WO2020029399A1 - 智能地震传感器 - Google Patents

智能地震传感器 Download PDF

Info

Publication number
WO2020029399A1
WO2020029399A1 PCT/CN2018/107563 CN2018107563W WO2020029399A1 WO 2020029399 A1 WO2020029399 A1 WO 2020029399A1 CN 2018107563 W CN2018107563 W CN 2018107563W WO 2020029399 A1 WO2020029399 A1 WO 2020029399A1
Authority
WO
WIPO (PCT)
Prior art keywords
seismic sensor
electrically connected
intelligent
control board
intelligent seismic
Prior art date
Application number
PCT/CN2018/107563
Other languages
English (en)
French (fr)
Inventor
冯京川
吴淮均
Original Assignee
深圳面元智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳面元智能科技有限公司 filed Critical 深圳面元智能科技有限公司
Publication of WO2020029399A1 publication Critical patent/WO2020029399A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements

Definitions

  • the invention relates to the field of seismic exploration technology, in particular to an intelligent seismic sensor.
  • seismic exploration is the most widely used. It uses instruments to detect and record the propagation time, A geophysical survey method that analyzes and determines stratigraphic interfaces, stratigraphic properties, and seismic structures using amplitude, waveform, and so on.
  • Existing seismic exploration equipment generally includes a data acquisition device, a connection cable, and a power supply device that are independent of each other.
  • the data acquisition device and the power supply device generally have an integrated structure.
  • the data collection device and power supply device cannot be disassembled, so the entire seismic survey equipment can only be retrieved, and the data collected by the seismic survey equipment can be analyzed.
  • the existing seismic exploration equipment is inconvenient to carry and is not conducive to the construction of seismic exploration.
  • the construction terrain changes need to replace different tail cones to ensure coupling with the earth, the plug tail cones of existing seismic exploration equipment cannot be quickly disassembled, which increases the cost of seismic exploration and reduces the efficiency of seismic exploration.
  • the main object of the present invention is to provide an intelligent seismic sensor, which aims to solve the problem that the existing intelligent seismic sensors need to be electrically connected to each other through a connection cable exposed to the outside due to the structure of the data acquisition device and the power supply device. It is inconvenient to carry technical problems that are not conducive to construction.
  • the invention provides that the tail cone can be quickly replaced to meet the needs of different construction terrains. Saves time and costs.
  • the intelligent seismic sensor provided by the present invention includes a data acquisition device and a power supply device for powering the data acquisition device, and the data acquisition device is detachably connected to the power supply device;
  • the data acquisition device includes:
  • a first casing, the first casing is formed with a first receiving cavity
  • a geophone which is housed in the first receiving cavity and is fixedly connected to the first housing;
  • a control board which is housed in the first accommodating cavity and is fixedly connected to the first housing, and the control board is electrically connected to the detector;
  • the power supply device includes:
  • a second casing, the second casing is formed with a second receiving cavity, and the second casing is formed with a first through hole;
  • a connecting post a part of the connecting post being received in the first through hole, two ends of the connecting post protruding from the first through hole, and one end of the connecting post being detachable from the first housing connection;
  • Tail cone component the tail cone component is recessed to form a connection groove, and an end of the connection post facing away from the first housing is mated with the connection groove so that the tail cone component and the connection post can be Remove the connection;
  • the power source is accommodated in the second accommodating cavity and is fixedly connected to the second housing.
  • the power source is electrically connected to the control board and the detector.
  • the tail cone assembly includes a connection member and a tail cone member connected to the connection member.
  • the connection member is disposed adjacent to the second housing, and the connection member is recessed to form a connection groove.
  • a first thread is provided on an outer side surface of the connection post, and a second thread is provided on a groove wall of the connection groove; the first thread and the second thread are engaged with each other to connect the connection post and the connection;
  • the slot is detachably attached.
  • the tail cone member is provided in a quadrangular pyramid shape, the largest end of the cross section of the quadrangular pyramid is connected to the connecting member, and the outer side of the tail cone member faces inwardly to form an arc. surface;
  • the tail cone member is provided in a conical shape, and the largest end of the cross section of the cone is connected to the connecting member;
  • the tail cone member is provided in a disc shape, and the end portion of the disc-shaped cross section is connected to the connecting member.
  • a turntable is further provided on a side of the second casing facing away from the first casing, and the turntable is disposed between the second casing and the connecting member;
  • the turntable is formed with a second through hole, and the connection post is fixed to the second through hole and is detachably connected to the connecting member.
  • the surface of the turntable facing the second housing is recessed to form at least one sealing groove, the sealing groove is provided around the first through hole, and the sealing groove is further provided with A seal, which abuts against the second casing, and seals a connection between the turntable and the second casing.
  • a surface of the turntable facing the second housing is provided with a first magnetic piece
  • a surface of the second housing facing the turntable is provided with a second magnetic piece.
  • a magnetic piece and the second magnetic piece attract each other, so that the turntable and the second casing are detachably connected.
  • one of the connecting post and the connecting groove has an elastic stopper, and the other of the connecting post and the connecting groove has a limiting hole;
  • the connecting post moves relative to the connecting groove, and the elastic stopper shrinks.
  • the elastic stopper faces the stopper hole, the elastic stopper pops up and abuts against the stopper hole.
  • one of the second housing and the tail cone assembly is provided with a buckle
  • the other of the second housing and the tail cone assembly is provided with a buckle.
  • the second casing includes an outer wall, a bottom wall connected to the outer wall, and an inner wall connected to the bottom wall.
  • the outer wall, the bottom wall, and the The inner side walls together form the second receiving cavity.
  • the second housing further includes a receiving groove surrounded by the inner side wall.
  • the second through hole penetrates the bottom groove wall of the receiving groove, and the connecting post faces away.
  • One end of the connecting groove extends into the receiving groove, and a part of the first housing extends into the receiving groove and is threadedly connected to the connecting post.
  • the intelligent seismic sensor further includes a power manager, the power manager is configured to feed back the charge and discharge information of the power source, and the power manager is electrically connected to the power source;
  • the intelligent seismic sensor further includes a memory, and the memory is electrically connected to the control board;
  • the intelligent seismic sensor further includes a light emitter, the light emitter is electrically connected to the control board, and indicates a working state of the intelligent seismic sensor.
  • the intelligent seismic sensor provided by the present invention is detachably connected to the data acquisition device and the power supply device, the data acquisition device and the power supply device can be assembled together under the action of external force, and remain stable under the action of friction, without the need to be exposed to the outside Connect the cable to achieve the corresponding function.
  • the tail cone component and the second casing can be integrated in advance, and then the data acquisition device and power supply device can be integrated in the on-site exploration process.
  • the data collected by the cone component and the detector are received by the control board, which makes the intelligent seismic sensor convenient to carry during on-site exploration, and the detachable connection method of the connection groove and the connection column allows the tail cone component to be replaced in time when it is damaged.
  • the technical solution of the present invention can solve the problem that the existing data acquisition device and power supply device of the intelligent seismic sensor that are independent of each other need to be electrically connected through a connection cable exposed to the outside, which is inconvenient to carry during field operation and is not conducive to construction Technical issues.
  • FIG. 1 is a schematic structural diagram of an embodiment of an intelligent seismic sensor according to the present invention
  • FIG. 2 is a cross-sectional view of the intelligent earthquake sensor A-A in FIG. 1;
  • FIG. 3 is an exploded schematic view of an embodiment of the intelligent seismic sensor of the present invention.
  • FIG. 4 is a cross-sectional view of the intelligent seismic sensor in the direction B-B in FIG. 1;
  • FIG. 5 is a schematic structural diagram of an embodiment of a tail cone assembly of the intelligent seismic sensor according to the present invention.
  • FIG. 6 is a schematic structural diagram of another embodiment of a tail cone assembly of the intelligent seismic sensor according to the present invention.
  • FIG. 7 is a schematic structural diagram of another embodiment of a tail cone assembly of the intelligent seismic sensor of the present invention.
  • FIG. 8 is a schematic structural diagram of another embodiment of a tail cone assembly of the intelligent earthquake sensor of the present invention.
  • first, second, and the like in the present invention are for descriptive purposes only, and cannot be understood as indicating or implying their relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features.
  • technical solutions between the various embodiments can be combined with each other, but must be based on those that can be realized by a person of ordinary skill in the art. When the combination of technical solutions conflicts or cannot be achieved, it should be considered that such a combination of technical solutions does not exist. It is also not within the protection scope claimed by the present invention.
  • the invention provides an intelligent seismic sensor 100.
  • the intelligent seismic sensor 100 proposed by the technical solution of the present invention includes a data acquisition device 10 and a power supply device 30 for supplying power to the data acquisition device 10.
  • the data acquisition device 10 and the power supply device 30 Removable connection.
  • the data acquisition device 10 includes:
  • a detector 13 which is received in the first receiving cavity 111 and is fixedly connected to the first housing 11;
  • the control board 15 is received in the first accommodating cavity 111 and is fixedly connected to the first housing 11.
  • the control board 15 is electrically connected to the detector 13.
  • the power supply device 30 includes:
  • a second casing 31, the second casing 31 is formed with a second receiving cavity 311, and the second casing 31 is formed with a first through hole 312;
  • a connecting post 70, a part of the connecting post 70 is received in the first through hole 312, two ends of the connecting post 70 protrude from the first through hole 312, and one end of the connecting post 70 is connected to the first through hole 312.
  • the first casing 11 is detachably connected;
  • Tail cone assembly 50 the tail cone assembly 50 is recessed to form a connection groove 511, and the end of the connection post 70 facing away from the first housing 11 is mated with the connection groove 511, so that the tail cone assembly 50 and the connecting post 70 are detachably connected;
  • a power supply 33 is received in the second accommodating cavity 311 and is fixedly connected to the second housing 31.
  • the power supply 33 is electrically connected to the control board 15 and the detector 13. .
  • the intelligent earthquake sensor 100 provided by the present invention is detachably connected to the data acquisition device 10 and the power supply device 30.
  • the data acquisition device 10 and the power supply device 30 can be assembled together under the action of external force and remain stable under the action of friction force without the need for Corresponding functions can be achieved by using exposed connection cables.
  • the tail cone assembly 50 and the second casing 31 can be integrated and assembled in advance.
  • the data acquisition device 10 and the power supply device 30 are integrated during the on-site exploration.
  • the data collected through the tail cone assembly 50 and the detector 13 is received through the control board 15 so that the intelligent seismic sensor 100 is carried during on-site exploration.
  • the tail cone assembly 50 can be replaced in time when damaged, which facilitates on-site construction of seismic exploration, thereby improving the efficiency of seismic exploration and reducing the cost of seismic exploration. .
  • the technical solution of the present invention can solve the problem that the existing intelligent seismic sensor 100 needs to be electrically connected with the data acquisition device 10 and the power supply device 30 that are independent of each other due to the structure, and is inconvenient to carry during the field operation.
  • the invention provides that the tail cone can be quickly replaced to meet the needs of different construction terrains. Saves time and costs.
  • the power source 33 supplies power to the internal electronic components of the smart seismic sensor 100, including a seismic sensor (not shown) and a controller (not shown). (Shown) and detector 13 and so on.
  • the power source 33 includes at least one battery. The battery can be charged back and forth. In the absence of an external input power source, the power source 33 can continuously supply power to the intelligent seismic sensor 100 within a certain period of time to maintain the normal operation of the intelligent seismic sensor 100.
  • a surface of the first housing 11 facing away from the first receiving cavity 111 is convex to form a convex post, and the interior of the convex post is a hollow structure to receive the detector 13.
  • the control board 15 may be fixed by screwing, fixedly connected to the first casing 11, or fixed by a snap-fastening method.
  • the tail cone assembly 50 is used to fix the power supply device 30 and the data acquisition device 10 on the installation surface, so that the intelligent seismic sensor 100 can work normally.
  • the tail cone assembly 50 includes a connecting member 51 and a tail cone member 53 connected to the connecting member 51.
  • the connecting member 51 is disposed adjacent to the second housing 31.
  • the connecting piece 51 is recessed to form a connecting groove 511.
  • a first thread is provided on an outer side surface of the connecting post 70, and a second thread is provided on a groove wall of the connecting groove 511. The first thread and the second thread are engaged with each other.
  • the connection post 70 and the connection groove 511 are detachably connected. The detachable connection between the connection groove 511 and the connection post 70 can be better achieved by screwing the two together through a thread pair.
  • the tail cone component 50 fixes the smart seismic sensor 100 by inserting the tail cone member 53 on the mounting surface.
  • the mounting surface can be snow, sand, or other surface that can be fixed.
  • the tail cone member 53 is provided in a quadrangular pyramid shape, the largest end of the cross section of the quadrangular pyramid is connected to the connecting member 51, and the tail cone member 53 The outer side faces an inward depression to form an arc.
  • the shape of the quadrangular pyramid can allow the tail cone 53 to be inserted into a harder mounting surface (such as a soil surface).
  • the four adjacent two curved grooves formed by the quadrangular walls can separate the tail cone.
  • the coupling performance between the component 53 and the mounting surface is improved, thereby facilitating the smart earthquake sensor 100 to receive signals more accurately.
  • the user may set the tail cone member 53 in other polygonal pyramid shapes, such as setting the tail cone member 53 in a triangular pyramid shape, a pentagonal pyramid shape, and the like.
  • the tail cone member 53 is provided in a conical shape, and the end of the cone with the largest cross-section is connected to the connecting post 51.
  • the tail cone member 53 may be provided in a conical shape, and the cone may have a relatively high height. At this time, the tail cone member 53 may be better inserted into a loose texture mounting surface, such as sandy ground, snow, etc. Ground etc.
  • the insertion depth of the tail cone member 53 on the mounting surface is made deeper, which improves the coupling of the smart seismic sensor 100 and further facilitates its accurate reception of signals.
  • the tail cone member 53 is provided in a disc shape, and the end portion with the smallest disc-shaped cross section is connected to the connecting post 51.
  • This arrangement can make the contact area of the tail cone member 53 and the mounting surface larger, and improve the contact stability and coupling with the mounting surface.
  • Such a tail cone member 53 can be used on snowy ground, sandy ground, etc., so that the intelligent seismic sensor 100 can more accurately receive signals.
  • the tail cone member 53 includes a main body portion 55 and a fixing portion 57 extending obliquely from the main body portion 55.
  • the positioning groove 511 is provided in the main body portion 55 toward the second shell.
  • the number of the fixing portions 57 on the surface of the body 31 is plural, and the fixing portions 57 are evenly spaced along the circumferential direction of the main body portion 55.
  • the tail cone member 53 is substantially claw-shaped, so that the arrangement can increase the contact area of the tail cone member 53 with the mounting surface, so as to better contact the hard mounting surface (such as mud ground, etc.). ) Coupling, so that the smart seismic sensor 100 can more accurately receive signals.
  • a side of the second casing 31 facing away from the first casing 11 is further provided with a turntable 71, and the turntable 71 is provided on the second casing 31. And the connecting piece 51.
  • the turntable 71 is formed with a second through hole, and the connection post 70 is fixed to the second through hole and is detachably connected to the connecting member 51.
  • One side of the turntable 71 is in contact with the connecting member 51 and the other side is in contact with the second housing 31. This arrangement can reduce the wobble of the tail cone assembly 50 in the horizontal direction, thereby further improving the insertion stability of the tail cone assembly 50. , So that the intelligent seismic sensor 100 works well.
  • the surface of the turntable 71 facing the second casing 31 is recessed to form at least one sealing groove 711, and the sealing groove 711 is provided around the first through hole 312, and the seal A seal 713 is also provided in the groove 711.
  • the seal 713 abuts the second casing 31 and seals the connection between the turntable 71 and the second casing 31.
  • the provision of the sealing groove 711 and the sealing member 713 facilitates waterproof sealing of the first through hole 312 and prevents external debris from entering the second casing 31 through the first through hole 312 and affecting the normal operation of the smart earthquake sensor 100.
  • the sealing member 713 may be a plastic member, a metal member or a rubber member, and the material thereof may be a hard material or a flexible material, as long as it is convenient for sealing.
  • connection post 70 and the connection groove 511 has an elastic limiter, and the other of the connection post 70 and the connection groove 511 has a limit.
  • the connecting post 70 moves relative to the connecting groove 511, and the elastic stopper contracts. When the elastic stopper faces the stopper hole, the elastic stopper pops up and abuts against the stopper.
  • the connecting groove 511 or the connecting post 70 is further provided with a mounting hole, and the elastic limiting member is accommodated in the mounting hole.
  • the elastic limiting member may be a spring, and a plug is fixed at the end of the spring.
  • the connecting piece when the connecting post 70 moves relative to the connecting groove 511, the elastic stopper shrinks in the mounting hole, and when the elastic stopper faces the limiting hole, the elastic stopper will be inserted. The component is pushed out and abuts the limiting hole, so that the connecting post 70 and the connecting groove 511 are detachably connected.
  • one of the second casing 31 and the tail cone assembly 50 is provided with a buckle, and both of the second casing 31 and the tail cone assembly 50 are provided.
  • the other is provided with a clamping slot, and the buckle is fixedly engaged with the clamping slot to detachably connect the tail cone assembly 50 and the second casing 31.
  • the number of the buckles and the grooves may be multiple, and the plurality of buckles or the grooves are arranged at intervals along the circumferential direction of the second casing 31, so that the second casing 31 and the tail cone assembly 50 are connected in this way. More stable.
  • the second casing 31 includes an outer side wall 315, a bottom wall 317 connected to the outer side wall 315, and an inner side wall connected to the bottom wall 317. 319.
  • the outer side wall 315, the bottom wall 317, and the inner side wall 319 together form the second receiving cavity.
  • the second housing 31 further includes a receiving groove 313 formed by enclosing the inner side wall 319.
  • the second through hole penetrates a bottom groove wall of the receiving groove 313, and an end of the connecting post 70 facing away from the connecting groove 511. Projecting into the receiving groove 313, a part of the first housing 11 projects into the receiving groove 313 and is screwed with the connecting post 70.
  • the outer side wall 315, the bottom wall 317, and the inner side wall 319 of the second casing 31 are an integrated structure, that is, the inner side wall 319 of the second casing 31 separates the second accommodation cavity 311 and the accommodation groove 313, and the convex column is accommodated in In the receiving groove 313, the outer contour of the convex column is adapted to the cross-sectional shape of the groove wall of the receiving groove 313, thereby facilitating the uniqueness of the assembly direction of the first casing 11 and the second casing 31, and ensuring intelligent earthquakes.
  • the structure of the sensor 100 is reasonable and compact.
  • One of the first housing 11 and the connecting post 70 is provided with a third thread, and the other of the first housing 11 and the connecting post 70 is provided with a fourth thread, so The third thread and the fourth thread are engaged with each other, and the connection post 70 and the first housing 11 are detachably connected.
  • the smart earthquake sensor 100 further includes a power manager (not shown), and the power manager is configured to feed back charging and discharging information of the power source 33, and the power manager and the power source 33 ELECTRICAL CONNECTION.
  • the intelligent seismic sensor 100 further includes a memory (not shown), and the memory is electrically connected to the main control board.
  • the smart earthquake sensor 100 further includes a light emitter (not shown), the light emitter is electrically connected to the main control board, and indicates a working state of the smart earthquake sensor 100.
  • the power manager is used to feedback the charging and discharging status of the power source 33 and receive management information of the power source 33, so as to achieve better management and control of the power source 33 and facilitate the operation of the intelligent seismic sensor 100.
  • the memory is used to store the data signals detected by the smart seismic sensor 100, thereby facilitating the user to use the smart seismic sensor 100.
  • Illuminator used to indicate the working status of the controller or memory.
  • the light emitter is electrically connected to the controller.
  • the light emitter is an LED lamp, and a window (not shown) is provided outside the first housing 11, and the color or the blinking frequency of the light emitter can be observed from the outside of the data acquisition device 10 through the window. According to the color of the light emitter or the flashing frequency, it can feedback whether the controller of the single data acquisition device works normally, and also can feedback whether the state of the memory operation, the remaining storage space, and the like are normal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种智能地震传感器(100),包括数据采集装置(10)和用于为数据采集装置(10)供电的供电装置(30),数据采集装置(10)与供电装置(30)可拆卸连接;数据采集装置(10)包括:第一壳体(11)、检波器(13)和控制板(15)。供电装置(30)包括:第二壳体(31),第二壳体(31)形成有第二容置腔(311),第二壳体(31)形成有第一贯穿孔(312)。供电装置(30)还包括连接柱(70)和尾锥组件(50),连接柱(70)部分容置于第一贯穿孔(312),连接柱(70)的两端伸出第一贯穿孔(312),连接柱(70)与第一壳体(11)可拆卸连接。尾锥组件(50)凹陷形成连接槽(511),连接柱(70)背离第一壳体(11)的端部插接配合于连接槽(511),以使尾锥组件(50)和连接柱(70)可拆卸连接。智能地震传感器(100)解决了在现场操作过程中携带不便而不利于施工的技术问题。

Description

智能地震传感器
技术领域
本发明涉及地震勘探技术领域,特别涉及一种智能地震传感器。
背景技术
随着地球物理勘探向复杂地况延伸,为了更好的勘探地质,出现了各种各样的勘探方法。其中,地震勘探应用最广。它是利用仪器检测、记录人工激发地震的反射波、折射波的传播时间、振 幅、波形等,进行分析判断地层界面、地层性质、地震构造的一种地球物理勘探方法。现有的地震勘探设备一般包括结构相互独立的数据采集装置、连接线缆和供电装置,该数据采集装置和供电装置一般为一体机结构。在对陆地或海洋进行地震勘探时,由于数据采集装置与供电装置无法拆卸,导致只能将整个地震勘探设备取回,才能对地震勘探设备收集的数据进行分析。现有的地震勘探设备携带不便,不利于地震勘探的施工。同时,当施工地形变化需要更换不同的尾锥以保证与大地的耦合时,现有地震勘探设备的插接尾锥无法快速拆卸,提高了地震勘探的成本,降低了地震勘探的效率。
发明内容
本发明的主要目的是提供一种智能地震传感器,旨在解决现有的智能地震传感器因结构相互独立的数据采集装置与供电装置需通过裸露于外界的连接线缆电性连接,在现场操作过程中携带不便而不利于施工的技术问题。
同时,本发明提供了尾锥可快速更换,满足不同的施工地形的需要。节省了时间和成本。
为实现上述目的,本发明提供的智能地震传感器,包括数据采集装置和用于为所述数据采集装置供电的供电装置,所述数据采集装置与所述供电装置可拆卸连接;
所述数据采集装置包括:
第一壳体,所述第一壳体形成有第一容置腔;
检波器,所述检波器容置于所述第一容置腔,并与所述第一壳体固定连接;
控制板,所述控制板容置于所述第一容置腔,并与所述第一壳体固定连接,所述控制板与所述检波器电性连接;
所述供电装置包括:
第二壳体,所述第二壳体形成有第二容置腔,所述第二壳体形成有第一贯穿孔;
连接柱,所述连接柱的部分容置于所述第一贯穿孔,所述连接柱的两端伸出所述第一贯穿孔,所述连接柱的一端与所述第一壳体可拆卸连接;
尾锥组件,所述尾锥组件凹陷形成连接槽,所述连接柱背离所述第一壳体的端部插接配合于所述连接槽,以使所述尾锥组件和所述连接柱可拆卸连接;
电源,所述电源容置于所述第二容置腔,并与所述第二壳体固定连接,所述电源与所述控制板、所述检波器电性连接。
在本申请的一实施例中,所述尾锥组件包括连接件和与所述连接件连接的尾锥件,所述连接件邻近所述第二壳体设置,所述连接件凹陷形成连接槽,所述连接柱的外侧面设有第一螺纹,所述连接槽的槽壁设有第二螺纹,所述第一螺纹与所述第二螺纹相互啮合,将所述连接柱和所述连接槽可拆卸连接。
在本申请的一实施例中,所述尾锥件呈四棱锥状设置,所述四棱锥的横截面最大的端部与所述连接件连接,且所述尾锥件外侧面向内凹陷形成弧面;
或者,所述尾锥件呈圆锥状设置,所述圆锥的横截面最大的端部与所述连接件连接;
或者,所述尾锥件呈圆盘状设置,所述圆盘状的横截面最小的端部与所述连接件连接。
在本申请的一实施例中,所述第二壳体背离所述第一壳体的一侧还设有转盘,所述转盘设于所述第二壳体和所述连接件之间;
所述转盘形成有第二贯穿孔,所述连接柱固定于所述第二贯穿孔与所述连接件可拆卸连接。
在本申请的一实施例中,所述转盘朝向所述第二壳体的表面凹设形成至少一密封槽,所述密封槽环绕所述第一贯穿孔设置,所述密封槽内还设有密封件,所述密封件抵接所述第二壳体,将所述转盘与所述第二壳体的连接处密封。
在本申请的一实施例中,所述转盘朝向所述第二壳体的表面设有第一磁性件,所述第二壳体朝向所述转盘的表面设有第二磁性件,所述第一磁性件和所述第二磁性件相互吸引,以使所述转盘和所述第二壳体可拆卸连接。
在本申请的一实施例中,所述连接柱和所述连接槽的二者之一具有弹性限位件,所述连接柱和所述连接槽的二者之另一具有限位孔;
所述连接柱相对所述连接槽运动,所述弹性限位件收缩,在所述弹性限位件正对所述限位孔时,所述弹性限位件弹出,并抵接于限位孔,将所述连接柱和所述连接槽可拆卸连接。
在本申请的一实施例中,所述第二壳体和所述尾锥组件的二者之一设有卡扣,所述第二壳体和所述尾锥组件的二者之另一设有卡槽,所述卡扣与所述卡槽卡合固定,将所述尾锥组件和所述第二壳体可拆卸连接。
在本申请的一实施例中,所述第二壳体包括外侧壁、与所述外侧壁连接的底壁和与所述底壁连接的内侧壁,所述外侧壁、所述底壁和所述内侧壁共同形成所述第二容纳腔,所述第二壳体还包括内侧壁围合形成的容纳槽,所述第二贯穿孔贯穿所述容纳槽的底部槽壁,所述连接柱背离所述连接槽的一端伸入所述容纳槽,所述第一壳体的部分伸入所述容纳槽,并与所述连接柱螺纹连接。
在本申请的一实施例中,所述智能地震传感器还包括电源管理器,所述电源管理器用于反馈所述电源充放电信息,所述电源管理器与所述电源电性连接;
且/或,所述智能地震传感器还包括存储器,所述存储器与所述控制板电性连接;
且/或,所述智能地震传感器还包括发光器,所述发光器与所述控制板电性连接,并指示所述智能地震传感器的工作状态。
本发明提供的智能地震传感器因数据采集装置与供电装置可拆卸连接,数据采集装置与供电装置在外力的作用下能够装配在一起,并在摩擦力的作用下保持稳定,无须用裸露于外界的连接线缆即可实现相应功能。当需要利用该智能地震传感器对陆地等地震进行现场勘探时,可提前将尾锥组件和第二壳体一体化装配,再将数据采集装置与供电装置在现场勘探过程中一体化装配,通过尾锥组件和检波器采集的数据,经过控制板接收数据,使得该智能地震传感器在现场勘探时携带方便,并且通过连接槽和连接柱的可拆卸连接方式,使得尾锥组件在损坏时可以及时更换,方便地震勘探的现场施工,进而提高了地震勘探的效率,降低了地震勘探的成本。如此,本发明的技术方案可以解决现有的智能地震传感器因结构相互独立的数据采集装置与供电装置需通过裸露于外界的连接线缆电性连接,在现场操作过程中携带不便而不利于施工的技术问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明智能地震传感器一实施例的结构示意图;
图2为图1中智能地震传感器A-A向的剖视图;
图3为本发明智能地震传感器一实施例的分解示意图;
图4为图1中智能地震传感器B-B向的剖视图;
图5为本发明智能地震传感器的尾锥组件一实施例的结构示意图;
图6为本发明智能地震传感器的尾锥组件另一实施例的结构示意图;
图7为本发明智能地震传感器的尾锥组件又一实施例的结构示意图;
图8为本发明智能地震传感器的尾锥组件再一实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称
100 智能地震传感器 319 内侧壁
10 数据采集装置 33 电源
11 第一壳体 50 尾锥组件
111 第一容置腔 51 连接件
13 检波器 511 连接槽
15 控制板 53 尾锥件
30 供电装置 55 主体部
31 第二壳体 57 固定部
311 第二容置腔 70 连接柱
312 第一贯穿孔 71 转盘
313 容纳槽 711 密封槽
315 外侧壁 713 密封件
317 底壁
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种智能地震传感器100。
参照图1至图8,本发明技术方案提出的智能地震传感器100包括数据采集装置10和用于为所述数据采集装置10供电的供电装置30,所述数据采集装置10与所述供电装置30可拆卸连接。
所述数据采集装置10包括:
第一壳体11,所述第一壳体11形成有第一容置腔111;
检波器13,所述检波器13容置于所述第一容置腔111,并与所述第一壳体11固定连接;
控制板15,所述控制板15容置于所述第一容置腔111,并与所述第一壳体11固定连接,所述控制板15与所述检波器13电性连接。
所述供电装置30包括:
第二壳体31,所述第二壳体31形成有第二容置腔311,所述第二壳体31形成有第一贯穿孔312;
连接柱70,所述连接柱70的部分容置于所述第一贯穿孔312,所述连接柱70的两端伸出所述第一贯穿孔312,所述连接柱70的一端与所述第一壳体11可拆卸连接;
尾锥组件50,所述尾锥组件50凹陷形成连接槽511,所述连接柱70背离所述第一壳体11的端部插接配合于所述连接槽511,以使所述尾锥组件50和所述连接柱70可拆卸连接;
电源33,所述电源33容置于所述第二容置腔311,并与所述第二壳体31固定连接,所述电源33与所述控制板15、所述检波器13电性连接。
本发明提供的智能地震传感器100因数据采集装置10与供电装置30可拆卸连接,数据采集装置10与供电装置30在外力的作用下能够装配在一起,并在摩擦力的作用下保持稳定,无须用裸露于外界的连接线缆即可实现相应功能。当需要利用该智能地震传感器100对陆地等地震进行现场勘探时,可提前将尾锥组件50和第二壳体31一体化装配。再将数据采集装置10与供电装置30在现场勘探过程中一体化装配,通过尾锥组件50和检波器13采集的数据,经过控制板15接收数据,使得该智能地震传感器100在现场勘探时携带方便,并且通过连接槽511和连接柱70的可拆卸连接方式,使得尾锥组件50在损坏时可以及时更换,方便地震勘探的现场施工,进而提高了地震勘探的效率,降低了地震勘探的成本。如此,本发明的技术方案可以解决现有的智能地震传感器100因结构相互独立的数据采集装置10与供电装置30需通过裸露于外界的连接线缆电性连接,在现场操作过程中携带不便而不利于施工的技术问题。同时,本发明提供了尾锥可快速更换,满足不同的施工地形的需要。节省了时间和成本。
在本申请的一实施例中,数据采集装置10和供电装置30装配在一起时,电源33为智能地震传感器100的内部电子元器件供电,包括地震传感器(未图示)、控制器(未图示)和检波器13等。该电源33包括至少一个电池,该电池能够往复充电,在没有外部输入电源的情况下,电源33在一定时间内能够为该智能地震传感器100持续供电,以维持智能地震传感器100正常工作。
所述第一壳体11背离所述第一容置腔111的表面凸起形成凸柱,该凸柱的内部为中空结构,以容纳安装检波器13。以及,该控制板15可以通过螺接固定,与第一壳体11固定连接,或者通过卡接固定等固定方式。
尾锥组件50用于将供电装置30和数据采集装置10固定在安装面上,从而使智能地震传感器100正常工作。
在本申请的一实施例中,所述尾锥组件50包括连接件51和与所述连接件51连接的尾锥件53,所述连接件51邻近所述第二壳体31设置,所述连接件51凹陷形成连接槽511,所述连接柱70的外侧面设有第一螺纹,所述连接槽511的槽壁设有第二螺纹,所述第一螺纹与所述第二螺纹相互啮合,将所述连接柱70和所述连接槽511可拆卸连接。通过螺纹副将二者螺纹连接可以较好地实现连接槽511和连接柱70的可拆卸连接。尾锥组件50通过将尾锥件53插接于安装面,从而将智能地震传感器100固定。该安装面可以是雪地面、沙地面或其他可安装固定的表面。
参照图5,在本申请的一实施例中,所述尾锥件53呈四棱锥状设置,所述四棱锥的横截面最大的端部与所述连接件51连接,且所述尾锥件53外侧面向内凹陷形成弧面。四棱锥形的形状可以让尾锥件53插接入质地较硬的安装面(如泥土面),其被四棱壁隔开形成的四个两两相邻的弧面凹槽可以将尾锥件53与安装面的耦合性能提升,从而便于智能地震传感器100更准确接收信号。当然,在实际应用中,用户可以根据需要将尾锥件53呈其他多边形棱锥状设置,例如将尾锥件53呈三棱锥状设置、五棱锥状设置等。
参照图6,在本申请的一实施例中,所述尾锥件53呈圆锥状设置,所述圆锥的横截面最大的端部与所述连接柱51连接。在本实施例中,该尾锥件53可以呈圆锥状设置,该圆锥可以具备较高的高度,此时可以让尾锥件53较好地插入质地较松的安装面,如沙地面、雪地面等。并且使得尾锥件53在安装面上的插接深度较深,提高智能地震传感器100的耦合性,进而便于其准确接受信号。
参照图8,在本申请的一实施例中,所述尾锥件53呈圆盘状设置,所述圆盘状的横截面最小的端部与所述连接柱51连接。如此设置可以让尾锥件53与安装面的接触面积较大,提高其与安装面接触稳定性和耦合性。此类尾锥件53可以用于雪地面、沙地面等,便于智能地震传感器100更准确接受信号。
参照图7,在本申请的一实施例中,所述尾锥件53包括主体部55和自主体部55倾斜延伸的固定部57,此时该定位槽511设于主体部55朝向第二壳体31的表面,该固定部57的数量为多个,并沿主体部55的周向均匀间隔布置。在本实施例中,尾锥件53大致呈爪状设置,如此设置,可以使尾锥件53增大与安装面的接触面积,从而较好地与质地较硬的安装面(如泥地面等)耦合连接,进而使智能地震传感器100更准确接受信号。
参照图3,在本申请的一实施例中,所述第二壳体31背离所述第一壳体11的一侧还设有转盘71,所述转盘71设于所述第二壳体31和所述连接件51之间。
所述转盘71形成有第二贯穿孔,所述连接柱70固定于所述第二贯穿孔与所述连接件51可拆卸连接。
转盘71的一侧与连接件51抵接,另一侧与第二壳体31抵接,如此设置可以减少尾锥组件50在水平方向的晃动,从而进一步提高尾锥组件50的插接稳定性,进而使智能地震传感器100较好地工作。
在本申请的一实施例中,所述转盘71朝向所述第二壳体31的表面凹设形成至少一密封槽711,所述密封槽711环绕所述第一贯穿孔312设置,所述密封槽711内还设有密封件713,所述密封件713抵接所述第二壳体31,将所述转盘71与所述第二壳体31的连接处密封。设置密封槽711和密封件713便于对第一贯穿孔312进行防水密封,防止外部杂物通过第一贯穿孔312进入第二壳体31内,影响智能地震传感器100的正常工作。该密封件713可以为塑料件、金属件或橡胶件等,其材质可以为硬质材质或柔性材质,只要方便密封即可。
在本申请的一实施例中,所述连接柱70和所述连接槽511的二者之一具有弹性限位件,所述连接柱70和所述连接槽511的二者之另一具有限位孔;
所述连接柱70相对所述连接槽511运动,所述弹性限位件收缩,在所述弹性限位件正对所述限位孔时,所述弹性限位件弹出,并抵接于限位孔,将所述连接柱70和所述连接槽511可拆卸连接。在本实施例中,该连接槽511或连接柱70还设有安装孔,该弹性限位件容置于安装孔内,该弹性限位件可以为弹簧,并在弹簧的端部固定一插接件,当连接柱70相对所述连接槽511运动,弹性限位件在安装孔内收缩,在所述弹性限位件正对所述限位孔时,所述弹性限位件将插接件推出,并抵接于限位孔,从而将连接柱70和连接槽511可拆卸连接。
在本申请的一实施例中,所述第二壳体31和所述尾锥组件50的二者之一设有卡扣,所述第二壳体31和所述尾锥组件50的二者之另一设有卡槽,所述卡扣与所述卡槽卡合固定,将所述尾锥组件50和所述第二壳体31可拆卸连接。可以理解的是卡扣和卡槽的数量可以为多个,多个卡扣或卡槽沿第二壳体31的周向间隔设置,如此设置使第二壳体31和尾锥组件50的连接更稳固。
参照图2至图4,在本申请的一实施例中,所述第二壳体31包括外侧壁315、与所述外侧壁315连接的底壁317和与所述底壁317连接的内侧壁319,所述外侧壁315、所述底壁317和所述内侧壁319共同形成所述第二容纳腔。所述第二壳体31还包括内侧壁319围合形成的容纳槽313,所述第二贯穿孔贯穿所述容纳槽313的底部槽壁,所述连接柱70背离所述连接槽511的一端伸入所述容纳槽313,所述第一壳体11的部分伸入所述容纳槽313,并与所述连接柱70螺纹连接。第二壳体31的外侧壁315、底壁317和内侧壁319为一体结构,也即第二壳体31的内侧壁319将第二容置腔311和容纳槽313隔开,凸柱容纳于该容纳槽313内,该凸柱的外轮廓与容纳槽313的槽壁的截面形状相适配,从而便于第一壳体11和第二壳体31的装配方向的唯一性,同时保证智能地震传感器100的结构合理、紧凑。所述第一壳体11和所述连接柱70的二者之一设有第三螺纹,所述第一壳体11和所述连接柱70的二者之另一设有第四螺纹,所述第三螺纹与所述第四螺纹相互啮合,将所述连接柱70和所述第一壳体11可拆卸连接。
在本申请的一实施例中,所述智能地震传感器100还包括电源管理器(未图示),所述电源管理器用于反馈所述电源33充放电信息,所述电源管理器与所述电源33电性连接。且/或,所述智能地震传感器100还包括存储器(未图示),所述存储器与所述主控板电性连接。且/或,所述智能地震传感器100还包括发光器(未图示),所述发光器与所述主控板电性连接,并指示所述智能地震传感器100的工作状态。
电源管理器用于反馈电源33的充放电状态以及接收电源33的管理信息,从而对电源33实现更好的管控,便于智能地震传感器100工作。
存储器用于保存智能地震传感器100检测到的数据信号,从而方便用户使用智能地震传感器100。
发光器,用于指示控制器或存储器的工作状态。发光器与控制器电性连接。在本发明实施例中,发光器为LED灯,第一壳体11外部设有可视窗(未图示),通过该可视窗能够从数据采集装置10外部观察到发光器的颜色或闪烁频次。根据发光器的颜色或闪烁频次,能够反馈该数据采集单装置的控制器是否工作正常,也能够反馈存储器的运行、剩余存储空间等状态是否正常等状态。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (18)

  1. 一种智能地震传感器,其特征在于,包括数据采集装置和用于为所述数据采集装置供电的供电装置,所述数据采集装置与所述供电装置可拆卸连接;
    所述数据采集装置包括:
    第一壳体,所述第一壳体形成有第一容置腔;
    检波器,所述检波器容置于所述第一容置腔,并与所述第一壳体固定连接;
    控制板,所述控制板容置于所述第一容置腔,并与所述第一壳体固定连接,所述控制板与所述检波器电性连接;
    所述供电装置包括:
    第二壳体,所述第二壳体形成有第二容置腔,所述第二壳体形成有第一贯穿孔;
    连接柱,所述连接柱的部分容置于所述第一贯穿孔,所述连接柱的两端伸出所述第一贯穿孔,所述连接柱的一端与所述第一壳体可拆卸连接;
    尾锥组件,所述尾锥组件凹陷形成连接槽,所述连接柱背离所述第一壳体的端部插接配合于所述连接槽,以使所述尾锥组件和所述连接柱可拆卸连接;
    电源,所述电源容置于所述第二容置腔,并与所述第二壳体固定连接,所述电源与所述控制板、所述检波器电性连接。
  2. 如权利要求1所述的智能地震传感器,其特征在于,所述尾锥组件包括连接件和与所述连接件连接的尾锥件,所述连接件邻近所述第二壳体设置,所述连接件凹陷形成连接槽,所述连接柱的外侧面设有第一螺纹,所述连接槽的槽壁设有第二螺纹,所述第一螺纹与所述第二螺纹相互啮合,将所述连接柱和所述连接槽可拆卸连接。
  3. 如权利要求2所述的智能地震传感器,其特征在于,所述尾锥件呈四棱锥状设置,所述四棱锥的横截面最大的端部与所述连接件连接,且所述尾锥件外侧面向内凹陷形成弧面;
    或者,所述尾锥件呈圆锥状设置,所述圆锥的横截面最大的端部与所述连接件连接;
    或者,所述尾锥件呈圆盘状设置,所述圆盘状的横截面最小的端部与所述连接件连接。
  4. 如权利要求3所述的智能地震传感器,其特征在于,所述第二壳体背离所述第一壳体的一侧还设有转盘,所述转盘设于所述第二壳体和所述连接件之间;
    所述转盘形成有第二贯穿孔,所述连接柱固定于所述第二贯穿孔与所述连接件可拆卸连接。
  5. 如权利要求4所述的智能地震传感器,其特征在于,所述转盘朝向所述第二壳体的表面凹设形成至少一密封槽,所述密封槽环绕所述第一贯穿孔设置,所述密封槽内还设有密封件,所述密封件抵接所述第二壳体,将所述转盘与所述第二壳体的连接处密封。
  6. 如权利要求5的智能地震传感器,其特征在于,所述转盘朝向所述第二壳体的表面设有第一磁性件,所述第二壳体朝向所述转盘的表面设有第二磁性件,所述第一磁性件和所述第二磁性件相互吸引,以使所述转盘和所述第二壳体可拆卸连接。
  7. 如权利要求1所述的智能地震传感器,其特征在于,所述连接柱和所述连接槽的二者之一具有弹性限位件,所述连接柱和所述连接槽的二者之另一具有限位孔;
    所述连接柱相对所述连接槽运动,所述弹性限位件收缩,在所述弹性限位件正对所述限位孔时,所述弹性限位件弹出,并抵接于限位孔,将所述连接柱和所述连接槽可拆卸连接。
  8. 如权利要求1所述的智能地震传感器,其特征在于,所述第二壳体和所述尾锥组件的二者之一设有卡扣,所述第二壳体和所述尾锥组件的二者之另一设有卡槽,所述卡扣与所述卡槽卡合固定,将所述尾锥组件和所述第二壳体可拆卸连接。
  9. 如权利要求8所述的智能地震传感器,其特征在于,所述第二壳体包括外侧壁、与所述外侧壁连接的底壁和与所述底壁连接的内侧壁,所述外侧壁、所述底壁和所述内侧壁共同形成所述第二容纳腔,所述第二壳体还包括内侧壁围合形成的容纳槽,所述第二贯穿孔贯穿所述容纳槽的底部槽壁,所述连接柱背离所述连接槽的一端伸入所述容纳槽,所述第一壳体的部分伸入所述容纳槽,并与所述连接柱螺纹连接。
  10. 如权利要求1所述的智能地震传感器,其特征在于,所述智能地震传感器还包括电源管理器,所述电源管理器用于反馈所述电源充放电信息,所述电源管理器与所述电源电性连接;
    且/或,所述智能地震传感器还包括存储器,所述存储器与所述控制板电性连接;
    且/或,所述智能地震传感器还包括发光器,所述发光器与所述控制板电性连接,并指示所述智能地震传感器的工作状态。
  11. 如权利要求2所述的智能地震传感器,其特征在于,所述智能地震传感器还包括电源管理器,所述电源管理器用于反馈所述电源充放电信息,所述电源管理器与所述电源电性连接;
    且/或,所述智能地震传感器还包括存储器,所述存储器与所述控制板电性连接;
    且/或,所述智能地震传感器还包括发光器,所述发光器与所述控制板电性连接,并指示所述智能地震传感器的工作状态。
  12. 如权利要求3所述的智能地震传感器,其特征在于,所述智能地震传感器还包括电源管理器,所述电源管理器用于反馈所述电源充放电信息,所述电源管理器与所述电源电性连接;
    且/或,所述智能地震传感器还包括存储器,所述存储器与所述控制板电性连接;
    且/或,所述智能地震传感器还包括发光器,所述发光器与所述控制板电性连接,并指示所述智能地震传感器的工作状态。
  13. 如权利要求4所述的智能地震传感器,其特征在于,所述智能地震传感器还包括电源管理器,所述电源管理器用于反馈所述电源充放电信息,所述电源管理器与所述电源电性连接;
    且/或,所述智能地震传感器还包括存储器,所述存储器与所述控制板电性连接;
    且/或,所述智能地震传感器还包括发光器,所述发光器与所述控制板电性连接,并指示所述智能地震传感器的工作状态。
  14. 如权利要求5所述的智能地震传感器,其特征在于,所述智能地震传感器还包括电源管理器,所述电源管理器用于反馈所述电源充放电信息,所述电源管理器与所述电源电性连接;
    且/或,所述智能地震传感器还包括存储器,所述存储器与所述控制板电性连接;
    且/或,所述智能地震传感器还包括发光器,所述发光器与所述控制板电性连接,并指示所述智能地震传感器的工作状态。
  15. 如权利要求6所述的智能地震传感器,其特征在于,所述智能地震传感器还包括电源管理器,所述电源管理器用于反馈所述电源充放电信息,所述电源管理器与所述电源电性连接;
    且/或,所述智能地震传感器还包括存储器,所述存储器与所述控制板电性连接;
    且/或,所述智能地震传感器还包括发光器,所述发光器与所述控制板电性连接,并指示所述智能地震传感器的工作状态。
  16. 如权利要求7所述的智能地震传感器,其特征在于,所述智能地震传感器还包括电源管理器,所述电源管理器用于反馈所述电源充放电信息,所述电源管理器与所述电源电性连接;
    且/或,所述智能地震传感器还包括存储器,所述存储器与所述控制板电性连接;
    且/或,所述智能地震传感器还包括发光器,所述发光器与所述控制板电性连接,并指示所述智能地震传感器的工作状态。
  17. 如权利要求8所述的智能地震传感器,其特征在于,所述智能地震传感器还包括电源管理器,所述电源管理器用于反馈所述电源充放电信息,所述电源管理器与所述电源电性连接;
    且/或,所述智能地震传感器还包括存储器,所述存储器与所述控制板电性连接;
    且/或,所述智能地震传感器还包括发光器,所述发光器与所述控制板电性连接,并指示所述智能地震传感器的工作状态。
  18. 如权利要求9所述的智能地震传感器,其特征在于,所述智能地震传感器还包括电源管理器,所述电源管理器用于反馈所述电源充放电信息,所述电源管理器与所述电源电性连接;
    且/或,所述智能地震传感器还包括存储器,所述存储器与所述控制板电性连接;
    且/或,所述智能地震传感器还包括发光器,所述发光器与所述控制板电性连接,并指示所述智能地震传感器的工作状态。
PCT/CN2018/107563 2018-08-10 2018-09-26 智能地震传感器 WO2020029399A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821293887.8 2018-08-10
CN201821293887.8U CN208860965U (zh) 2018-08-10 2018-08-10 智能地震传感器

Publications (1)

Publication Number Publication Date
WO2020029399A1 true WO2020029399A1 (zh) 2020-02-13

Family

ID=66414488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107563 WO2020029399A1 (zh) 2018-08-10 2018-09-26 智能地震传感器

Country Status (2)

Country Link
CN (1) CN208860965U (zh)
WO (1) WO2020029399A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568481A (zh) * 2019-09-23 2019-12-13 深圳市深创谷技术服务有限公司 地声传感探头和地震检测系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1163998A (ja) * 1997-08-19 1999-03-05 Akashi:Kk 支軸摺動式ジンバル装置
JP2001289870A (ja) * 2000-04-07 2001-10-19 Ubukata Industries Co Ltd 加速度センサー
CN101910870A (zh) * 2008-01-10 2010-12-08 格库技术有限公司 地震传感器装置
CN102084269A (zh) * 2008-05-22 2011-06-01 费尔菲尔德工业公司 用于地震数据获取的陆基单元
CN106249280A (zh) * 2016-10-17 2016-12-21 北京达耐美贸易有限公司 一种智能数字地震检波器
CN207232402U (zh) * 2016-10-17 2018-04-13 北京达耐美科技有限公司 一种智能数字地震检波器及地震勘探系统
CN108594296A (zh) * 2018-08-10 2018-09-28 深圳面元智能科技有限公司 智能地震传感器
CN208621768U (zh) * 2018-08-10 2019-03-19 深圳面元智能科技有限公司 智能地震传感器
CN208621766U (zh) * 2018-08-10 2019-03-19 深圳面元智能科技有限公司 智能地震传感器
CN208621767U (zh) * 2018-08-10 2019-03-19 深圳面元智能科技有限公司 智能地震传感器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1163998A (ja) * 1997-08-19 1999-03-05 Akashi:Kk 支軸摺動式ジンバル装置
JP2001289870A (ja) * 2000-04-07 2001-10-19 Ubukata Industries Co Ltd 加速度センサー
CN101910870A (zh) * 2008-01-10 2010-12-08 格库技术有限公司 地震传感器装置
CN102084269A (zh) * 2008-05-22 2011-06-01 费尔菲尔德工业公司 用于地震数据获取的陆基单元
CN106249280A (zh) * 2016-10-17 2016-12-21 北京达耐美贸易有限公司 一种智能数字地震检波器
CN207232402U (zh) * 2016-10-17 2018-04-13 北京达耐美科技有限公司 一种智能数字地震检波器及地震勘探系统
CN108594296A (zh) * 2018-08-10 2018-09-28 深圳面元智能科技有限公司 智能地震传感器
CN208621768U (zh) * 2018-08-10 2019-03-19 深圳面元智能科技有限公司 智能地震传感器
CN208621766U (zh) * 2018-08-10 2019-03-19 深圳面元智能科技有限公司 智能地震传感器
CN208621767U (zh) * 2018-08-10 2019-03-19 深圳面元智能科技有限公司 智能地震传感器

Also Published As

Publication number Publication date
CN208860965U (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
WO2020029396A1 (zh) 智能地震传感器
US10045455B2 (en) Land based unit for seismic data acquisition
CN102074824B (zh) 具有整体式壳体的磁性连接器
US4571018A (en) Seismic marsh T-coupler with removable polarized connectors
CN106249280B (zh) 一种智能数字地震检波器
WO2020029398A1 (zh) 智能地震传感器
WO2020029397A1 (zh) 智能地震传感器
CN1299120C (zh) 一种多通道、低输入电容信号的探测器和探测头
ES2093114T3 (es) Cabezal magnetorresistivo horizontal sin pantalla protectora y metodo para su fabricacion.
WO2020029399A1 (zh) 智能地震传感器
WO2021022881A1 (zh) 辅助参数记录仪
CN208621766U (zh) 智能地震传感器
WO2021022878A1 (zh) 地震勘探设备测试仪
CN220752488U (zh) 凿岩台车及其探测装置
CN208847795U (zh) 一种共模噪声测试治具
CN210270198U (zh) 辅助参数记录仪
CN212517813U (zh) 地震勘探设备辅用机
CN113530468B (zh) 一种仪器短节和随钻测井仪
CN208401145U (zh) 一种新型工业电气连接器
CN210273535U (zh) 充电柜
CN217387632U (zh) 一种音视频信号插头结构
CN112202014A (zh) 地震勘探设备辅用机
CN214539732U (zh) 一种便携式的信号发生器
CN111090115B (zh) 一种分布式一体化单通道节点地震仪
CN209150440U (zh) 防静电手环智能监控设备用转接头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929465

Country of ref document: EP

Kind code of ref document: A1