshold; wherein the first threshold is smaller than the second threshold.
  • control component is configured to adjust the operating frequency of the compressor according to the load demand after the compressor is operated with the determined cylinder.
  • control component is configured to adjust the operating frequency of the compressor according to the refrigerant evaporation temperature interval under the refrigeration condition; or the heating component is configured to adjust the compressor according to the refrigerant condensation temperature interval under the heating condition. Operating frequency.
  • a control method for an air conditioning system based on the above embodiment including:
  • the air conditioning system includes a plurality of indoor units, and the step of calculating the load demand of the currently opened indoor units specifically includes:
  • the plurality of cylinders includes a first cylinder and a second cylinder, the first cylinder has a first working volume, the second cylinder has a second working volume, and the first working volume is smaller than the second working volume;
  • the steps of whether each cylinder is running include:
  • the first cylinder is operated separately; if the load demand is between the first threshold and the second threshold, the second cylinder is operated independently; if the load demand is not less than the second threshold, the first cylinder is operated The first and second cylinders operate simultaneously.
  • control method after the compressor runs on the determined cylinder, the control method further includes:
  • the step of adjusting the operating frequency of the compressor according to the load demand specifically includes:
  • the operating frequency of the compressor is adjusted according to the refrigerant condensation temperature interval.
  • the air-conditioning system of the embodiment of the present disclosure includes a plurality of independently-operating cylinders in the compressor, and at least two of the plurality of cylinders have different working volumes, and the control component can be determined according to the load demand of the current indoor unit. Whether each cylinder is running to achieve variable capacity adjustment of the compressor.
  • This type of air conditioning system can make the compressor have more output gears during variable capacity adjustment to better meet the capacity adjustment needs of indoor units during actual use, thereby improving the energy efficiency of the air conditioning system under different loads, and Reduce power consumption.
  • FIG. 1 is a schematic flowchart of an embodiment of an air conditioning control method according to the present disclosure
  • FIG. 2 is a schematic flowchart of another embodiment of an air conditioning control method according to the present disclosure.
  • FIG. 3 is a schematic flowchart of another embodiment of an air conditioning control method according to the present disclosure.
  • first and second appearing in the present disclosure are merely for convenience of description, to distinguish different component parts having the same name, and do not indicate a sequential or primary-secondary relationship.
  • variable-capacity compressors For traditional variable-capacity compressors, one is to facilitate the manufacture and control by using two equal-capacity cylinders. When the total capacity is fixed, only two gears can be adjusted, and the minimum working volume is affected by The limitation is that the compressor is still in a large output power under the low load of the air conditioning system, which reduces the energy efficiency of the air conditioning system under the low load.
  • the other is to use two cylinders with different capacities, including a large-capacity cylinder and a small-capacity cylinder, but from the perspective of running speed stability and reducing vibration, only the small-capacity cylinder operates alone and the large-capacity and small-capacity cylinders are simultaneously operated. Running these two variable capacity adjustment methods makes it difficult to meet the capacity adjustment needs of indoor units, reducing the energy efficiency of air conditioning systems.
  • an air conditioning system which in some embodiments includes an indoor unit, an outdoor unit, a compressor, and a control component.
  • the compressor is provided with independent multiple cylinders, the multiple cylinders have independent structures and can work independently, and at least two of the multiple cylinders have different working volumes.
  • the control component is used to determine whether each cylinder is running according to the current load demand of the indoor unit, that is, the operating mode of multiple cylinders in the compressor, so as to perform variable capacity control of the compressor so as to make the current output of the compressor and the load of the indoor unit as much as possible. Matching the demand, reducing the interference of the compressor output capacity on the basis of meeting the load demand.
  • the working volume of the air-conditioning system of this embodiment of the present disclosure has at least three adjustment gears.
  • the compressor can be provided with more capacity during variable capacity adjustment when the maximum working volume is constant.
  • the output gear can reduce the lower limit of the working volume adjustment, which is equivalent to further expanding the output range of the compressor.
  • an intermediate adjustment gear is added between the minimum working volume and the maximum working volume, which can better match the load demand of the indoor unit. match. Based on this compressor control method, the operation stability of the compressor can be improved by optimizing the compressor drive adjustment technology.
  • the air-conditioning system of the present disclosure can select an appropriate compressor output according to the actual load demand of the indoor unit during use to better meet the capacity adjustment demand of the indoor unit, thereby improving the energy efficiency of the air-conditioning system under different loads and achieving The purpose of reducing power and improving the working efficiency of compressors and air conditioning systems.
  • This control method can be applied to both cooling and heating conditions.
  • the air-conditioning system is multi-connected, and includes multiple indoor units.
  • the load demand of the indoor units is related to the number of indoor units that are turned on and the capacity of each indoor unit.
  • the load demand determines the operating form of each cylinder.
  • the capacity is the energy value of the target space heat consumed by the indoor unit through heat exchange within a unit time or period of time. Under refrigeration conditions, the capacity of the indoor unit is the cooling capacity.
  • the load demand of the indoor unit is the sum of the capacities of the indoor units that are turned on.
  • the load demand of the indoor unit is represented by Q, and the capacity of a single indoor unit is represented by L.
  • the minimum output of the compressor is designed to be large, and the user only opens one internal machine most of the time, which makes multi-connections compress under low load.
  • the power of the machine is wasted and the overall energy efficiency is low.
  • the air conditioning system of the present disclosure can have more output gears during variable capacity adjustment. Compared with an equal-capacity compressor, it can reduce the lower limit of the working volume adjustment, widen the output range of the compressor, and make multiple connections under low load. During operation, the output power of the compressor can be fully utilized to improve the energy efficiency of multi-line work. This structure is especially useful for multiple connections.
  • the control component is configured to determine the operation form of the cylinder according to the load demand of the indoor unit.
  • the load demand mainly depends on the capacity demand of the indoor unit at the target regulated temperature.
  • the plurality of cylinders includes a first cylinder and a second cylinder, and the first and second cylinders have different working volumes.
  • the control component can make the first cylinder operate independently and the first cylinder according to the load demand of the current indoor unit.
  • the two cylinders operate independently or the first and second cylinders operate simultaneously.
  • the cylinder has three working volume adjustment gears.
  • the first cylinder and the second cylinder can be independently controlled and operated, so that the compressor can flexibly perform variable capacity adjustment according to the actual load demand.
  • the first cylinder has a first working volume
  • the second cylinder has a second working volume
  • the first working volume is smaller than the second working volume.
  • the control component is configured to cause the first cylinder to operate alone when the load demand does not exceed the first threshold Q1, and to cause the second cylinder to operate alone when the load demand is between the first threshold Q1 and the second threshold Q2, and When the load demand is not less than the second threshold Q2, the first cylinder and the second cylinder are operated simultaneously; wherein the first threshold Q1 is smaller than the second threshold Q2.
  • the load demand determines the operation mode of the cylinder, whether a certain cylinder is operated alone or two cylinders are operated simultaneously.
  • the first cylinder runs alone; when the load demand Q1 ⁇ Q ⁇ Q2, the second cylinder runs alone; when the load demand Q ⁇ Q2, the first cylinder and The second cylinder runs simultaneously.
  • the value range of Q1 is 0 ⁇ Q1 ⁇ 3, and the value range of Q2 is Q2> 5.
  • control component is further configured to adjust the operating frequency of the compressor according to the load demand after the compressor operates according to the determined cylinder.
  • the operating frequency of the compressor is positively related to the load demand. The larger the load demand, the larger the compressor operating frequency, the smaller the load demand, and the smaller the compressor operating frequency.
  • This embodiment is equivalent to first adjusting the compressor's working volume based on the load demand to coarsely adjust the compressor output, and then adjusting the compressor's operating frequency to fine-tune its output according to the load demand.
  • the power output of the compressor can be adjusted according to the actual load demand to achieve the optimal energy efficiency control of the air conditioning system, which is more comfortable and saves power.
  • the control component is used to adjust the operating frequency of the compressor according to the refrigerant evaporation temperature interval.
  • the refrigerant evaporation temperature is the temperature Te corresponding to the low pressure refrigerant saturation pressure. Te can be controlled between (0, 10 ° C); or
  • the control component is used to adjust the operating frequency of the compressor according to the refrigerant condensation temperature interval.
  • the refrigerant condensation temperature is the temperature Tc corresponding to the high pressure refrigerant saturation pressure. Tc can be controlled between (40 ° C, 50 ° C).
  • the refrigerant evaporating temperature interval and the condensing temperature interval also determine the air outlet temperature of the indoor unit during cooling and heating, that is, the cooling and heating effect of the room.
  • control method includes:
  • Step 101 Calculate the load demand of the current indoor unit.
  • Step 102 Determine whether each cylinder is running according to the load demand.
  • Steps 101 and 102 can be executed sequentially and cyclically during the control of the compressor.
  • the control method of this embodiment of the present disclosure can enable the compressor to have more output gears during variable capacity adjustment to select a suitable one according to the actual load demand of the indoor unit
  • the output of the compressor is better to meet the capacity adjustment needs of the indoor unit, thereby improving the energy efficiency of the air conditioning system under different loads, achieving the purpose of reducing power and improving the working efficiency of the compressor and the air conditioning system.
  • This control method can be applied to both cooling and heating conditions.
  • the air conditioning system includes multiple indoor units, and the step of calculating the load demand of the current indoor unit in step 101 specifically includes:
  • Step 101A Obtain the capacity of each indoor unit that is turned on
  • Step 101B Use the sum of the capacities of the indoor units that are turned on as the load demand. Steps 101A and 101B are not shown in the figure.
  • the control method disclosed in the disclosure can have more output gears during variable capacity adjustment, reduce the lower limit of the working volume adjustment, widen the output range of the compressor, and make full use of the output of the compressor when multi-line operation is performed at low load. Power to improve the energy efficiency of multi-line work. This structure is especially useful for multiple connections.
  • the plurality of cylinders includes a first cylinder and a second cylinder, the first cylinder has a first working volume, the second cylinder has a second working volume, and the first working volume is smaller than the second working volume; as shown in FIG. 3
  • the process flow diagram shown in step 102 includes the following steps:
  • Step 102A Determine the relationship between the load demand and the first threshold and the second threshold.
  • the first threshold is smaller than the second threshold. If the load demand does not exceed the first threshold Q1, step 102B is performed; Between the thresholds, step 102C is performed; if the load demand is not less than the second threshold, step 102D is performed;
  • Step 102B The first cylinder is operated separately.
  • Step 102C The second cylinder is operated separately.
  • step 102D the first cylinder and the second cylinder are operated simultaneously.
  • the air conditioning system control method of the present disclosure further includes:
  • Step 103 Adjust the operating frequency of the compressor according to the load demand, including increasing, decreasing or keeping the operating frequency unchanged. The greater the load demand, the greater the operating frequency of the compressor, and the smaller the load demand, the smaller the operating frequency of the compressor.
  • This embodiment is equivalent to first adjusting the compressor's working volume based on the load demand to coarsely adjust the compressor output, and then adjusting the compressor's operating frequency to fine-tune its output according to the load demand.
  • the power output of the compressor can be adjusted according to the actual load demand to achieve the optimal energy efficiency control of the air conditioning system, which is more comfortable and saves power.
  • step of step 103 of adjusting the operating frequency of the compressor according to the load demand specifically includes:
  • the operating frequency of the compressor is adjusted according to the refrigerant condensation temperature interval.
  • the air conditioning system control device includes a memory and a processor.
  • the memory may be a magnetic disk, a flash memory, or any other non-volatile storage medium.
  • the memory is used to store instructions in the embodiments.
  • the processor is coupled to the memory and may be implemented as one or more integrated circuits, such as a microprocessor or microcontroller. The processor is used to execute instructions stored in the memory.
  • the air conditioning system control device includes a memory and a processor.
  • the processor is coupled to the memory via a BUS bus.
  • the air conditioning system control device can also be connected to an external storage device through a storage interface to call external data, and can also be connected to a network or another computer system (not shown) through a network interface. I won't go into details here.
  • a computer-readable storage medium stores computer program instructions thereon, which when executed by a processor, implement the steps of the method in the above embodiments.
  • the embodiments of the present disclosure may be provided as a method, an apparatus, or a computer program product. Therefore, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects.
  • the present disclosure may take the form of a computer program product implemented on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code therein. .
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.
  • the methods and apparatus of the present disclosure may be implemented in many ways.
  • the methods and devices of the present disclosure may be implemented by software, hardware, firmware or any combination of software, hardware, firmware.
  • the above order of the steps of the method is for illustration only, and the steps of the method of the present disclosure are not limited to the order specifically described above unless otherwise specifically stated.
  • the present disclosure may also be implemented as programs recorded in a recording medium, which programs include machine-readable instructions for implementing the method according to the present disclosure.
  • the present disclosure also covers a recording medium storing a program for executing a method according to the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本公开涉及一种空调系统及其控制方法,其中,空调系统包括室内机;压缩机,所述压缩机中设有多个独立的气缸,多个所述气缸中的至少两个具有不同工作容积;和控制部件,被配置为根据当前室内机的负荷需求确定各个所述气缸是否运行。此种空调系统能够使压缩机在变容调节时具备更多的输出档位,以在实际使用过程中更好地满足室内机的容量调节需求,从而提高空调系统在低负荷下的能效,降低耗电量。

Description

空调系统及其控制方法
本公开是以申请号为 201811099533.4,申请日为 2018年9月20日的中国申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及空调技术领域,尤其涉及一种空调系统及其控制方法。
背景技术
目前市场上的多联机,根据统计用户大多数时间都只单开一台内机,而多联机为了满足多台内机同时工作的需求,压缩机本身的最小输出较大,这就使得多联机在低负荷下能效较低,在通常情况下使用非常耗电。
为了解决此问题,目前空调系统中使用了能够变频变容的压缩机,在变频压缩机的基础上增加变容量技术,拓宽了压缩机的输出范围。现有的压缩机由于受到压缩机本体的结构限制,且从便于控制和制造的角度考虑,一般只具有两个档位的工作容积调节。此种压缩机在实际使用过程中仍不能满足冷量调节的需求。
发明内容
本公开的目的是提出一种空调系统及其控制方法,能够更好地满足空调系统在使用过程中的调节需求。
根据本公开的一方面,提出一种空调系统,包括:
室内机;
压缩机,压缩机中设有独立的多个气缸,多个气缸中的至少两个具有不同工作容积;和
控制部件,被配置为根据当前室内机的负荷需求确定各个气缸是否运行。
在一些实施例中,空调系统包括多个室内机,负荷需求为各个开启的室内机的容量之和。
在一些实施例中,多个气缸包括第一气缸和第二气缸,控制部件被配置为使第一气缸单独运行、第二气缸单独运行或者第一气缸和第二气缸同时运行。
在一些实施例中,第一气缸具有第一工作容积,第二气缸具有第二工作容积,第一工作容积小于第二工作容积;
控制部件被配置为在负荷需求不超过第一阈值的情况下使第一气缸单独运行,在负荷需求处于第一阈值和第二阈值之间的情况下使第二气缸单独运行,并在负荷需求不小于第二阈值的情况下使第一气缸和第二气缸同时运行;其中,第一阈值小于第二阈值。
在一些实施例中,控制部件被配置为在压缩机按确定出的气缸运行之后,根据负荷需求调节压缩机的运行频率。
在一些实施例中,在制冷工况下,控制部件被配置为根据冷媒蒸发温度区间调节压缩机的运行频率;或者在制热工况下,控制部件被配置为根据冷媒冷凝温度区间调节压缩机的运行频率。
根据本公开的另一方面,提出一种基于上述实施例空调系统的控制方法,包括:
计算当前室内机的负荷需求;
根据负荷需求确定各个气缸是否运行。
在一些实施例中,空调系统包括多个室内机,计算当前开启的室内机的负荷需求的步骤具体包括:
获取各个开启的室内机的容量;
将各个开启的室内机的容量之和作为负荷需求。
在一些实施例中,多个气缸包括第一气缸和第二气缸,第一气缸具有第一工作容积,第二气缸具有第二工作容积,第一工作容积小于第二工作容积;根据负荷需求确定各个气缸是否运行的步骤具体包括:
判断负荷需求与第一阈值和第二阈值的关系,第一阈值小于第二阈值;
如果负荷需求不超过第一阈值,则使第一气缸单独运行;如果负荷需求处于第一阈值和第二阈值之间,则使第二气缸单独运行;如果负荷需求不小于第二阈值,则使第一气缸和第二气缸同时运行。
在一些实施例中,在压缩机按确定出的气缸运行之后,控制方法还包括:
根据负荷需求调节压缩机的运行频率。
在一些实施例中,根据负荷需求调节压缩机的运行频率的步骤具体包括:
在制冷工况下,根据冷媒蒸发温度区间调节压缩机的运行频率;或者
在制热工况下,根据冷媒冷凝温度区间调节压缩机的运行频率。
基于上述技术方案,本公开实施例的空调系统,在压缩机中设置多个独立工作的气缸,且多个气缸中的至少两个具有不同工作容积,控制部件能够根据当前室内机的负荷需求确定各个气缸是否运行,以实现压缩机的变容调节。此种空调系统能够使压缩机在变容调节时具备更多的输出档位,以在实际使用过程中更好地满足室内机的容量调节需求,从而提高空调系统在不同负荷下的能效,并降低耗电量。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本公开空调控制方法的一个实施例的流程示意图;
图2为本公开空调控制方法的另一个实施例的流程示意图;
图3为本公开空调控制方法的再一个实施例的流程示意图。
具体实施方式
以下详细说明本公开。在以下段落中,更为详细地限定了实施例的不同方面。如此限定的各方面可与任何其他的一个方面或多个方面组合,除非明确指出不可组合。尤其是,被认为是优选的或有利的任何特征可与其他一个或多个被认为是优选的或有利的特征组合。
本公开中出现的“第一”、“第二”等用语仅是为了方便描述,以区分具有相同名称的不同组成部件,并不表示先后或主次关系。
对于传统的变容压缩机,一种是为了便于制造和控制采用两个等容量缸,两 个等容量缸在总容量一定的情况下,只能实现两个档位调节,且最小工作容积受到限制,在空调系统低负荷工作下压缩机仍处于较大的输出功率,降低了空调系统在低负荷下的能效。另一种是采用两个容量不同的缸,包括大容量缸和小容量缸,但是从运行转速稳定性和减小振动的角度考虑,只有小容量缸单独运行以及大容量缸和小容量缸同时运行这两种变容调节方式,因而也难以满足室内机的容量调节需求,降低了空调系统的能效。
为此,本公开提供了一种空调系统,在一些实施例中,包括室内机、室外机、压缩机和控制部件。其中,压缩机中设有独立的多个气缸,多个气缸结构独立,可独立工作,且多个气缸中的至少两个具有不同工作容积。控制部件用于根据当前室内机的负荷需求确定各个气缸是否运行,即压缩机中多个气缸的运行形式,以便对压缩机进行变容调节控制,尽量使压缩机的当前输出与室内机的负荷需求相匹配,在满足负荷需求的基础上减小压缩机输出能力的过盈量。
本公开该实施例的空调系统的工作容积至少具备三个调节档位,与等容量缸的方案相比,能够使压缩机在最大工作容积一定的情况下,在变容调节时具备更多的输出档位,可减小工作容积调节下限,相当于进一步拓宽了压缩机的输出范围。与只有小容量缸单独运行以及大容量缸和小容量缸同时运行的方案相比,在最小工作容积和最大工作容积之间增加了中间调节档位,可更好地与室内机的负荷需求相匹配。基于此种压缩机控制方式,可通过优化压缩机驱动调节技术提高其运转稳定性。
因此,本公开的空调系统在使用过程中能够根据室内机的实际负荷需求选择合适的压缩机输出,以更好地满足室内机的容量调节需求,从而提高空调系统在不同负荷下的能效,达到降低功率,提高压缩机和空调系统工作效率的目的。此种控制方式可同时适用于制冷和制热工况。
在一些实施例中,空调系统为多联机,包括多个室内机,室内机的负荷需求与室内机的开启数量和每个室内机的容量大小相关,控制部件用于根据当前开启的室内机的负荷需求确定各个气缸的运行形式。容量是室内机在单位时间或一段时间内通过换热所消耗目标空间热量的能量值。在制冷工况下,室内机的容量即为冷量。
具体地,室内机的负荷需求为各个开启的室内机的容量之和。室内机的负荷需求用Q表示,单个室内机的容量用L表示,单位均为KW,Q=L1+L2+…+Ln。
由于多联机为了满足多台内机同时工作的需求,压缩机本身设计的最小输出较大,而用户在大多数时间都只单开一台内机,这就使得多联机在低负荷下存在压缩机的功率浪费,整体能效较低。本公开的空调系统可在变容调节时具备更多的输出档位,与等容量压缩机相比,可减小工作容积调节下限,拓宽了压缩机的输出范围,使多联机在低负荷下运行时可充分利用压缩机的输出功率,提高多联机工作能效。此种结构对于多联机尤其使用。
可选地,室内机也可只设置一个,控制部件用于根据该室内机的负荷需求确定气缸的运行形式。此时负荷需求主要取决于该室内机在目标调节温度下的容量需求。
在一些实施例中,多个气缸包括第一气缸和第二气缸,第一气缸和第二气缸具有不同的工作容积,控制部件能够根据当前室内机的负荷需求,使第一气缸单独运行、第二气缸单独运行或者第一气缸和第二气缸同时运行。由此,气缸具备三个工作容积调节档位。第一气缸和第二气缸可独立控制和工作,使压缩机可根据实际负荷需求灵活地进行变容调节。
进一步地,第一气缸具有第一工作容积,第二气缸具有第二工作容积,第一工作容积小于第二工作容积。控制部件用于在负荷需求不超过第一阈值Q1的情况下使第一气缸单独运行,在负荷需求处于第一阈值Q1和第二阈值Q2之间的情况下使第二气缸单独运行,并在负荷需求不小于第二阈值Q2的情况下使第一气缸和第二气缸同时运行;其中,第一阈值Q1小于第二阈值Q2。负荷需求决定了气缸的运行形式,是某一缸单独运行还是双缸同时运行。
在一个具体的控制实例中,当负荷需求Q≤Q1时,第一气缸单独运行;当负荷需求Q1<Q<Q2时,第二气缸单独运行;当负荷需求Q≥Q2时,第一气缸和第二气缸同时运行。例如,Q1的取值范围0<Q1<3,Q2的取值范围Q2>5。
在一些实施例中,控制部件还用于在压缩机按确定出的气缸运行之后,根据负荷需求调节压缩机的运行频率。压缩机的运行频率与负荷需求正相关,负荷需 求越大,压缩机的运行频率越大,负荷需求越小,压缩机的运行频率越小。
该实施例相当于先根据负荷需求调节气缸的工作容积对压缩机输出进行粗范围调节,再根据负荷需求调节压缩机运行频率对其输出进行细调节。通过变容和变频率综合调节,可根据实际负荷需求调节压缩机的功率输出,实现空调系统的最优能效控制,更加舒适和省电。
在制冷工况下,控制部件用于根据冷媒蒸发温度区间调节压缩机的运行频率,冷媒蒸发温度为低压冷媒饱和压力对应的温度Te,Te可控制在(0,10℃)之间;或者在制热工况下,控制部件用于根据冷媒冷凝温度区间调节压缩机的运行频率,冷媒冷凝温度为高压冷媒饱和压力对应的温度Tc,Tc可控制在(40℃,50℃)之间。冷媒蒸发温度区间和冷凝温度区间也分别决定了室内机制冷和制热时的出风温度,也就是房间的制冷和制热效果。
本公开提出了一种空调控制方法,下面的步骤都可由控制部件执行。在一个示意性的实施例中,如图1所示的流程示意图,该控制方法包括:
步骤101、计算当前室内机的负荷需求;
步骤102、根据负荷需求确定各个气缸是否运行。
步骤101和102可在压缩机控制过程中顺序循环执行,本公开该实施例的控制方法能够使压缩机在变容调节时具备更多的输出档位,以根据室内机的实际负荷需求选择合适的压缩机输出,以更好地满足室内机的容量调节需求,从而提高空调系统在不同负荷下的能效,达到降低功率,提高压缩机和空调系统工作效率的目的。此种控制方式可同时适用于制冷和制热工况。
在一些实施例中,空调系统包括多个室内机,步骤101计算当前室内机的负荷需求的步骤具体包括:
步骤101A、获取各个开启的室内机的容量;
步骤101B、将各个开启的室内机的容量之和作为负荷需求。步骤101A和101B在图中未示出。
本公开的控制方法可在变容调节时具备更多的输出档位,减小工作容积调节下限,拓宽了压缩机的输出范围,使多联机在低负荷下运行时可充分利用压缩机的输出功率,提高多联机工作能效。此种结构对于多联机尤其使用。
在一些实施例中,多个气缸包括第一气缸和第二气缸,第一气缸具有第一工作容积,第二气缸具有第二工作容积,第一工作容积小于第二工作容积;如图3所示的流程示意图,步骤102根据负荷需求确定各个气缸是否运行的步骤具体包括:
步骤102A、判断负荷需求与第一阈值和第二阈值的关系,第一阈值小于第二阈值,如果负荷需求不超过第一阈值Q1,则执行步骤102B;如果负荷需求处于第一阈值和第二阈值之间,则执行步骤102C;如果负荷需求不小于第二阈值,则执行步骤102D;
步骤102B、使第一气缸单独运行;
步骤102C、使第二气缸单独运行;
步骤102D、使第一气缸和第二气缸同时运行。
在一些实施例中,如图2所示的流程示意图,在压缩机按确定出的气缸运行之后,本公开的空调系统控制方法还包括:
步骤103、根据负荷需求调节压缩机的运行频率,包括运行频率的升高、降低或保持不变。负荷需求越大,压缩机的运行频率越大,负荷需求越小,压缩机的运行频率越小。
该实施例相当于先根据负荷需求调节气缸的工作容积对压缩机输出进行粗范围调节,再根据负荷需求调节压缩机运行频率对其输出进行细调节。通过变容和变频率综合调节,可根据实际负荷需求调节压缩机的功率输出,实现空调系统的最优能效控制,更加舒适和省电。
进一步地,步骤103根据负荷需求调节压缩机的运行频率的步骤具体包括:
在制冷工况下,根据冷媒蒸发温度区间调节压缩机的运行频率;或者
在制热工况下,根据冷媒冷凝温度区间调节压缩机的运行频率。
在一些实施例中,空调系统控制装置包括存储器和处理器。其中:存储器可以是磁盘、闪存或其它任何非易失性存储介质。存储器用于存储各实施例中的指令。处理器耦接至存储器,可以作为一个或多个集成电路来实施,例如微处理器或微控制器。该处理器用于执行存储器中存储的指令。
在另一些实施例中,空调系统控制装置包括存储器和处理器。处理器通过 BUS总线耦合至存储器。该空调系统控制装置还可以通过存储接口连接至外部存储装置以便调用外部数据,还可以通过网络接口连接至网络或者另外一台计算机系统(未标出)。此处不再进行详细介绍。
在又一些实施例中,一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现上述实施例中的方法的步骤。本领域内的技术人员应明白,本公开的实施例可提供为方法、装置、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
至此,已经详细描述了本公开。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
可能以许多方式来实现本公开的方法以及装置。例如,可通过软件、硬件、固件或者软件、硬件、固件的任何组合来实现本公开的方法以及装置。用于所述方法的步骤的上述顺序仅是为了进行说明,本公开的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本公开实施为记录在记录介质中的程序,这些程序包括用于实现根据本公开的方法的机器可读指令。因而,本公开还覆盖存储用于执行根据本公开的方法的程序的记录介质。
以上对本公开所提供的一种空调系统及其控制方法进行了详细介绍。本文中应用了具体的实施例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以对本公开进行若干改进和修饰,这些改进和修饰也落入本公开权利要求的保护范围内。

Claims (13)

  1. 一种空调系统,包括:
    室内机;
    压缩机,所述压缩机中设有独立的多个气缸,所述多个气缸中的至少两个具有不同工作容积;和
    控制部件,被配置为根据当前室内机的负荷需求确定所述多个气缸是否运行。
  2. 根据权利要求1所述的空调系统,包括多个所述室内机,所述负荷需求为各个开启的室内机的容量之和。
  3. 根据权利要求1所述的空调系统,其中所述多个气缸包括第一气缸和第二气缸,所述控制部件被配置为使第一气缸单独运行、第二气缸单独运行或者第一气缸和第二气缸同时运行。
  4. 根据权利要求3所述的空调系统,其中所述第一气缸具有第一工作容积,所述第二气缸具有第二工作容积,所述第一工作容积小于所述第二工作容积;
    所述控制部件被配置为在所述负荷需求不超过第一阈值的情况下使所述第一气缸单独运行,在所述负荷需求处于第一阈值和第二阈值之间的情况下使所述第二气缸单独运行,并在所述负荷需求不小于第二阈值的情况下使所述第一气缸和第二气缸同时运行;其中,所述第一阈值小于所述第二阈值。
  5. 根据权利要求1所述的空调系统,其中所述控制部件被配置为在所述压缩机按确定出的气缸运行之后,根据所述负荷需求调节所述压缩机的运行频率。
  6. 根据权利要求1或5所述的空调系统,其中,
    在制冷工况下,所述控制部件被配置为根据冷媒蒸发温度区间调节所述压缩机的运行频率;或者
    在制热工况下,所述控制部件被配置为根据冷媒冷凝温度区间调节所述压缩机的运行频率。
  7. 一种基于权利要求1~6任一所述空调系统的控制方法,包括:
    计算当前室内机的负荷需求;
    根据所述负荷需求确定所述多个气缸是否运行。
  8. 根据权利要求7所述的空调系统控制方法,其中所述空调系统包括多个所述室内机,计算当前室内机的负荷需求的步骤具体包括:
    获取各个开启的室内机的容量;
    将各个开启的室内机的容量之和作为所述负荷需求。
  9. 根据权利要求7所述的空调系统控制方法,其中所述多个气缸包括第一气缸和第二气缸,所述第一气缸具有第一工作容积,所述第二气缸具有第二工作容积,所述第一工作容积小于所述第二工作容积;根据所述负荷需求确定各个所述气缸是否运行的步骤具体包括:
    判断所述负荷需求与第一阈值和第二阈值的关系,所述第一阈值小于所述第二阈值;
    如果所述负荷需求不超过第一阈值,则使所述第一气缸单独运行;如果所述负荷需求处于第一阈值和第二阈值之间,则使所述第二气缸单独运行;如果所述负荷需求不小于第二阈值,则使所述第一气缸和第二气缸同时运行。
  10. 根据权利要求7所述的空调系统控制方法,其中在所述压缩机按确定出的所述气缸运行之后,还包括:
    根据所述负荷需求调节所述压缩机的运行频率。
  11. 根据权利要求10所述的空调系统控制方法,其中根据所述负荷需求调节所述压缩机的运行频率的步骤具体包括:
    在制冷工况下,根据冷媒蒸发温度区间调节所述压缩机的运行频率;或者
    在制热工况下,根据冷媒冷凝温度区间调节所述压缩机的运行频率。
  12. 一种空调系统控制装置,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如权利要求7~11任一所述的控制方法。
  13. 一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现权利要求7~11任一所述的控制方法。
PCT/CN2019/086863 2018-09-20 2019-05-14 空调系统及其控制方法 WO2020057149A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811099533.4A CN109269052B (zh) 2018-09-20 2018-09-20 空调系统及其控制方法
CN201811099533.4 2018-09-20

Publications (1)

Publication Number Publication Date
WO2020057149A1 true WO2020057149A1 (zh) 2020-03-26

Family

ID=65197709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086863 WO2020057149A1 (zh) 2018-09-20 2019-05-14 空调系统及其控制方法

Country Status (2)

Country Link
CN (1) CN109269052B (zh)
WO (1) WO2020057149A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113280465A (zh) * 2021-06-11 2021-08-20 珠海格力电器股份有限公司 空调控制方法、装置及空调机组

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109269052B (zh) * 2018-09-20 2019-06-25 珠海格力电器股份有限公司 空调系统及其控制方法
CN109812950B (zh) * 2019-02-22 2021-04-09 广东欧科空调制冷有限公司 一种空调器蒸发温度控制方法、装置及空调器
CN113915900B (zh) * 2021-06-10 2022-12-16 海信冰箱有限公司 一种冰箱及其恒温制冷方法
CN115264850B (zh) * 2022-06-30 2024-06-04 北京小米移动软件有限公司 控制方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1707115A (zh) * 2004-06-08 2005-12-14 三星电子株式会社 旋转式压缩机的容量可变装置
CN105783307A (zh) * 2016-04-29 2016-07-20 广东美的制冷设备有限公司 冷暖型空调器及其控制方法
CN106152414A (zh) * 2016-07-26 2016-11-23 广东美的制冷设备有限公司 一拖二空调器控制方法及装置
CN109269052A (zh) * 2018-09-20 2019-01-25 珠海格力电器股份有限公司 空调系统及其控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4217547B2 (ja) * 2003-06-12 2009-02-04 三洋電機株式会社 空気調和機
CN101012833A (zh) * 2007-02-04 2007-08-08 美的集团有限公司 旋转压缩机的控制方法
CN203796564U (zh) * 2014-04-17 2014-08-27 珠海格力节能环保制冷技术研究中心有限公司 双缸变容压缩机
CN107246684A (zh) * 2017-06-30 2017-10-13 广东美的制冷设备有限公司 空调系统和空调系统的控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1707115A (zh) * 2004-06-08 2005-12-14 三星电子株式会社 旋转式压缩机的容量可变装置
CN105783307A (zh) * 2016-04-29 2016-07-20 广东美的制冷设备有限公司 冷暖型空调器及其控制方法
CN106152414A (zh) * 2016-07-26 2016-11-23 广东美的制冷设备有限公司 一拖二空调器控制方法及装置
CN109269052A (zh) * 2018-09-20 2019-01-25 珠海格力电器股份有限公司 空调系统及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113280465A (zh) * 2021-06-11 2021-08-20 珠海格力电器股份有限公司 空调控制方法、装置及空调机组
CN113280465B (zh) * 2021-06-11 2022-05-10 珠海格力电器股份有限公司 空调控制方法、装置及空调机组

Also Published As

Publication number Publication date
CN109269052B (zh) 2019-06-25
CN109269052A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
WO2020057149A1 (zh) 空调系统及其控制方法
CN109237709B (zh) 一种多联机控制方法
CN111156667B (zh) 补气增焓压缩机的补气回路的控制方法、装置和设备
CN107401806B (zh) 中央空调冷冻站内主机及冷冻泵综合能效提升控制方法
CN105371545A (zh) 空调器及其制冷系统的制冷剂循环量调节方法
CN109579213B (zh) 一种空调器温度控制方法、存储设备及空调器
CN106225362A (zh) 一种双机头离心式冷水机组的控制方法和系统
CN110145906B (zh) 冷媒循环系统及其控制方法和计算机可读存储介质
US20230250982A1 (en) Heat Pump System, Control Method and Apparatus Thereof, Air Conditioning Device and Storage Medium
CN113339947B (zh) 空调器的控制方法、装置、空调器和存储介质
CN105953369A (zh) 一种变频空调控制方法及装置
CN104776633A (zh) 混合动力制冷系统及其控制方法
CN101986050B (zh) 变容量模块机组空调控制方法
CN111928410A (zh) 用于多联机空调机组的控制方法
CN115682324A (zh) 中央空调系统节能优化控制方法、装置、设备和存储介质
JP2014149105A (ja) 空気調和機
CN108019890B (zh) 空调能效控制方法、装置及空调系统
CN108592297B (zh) 空调器除霜控制方法
CN204574599U (zh) 混合动力制冷系统
CN114322220B (zh) 一种空气调节装置及其控制方法
CN108692425B (zh) 空调器除霜控制方法
KR102336986B1 (ko) 공기조화장치의 제어방법
CN112984713B (zh) 一种多压机控制方法及空调机组
CN211060239U (zh) 一种空调器
CN108709283B (zh) 系统调节方法及使用该调节方法的空气调节系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862007

Country of ref document: EP

Kind code of ref document: A1