WO2020029398A1 - 智能地震传感器 - Google Patents

智能地震传感器 Download PDF

Info

Publication number
WO2020029398A1
WO2020029398A1 PCT/CN2018/107562 CN2018107562W WO2020029398A1 WO 2020029398 A1 WO2020029398 A1 WO 2020029398A1 CN 2018107562 W CN2018107562 W CN 2018107562W WO 2020029398 A1 WO2020029398 A1 WO 2020029398A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
casing
seismic sensor
intelligent
inclined surface
Prior art date
Application number
PCT/CN2018/107562
Other languages
English (en)
French (fr)
Inventor
冯京川
吴淮均
Original Assignee
深圳面元智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳面元智能科技有限公司 filed Critical 深圳面元智能科技有限公司
Publication of WO2020029398A1 publication Critical patent/WO2020029398A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements

Definitions

  • the invention relates to the field of seismic exploration technology, in particular to an intelligent seismic sensor.
  • seismic exploration is the most widely used. It uses instruments to detect and record the propagation time, A geophysical survey method that analyzes and determines stratigraphic interfaces, stratigraphic properties, and seismic structures using amplitude, waveform, and so on.
  • Existing seismic exploration equipment generally includes a data acquisition device, a connection cable, and a power supply device that are independent of each other. The data acquisition device and the power supply device generally have an integrated structure. When conducting seismic surveys on land or ocean, the data collection device and power supply device cannot be disassembled, so the entire seismic survey equipment can only be retrieved, and the data collected by the seismic survey equipment can be analyzed.
  • the existing seismic exploration equipment is inconvenient to carry, is not conducive to the construction of seismic exploration, and is not conducive to improving the efficiency of seismic exploration and reducing the cost of seismic exploration.
  • the main object of the present invention is to provide an intelligent seismic sensor, which aims to solve the problem that the existing intelligent seismic sensors need to be electrically connected to each other through a connection cable exposed to the outside due to the structure of the data acquisition device and the power supply device. It is inconvenient to carry technical problems that are not conducive to construction. At the same time, when the number of avenues, such as the construction of tens of thousands of roads, construction efficiency and construction costs have become important factors that must be considered.
  • the detachable connection provided by the present invention is fast and efficient, and can be assembled by manual or automated equipment.
  • the intelligent seismic sensor provided by the present invention includes a data acquisition device and a power supply device for powering the data acquisition device, and the data acquisition device is detachably connected to the power supply device;
  • the data acquisition device includes:
  • a first casing the first casing being formed with a first receiving cavity, and a surface of the first casing facing away from the first receiving cavity protruding to form a convex post;
  • a geophone which is housed in the first receiving cavity and is fixedly connected to the first housing;
  • a control board which is housed in the first accommodating cavity and is fixedly connected to the first housing, and the control board is electrically connected to the detector;
  • the power supply device includes:
  • a second housing the second housing is formed with a second receiving cavity and a receiving groove
  • the first housing is detachably connected to the second housing, and a part of the protruding column protrudes into the receiving Inside the trough
  • a power supply which is accommodated in the second accommodating cavity and is fixedly connected to the second housing; the power supply is electrically connected to the control board and the detector;
  • One of the outer side of the convex pillar and the groove wall of the receiving groove is provided with a vertically extending guide groove, and the other of the outer side of the convex pillar and the groove wall of the receiving groove is provided
  • the fool-proof rib is inserted into the guide groove to assemble the first casing and the second casing.
  • the guide groove is provided on an outer side of the protruding column, the fool-proof rib is provided on a groove wall of the receiving groove, and the number of the guide grooves is multiple.
  • the guide grooves are arranged at intervals along the peripheral edge of the convex column;
  • the number of the fool-proof ribs is multiple, and one of the fool-proof ribs is inserted into a guide groove.
  • a distance between a guide groove and two guide grooves adjacent to the guide groove is different.
  • one of the lower surface of the first casing and the upper surface of the second casing is further provided with a positioning post, and the lower surface of the first casing and A positioning hole is also recessed on the other of the two upper surfaces of the second casing, and the positioning post is inserted into the positioning hole to position and match the first casing and the second casing.
  • the number of the positioning pillars is plural, and the plurality of positioning pillars are arranged at intervals from each other;
  • the number of the positioning holes is multiple, and one positioning post is inserted into the positioning holes to position and match the first casing and the second casing.
  • a surface of the second casing is provided with a first guide inclined surface, and the first guide inclined surface is disposed around a notch of the receiving groove.
  • an end of the protruding column facing away from the first receiving cavity is provided with a second guide slope, and the second guide slope is disposed around the protrusion.
  • the second casing includes an outer wall, a bottom wall connected to the outer wall, and an inner wall connected to the bottom wall.
  • the outer wall, the bottom wall, and the The inner side walls together form the second receiving cavity.
  • the second housing further includes a receiving groove formed by enclosing the inner side walls.
  • a bottom groove wall of the receiving groove is provided with a through hole, and the second housing further It includes a connecting post passing through the through hole, one end of the connecting post extends into the receiving groove, and a part of the first housing extends into the receiving groove and is detachably connected to the connecting post.
  • one of the first housing and the connecting post is provided with a third thread
  • the other of the first housing and the connecting post is provided with a third thread.
  • a fourth thread, the third thread and the fourth thread are engaged with each other, and the connection post and the first casing are detachably connected.
  • the intelligent seismic sensor further includes a power manager, the power manager is configured to feed back the charge and discharge information of the power source, and the power manager is electrically connected to the power source;
  • the intelligent seismic sensor further includes a memory, and the memory is electrically connected to the main control board;
  • the intelligent earthquake sensor further includes a light emitter, the light emitter is electrically connected to the main control board, and indicates a working state of the intelligent earthquake sensor.
  • the intelligent seismic sensor provided by the present invention is detachably connected to the data acquisition device and the power supply device, the data acquisition device and the power supply device can be assembled together under the action of external force, and remain stable under the action of friction, without the need to be exposed to the outside Connect the cable to achieve the corresponding function.
  • the data acquisition device and power supply device can be integrated in the field exploration process in advance, the data is collected by the geophone, and the data is received through the control board, making the intelligent earthquake
  • the sensor is convenient to carry during on-site exploration, which is conducive to the on-site construction of seismic exploration, thereby improving the efficiency of seismic exploration, and providing fool-proof ribs and guide grooves, assembling the first casing and the second casing, and improving the intelligent seismic sensor. Assembly efficiency, which in turn improves the efficiency of seismic exploration and reduces the cost of seismic exploration.
  • the technical solution of the present invention can solve the problem that the existing data acquisition device and power supply device of the intelligent seismic sensor that are independent of each other need to be electrically connected through a connection cable exposed to the outside, which is inconvenient to carry during field operation and is not conducive to construction Technical issues.
  • FIG. 1 is a schematic structural diagram of an embodiment of an intelligent seismic sensor according to the present invention
  • FIG. 2 is a cross-sectional view of the intelligent earthquake sensor A-A in FIG. 1;
  • FIG. 3 is a cross-sectional view of the intelligent earthquake sensor B-B in FIG. 1;
  • FIG. 4 is a schematic structural diagram of an embodiment of a data acquisition device for an intelligent seismic sensor according to the present invention.
  • FIG. 5 is a schematic structural diagram of an embodiment of a power supply device for an intelligent seismic sensor according to the present invention.
  • first, second, and the like in the present invention are for descriptive purposes only, and cannot be understood as indicating or implying their relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features.
  • technical solutions between the various embodiments can be combined with each other, but must be based on those that can be realized by a person of ordinary skill in the art. When the combination of technical solutions conflicts or cannot be achieved, it should be considered that such a combination of technical solutions does not exist. It is also not within the protection scope claimed by the present invention.
  • the invention provides an intelligent seismic sensor 100.
  • the intelligent seismic sensor 100 provided by the technical solution of the present invention includes a data acquisition device 10 and a power supply device 30 for supplying power to the data acquisition device 10.
  • the data acquisition device 10 and the power supply device 30 Removable connection.
  • the data acquisition device 10 includes:
  • a detector 13 which is received in the first receiving cavity 111 and is fixedly connected to the first housing 11;
  • the control board 15 is received in the first accommodating cavity 111 and is fixedly connected to the first housing 11.
  • the control board 15 is electrically connected to the detector 13.
  • the power supply device 30 includes:
  • the second casing 31 is formed with a second receiving cavity 311 and a receiving groove 313.
  • the first casing 11 is detachably connected to the second casing 31, and the convex pillar 113 A portion extends into the receiving groove 313;
  • a power supply 33 is received in the second accommodating cavity 311 and is fixedly connected to the second housing 31.
  • the power supply 33 is electrically connected to the control board 15 and the detector 13. ;
  • One of the outer side of the convex pillar 113 and the groove wall of the receiving groove 313 is provided with a vertically extending guide groove 1131, and the outer side of the convex pillar 113 and the groove wall of the receiving groove 313 are both provided.
  • the other one is provided with a fool-proof rib 3131, which is inserted into the guide groove 1131 to assemble the first casing 11 and the second casing 31.
  • the intelligent earthquake sensor 100 provided by the present invention is detachably connected to the data acquisition device 10 and the power supply device 30.
  • the data acquisition device 10 and the power supply device 30 can be assembled together under the action of external force and remain stable under the action of friction force without the need for Corresponding functions can be achieved by using exposed connection cables.
  • the data acquisition device 10 and the power supply device 30 can be integrated and assembled in the on-site exploration process.
  • the data is collected by the geophone 13 and received by the control board 15 so that the smart seismic sensor 100 is convenient to carry during on-site exploration, which is conducive to on-site construction of the seismic exploration, thereby improving the efficiency of the seismic exploration, and the fool-proof rib 3131 is provided.
  • the first casing 11 and the second casing 31 are assembled with the guide groove 1131 to improve the assembly efficiency of the intelligent seismic sensor 100.
  • the technical solution of the present invention can solve the problem that the existing intelligent seismic sensor 100 needs to be electrically connected with the data acquisition device 10 and the power supply device 30 that are independent of each other due to the structure, and is inconvenient to carry during the field operation.
  • the detachable connection provided by the present invention is fast and efficient, and can be assembled by manual or automated equipment.
  • the power source 33 supplies power to the internal electronic components of the intelligent seismic sensor 100, including an intelligent seismic sensor (not shown) and a controller (not shown). (Illustrated) and detector 13 and so on.
  • the power source 33 includes at least one battery. The battery can be charged back and forth. In the absence of an external input power source, the power source 33 can continuously supply power to the intelligent seismic sensor 100 within a certain period of time to maintain the normal operation of the intelligent seismic sensor 100.
  • the convex pillar 113 has a hollow structure inside to accommodate the detector 13. And, the control board 15 may be fixed by screwing, fixedly connected to the first casing 11, or fixed by a snap-fastening method.
  • the second accommodating cavity 311 and the accommodating groove 313 may be disposed on the same side or different sides of the second casing 31, and disposed on the same side for unified installation and assembly.
  • the installation methods are diversified, which is convenient for optimizing the structure of the intelligent seismic sensor 100.
  • This application adopts the method of setting on the same side. This setting facilitates unified installation.
  • the first casing 11 and the second casing 31 are each provided with an interface for the electrical connection of the power source 33 and other powered equipment, thereby facilitating the operation of the intelligent seismic sensor 100.
  • the provision of the fool-resistant convex rib 3131 and the guide groove 1131 can accurately interface the interfaces on the first casing 11 and the second casing 31, thereby realizing the normal operation of the intelligent seismic sensor 100.
  • the guide groove 1131 is provided on the outer side of the convex pillar 113, and the fool-proof rib 3131 is provided on the groove wall of the receiving groove 313.
  • the number of the guide grooves 1131 is plural, and the plurality of the guide grooves 1131 are arranged at intervals along the peripheral edge of the protrusion 113.
  • the number of the fool-proof ribs 3131 is multiple, and one of the fool-proof ribs 3131 is inserted into a guide groove 1131.
  • the guide groove 1131 is provided on the outer side of the convex pillar 113, and the fool-proof rib 3131 is provided on the groove wall of the receiving groove 313 for convenient production, and a plurality of fool-proof ribs 3131 and the guide groove 1131 are provided to make it easier to achieve fool-proof when plugging assembly.
  • the number of fool-proof ribs 3131 and guide grooves 1131 are two, the distance between the groove walls on both sides of one guide groove 1131 and the other guide groove 1131 is different, so that the first housing 11 and the second housing are realized.
  • the uniqueness of 31 assembly achieves better docking of interfaces.
  • a thicker fool-proof rib 3131 and a guide groove 1131 are provided in the radial direction, and a thinner fool-proof rib 3131 and a guide groove 1131 are provided in the radial direction to realize the assembly of the first casing 11 and the second casing 31 Uniqueness, to achieve a better docking interface.
  • the separation distance between one guide groove 1131 and two guide grooves 1131 adjacent thereto is set to be different to achieve The uniqueness of the assembly of the first shell 11 and the second shell 31 achieves better docking of the interface.
  • one of the lower surface of the first casing 11 and the upper surface of the second casing 31 is further provided with a positioning post 312.
  • a positioning hole 115 is also recessed in another of the lower surface of the first casing 11 and the upper surface of the second casing 31.
  • the positioning post 312 is inserted into the positioning hole 115, and The first casing 11 and the second casing 31 are positioned and matched.
  • the positioning pillars 312 and the positioning holes 115 are provided to further enhance the matching effect of the first casing 11 and the second casing 31, so that the two can be better assembled.
  • the number of the positioning pillars 312 is plural, and the plurality of positioning pillars 312 are arranged at intervals from each other.
  • the number of the positioning holes 115 is multiple.
  • a positioning post 312 is inserted into the positioning holes 115 to position and match the first casing 11 and the second casing 31.
  • the positioning of the plurality of positioning posts 312 and the positioning holes 115 makes the assembling effect of the first casing 11 and the second casing 31 better.
  • a surface of the second casing 31 is provided with a first guiding inclined surface 3133, and the first guiding inclined surface 3133 is disposed around a slot of the receiving groove 313.
  • the first guide inclined surface 3133 is provided to facilitate the protrusion 113 to protrude into the receiving groove 313, and to facilitate the guiding limit rib and the guide groove 1131 to cooperate with each other.
  • an end of the convex pillar 113 facing away from the first receiving cavity 111 is provided with a second guide inclined surface, and the second guide inclined surface 1133 is disposed around the convex pillar 113.
  • the second guiding inclined surface 1133 is provided to facilitate the protrusion 113 to extend into the accommodating groove 313, and to further guide the fool-resistant convex rib 3131 and the guiding groove 1131 to cooperate with each other.
  • a second guiding inclined surface 1133 may also be provided at an end of the guiding convex rib adjacent to the second housing 31, so that the positioning convex rib and the guiding groove 1131 cooperate with each other.
  • the second housing 31 includes an outer side wall 315, a bottom wall 317 connected to the outer side wall 315, and an inner side wall connected to the bottom wall 317. 319.
  • the outer sidewall 315, the bottom wall 317, and the inner sidewall 319 together form the second receiving cavity 311.
  • the second housing 31 further includes a receiving groove 313 formed by enclosing the inner side wall 319.
  • a bottom groove wall of the receiving groove 313 is provided with a through hole (not shown).
  • the second housing 31 further includes a through hole.
  • the connecting post 70 of the through hole, one end of the connecting post 70 extends into the receiving groove 313, and a part of the first housing 11 extends into the receiving groove 313 and is detachable from the connecting post 70. connection.
  • the outer side wall 315, the bottom wall 317, and the inner side wall 319 of the second casing 31 are integrated structures, that is, the inner side wall 319 of the second casing 31 separates the second receiving cavity 311 and the receiving groove 313.
  • the convex pillar 113 is accommodated in the receiving groove 313, and the outer contour of the convex pillar 113 is adapted to the shape of the groove wall of the receiving groove 313, thereby facilitating the assembly of the first casing 11 and the second casing 31 and ensuring the intelligence
  • the structure of the seismic sensor 100 is reasonable and compact.
  • the smart seismic sensor 100 further includes a plug tail vertebra 50, and the plug tail vertebra 50 is detachably connected to the connecting post 70.
  • one of the first housing 11 and the connecting post 70 is provided with a third thread
  • the other of the first housing 11 and the connecting post 70 is provided with a fourth thread. Thread, the third thread and the fourth thread mesh with each other to detachably connect the connection post 70 and the first housing 11.
  • the end of the connecting post 70 facing away from the receiving groove 313 is provided with a stopper 71 along its radial direction.
  • the connecting post 70 is screwed with the first housing 11 by rotating the connecting post 70 and abuts against the second shell through the stopper 71.
  • the body 31 enables the first shell 11 and the second shell 31 to be fixed by a connecting post 70 to realize a detachable connection.
  • the stopper portion 71 is disposed substantially in a turntable shape, so that the stopper portion 71 is convenient for insertion and stability of the insertion of the tail vertebra 50.
  • the smart earthquake sensor 100 further includes a power manager (not shown), and the power manager is configured to feed back charging and discharging information of the power source 33, and the power manager and the power source 33 ELECTRICAL CONNECTION.
  • the intelligent seismic sensor 100 further includes a memory (not shown), and the memory is electrically connected to the main control board.
  • the smart earthquake sensor 100 further includes a light emitter (not shown), the light emitter is electrically connected to the main control board, and indicates a working state of the smart earthquake sensor 100.
  • the power manager is used to feedback the charging and discharging status of the power source 33 and receive management information of the power source 33, so as to achieve better management and control of the power source 33 and facilitate the operation of the intelligent seismic sensor 100.
  • the memory is used to store the data signals detected by the smart seismic sensor 100, thereby facilitating the user to use the smart seismic sensor 100.
  • Illuminator used to indicate the working status of the controller or memory.
  • the light emitter is electrically connected to the controller.
  • the light emitter is an LED lamp, and a window (not shown) is provided outside the first housing 11, and the color or the blinking frequency of the light emitter can be observed from the outside of the data acquisition device 10 through the window. According to the color of the light emitter or the flashing frequency, it can feedback whether the controller of the single data acquisition device works normally, and also can feedback whether the state of the memory operation, the remaining storage space, and the like are normal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种智能地震传感器(100),包括数据采集装置(10)和用于为数据采集装置(10)供电的供电装置(30),数据采集装置(10)与供电装置(30)可拆卸连接。数据采集装置(10)包括第一壳体(11),该第一壳体(11)形成有第一容置腔(111),第一壳体(11)背离第一容置腔(111)的表面凸起形成凸柱(113)。该数据采集装置(10)还包括检波器(13)和控制板(15)。供电装置(30)包括第二壳体(31),该第二壳体(31)形成有第二容置腔(311)和容纳槽(313),第一壳体(11)与第二壳体(31)可拆卸连接。供电装置(30)还包括电源(33)。凸柱(113)的外侧和容纳槽(313)的槽壁的二者之一设有导向槽(1131),二者之另一设有防呆凸筋(3131),防呆凸筋(3131)插接于导向槽(1131)将第一壳体(11)和第二壳体(31)装配。

Description

智能地震传感器
技术领域
本发明涉及地震勘探技术领域,特别涉及一种智能地震传感器。
背景技术
随着地球物理勘探向复杂地况延伸,为了更好的勘探地质,出现了各种各样的勘探方法。其中,地震勘探应用最广。它是利用仪器检测、记录人工激发地震的反射波、折射波的传播时间、振 幅、波形等,进行分析判断地层界面、地层性质、地震构造的一种地球物理勘探方法。现有的地震勘探设备一般包括结构相互独立的数据采集装置、连接线缆和供电装置,该数据采集装置和供电装置一般为一体机结构。在对陆地或海洋进行地震勘探时,由于数据采集装置与供电装置无法拆卸,导致只能将整个地震勘探设备取回,才能对地震勘探设备收集的数据进行分析。现有的地震勘探设备携带不便,不利于地震勘探的施工,并且不利于提高地震勘探的效率和降低地震勘探的成本。
发明内容
本发明的主要目的是提供一种智能地震传感器,旨在解决现有的智能地震传感器因结构相互独立的数据采集装置与供电装置需通过裸露于外界的连接线缆电性连接,在现场操作过程中携带不便而不利于施工的技术问题。同时,当大道数,如上万道的施工时,施工效率和施工成本就成为必须考量的重要因素。本发明提供的可拆分连接,快速高效,可藉由人工或者自动化设备来进行组装。
为实现上述目的,本发明提供的智能地震传感器,包括数据采集装置和用于为所述数据采集装置供电的供电装置,所述数据采集装置与所述供电装置可拆卸连接;
所述数据采集装置包括:
第一壳体,所述第一壳体形成有第一容置腔,所述第一壳体背离所述第一容置腔的表面凸起形成凸柱;
检波器,所述检波器容置于所述第一容置腔,并与所述第一壳体固定连接;
控制板,所述控制板容置于所述第一容置腔,并与所述第一壳体固定连接,所述控制板与所述检波器电性连接;
所述供电装置包括:
第二壳体,所述第二壳体形成有第二容置腔和容纳槽,所述第一壳体与所述第二壳体可拆卸连接,所述凸柱的部分伸入所述容纳槽内;
电源,所述电源容置于所述第二容置腔,并与所述第二壳体固定连接,所述电源与所述控制板、所述检波器电性连接;
所述凸柱的外侧和所述容纳槽的槽壁的二者之一设有竖直延伸的导向槽,所述凸柱的外侧和所述容纳槽的槽壁的二者之另一设有防呆凸筋,所述防呆凸筋插接于所述导向槽,将所述第一壳体和所述第二壳体装配。
在本申请的一实施例中,所述导向槽设于所述凸柱的外侧,所述防呆凸筋设于所述容纳槽的槽壁,所述导向槽的数量为多个,多个所述导向槽沿所述凸柱的周缘间隔排布;
所述防呆凸筋的数量为多个,一所述防呆凸筋插接于一所述导向槽内。
在本申请的一实施例中,一所述导向槽与邻近其的两所述导向槽之间的间隔距离不同。
在本申请的一实施例中,所述第一壳体的下表面和所述第二壳体的上表面的二者之一还凸设有定位柱,所述第一壳体的下表面和所述第二壳体的上表面的二者之另一还凹设有定位孔,所述定位柱插接于所述定位孔,将所述第一壳体和所述第二壳体定位配合。
在本申请的一实施例中,所述定位柱的数量为多个,多个所述定位柱相互间隔设置;
所述定位孔的数量为多个,一所述定位柱插接于所述定位孔,将所述第一壳体和所述第二壳体定位配合。
在本申请的一实施例中,所述第二壳体的表面设有第一导向斜面,所述第一导向斜面环绕所述容纳槽的槽口设置。
在本申请的一实施例中,所述凸柱背离所述第一容置腔的端部设有第二导斜面,所述第二导向斜面环绕所述凸柱设置。
在本申请的一实施例中,所述第二壳体包括外侧壁、与所述外侧壁连接的底壁和与所述底壁连接的内侧壁,所述外侧壁、所述底壁和所述内侧壁共同形成所述第二容置腔,所述第二壳体还包括内侧壁围合形成的容纳槽,所述容纳槽的底部槽壁设有贯穿孔,所述第二壳体还包括穿过所述贯穿孔的连接柱,所述连接柱的一端伸入所述容纳槽,所述第一壳体的部分伸入所述容纳槽,并与所述连接柱可拆卸连接。
在本申请的一实施例中,所述第一壳体和所述连接柱的二者之一设有第三螺纹,所述第一壳体和所述连接柱的二者之另一设有第四螺纹,所述第三螺纹与所述第四螺纹相互啮合,将所述连接柱和所述第一壳体可拆卸连接。
在本申请的一实施例中,所述智能地震传感器还包括电源管理器,所述电源管理器用于反馈所述电源充放电信息,所述电源管理器与所述电源电性连接;
且/或,所述智能地震传感器还包括存储器,所述存储器与所述主控板电性连接;
且/或,所述智能地震传感器还包括发光器,所述发光器与所述主控板电性连接,并指示所述智能地震传感器的工作状态。
本发明提供的智能地震传感器因数据采集装置与供电装置可拆卸连接,数据采集装置与供电装置在外力的作用下能够装配在一起,并在摩擦力的作用下保持稳定,无须用裸露于外界的连接线缆即可实现相应功能。当需要利用该智能地震传感器对陆地等地震进行现场勘探时,可提前将数据采集装置与供电装置在现场勘探过程中一体化装配,通过检波器采集数据,经过控制板接收数据,使得该智能地震传感器在现场勘探时携带方便,有利于地震勘探的现场施工,进而提高了地震勘探的效率,并且设置防呆凸筋和导向槽,将第一壳体和第二壳体装配,提高智能地震传感器的装配效率,进而提高了地震勘探的效率、降低了地震勘探的成本。如此,本发明的技术方案可以解决现有的智能地震传感器因结构相互独立的数据采集装置与供电装置需通过裸露于外界的连接线缆电性连接,在现场操作过程中携带不便而不利于施工的技术问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明智能地震传感器一实施例的结构示意图;
图2为图1中智能地震传感器A-A向的剖视图;
图3为图1中智能地震传感器B-B向的剖视图;
图4为本发明智能地震传感器的数据采集装置一实施例的结构示意图;
图5为本发明智能地震传感器的供电装置一实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称
100 智能地震传感器 311 第二容置腔
10 数据采集装置 312 定位柱
11 第一壳体 313 容纳槽
111 第一容置腔 315 外侧壁
113 凸柱 317 底壁
115 定位孔 319 内侧壁
1131 导向槽 3131 防呆凸筋
1133 第二导向斜面 3133 第一导向斜面
13 检波器 33 电源
15 控制板 50 插接尾椎
30 供电装置 70 连接柱
31 第二壳体 71 止挡部
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
本发明提出一种智能地震传感器100。
参照图1至图5,本发明技术方案提出的智能地震传感器100包括数据采集装置10和用于为所述数据采集装置10供电的供电装置30,所述数据采集装置10与所述供电装置30可拆卸连接。
所述数据采集装置10包括:
第一壳体11,所述第一壳体11形成有第一容置腔111,所述第一壳体11背离所述第一容置腔111的表面凸起形成凸柱113;
检波器13,所述检波器13容置于所述第一容置腔111,并与所述第一壳体11固定连接;
控制板15,所述控制板15容置于所述第一容置腔111,并与所述第一壳体11固定连接,所述控制板15与所述检波器13电性连接。
所述供电装置30包括:
第二壳体31,所述第二壳体31形成有第二容置腔311和容纳槽313,所述第一壳体11与所述第二壳体31可拆卸连接,所述凸柱113的部分伸入所述容纳槽313内;
电源33,所述电源33容置于所述第二容置腔311,并与所述第二壳体31固定连接,所述电源33与所述控制板15、所述检波器13电性连接;
所述凸柱113的外侧和所述容纳槽313的槽壁的二者之一设有竖直延伸的导向槽1131,所述凸柱113的外侧和所述容纳槽313的槽壁的二者之另一设有防呆凸筋3131,所述防呆凸筋3131插接于所述导向槽1131,将所述第一壳体11和所述第二壳体31装配。
本发明提供的智能地震传感器100因数据采集装置10与供电装置30可拆卸连接,数据采集装置10与供电装置30在外力的作用下能够装配在一起,并在摩擦力的作用下保持稳定,无须用裸露于外界的连接线缆即可实现相应功能。当需要利用该智能地震传感器100对陆地等地震进行现场勘探时,可提前将数据采集装置10与供电装置30在现场勘探过程中一体化装配。通过检波器13采集数据,经过控制板15接收数据,使得该智能地震传感器100在现场勘探时携带方便,有利于地震勘探的现场施工,进而提高了地震勘探的效率,并且设置防呆凸筋3131和导向槽1131,将第一壳体11和第二壳体31装配,提高智能地震传感器100的装配效率。如此,本发明的技术方案可以解决现有的智能地震传感器100因结构相互独立的数据采集装置10与供电装置30需通过裸露于外界的连接线缆电性连接,在现场操作过程中携带不便而不利于施工的技术问题。本发明提供的可拆分连接,快速高效,可藉由人工或者自动化设备来进行组装。
在本申请的一实施例中,数据采集装置10和供电装置30装配在一起时,电源33为智能地震传感器100的内部电子元器件供电,包括智能地震传感器(未图示)、控制器(未图示)和检波器13等。该电源33包括至少一个电池,该电池能够往复充电,在没有外部输入电源的情况下,电源33在一定时间内能够为该智能地震传感器100持续供电,以维持智能地震传感器100正常工作。
该凸柱113的内部为中空结构,以容纳安装检波器13。以及,该控制板15可以通过螺接固定,与第一壳体11固定连接,或者通过卡接固定等固定方式。
参照图2,在本申请的一实施例中,第二容置腔311和容纳槽313可以设于第二壳体31的同一侧或者不同侧,设置在同一侧便于统一安装和装配,设在不同侧可以使其具备同样使用功能的情况下,安装方式多样化,便于优化智能地震传感器100的结构。本申请中采用同侧设置的方式,如此设置,便于统一安装。第一壳体11和第二壳体31均设有用于电源33与其他被供电设备电连接的接口,从而方便智能地震传感器100工作。设置防呆凸筋3131和导向槽1131可以使第一壳体11和第二壳体31上的接口准确对接,从而实现智能地震传感器100正常工作。
参照图4、图5,在本申请的一实施例中,所述导向槽1131设于所述凸柱113的外侧,所述防呆凸筋3131设于所述容纳槽313的槽壁,所述导向槽1131的数量为多个,多个所述导向槽1131沿所述凸柱113的周缘间隔排布。
所述防呆凸筋3131的数量为多个,一所述防呆凸筋3131插接于一所述导向槽1131内。
将导向槽1131设于凸柱113的外侧,防呆凸筋3131设于容纳槽313的槽壁方便生产,并且设置多个防呆凸筋3131和导向槽1131使插接时更方便实现防呆装配。当防呆凸筋3131和导向槽1131的数量均为两个时,一导向槽1131的两侧槽壁,至另一导向槽1131的距离不同,从而实现第一壳体11和第二壳体31装配的唯一性,实现接口较好的对接。或者,设置一径向上较粗的防呆凸筋3131和导向槽1131,设置一径向上较细的防呆凸筋3131和导向槽1131,以实现第一壳体11和第二壳体31装配的唯一性,实现接口较好的对接。
在本申请的一实施例中,当导向槽1131的数量设置为三个及三个以上时,将一导向槽1131与邻近其的两导向槽1131之间的间隔距离设置成不同的,以实现第一壳体11和第二壳体31装配的唯一性,实现接口较好的对接。
参照图4、图5,在本申请的一实施例中,所述第一壳体11的下表面和所述第二壳体31的上表面的二者之一还凸设有定位柱312,所述第一壳体11的下表面和所述第二壳体31的上表面的二者之另一还凹设有定位孔115,所述定位柱312插接于所述定位孔115,将所述第一壳体11和所述第二壳体31定位配合。设置定位柱312和定位孔115进一步提升第一壳体11和第二壳体31的配合效果,使二者更好的装配。
进一步地,所述定位柱312的数量为多个,多个所述定位柱312相互间隔设置。
所述定位孔115的数量为多个,一所述定位柱312插接于所述定位孔115,将所述第一壳体11和所述第二壳体31定位配合。多个定位柱312和定位孔115的设置,使第一壳体11和第二壳体31的装配效果更好。
参照图5,在本申请的一实施例中,所述第二壳体31的表面设有第一导向斜面3133,所述第一导向斜面3133环绕所述容纳槽313的槽口设置。设置第一导向斜面3133方便凸柱113伸入容纳槽313内,并且便于导引限位凸筋和导向槽1131相互配合。
参照图4,进一步地,所述凸柱113背离所述第一容置腔111的端部设有第二导斜面,所述第二导向斜面1133环绕所述凸柱113设置。设置第二导向斜面1133方便凸柱113伸入容纳槽313内,并且便于进一步地导引防呆凸筋3131和导向槽1131相互配合。以及,该导向凸筋邻近第二壳体31的端部也可以设置第二导向斜面1133,如此设置便于限位凸筋和导向槽1131相互配合。
参照图2、图3,在本申请的一实施例中,所述第二壳体31包括外侧壁315、与所述外侧壁315连接的底壁317和与所述底壁317连接的内侧壁319,所述外侧壁315、所述底壁317和所述内侧壁319共同形成所述第二容置腔311。所述第二壳体31还包括内侧壁319围合形成的容纳槽313,所述容纳槽313的底部槽壁设有贯穿孔(未图示),所述第二壳体31还包括穿过所述贯穿孔的连接柱70,所述连接柱70的一端伸入所述容纳槽313,所述第一壳体11的部分伸入所述容纳槽313,并与所述连接柱70可拆卸连接。第二壳体31的外侧壁315、底壁317和内侧壁319为一体结构,也即第二壳体31的内侧壁319将第二容置腔311和容纳槽313隔开。凸柱113容纳于该容纳槽313内,该凸柱113的外轮廓与容纳槽313的槽壁的形状相适配,从而便于第一壳体11和第二壳体31的装配,同时保证智能地震传感器100的结构合理、紧凑。
在本申请的一实施例中,连接柱70的另一端伸出贯穿孔,智能地震传感器100还包括插接尾椎50,该插接尾椎50与连接柱70可拆卸连接。
进一步地,所述第一壳体11和所述连接柱70的二者之一设有第三螺纹,所述第一壳体11和所述连接柱70的二者之另一设有第四螺纹,所述第三螺纹与所述第四螺纹相互啮合,将所述连接柱70和所述第一壳体11可拆卸连接。连接柱70背离容纳槽313的一端延其径向设有止挡部71,通过转动连接柱70,使连接柱70与第一壳体11螺纹连接,并通过止挡部71抵接第二壳体31,使第一壳体11和第二壳体31通过连接柱70固定,实现可拆卸连接。在本实施例中,该止挡部71大致呈转盘状设置,如此设置方便插接尾椎50插接的稳定。
在本申请的一实施例中,所述智能地震传感器100还包括电源管理器(未图示),所述电源管理器用于反馈所述电源33充放电信息,所述电源管理器与所述电源33电性连接。且/或,所述智能地震传感器100还包括存储器(未图示),所述存储器与所述主控板电性连接。且/或,所述智能地震传感器100还包括发光器(未图示),所述发光器与所述主控板电性连接,并指示所述智能地震传感器100的工作状态。
电源管理器用于反馈电源33的充放电状态以及接收电源33的管理信息,从而对电源33实现更好的管控,便于智能地震传感器100工作。
存储器用于保存智能地震传感器100检测到的数据信号,从而方便用户使用智能地震传感器100。
发光器,用于指示控制器或存储器的工作状态。发光器与控制器电性连接。在本发明实施例中,发光器为LED灯,第一壳体11外部设有可视窗(未图示),通过该可视窗能够从数据采集装置10外部观察到发光器的颜色或闪烁频次。根据发光器的颜色或闪烁频次,能够反馈该数据采集单装置的控制器是否工作正常,也能够反馈存储器的运行、剩余存储空间等状态是否正常等状态。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (16)

  1. 一种智能地震传感器,其特征在于,包括数据采集装置和用于为所述数据采集装置供电的供电装置,所述数据采集装置与所述供电装置可拆卸连接;
    所述数据采集装置包括:
    第一壳体,所述第一壳体形成有第一容置腔,所述第一壳体背离所述第一容置腔的表面凸起形成凸柱;
    检波器,所述检波器容置于所述第一容置腔,并与所述第一壳体固定连接;
    控制板,所述控制板容置于所述第一容置腔,并与所述第一壳体固定连接,所述控制板与所述检波器电性连接;
    所述供电装置包括:
    第二壳体,所述第二壳体形成有第二容置腔和容纳槽,所述第一壳体与所述第二壳体可拆卸连接,所述凸柱的部分伸入所述容纳槽内;
    电源,所述电源容置于所述第二容置腔,并与所述第二壳体固定连接,所述电源与所述控制板、所述检波器电性连接;
    所述凸柱的外侧和所述容纳槽的槽壁的二者之一设有竖直延伸的导向槽,所述凸柱的外侧和所述容纳槽的槽壁的二者之另一设有防呆凸筋,所述防呆凸筋插接于所述导向槽,将所述第一壳体和所述第二壳体装配。
  2. 如权利要求1所述的智能地震传感器,其特征在于,所述导向槽设于所述凸柱的外侧,所述防呆凸筋设于所述容纳槽的槽壁,所述导向槽的数量为多个,多个所述导向槽沿所述凸柱的周缘间隔排布;
    所述防呆凸筋的数量为多个,一所述防呆凸筋插接于一所述导向槽内。
  3. 如权利要求2所述的智能地震传感器,其特征在于,一所述导向槽与邻近其的两所述导向槽之间的间隔距离不同。
  4. 如权利要求1所述的智能地震传感器,其特征在于,所述第一壳体的下表面和所述第二壳体的上表面的二者之一还凸设有定位柱,所述第一壳体的下表面和所述第二壳体的上表面的二者之另一还凹设有定位孔,所述定位柱插接于所述定位孔,将所述第一壳体和所述第二壳体定位配合。
  5. 如权利要求4所述的智能地震传感器,其特征在于,所述定位柱的数量为多个,多个所述定位柱相互间隔设置;
    所述定位孔的数量为多个,一所述定位柱插接于所述定位孔,将所述第一壳体和所述第二壳体定位配合。
  6. 如权利要求1所述的智能地震传感器,其特征在于,所述第二壳体的表面设有第一导向斜面,所述第一导向斜面环绕所述容纳槽的槽口设置。
  7. 如权利要求1所述的智能地震传感器,其特征在于,所述凸柱背离所述第一容置腔的端部设有第二导斜面,所述第二导向斜面环绕所述凸柱设置。
  8. 如权利要求2所述的智能地震传感器,其特征在于,所述凸柱背离所述第一容置腔的端部设有第二导斜面,所述第二导向斜面环绕所述凸柱设置。
  9. 如权利要求3所述的智能地震传感器,其特征在于,所述凸柱背离所述第一容置腔的端部设有第二导斜面,所述第二导向斜面环绕所述凸柱设置。
  10. 如权利要求4所述的智能地震传感器,其特征在于,所述凸柱背离所述第一容置腔的端部设有第二导斜面,所述第二导向斜面环绕所述凸柱设置。
  11. 如权利要求5所述的智能地震传感器,其特征在于,所述凸柱背离所述第一容置腔的端部设有第二导斜面,所述第二导向斜面环绕所述凸柱设置。
  12. 如权利要求6所述的智能地震传感器,其特征在于,所述凸柱背离所述第一容置腔的端部设有第二导斜面,所述第二导向斜面环绕所述凸柱设置。
  13. 如权利要求6所述的智能地震传感器,其特征在于,所述第二壳体包括外侧壁、与所述外侧壁连接的底壁和与所述底壁连接的内侧壁,所述外侧壁、所述底壁和所述内侧壁共同形成所述第二容置腔,所述第二壳体还包括内侧壁围合形成的容纳槽,所述容纳槽的底部槽壁设有贯穿孔,所述第二壳体还包括穿过所述贯穿孔的连接柱,所述连接柱的一端伸入所述容纳槽,所述第一壳体的部分伸入所述容纳槽,并与所述连接柱可拆卸连接。
  14. 如权利要求6所述的智能地震传感器,其特征在于,所述第一壳体和所述连接柱的二者之一设有第三螺纹,所述第一壳体和所述连接柱的二者之另一设有第四螺纹,所述第三螺纹与所述第四螺纹相互啮合,将所述连接柱和所述第一壳体可拆卸连接。
  15. 如权利要求13所述的智能地震传感器,其特征在于,所述智能地震传感器还包括电源管理器,所述电源管理器用于反馈所述电源充放电信息,所述电源管理器与所述电源电性连接;
    且/或,所述智能地震传感器还包括存储器,所述存储器与所述主控板电性连接;
    且/或,所述智能地震传感器还包括发光器,所述发光器与所述主控板电性连接,并指示所述智能地震传感器的工作状态。
  16. 如权利要求14所述的智能地震传感器,其特征在于,所述智能地震传感器还包括电源管理器,所述电源管理器用于反馈所述电源充放电信息,所述电源管理器与所述电源电性连接;
    且/或,所述智能地震传感器还包括存储器,所述存储器与所述主控板电性连接;
    且/或,所述智能地震传感器还包括发光器,所述发光器与所述主控板电性连接,并指示所述智能地震传感器的工作状态。
PCT/CN2018/107562 2018-08-10 2018-09-26 智能地震传感器 WO2020029398A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821317118.7 2018-08-10
CN201821317118.7U CN208621768U (zh) 2018-08-10 2018-08-10 智能地震传感器

Publications (1)

Publication Number Publication Date
WO2020029398A1 true WO2020029398A1 (zh) 2020-02-13

Family

ID=65715808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107562 WO2020029398A1 (zh) 2018-08-10 2018-09-26 智能地震传感器

Country Status (2)

Country Link
CN (1) CN208621768U (zh)
WO (1) WO2020029398A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953636B2 (en) 2022-03-04 2024-04-09 Fleet Space Technologies Pty Ltd Satellite-enabled node for ambient noise tomography

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208860965U (zh) * 2018-08-10 2019-05-14 深圳面元智能科技有限公司 智能地震传感器
CN110333529B (zh) * 2019-08-06 2024-06-04 深圳面元智能科技有限公司 地震数据采集及传输系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060009911A1 (en) * 2002-04-24 2006-01-12 Ascend Geo, Llc Methods and systems for acquiring and processing seismic data
ES2402512A2 (es) * 2011-10-10 2013-05-06 Aplicaciones Geofísicas Y Ciencias Del Subsuelo, S.L. Geófono de prospección sísmica para la caracterización del subsuelo, y sistema de prospección que incorpora dicho geófono
CN103969679A (zh) * 2013-02-04 2014-08-06 英洛瓦(天津)物探装备有限责任公司 可配置的获取单元
CN104854477A (zh) * 2012-11-02 2015-08-19 费尔菲尔德工业公司 用于地震数据采集的陆基单元
CN106249280A (zh) * 2016-10-17 2016-12-21 北京达耐美贸易有限公司 一种智能数字地震检波器
CN207067415U (zh) * 2017-07-14 2018-03-02 威海双丰物探设备股份有限公司 一种结点型矿用无缆检波器
CN207232402U (zh) * 2016-10-17 2018-04-13 北京达耐美科技有限公司 一种智能数字地震检波器及地震勘探系统
CN108318915A (zh) * 2018-01-31 2018-07-24 连琼娥 一种具有在线发电功能的用于石油勘探的检波设备
CN108594296A (zh) * 2018-08-10 2018-09-28 深圳面元智能科技有限公司 智能地震传感器
CN208621766U (zh) * 2018-08-10 2019-03-19 深圳面元智能科技有限公司 智能地震传感器
CN208621767U (zh) * 2018-08-10 2019-03-19 深圳面元智能科技有限公司 智能地震传感器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060009911A1 (en) * 2002-04-24 2006-01-12 Ascend Geo, Llc Methods and systems for acquiring and processing seismic data
ES2402512A2 (es) * 2011-10-10 2013-05-06 Aplicaciones Geofísicas Y Ciencias Del Subsuelo, S.L. Geófono de prospección sísmica para la caracterización del subsuelo, y sistema de prospección que incorpora dicho geófono
CN104854477A (zh) * 2012-11-02 2015-08-19 费尔菲尔德工业公司 用于地震数据采集的陆基单元
CN103969679A (zh) * 2013-02-04 2014-08-06 英洛瓦(天津)物探装备有限责任公司 可配置的获取单元
CN106249280A (zh) * 2016-10-17 2016-12-21 北京达耐美贸易有限公司 一种智能数字地震检波器
CN207232402U (zh) * 2016-10-17 2018-04-13 北京达耐美科技有限公司 一种智能数字地震检波器及地震勘探系统
CN207067415U (zh) * 2017-07-14 2018-03-02 威海双丰物探设备股份有限公司 一种结点型矿用无缆检波器
CN108318915A (zh) * 2018-01-31 2018-07-24 连琼娥 一种具有在线发电功能的用于石油勘探的检波设备
CN108594296A (zh) * 2018-08-10 2018-09-28 深圳面元智能科技有限公司 智能地震传感器
CN208621766U (zh) * 2018-08-10 2019-03-19 深圳面元智能科技有限公司 智能地震传感器
CN208621767U (zh) * 2018-08-10 2019-03-19 深圳面元智能科技有限公司 智能地震传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953636B2 (en) 2022-03-04 2024-04-09 Fleet Space Technologies Pty Ltd Satellite-enabled node for ambient noise tomography

Also Published As

Publication number Publication date
CN208621768U (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
WO2020029398A1 (zh) 智能地震传感器
US8864517B2 (en) Power transmission module
US5729478A (en) Notebook computer with insertable expansion devices
WO2020029396A1 (zh) 智能地震传感器
US8794997B2 (en) Wall outlet type USB hub with independent charging function
CN106249280B (zh) 一种智能数字地震检波器
CN1160823C (zh) 便携电池充电器
WO2021022881A1 (zh) 辅助参数记录仪
WO2020029397A1 (zh) 智能地震传感器
CN208621766U (zh) 智能地震传感器
CN209182472U (zh) 一种抽屉式电池测试装置
US20070086153A1 (en) Display base cable management system and method
CN203720408U (zh) 追踪跳线结构
CN108241413A (zh) 服务器机架
WO2020029399A1 (zh) 智能地震传感器
WO2017166853A1 (zh) 硬盘存储装置
CN107706765B (zh) 一种桌下电源管理器
KR102121611B1 (ko) 전자 기기 충전 장비
CN217360020U (zh) 一种便携智能fpc排线测试仪
CN108828278A (zh) 一种电池测试系统
CN212229206U (zh) 一种便携式安检门
US20070243754A1 (en) Method for safely removing connecting device of peripheral equipment of computer
CN108776312A (zh) 一种电池测试装置
CN209182358U (zh) 一种电池测试系统
CN209182464U (zh) 机架以及电池测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929155

Country of ref document: EP

Kind code of ref document: A1