WO2020029024A1 - 飞行路径配置方法和装置 - Google Patents

飞行路径配置方法和装置 Download PDF

Info

Publication number
WO2020029024A1
WO2020029024A1 PCT/CN2018/099010 CN2018099010W WO2020029024A1 WO 2020029024 A1 WO2020029024 A1 WO 2020029024A1 CN 2018099010 W CN2018099010 W CN 2018099010W WO 2020029024 A1 WO2020029024 A1 WO 2020029024A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
flight path
aerial vehicle
unmanned aerial
base station
Prior art date
Application number
PCT/CN2018/099010
Other languages
English (en)
French (fr)
Inventor
洪伟
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US17/266,557 priority Critical patent/US20210295712A1/en
Priority to CN201880001764.9A priority patent/CN109155668B/zh
Priority to PCT/CN2018/099010 priority patent/WO2020029024A1/zh
Priority to EP18929785.6A priority patent/EP3836728A4/en
Publication of WO2020029024A1 publication Critical patent/WO2020029024A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0004Transmission of traffic-related information to or from an aircraft
    • G08G5/0013Transmission of traffic-related information to or from an aircraft with a ground station
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/003Flight plan management
    • G08G5/0034Assembly of a flight plan
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/006Navigation or guidance aids for a single aircraft in accordance with predefined flight zones, e.g. to avoid prohibited zones
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications

Definitions

  • the disclosure relates to the field of communication technology, and in particular, to a flight path configuration method, a flight path configuration device, an electronic device, and a computer-readable storage medium.
  • Flight path information is sent to the drone.
  • this method of configuring a flight path for an unmanned aerial vehicle requires establishing a proprietary link, and the configuration process is complicated.
  • embodiments of the present disclosure propose a flight path configuration method, a flight path configuration device, an electronic device, and a computer-readable storage medium.
  • a method for configuring a flight path including:
  • the acquiring the flight path information of the unmanned aerial vehicle includes:
  • the flight path information is obtained from a terminal running an unmanned aerial vehicle management system, wherein the unmanned aerial vehicle management system is configured to configure the flight path information for the unmanned aerial vehicle.
  • the first signaling includes at least one of the following:
  • the sending the first signaling to the base station includes:
  • an initial context establishment request signaling is sent to the base station.
  • the sending the first signaling to the base station includes:
  • the flight path information is acquired, and user equipment context modification request signaling is sent to the base station.
  • the second signaling includes at least one of the following:
  • Radio resource control signaling medium access control layer control unit.
  • a method for configuring a flight path including:
  • first signaling sent by a core network, wherein the first signaling includes flight path information of an unmanned aerial vehicle, and the first signaling is used to instruct the base station to convert the flight path through the second signaling Information is sent to the unmanned aerial vehicle, and the unmanned aerial vehicle is in a connected state;
  • the second signaling includes at least one of the following:
  • Radio resource control signaling medium access control layer control unit.
  • a method for configuring a flight path including:
  • Second signaling sent by a base station where the second signaling is generated by the base station according to first signaling sent by a core network, where the first signaling includes flight path information of an unmanned aerial vehicle, and The first signaling is used to instruct the base station to send the flight path information to the unmanned aerial vehicle through the second signaling, and the unmanned aerial vehicle is in a connected state;
  • a flight path is configured according to the flight path information.
  • the second signaling includes at least one of the following:
  • Radio resource control signaling medium access control layer control unit.
  • a flight path configuration device including:
  • An information acquisition module configured to acquire flight path information of an unmanned aerial vehicle, wherein the unmanned aerial vehicle is in a connected state;
  • a base station determination module configured to determine a base station that has a communication connection with the unmanned aerial vehicle
  • a first sending module configured to send first signaling to the base station, wherein the first signaling includes the flight path information, and the first signaling is used to instruct the base station to pass the second signaling Sending the flight path information to the unmanned aerial vehicle.
  • the information acquisition module is configured to acquire the flight path information from a terminal running an unmanned aerial vehicle management system, wherein the unmanned aerial vehicle management system is configured to configure flight path information for the unmanned aerial vehicle.
  • the first signaling includes at least one of the following:
  • the signaling sending module is configured to send an initial context establishment request to the base station if the flight path information has been obtained when the communication connection with the unmanned aerial vehicle is first established through the base station Signaling.
  • the signaling sending module is configured to, if a communication connection has been established with the unmanned aerial vehicle through the base station, obtain the flight path information, and send user equipment to the base station Context modification request signaling.
  • the second signaling includes at least one of the following:
  • Radio resource control signaling medium access control layer control unit.
  • a flight path configuration device including:
  • a first receiving module configured to receive first signaling sent by a core network, wherein the first signaling includes flight path information of an unmanned aerial vehicle, and the first signaling is used to instruct the base station to pass The signaling will send the flight path information to the unmanned aerial vehicle, and the unmanned aerial vehicle is in a connected state;
  • a signaling generating module configured to generate the second signaling according to the first signaling
  • a second sending module is configured to send the second signaling to the unmanned aerial vehicle, wherein the second signaling includes flight path information of the unmanned aerial vehicle.
  • the second signaling includes at least one of the following:
  • Radio resource control signaling medium access control layer control unit.
  • a flight path configuration device including:
  • the second receiving module is configured to receive second signaling sent by the base station, where the second signaling is generated by the base station according to the first signaling sent by the core network, and the first signaling includes unmanned Flight path information of the aircraft, the first signaling is used to instruct the base station to send the flight path information to the unmanned aerial vehicle through the second signaling, and the unmanned aerial vehicle is in a connected state;
  • An information extraction module configured to extract the flight path information from the second signaling
  • the path configuration module is configured to configure a flight path according to the flight path information.
  • the second signaling includes at least one of the following:
  • Radio resource control signaling medium access control layer control unit.
  • an electronic device including:
  • Memory for storing processor-executable instructions
  • the processor is configured to implement the method described in any one of the foregoing embodiments.
  • a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the steps in the method according to any one of the foregoing embodiments are implemented.
  • the flight path information from the core network can be directly sent to the unmanned aerial vehicle through the base station, so the first step is to Determining a base station having a communication connection with the unmanned aerial vehicle, and then sending a first signaling including the flight path information to the base station having a communication connection with the unmanned aerial vehicle, and instructing the base station to send the first signaling through the second signaling to the base station through the second signaling;
  • the flight path information is sent to the unmanned aerial vehicle, so that the flight path information is sent from the core network to the connected unmanned aerial vehicle for the unmanned aerial vehicle to configure the flight path based on the flight path information.
  • the configuration of the flight path can be completed based on the operator's network without the need to establish a proprietary link, and the configuration process is relatively simple.
  • FIG. 1 is a schematic flowchart illustrating a flight path configuration method according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic flowchart illustrating another flight path configuration method according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart illustrating still another flight path configuration method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart illustrating still another flight path configuration method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart illustrating still another flight path configuration method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart illustrating still another flight path configuration method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram illustrating interaction between a core network, a base station, and an unmanned aerial vehicle according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic block diagram illustrating a flight path configuration device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic block diagram illustrating still another flight path configuration device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic block diagram illustrating still another flight path configuration device according to an embodiment of the present disclosure.
  • Fig. 11 is a schematic structural diagram of a device for flight path configuration according to an embodiment of the present disclosure.
  • Fig. 12 is a schematic block diagram of a device for flight path configuration according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic flowchart illustrating a flight path configuration method according to an embodiment of the present disclosure.
  • the flight path configuration method shown in this embodiment may be applicable to a core network, where the core network may communicate with a base station, the base station may communicate with user equipment, and the user equipment may be an unmanned aerial vehicle, and the unmanned The aircraft may be an unmanned aerial vehicle, an unmanned airship, etc.
  • the base station and the user equipment may communicate based on LTE (Long Term Evolution, Long Term Evolution), and may also communicate based on NR (New Radio).
  • LTE Long Term Evolution, Long Term Evolution
  • NR New Radio
  • the flight path configuration method includes:
  • step S11 the flight path information of the unmanned aerial vehicle is acquired, wherein the unmanned aerial vehicle is in a connected state.
  • the flight path information may be configured by an unmanned aerial vehicle management system.
  • the unmanned aerial vehicle management system may be, for example, UTM (UAS Traffic Management).
  • UAS Unmanned Aircraft System
  • An aircraft system, the unmanned aerial vehicle management system may run on a terminal, and a core network and the terminal may have a communication connection, so that flight path information of the unmanned aerial vehicle may be obtained from the terminal.
  • the unmanned aerial vehicle is in a connected state, which refers to a state in which there is a communication connection between the unmanned aerial vehicle and the base station. Due to the communication connection between the base station and the core network, the core network can determine Whether the communication connection is disconnected between the UAV and the UAV, for example, when there is data transmission between the UAV and the base station, it can be determined that there is a communication connection between the UAV and the base station, that is, in a connected state, when there is no data transmission between the UAV and the base station , It can be determined that the UAV is disconnected from the communication connection with the base station.
  • step S12 a base station having a communication connection with the unmanned aerial vehicle is determined.
  • the core network can determine that there is a communication connection between the unmanned aerial vehicle and that base station, so that subsequent transmissions to the unmanned aerial vehicle through the base station Flight path information.
  • step S13 first signaling is sent to the base station, where the first signaling includes the flight path information, and the first signaling is used to instruct the base station to send the signaling to the base station through second signaling. Flight path information is sent to the unmanned aerial vehicle.
  • the flight path information from the core network can be directly sent to the unmanned aerial vehicle through the base station, so it can be determined first A base station having a communication connection with the unmanned aerial vehicle, and further sending a first signaling including the flight path information to the base station having a communication connection with the unmanned aerial vehicle, and instructing the base station to send the flight through the second signaling through the first signaling.
  • the path information is sent to the unmanned aerial vehicle, so that the flight path information is sent from the core network to the connected unmanned aerial vehicle for the unmanned aerial vehicle to configure the flight path based on the flight path information.
  • the configuration of the flight path can be completed based on the operator's network without the need to establish a proprietary link, and the configuration process is relatively simple.
  • FIG. 2 is a schematic flowchart illustrating another flight path configuration method according to an embodiment of the present disclosure.
  • the acquiring flight path information of an unmanned aerial vehicle includes:
  • step S111 the flight path information is acquired from a terminal running an unmanned aerial vehicle management system, wherein the unmanned aerial vehicle management system is configured to configure flight path information for the unmanned aerial vehicle.
  • the flight path information may be configured by an unmanned aerial vehicle management system, the unmanned aerial vehicle management system may run on a terminal, and a communication connection may exist between the core network and the terminal, which may further Acquiring flight path information of the unmanned aerial vehicle from the terminal.
  • the terminal running the unmanned aerial vehicle management system may be a server, a remote controller, and other devices.
  • the first signaling includes at least one of the following:
  • the core network may send different first signalings to the base station based on the relationship between the timing of acquiring the flight path information and the connection status of the unmanned aerial vehicle and the base station. The details will be described in the subsequent embodiments.
  • FIG. 3 is a schematic flowchart illustrating still another flight path configuration method according to an embodiment of the present disclosure. As shown in FIG. 3, based on the embodiment shown in FIG. 1, the sending first signaling to the base station includes:
  • step S131 if the flight path information has been obtained when the communication connection with the unmanned aerial vehicle is first established through the base station, an initial context establishment request signaling (INITIAL CONTEXT SETUP REQUEST) is sent to the base station.
  • INITIAL CONTEXT SETUP REQUEST an initial context establishment request signaling
  • the flight path information has been acquired, and the configuration of the flying path for the unmanned aerial vehicle can be regarded as the initial configuration, so that the base station can be provided to the base station.
  • the format of the initial context establishment request signaling may be as shown in Table 1:
  • the core network may send an initial context establishment request signaling to the base station through the S1 interface, and the Flight Path Information in the initial context establishment request signaling is flight path information.
  • FIG. 4 is a schematic flowchart illustrating still another flight path configuration method according to an embodiment of the present disclosure. As shown in FIG. 4, based on the embodiment shown in FIG. 1, the sending first signaling to the base station includes:
  • step S132 if a communication connection has been established with the unmanned aerial vehicle through the base station, the flight path information is obtained, and a user equipment context modification request signaling (UE Context Modification) is sent to the base station. Request).
  • UE Context Modification user equipment context modification request signaling
  • the configuration of the flight path for the unmanned aerial vehicle can be regarded as the initial It is configured so that the initial context establishment request signaling can be sent to the base station, and the flight path information is carried in the initial context establishment request signaling.
  • the format of the user equipment context modification request signaling may be as shown in Table 2:
  • the core network may send user equipment context modification request signaling to the base station through the S1 interface, and Flight Path Information in the user equipment context modification request signaling is flight path information.
  • the second signaling includes at least one of the following:
  • Radio resource control signaling medium access control layer control unit.
  • the core network may instruct the base station to send the flight through radio resource control (RRC, Radio Resource Control) signaling or a media access control layer control unit (MAC, CE, Media Access Control).
  • RRC Radio Resource Control
  • MAC media access control layer control unit
  • Path information is sent to the UAV. Specifically, whether to carry the flight path information to the unmanned aerial vehicle through the RRC signaling or the medium access control layer control unit can be selected as required.
  • FIG. 5 is a schematic flowchart illustrating still another flight path configuration method according to an embodiment of the present disclosure.
  • the flight path configuration method shown in this embodiment may be applicable to a base station, the base station may communicate with a core network, the base station may communicate with user equipment, the user equipment may be an unmanned aerial vehicle, and the unmanned aerial vehicle It can be an unmanned aerial vehicle, an unmanned airship, etc., where the base station and the user equipment can communicate based on LTE or can communicate based on NR.
  • the flight path configuration method includes:
  • step S21 a first signaling sent by a core network is received, wherein the first signaling includes flight path information of an unmanned aerial vehicle, and the first signaling is used to instruct the base station to send Sending the flight path information to the unmanned aerial vehicle, and the unmanned aerial vehicle is in a connected state;
  • step S22 the second signaling is generated according to the first signaling
  • step S23 the second signaling is sent to the unmanned aerial vehicle, wherein the second signaling includes flight path information of the unmanned aerial vehicle.
  • the base station may directly send the flight path information to the communication system after receiving the flight path information sent by the core network.
  • the base station may directly send the flight path information to the communication system after receiving the flight path information sent by the core network.
  • the core network may first determine a base station having a communication connection with the unmanned aerial vehicle, and then send the first signaling including the flight path information to the determined base station, and instruct the base station to send the flight through the second signaling through the first signaling.
  • the path information is sent to the unmanned aerial vehicle.
  • the base station can generate a second signaling including the flight path information, and then send the second signaling to the unmanned aerial vehicle, thereby realizing the flight path.
  • Information is sent from the core network to the connected unmanned aerial vehicle for the unmanned aerial vehicle to configure the flight path based on the flight path information.
  • the configuration of the flight path can be completed based on the operator's network without the need to establish a proprietary link, and the configuration process is relatively simple.
  • the second signaling includes at least one of the following:
  • Radio resource control signaling medium access control layer control unit.
  • the base station may send the flight path information to the unmanned aerial vehicle through radio resource control signaling or a medium access control layer control unit. Specifically, whether to carry the flight path information to the unmanned aerial vehicle through the RRC signaling or the medium access control layer control unit can be selected as required.
  • FIG. 6 is a schematic flowchart illustrating still another flight path configuration method according to an embodiment of the present disclosure.
  • the flight path configuration method shown in this embodiment can be applied to an unmanned aerial vehicle.
  • the unmanned aerial vehicle can be an unmanned aerial vehicle, an unmanned airship, and the like.
  • the base station and the unmanned aerial vehicle can communicate based on LTE or NR .
  • the flight path configuration method includes:
  • step S31 a second signaling sent by the base station is received, wherein the second signaling is generated by the base station according to the first signaling sent by the core network, and the first signaling includes the flight of an unmanned aerial vehicle Path information, the first signaling is used to instruct the base station to send the flight path information to the unmanned aerial vehicle through the second signaling, and the unmanned aerial vehicle is in a connected state;
  • step S32 extract the flight path information from the second signaling
  • step S33 a flight path is configured according to the flight path information.
  • the base station may directly send the flight path information to the communication system after receiving the flight path information sent by the core network.
  • the base station may directly send the flight path information to the communication system after receiving the flight path information sent by the core network.
  • the core network may first determine a base station having a communication connection with the unmanned aerial vehicle, and then send the first signaling including the flight path information to the determined base station, and instruct the base station to send the flight through the second signaling through the first signaling.
  • the path information is sent to the unmanned aerial vehicle.
  • the base station can generate a second signaling including the flight path information, and then send the second signaling to the unmanned aerial vehicle, thereby realizing the flight path.
  • Information is sent from the core network to the connected unmanned aerial vehicle.
  • the unmanned aerial vehicle can configure the flight path based on the flight path information.
  • the configuration of the flight path can be completed based on the operator's network without the need to establish a proprietary link, and the configuration process is relatively simple.
  • the second signaling includes at least one of the following:
  • Radio resource control signaling medium access control layer control unit.
  • the base station may send the flight path information to the unmanned aerial vehicle through radio resource control signaling or a medium access control layer control unit.
  • the aircraft may also obtain the flight path information by receiving radio resource control signaling or a medium access control layer control unit. Specifically, whether to receive the radio path information by receiving the radio resource control signaling or the medium access control layer control unit can be selected according to the signaling sent by the base station.
  • FIG. 7 is a schematic diagram illustrating interaction between a core network, a base station, and an unmanned aerial vehicle according to an embodiment of the present disclosure.
  • the core network may send the first signaling to the base station having a communication connection with the unmanned aerial vehicle.
  • the first signaling contains the flight path information.
  • the first signaling may instruct the base station to send the flight path information to the unmanned aerial vehicle through the second signaling.
  • the base station After receiving the first signaling, the base station can generate the second signaling according to the first signaling.
  • the second signaling contains flight path information.
  • the base station sends the second signaling to the unmanned aerial vehicle. After the communication connection exists, the second signaling may be directed to the unmanned aerial vehicle.
  • the unmanned aerial vehicle After receiving the second signaling, the unmanned aerial vehicle can obtain the flight path information because the second signaling includes the flight path information, and then configure the flight path according to the flight path information, and thus fly according to the configured flight path.
  • the present disclosure also provides an embodiment of a flight path configuration device.
  • FIG. 8 is a schematic block diagram illustrating a flight path configuration device according to an embodiment of the present disclosure.
  • the flight path configuration device shown in this embodiment may be applicable to a core network, the core network may communicate with a base station, the base station may communicate with user equipment, and the user equipment may be an unmanned aerial vehicle, and the unmanned
  • the aircraft may be an unmanned aerial vehicle, an unmanned airship, and the like, wherein the base station and the user equipment may communicate based on LTE or may communicate based on NR.
  • the flight path configuration device includes:
  • the information acquisition module 11 is configured to acquire flight path information of an unmanned aerial vehicle, wherein the unmanned aerial vehicle is in a connected state;
  • a base station determining module 12 configured to determine a base station having a communication connection with the unmanned aerial vehicle
  • the first sending module 13 is configured to send first signaling to the base station, where the first signaling includes the flight path information, and the first signaling is used to instruct the base station to pass the second signaling Order the flight path information to be sent to the unmanned aerial vehicle.
  • the information acquisition module is configured to acquire the flight path information from a terminal running an unmanned aerial vehicle management system, wherein the unmanned aerial vehicle management system is configured to configure flight path information for the unmanned aerial vehicle.
  • the first signaling includes at least one of the following:
  • the signaling sending module is configured to send an initial context establishment request to the base station if the flight path information has been obtained when the communication connection with the unmanned aerial vehicle is first established through the base station Signaling.
  • the signaling sending module is configured to, if a communication connection has been established with the unmanned aerial vehicle through the base station, obtain the flight path information, and send user equipment to the base station Context modification request signaling.
  • the second signaling includes at least one of the following:
  • Radio resource control signaling medium access control layer control unit.
  • FIG. 9 is a schematic block diagram illustrating still another flight path configuration device according to an embodiment of the present disclosure.
  • the flight path configuration device shown in this embodiment may be applicable to a base station, the base station may communicate with a core network, the base station may communicate with user equipment, the user equipment may be an unmanned aerial vehicle, and the unmanned aerial vehicle It can be an unmanned aerial vehicle, an unmanned airship, etc., where the base station and the user equipment can communicate based on LTE or can communicate based on NR.
  • the flight path configuration device includes:
  • the first receiving module 21 is configured to receive first signaling sent by a core network, wherein the first signaling includes flight path information of an unmanned aerial vehicle, and the first signaling is used to instruct the base station to pass the first Two signalings will send the flight path information to the unmanned aerial vehicle, and the unmanned aerial vehicle is in a connected state;
  • a signaling generating module 22 configured to generate the second signaling according to the first signaling
  • a second sending module 23 is configured to send the second signaling to the unmanned aerial vehicle, wherein the second signaling includes flight path information of the unmanned aerial vehicle.
  • the second signaling includes at least one of the following:
  • Radio resource control signaling medium access control layer control unit.
  • FIG. 10 is a schematic block diagram illustrating still another flight path configuration device according to an embodiment of the present disclosure.
  • the flight path configuration device shown in this embodiment may be applied to an unmanned aerial vehicle.
  • the unmanned aerial vehicle may be an unmanned aerial vehicle, an unmanned airship, and the like.
  • the base station and the unmanned aerial vehicle may communicate based on LTE or NR .
  • the flight path configuration device includes:
  • the second receiving module 31 is configured to receive the second signaling sent by the base station, where the second signaling is generated by the base station according to the first signaling sent by the core network, and the first signaling includes no Flying path information of a human aircraft, the first signaling is used to instruct the base station to send the flying path information to the unmanned aerial vehicle through a second signaling, and the unmanned aerial vehicle is in a connected state;
  • An information extraction module 32 configured to extract the flight path information from the second signaling
  • the path configuration module 33 is configured to configure a flight path according to the flight path information.
  • the second signaling includes at least one of the following:
  • Radio resource control signaling medium access control layer control unit.
  • the relevant part may refer to the description of the method embodiment.
  • the device embodiments described above are only schematic, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, may be located One place, or it can be distributed across multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the objective of the solution of this embodiment. Those of ordinary skill in the art can understand and implement without creative efforts.
  • An embodiment of the present disclosure also proposes an electronic device, including:
  • Memory for storing processor-executable instructions
  • the processor is configured to implement the method described in any one of the foregoing embodiments.
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps in the method according to any one of the foregoing embodiments are implemented.
  • FIG. 11 is a schematic structural diagram of a device 1100 for flight path configuration according to an embodiment of the present disclosure.
  • the apparatus 1100 may be provided as a base station. 11, the device 1100 includes a processing component 1122, a wireless transmitting / receiving component 1124, an antenna component 1126, and a signal processing portion unique to a wireless interface.
  • the processing component 1122 may further include one or more processors. One of the processors in the processing component 1122 may be configured to implement the method described in any one of the above embodiments.
  • Fig. 12 is a schematic block diagram of a device 1200 for flight path configuration according to an embodiment of the present disclosure.
  • the device 1200 may be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness equipment, a personal digital assistant, and the like.
  • the device 1200 may include one or more of the following components: a processing component 1202, a memory 1204, a power component 1206, a multimedia component 1208, an audio component 1210, an input / output (I / O) interface 1212, a sensor component 1214, And communication component 1216.
  • a processing component 1202 a memory 1204, a power component 1206, a multimedia component 1208, an audio component 1210, an input / output (I / O) interface 1212, a sensor component 1214, And communication component 1216.
  • the processing component 1202 generally controls overall operations of the device 1200, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 1202 may include one or more processors 1220 to execute instructions to complete all or part of the steps of the method described above.
  • the processing component 1202 may include one or more modules to facilitate interaction between the processing component 1202 and other components.
  • the processing component 1202 may include a multimedia module to facilitate the interaction between the multimedia component 1208 and the processing component 1202.
  • the memory 1204 is configured to store various types of data to support operation at the device 1200. Examples of such data include instructions for any application or method operating on the device 1200, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 1204 may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), Programming read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM Programming read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power supply assembly 1206 provides power to various components of the device 1200.
  • the power component 1206 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for the device 1200.
  • the multimedia component 1208 includes a screen that provides an output interface between the device 1200 and a user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive an input signal from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect duration and pressure related to the touch or slide operation.
  • the multimedia component 1208 includes a front camera and / or a rear camera. When the device 1200 is in an operation mode, such as a shooting mode or a video mode, the front camera and / or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 1210 is configured to output and / or input audio signals.
  • the audio component 1210 includes a microphone (MIC) that is configured to receive an external audio signal when the device 1200 is in an operation mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in the memory 1204 or transmitted via the communication component 1216.
  • the audio component 1210 further includes a speaker for outputting audio signals.
  • the I / O interface 1212 provides an interface between the processing component 1202 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor assembly 1214 includes one or more sensors for providing status assessment of various aspects of the device 1200.
  • the sensor component 1214 can detect the on / off state of the device 1200 and the relative positioning of the components, such as the display and keypad of the device 1200.
  • the sensor component 1214 can also detect the change in the position of the device 1200 or a component of the device 1200 , The presence or absence of the user's contact with the device 1200, the orientation or acceleration / deceleration of the device 1200, and the temperature change of the device 1200.
  • the sensor assembly 1214 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • the sensor component 1214 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1214 may further include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 1216 is configured to facilitate wired or wireless communication between the device 1200 and other devices.
  • the device 1200 may access a wireless network based on a communication standard, such as WiFi, 2G, or 3G, or a combination thereof.
  • the communication component 1216 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 1216 further includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra wideband
  • Bluetooth Bluetooth
  • the device 1200 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor, or other electronic component is implemented to perform the method described in any one of the above embodiments.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor, or other electronic component is implemented to perform the method described in any one of the above embodiments.
  • a non-transitory computer-readable storage medium including instructions such as a memory 1204 including instructions, may be provided, which may be executed by the processor 1220 of the device 1200 to complete the foregoing method.
  • the non-transitory computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Automation & Control Theory (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开的实施例涉及飞行路径配置方法,包括:获取无人飞行器的飞行路径信息,其中,所述无人飞行器处于连接态;确定与所述无人飞行器存在通信连接的基站;向所述基站发送第一信令,其中,所述第一信令包含所述飞行路径信息,所述第一信令用于指示所述基站通过第二信令将所述飞行路径信息发送至所述无人飞行器。根据本公开的实施例,相对于相关技术而言,可以基于运营商的网络完成飞行路径的配置,无需建立专有链路,配置过程较为简单。

Description

飞行路径配置方法和装置 技术领域
本公开设置通信技术领域,具体而言,涉及飞行路径配置方法、飞行路径配置装置、电子设备和计算机可读存储介质。
背景技术
在相关技术中,针对无人飞行器进行飞行路径配置时,需要通过专有链路将飞行路径信息发送给无人飞行器,例如通过与无人飞行器之间的WiFi连接,或者卫星转发的方式,将飞行路径信息发送给无人飞行器。
目前这种为无人飞行器配置飞行路径的方式,需要建立专有链路,配置过程较为繁琐。
发明内容
有鉴于此,本公开的实施例提出了飞行路径配置方法、飞行路径配置装置、电子设备和计算机可读存储介质。
根据本公开实施例第一方面,提出一种飞行路径配置方法,包括:
获取无人飞行器的飞行路径信息,其中,所述无人飞行器处于连接态;
确定与所述无人飞行器存在通信连接的基站;
向所述基站发送第一信令,其中,所述第一信令包含所述飞行路径信息,所述第一信令用于指示所述基站通过第二信令将所述飞行路径信息发送至所述无人飞行器。
可选地,所述获取无人飞行器的飞行路径信息包括:
从运行无人飞行器管理系统的终端获取所述飞行路径信息,其中,所述无人飞行器管理系统用于为所述无人飞行器配置飞行路径信息。
可选地,所述第一信令包括以下至少之一:
初始上下文建立请求信令、用户设备上下文修改请求信令。
可选地,所述向所述基站发送第一信令包括:
若在通过所述基站与所述无人飞行器初次建立通信连接时,已获取到所述飞行路径信息,向所述基站发送初始上下文建立请求信令。
可选地,所述向所述基站发送第一信令包括:
若在已通过所述基站与所述无人飞行器建立了通信连接的情况下,获取到所述飞行路径信息,向所述基站发送用户设备上下文修改请求信令。
可选地,所述第二信令包括以下至少之一:
无线资源控制信令,介质访问控制层控制单元。
根据本公开实施例第二方面,提出一种飞行路径配置方法,包括:
接收核心网发送的第一信令,其中,所述第一信令包含无人飞行器的飞行路径信息,所述第一信令用于指示所述基站通过第二信令将将所述飞行路径信息发送至所述无人飞行器,所述无人飞行器处于连接态;
根据所述第一信令生成所述第二信令;
向所述无人飞行器发送所述第二信令,其中,所述第二信令包含无人飞行器的飞行路径信息。
可选地,所述第二信令包括以下至少之一:
无线资源控制信令,介质访问控制层控制单元。
根据本公开实施例第三方面,提出一种飞行路径配置方法,包括:
接收基站发送的第二信令,其中,所述第二信令为所述基站根据核心网发送的第一信令生成的,所述第一信令包含无人飞行器的飞行路径信息,所述第一信令用于指示所述基站通过第二信令将所述飞行路径信息发送至所述无人飞行器,所述无人飞行器处于连接态;
从所述第二信令中提取所述飞行路径信息;
根据所述飞行路径信息配置飞行路径。
可选地,所述第二信令包括以下至少之一:
无线资源控制信令,介质访问控制层控制单元。
根据本公开实施例第四方面,提出一种飞行路径配置装置,包括:
信息获取模块,被配置为获取无人飞行器的飞行路径信息,其中,所述无人飞行器处于连接态;
基站确定模块,被配置为确定与所述无人飞行器存在通信连接的基站;
第一发送模块,被配置为向所述基站发送第一信令,其中,所述第一信令包含所述飞行路径信息,所述第一信令用于指示所述基站通过第二信令将所述飞行路径信息发送至所述无人飞行器。
可选地,所述信息获取模块被配置为从运行无人飞行器管理系统的终端获取所述飞行路径信息,其中,所述无人飞行器管理系统用于为所述无人飞行器配置飞行路径信息。
可选地,所述第一信令包括以下至少之一:
初始上下文建立请求信令、用户设备上下文修改请求信令。
可选地,所述信令发送模块被配置为,若在通过所述基站与所述无人飞行器初次建立通信连接时,已获取到所述飞行路径信息,向所述基站发送初始上下文建立请求信令。
可选地,所述信令发送模块被配置为,若在已通过所述基站与所述无人飞行器建立了通信连接的情况下,获取到所述飞行路径信息,向所述基站发送用户设备上下文修改请求信令。
可选地,所述第二信令包括以下至少之一:
无线资源控制信令,介质访问控制层控制单元。
根据本公开实施例第五方面,提出一种飞行路径配置装置,包括:
第一接收模块,被配置为接收核心网发送的第一信令,其中,所述第一信令包含无人飞行器的飞行路径信息,所述第一信令用于指示所述基站通过第二信令将将所述飞行路径信息发送至所述无人飞行器,所述无人飞行器处于连接态;
信令生成模块,被配置为根据所述第一信令生成所述第二信令;
第二发送模块,被配置为向所述无人飞行器发送所述第二信令,其中,所述第二信令包含无人飞行器的飞行路径信息。
可选地,所述第二信令包括以下至少之一:
无线资源控制信令,介质访问控制层控制单元。
根据本公开实施例第六方面,提出一种飞行路径配置装置,包括:
第二接收模块,被配置为接收基站发送的第二信令,其中,所述第二信令为所述基站根据核心网发送的第一信令生成的,所述第一信令包含无人飞行器的飞行路径信息,所述第一信令用于指示所述基站通过第二信令将所述飞行路径信息发送至所述无人飞行器,所述无人飞行器处于连接态;
信息提取模块,被配置为从所述第二信令中提取所述飞行路径信息;
路径配置模块,被配置为根据所述飞行路径信息配置飞行路径。
可选地,所述第二信令包括以下至少之一:
无线资源控制信令,介质访问控制层控制单元。
根据本公开实施例第五方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的方法。
根据本公开实施例第六方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述方法中的步骤。
根据本公开的实施例,对于连接态的无人飞行器而言,由于无人飞行器与基站之间存在通信连接,可以直接通过基站将来自核心网的飞行路径信息发送给无人飞行器,因此可以先确定与无人飞行器存在通信连接的基站,进而向与无人飞行器存在通信连接的基站发送包含所述飞行路径信息的第一信令,通过第一信令指示基站通过第二信令将所述飞行路径信息发送至所述无人飞行器,从而实现将飞行路径信息从核心网发送至连接态的无人飞行器,以供无人飞行器基于飞行路径信息配置飞行路径。相对于相关技术而言,可以基于运营商的网络完成飞行路径的配置,无需建立专有链路,配置过程较为简单。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出一种飞行路径配置方法的示意流程图。
图2是根据本公开的实施例示出另一种飞行路径配置方法的示意流程图。
图3是根据本公开的实施例示出又一种飞行路径配置方法的示意流程图。
图4是根据本公开的实施例示出又一种飞行路径配置方法的示意流程图。
图5是根据本公开的实施例示出又一种飞行路径配置方法的示意流程图。
图6是根据本公开的实施例示出又一种飞行路径配置方法的示意流程图。
图7是根据本公开的实施例示出核心网、基站和无人飞行器的交互示意图。
图8是根据本公开的实施例示出一种飞行路径配置装置的示意框图。
图9是根据本公开的实施例示出又一种飞行路径配置装置的示意框图。
图10是根据本公开的实施例示出又一种飞行路径配置装置的示意框图。
图11是根据本公开的实施例示出的一种用于飞行路径配置的装置的一结构示意图。
图12是根据本公开的实施例示出的一种用于飞行路径配置的装置的示意框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1是根据本公开的实施例示出一种飞行路径配置方法的示意流程图。本实施例所示的飞行路径配置方法可以适用于核心网,所述核心网可以与基站进行通信,所述基站可以与用户设备进行通信,所述用户设备可以是无人飞行器,所述无人飞行器可以是无人机、无人飞艇等,其中,基站与用户设备可以基于LTE(Long Term Evolution,长期演进)通信,也可以基于NR(New Radio,新空口)通信。
如图1所示,所述飞行路径配置方法包括:
在步骤S11中,获取无人飞行器的飞行路径信息,其中,所述无人飞行器处于连接态。
在一个实施例中,飞行路径信息可以由无人飞行器管理系统配置,所述无人飞行器管理系统例如可以是UTM(UAS Traffic Management,无人飞行器交通管理系统),UAS全称Unmanned Aircraft System,无人飞行器系统,所述无人飞行器管理系统可以运行在终端上,核心网和所述终端可以存在通信连接,进而可以从所述终端获取无人飞行器的飞行路径信息。
在一个实施例中,无人飞行器处于连接态,是指无人飞行器与基站之间存在通信连接的状态,由于基站与核心网之间存在通信连接,因此核心网可以确定无人飞行器与基站之间是否断开了通信连接,例如当无人飞行器与基站之间存在数据传输,可以确定无人飞行器与基站存在通信连接,也即处于连接态,当无人飞行器与基站之间不存在数据传输,可以确定无人飞行器与基站断开了通信连接。
在步骤S12中,确定与所述无人飞行器存在通信连接的基站。
在一个实施例中,由于无人飞行器处于连接态,而基站与核心网之间存在通信连接,因此核心网可以确定无人飞行器与那个基站存在通信连接,以便后续通过该基站向无人飞行器发送飞行路径信息。
在步骤S13中,向所述基站发送第一信令,其中,所述第一信令包含所述飞行路径信息,所述第一信令用于指示所述基站通过第二信令将所述飞行路径信息发送至所述无人飞行器。
在一个实施例中,对于连接态的无人飞行器而言,由于无人飞行器与基站之间存在通信连接,可以直接通过基站将来自核心网的飞行路径信息发送给无人飞行器,因此可以先确定与无人飞行器存在通信连接的基站,进而向与无人飞行器存在通信连接的基站发送包含所述飞行路径信息的第一信令,通过第一信令指示基站通过第二信 令将所述飞行路径信息发送至所述无人飞行器,从而实现将飞行路径信息从核心网发送至连接态的无人飞行器,以供无人飞行器基于飞行路径信息配置飞行路径。相对于相关技术而言,可以基于运营商的网络完成飞行路径的配置,无需建立专有链路,配置过程较为简单。
图2是根据本公开的实施例示出另一种飞行路径配置方法的示意流程图。如图2所示,在图1所示实施例的基础上,所述获取无人飞行器的飞行路径信息包括:
在步骤S111中,从运行无人飞行器管理系统的终端获取所述飞行路径信息,其中,所述无人飞行器管理系统用于为所述无人飞行器配置飞行路径信息。
在一个实施例中,在一个实施例中,飞行路径信息可以由无人飞行器管理系统配置,所述无人飞行器管理系统可以运行在终端上,核心网和所述终端可以存在通信连接,进而可以从所述终端获取无人飞行器的飞行路径信息。
其中,运行无人飞行器管理系统的终端可以是服务器、遥控器等设备。
可选地,所述第一信令包括以下至少之一:
初始上下文建立请求信令、用户设备上下文修改请求信令。
在一个实施例中,基于获取到飞行路径信息的时机和无人飞行器与基站的连接状态之间的关系,核心网可以向基站发送不同的第一信令。具体在后续实施例中说明。
图3是根据本公开的实施例示出又一种飞行路径配置方法的示意流程图。如图3所示,在图1所示实施例的基础上,所述向所述基站发送第一信令包括:
在步骤S131中,若在通过所述基站与所述无人飞行器初次建立通信连接时,已获取到所述飞行路径信息,向所述基站发送初始上下文建立请求信令(INITIAL CONTEXT SETUP REQUEST)。
在一个实施例中,当核心网通过所述基站与所述无人飞行器初次建立通信连接时,已经获取到了飞行路径信息,那么对于无人飞行器配置飞行路径可以视为初始配置,从而可以向基站发送初始上下文建立请求信令,并在初始上下文建立请求信令中携带飞行路径信息。
在一个实施例中,初始上下文建立请求信令的格式可以如表1所示:
Figure PCTCN2018099010-appb-000001
表1
核心网可以通过S1接口向基站发送初始上下文建立请求信令,初始上下文建立请求信令中的Flight Path Information即飞行路径信息。
图4是根据本公开的实施例示出又一种飞行路径配置方法的示意流程图。如图4所示,在图1所示实施例的基础上,所述向所述基站发送第一信令包括:
在步骤S132中,若在已通过所述基站与所述无人飞行器建立了通信连接的情况下,获取到所述飞行路径信息,向所述基站发送用户设备上下文修改请求信令(UE Context Modification Request)。
在一个实施例中,当核心网已通过所述基站与所述无人飞行器建立了通信连接,在这种情况下,已经获取到了飞行路径信息,那么对于无人飞行器配置飞行路径可以视为初始配置,从而可以向基站发送初始上下文建立请求信令,并在初始上下文建立请求信令中携带飞行路径信息。
在一个实施例中,用户设备上下文修改请求信令的格式可以如表2所示:
Figure PCTCN2018099010-appb-000002
表2
核心网可以通过S1接口向基站发送用户设备上下文修改请求信令,用户设备上下文修改请求信令中的Flight Path Information即飞行路径信息。
可选地,所述第二信令包括以下至少之一:
无线资源控制信令,介质访问控制层控制单元。
在一个实施例中,核心网可以通过第一信令指示基站通过无线资源控制(RRC,Radio Resource Control)信令或介质访问控制层控制单元(MAC CE,Media Access Control Control Element)将所述飞行路径信息发送至所述无人飞行器。具体通过RRC信令还是介质访问控制层控制单元携带飞行路径信息发送至无人飞行器,可以根据需要进行选择。
图5是根据本公开的实施例示出又一种飞行路径配置方法的示意流程图。本实施例所示的飞行路径配置方法可以适用于基站,所述基站可以与核心网进行通信,所述基站可以与用户设备进行通信,所述用户设备可以是无人飞行器,所述无人飞行器可以是无人机、无人飞艇等,其中,基站与用户设备可以基于LTE通信,也可以基于NR通信。
如图5所示,所述飞行路径配置方法包括:
在步骤S21中,接收核心网发送的第一信令,其中,所述第一信令包含无人飞行器的飞行路径信息,所述第一信令用于指示所述基站通过第二信令将将所述飞行路径信息发送至所述无人飞行器,所述无人飞行器处于连接态;
在步骤S22中,根据所述第一信令生成所述第二信令;
在步骤S23中,向所述无人飞行器发送所述第二信令,其中,所述第二信令包含无人飞行器的飞行路径信息。
在一个实施例中,对于连接态的无人飞行器而言,由于无人飞行器与基站之间存在通信连接,基站在接收到核心网发送的飞行路径信息后,可以直接将飞行路径信息发送给与基站存在通信连接的无人飞行器。
因此核心网可以先确定与无人飞行器存在通信连接的基站,然后向确定的基站发送包含所述飞行路径信息的第一信令,通过第一信令指示基站通过第二信令将所述飞行路径信息发送至所述无人飞行器,基站接收到第一信令后,可以生成包含所述飞行路径信息的第二信令,进而将第二信令发送给无人飞行器,从而实现将飞行路径信息从核心网发送至连接态的无人飞行器,以供无人飞行器基于飞行路径信息配置飞行路径。相对于相关技术而言,可以基于运营商的网络完成飞行路径的配置,无需建立专有链路,配置过程较为简单。
可选地,所述第二信令包括以下至少之一:
无线资源控制信令,介质访问控制层控制单元。
在一个实施例中,基于核心网发送的第一信令,基站可以通过无线资源控制信令或介质访问控制层控制单元将所述飞行路径信息发送至所述无人飞行器。具体通过RRC信令还是介质访问控制层控制单元携带飞行路径信息发送至无人飞行器,可以根据需要进行选择。
图6是根据本公开的实施例示出又一种飞行路径配置方法的示意流程图。本实施例所示的飞行路径配置方法可以适用于无人飞行器,所述无人飞行器可以是无人机、无人飞艇等,其中,基站与无人飞行器可以基于LTE通信,也可以基于NR通信。
如图6所示,所述飞行路径配置方法包括:
在步骤S31中,接收基站发送的第二信令,其中,所述第二信令为所述基站根据核心网发送的第一信令生成的,所述第一信令包含无人飞行器的飞行路径信息,所述第一信令用于指示所述基站通过第二信令将所述飞行路径信息发送至所述无人飞行器,所述无人飞行器处于连接态;
在步骤S32中,从所述第二信令中提取所述飞行路径信息;
在步骤S33中,根据所述飞行路径信息配置飞行路径。
在一个实施例中,对于连接态的无人飞行器而言,由于无人飞行器与基站之间存在通信连接,基站在接收到核心网发送的飞行路径信息后,可以直接将飞行路径信息发送给与基站存在通信连接的无人飞行器。
因此核心网可以先确定与无人飞行器存在通信连接的基站,然后向确定的基站发送包含所述飞行路径信息的第一信令,通过第一信令指示基站通过第二信令将所述飞行路径信息发送至所述无人飞行器,基站接收到第一信令后,可以生成包含所述飞行路径信息的第二信令,进而将第二信令发送给无人飞行器,从而实现将飞行路径信息从核心网发送至连接态的无人飞行器,无人飞行器在接收到飞行路径信息后即可基于飞行路径信息配置飞行路径。相对于相关技术而言,可以基于运营商的网络完成飞行路径的配置,无需建立专有链路,配置过程较为简单。
可选地,所述第二信令包括以下至少之一:
无线资源控制信令,介质访问控制层控制单元。
在一个实施例中,基于核心网发送的第一信令,基站可以通过无线资源控制信令或介质访问控制层控制单元将所述飞行路径信息发送至所述无人飞行器,相应地,无人飞行器也可以通过接收无线资源控制信令或介质访问控制层控制单元来获取到飞行路径信息。具体通过接收无线资源控制信令还是介质访问控制层控制单元来获取飞行路径信息,可以根据基站发送的信令进行选择。
图7是根据本公开的实施例示出核心网、基站和无人飞行器的交互示意图。
如图7所示,核心网在获取到连接态的无人飞行器的飞行路径信息后,可以向与无人飞行器存在通信连接的基站发送第一信令,第一信令包含飞行路径信息,通过第一信令可以指示基站通过第二信令将所述飞行路径信息发送至无人飞行器。
基站在接收到第一信令后,可以根据第一信令生成第二信令,第二信令包含飞行路径信息,基站通过将第二信令发送至无人飞行器,由于基站与无人飞行器存在通信连接后,可以向无人飞行器定向发送第二信令。
无人飞行器在接收到的第二信令后,由于第二信令中包含飞行路径信息,从而可以获取到飞行路径信息,进而根据飞行路径信息配置飞行路径,从而根据配置的飞行路径进行飞行。
与前述的飞行路径配置方法的实施例相对应,本公开还提供了飞行路径配置装置的实施例。
图8是根据本公开的实施例示出一种飞行路径配置装置的示意框图。本实施例所示的飞行路径配置装置可以适用于核心网,所述核心网可以与基站进行通信,所述基站可以与用户设备进行通信,所述用户设备可以是无人飞行器,所述无人飞行器可以是无人机、无人飞艇等,其中,基站与用户设备可以基于LTE通信,也可以基于NR通信。
如图8所示,所述飞行路径配置装置包括:
信息获取模块11,被配置为获取无人飞行器的飞行路径信息,其中,所述无人飞行器处于连接态;
基站确定模块12,被配置为确定与所述无人飞行器存在通信连接的基站;
第一发送模块13,被配置为向所述基站发送第一信令,其中,所述第一信令包含所述飞行路径信息,所述第一信令用于指示所述基站通过第二信令将所述飞行路径 信息发送至所述无人飞行器。
可选地,所述信息获取模块被配置为从运行无人飞行器管理系统的终端获取所述飞行路径信息,其中,所述无人飞行器管理系统用于为所述无人飞行器配置飞行路径信息。
可选地,所述第一信令包括以下至少之一:
初始上下文建立请求信令、用户设备上下文修改请求信令。
可选地,所述信令发送模块被配置为,若在通过所述基站与所述无人飞行器初次建立通信连接时,已获取到所述飞行路径信息,向所述基站发送初始上下文建立请求信令。
可选地,所述信令发送模块被配置为,若在已通过所述基站与所述无人飞行器建立了通信连接的情况下,获取到所述飞行路径信息,向所述基站发送用户设备上下文修改请求信令。
可选地,所述第二信令包括以下至少之一:
无线资源控制信令,介质访问控制层控制单元。
图9是根据本公开的实施例示出又一种飞行路径配置装置的示意框图。本实施例所示的飞行路径配置装置可以适用于基站,所述基站可以与核心网进行通信,所述基站可以与用户设备进行通信,所述用户设备可以是无人飞行器,所述无人飞行器可以是无人机、无人飞艇等,其中,基站与用户设备可以基于LTE通信,也可以基于NR通信。
如图9所示,所述飞行路径配置装置包括:
第一接收模块21,被配置为接收核心网发送的第一信令,其中,所述第一信令包含无人飞行器的飞行路径信息,所述第一信令用于指示所述基站通过第二信令将将所述飞行路径信息发送至所述无人飞行器,所述无人飞行器处于连接态;
信令生成模块22,被配置为根据所述第一信令生成所述第二信令;
第二发送模块23,被配置为向所述无人飞行器发送所述第二信令,其中,所述第二信令包含无人飞行器的飞行路径信息。
可选地,所述第二信令包括以下至少之一:
无线资源控制信令,介质访问控制层控制单元。
图10是根据本公开的实施例示出又一种飞行路径配置装置的示意框图。本实施例所示的飞行路径配置装置可以适用于无人飞行器,所述无人飞行器可以是无人机、无人飞艇等,其中,基站与无人飞行器可以基于LTE通信,也可以基于NR通信。
如图10所示,所述飞行路径配置装置包括:
第二接收模块31,被配置为接收基站发送的第二信令,其中,所述第二信令为所述基站根据核心网发送的第一信令生成的,所述第一信令包含无人飞行器的飞行路径信息,所述第一信令用于指示所述基站通过第二信令将所述飞行路径信息发送至所述无人飞行器,所述无人飞行器处于连接态;
信息提取模块32,被配置为从所述第二信令中提取所述飞行路径信息;
路径配置模块33,被配置为根据所述飞行路径信息配置飞行路径。
可选地,所述第二信令包括以下至少之一:
无线资源控制信令,介质访问控制层控制单元。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出了一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述任一实施例所述的方法。
本公开的实施例还提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述任一实施例所述的方法中的步骤。
如图11所示,图11是根据本公开的实施例示出的一种用于飞行路径配置的装置1100的一结构示意图。装置1100可以被提供为一基站。参照图11,装置1100包括处理组件1122、无线发射/接收组件1124、天线组件1126、以及无线接口特有的信号处理部分,处理组件1122可进一步包括一个或多个处理器。处理组件1122中的其中一个处理器可以被配置为实现上述任一实施例所述的方法。
图12是根据本公开的实施例示出的一种用于飞行路径配置的装置1200的示意框图。例如,装置1200可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图12,装置1200可以包括以下一个或多个组件:处理组件1202,存储器1204,电源组件1206,多媒体组件1208,音频组件1210,输入/输出(I/O)的接口1212,传感器组件1214,以及通信组件1216。
处理组件1202通常控制装置1200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1202可以包括一个或多个处理器1220来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1202可以包括一个或多个模块,便于处理组件1202和其他组件之间的交互。例如,处理组件1202可以包括多媒体模块,以方便多媒体组件1208和处理组件1202之间的交互。
存储器1204被配置为存储各种类型的数据以支持在装置1200的操作。这些数据的示例包括用于在装置1200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1206为装置1200的各种组件提供电力。电源组件1206可以包括电源管理系统,一个或多个电源,及其他与为装置1200生成、管理和分配电力相关联的组件。
多媒体组件1208包括在所述装置1200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器 可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1208包括一个前置摄像头和/或后置摄像头。当装置1200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1210被配置为输出和/或输入音频信号。例如,音频组件1210包括一个麦克风(MIC),当装置1200处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1204或经由通信组件1216发送。在一些实施例中,音频组件1210还包括一个扬声器,用于输出音频信号。
I/O接口1212为处理组件1202和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1214包括一个或多个传感器,用于为装置1200提供各个方面的状态评估。例如,传感器组件1214可以检测到装置1200的打开/关闭状态,组件的相对定位,例如所述组件为装置1200的显示器和小键盘,传感器组件1214还可以检测装置1200或装置1200一个组件的位置改变,用户与装置1200接触的存在或不存在,装置1200方位或加速/减速和装置1200的温度变化。传感器组件1214可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1214还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1214还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1216被配置为便于装置1200和其他设备之间有线或无线方式的通信。装置1200可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1216经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1216还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1200可以被一个或多个应用专用集成电路(ASIC)、 数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述任一实施例所述的方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1204,上述指令可由装置1200的处理器1220执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (22)

  1. 一种飞行路径配置方法,其特征在于,包括:
    获取无人飞行器的飞行路径信息,其中,所述无人飞行器处于连接态;
    确定与所述无人飞行器存在通信连接的基站;
    向所述基站发送第一信令,其中,所述第一信令包含所述飞行路径信息,所述第一信令用于指示所述基站通过第二信令将所述飞行路径信息发送至所述无人飞行器。
  2. 根据权利要求1所述的方法,其特征在于,所述获取无人飞行器的飞行路径信息包括:
    从运行无人飞行器管理系统的终端获取所述飞行路径信息,其中,所述无人飞行器管理系统用于为所述无人飞行器配置飞行路径信息。
  3. 根据权利要求1所述的方法,其特征在于,所述第一信令包括以下至少之一:
    初始上下文建立请求信令、用户设备上下文修改请求信令。
  4. 根据权利要求3所述的方法,其特征在于,所述向所述基站发送第一信令包括:
    若在通过所述基站与所述无人飞行器初次建立通信连接时,已获取到所述飞行路径信息,向所述基站发送初始上下文建立请求信令。
  5. 根据权利要求3所述的方法,其特征在于,所述向所述基站发送第一信令包括:
    若在已通过所述基站与所述无人飞行器建立了通信连接的情况下,获取到所述飞行路径信息,向所述基站发送用户设备上下文修改请求信令。
  6. 根据权利要求1至5所述的方法,其特征在于,所述第二信令包括以下至少之一:
    无线资源控制信令,介质访问控制层控制单元。
  7. 一种飞行路径配置方法,其特征在于,包括:
    接收核心网发送的第一信令,其中,所述第一信令包含无人飞行器的飞行路径信息,所述第一信令用于指示所述基站通过第二信令将将所述飞行路径信息发送至所述无人飞行器,所述无人飞行器处于连接态;
    根据所述第一信令生成所述第二信令;
    向所述无人飞行器发送所述第二信令,其中,所述第二信令包含无人飞行器的飞行路径信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第二信令包括以下至少之一:
    无线资源控制信令,介质访问控制层控制单元。
  9. 一种飞行路径配置方法,其特征在于,包括:
    接收基站发送的第二信令,其中,所述第二信令为所述基站根据核心网发送的第一信令生成的,所述第一信令包含无人飞行器的飞行路径信息,所述第一信令用于指示所述基站通过第二信令将所述飞行路径信息发送至所述无人飞行器,所述无人飞行器处于连接态;
    从所述第二信令中提取所述飞行路径信息;
    根据所述飞行路径信息配置飞行路径。
  10. 根据权利要求9所述的方法,其特征在于,所述第二信令包括以下至少之一:
    无线资源控制信令,介质访问控制层控制单元。
  11. 一种飞行路径配置装置,其特征在于,包括:
    信息获取模块,被配置为获取无人飞行器的飞行路径信息,其中,所述无人飞行器处于连接态;
    基站确定模块,被配置为确定与所述无人飞行器存在通信连接的基站;
    第一发送模块,被配置为向所述基站发送第一信令,其中,所述第一信令包含所述飞行路径信息,所述第一信令用于指示所述基站通过第二信令将所述飞行路径信息发送至所述无人飞行器。
  12. 根据权利要求11所述的装置,其特征在于,所述信息获取模块被配置为从运行无人飞行器管理系统的终端获取所述飞行路径信息,其中,所述无人飞行器管理系统用于为所述无人飞行器配置飞行路径信息。
  13. 根据权利要求11所述的装置,其特征在于,所述第一信令包括以下至少之一:
    初始上下文建立请求信令、用户设备上下文修改请求信令。
  14. 根据权利要求13所述的装置,其特征在于,所述信令发送模块被配置为,若在通过所述基站与所述无人飞行器初次建立通信连接时,已获取到所述飞行路径信息,向所述基站发送初始上下文建立请求信令。
  15. 根据权利要求13所述的装置,其特征在于,所述信令发送模块被配置为,若在已通过所述基站与所述无人飞行器建立了通信连接的情况下,获取到所述飞行路径信息,向所述基站发送用户设备上下文修改请求信令。
  16. 根据权利要求11至15所述的装置,其特征在于,所述第二信令包括以下至少之一:
    无线资源控制信令,介质访问控制层控制单元。
  17. 一种飞行路径配置装置,其特征在于,包括:
    第一接收模块,被配置为接收核心网发送的第一信令,其中,所述第一信令包含 无人飞行器的飞行路径信息,所述第一信令用于指示所述基站通过第二信令将将所述飞行路径信息发送至所述无人飞行器,所述无人飞行器处于连接态;
    信令生成模块,被配置为根据所述第一信令生成所述第二信令;
    第二发送模块,被配置为向所述无人飞行器发送所述第二信令,其中,所述第二信令包含无人飞行器的飞行路径信息。
  18. 根据权利要求17所述的装置,其特征在于,所述第二信令包括以下至少之一:
    无线资源控制信令,介质访问控制层控制单元。
  19. 一种飞行路径配置装置,其特征在于,包括:
    第二接收模块,被配置为接收基站发送的第二信令,其中,所述第二信令为所述基站根据核心网发送的第一信令生成的,所述第一信令包含无人飞行器的飞行路径信息,所述第一信令用于指示所述基站通过第二信令将所述飞行路径信息发送至所述无人飞行器,所述无人飞行器处于连接态;
    信息提取模块,被配置为从所述第二信令中提取所述飞行路径信息;
    路径配置模块,被配置为根据所述飞行路径信息配置飞行路径。
  20. 根据权利要求19所述的装置,其特征在于,所述第二信令包括以下至少之一:
    无线资源控制信令,介质访问控制层控制单元。
  21. 一种电子设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为实现权利要求1至10中任一项所述的方法。
  22. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至10中任一项所述方法中的步骤。
PCT/CN2018/099010 2018-08-06 2018-08-06 飞行路径配置方法和装置 WO2020029024A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/266,557 US20210295712A1 (en) 2018-08-06 2018-08-06 Method and device for configuring flight path
CN201880001764.9A CN109155668B (zh) 2018-08-06 2018-08-06 飞行路径配置方法和装置
PCT/CN2018/099010 WO2020029024A1 (zh) 2018-08-06 2018-08-06 飞行路径配置方法和装置
EP18929785.6A EP3836728A4 (en) 2018-08-06 2018-08-06 FLIGHT PATH CONFIGURATION METHOD AND APPARATUS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/099010 WO2020029024A1 (zh) 2018-08-06 2018-08-06 飞行路径配置方法和装置

Publications (1)

Publication Number Publication Date
WO2020029024A1 true WO2020029024A1 (zh) 2020-02-13

Family

ID=64806287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099010 WO2020029024A1 (zh) 2018-08-06 2018-08-06 飞行路径配置方法和装置

Country Status (4)

Country Link
US (1) US20210295712A1 (zh)
EP (1) EP3836728A4 (zh)
CN (1) CN109155668B (zh)
WO (1) WO2020029024A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021196248A1 (zh) * 2020-04-04 2021-10-07 Oppo广东移动通信有限公司 发射信号的控制方法、网络设备、终端及存储介质
CN113015137B (zh) * 2020-12-31 2023-09-12 中国电子科技集团公司第七研究所 一种航空v2v通信的中继初始化方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106843263A (zh) * 2016-12-22 2017-06-13 深圳市书呆科技有限公司 一种无人机飞行控制方法及系统
CN108064360A (zh) * 2017-11-02 2018-05-22 北京小米移动软件有限公司 无人机的控制方法及装置
CN108064465A (zh) * 2017-11-02 2018-05-22 北京小米移动软件有限公司 无人机飞行信息的传输方法、装置、基站及核心网设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE028543T2 (en) * 2009-07-06 2016-12-28 Deutsche Telekom Ag System and procedure for fast and unobtrusive handover for air-to-ground communication
US9179393B2 (en) * 2013-04-29 2015-11-03 Raytheon Company Intelligent communication mobile transponder
BR112017003678B1 (pt) * 2014-08-22 2023-04-18 The Climate Corporation Método e sistema para monitoramento agronômico e agrícola
CN105577264A (zh) * 2014-10-11 2016-05-11 民权县供电局 基于4g网络的无人机巡线系统
US10039114B2 (en) * 2015-04-14 2018-07-31 Verizon Patent And Licensing Inc. Radio access network for unmanned aerial vehicles
US9836047B2 (en) * 2015-06-10 2017-12-05 Kespry, Inc. Aerial vehicle data communication system
US9927807B1 (en) * 2015-07-13 2018-03-27 ANRA Technologies, LLC Command and control of unmanned vehicles using cellular and IP mesh technologies for data convergence
CN105007115B (zh) * 2015-07-24 2019-01-18 华南理工大学 无人直升机中继数据链系统及其控制方法
EP3139517A1 (en) * 2015-09-03 2017-03-08 BAE SYSTEMS plc Apparatus and method for communications management in an uav
WO2018036609A1 (en) * 2016-08-22 2018-03-01 Telefonaktiebolaget Lm Ericsson (Publ) Traffic control of a vehicle control device
CN108073181A (zh) * 2016-11-10 2018-05-25 中国移动通信集团公司 一种无人机监管方法、装置及系统
US10304343B2 (en) * 2017-02-24 2019-05-28 At&T Mobility Ii Llc Flight plan implementation, generation, and management for aerial devices
CN206726054U (zh) * 2017-04-20 2017-12-08 武汉大学 一种监测空气参数的无人机及应用该无人机的监测系统
CN108810941B (zh) * 2017-05-05 2021-04-20 华为技术有限公司 一种网络接入方法、网络设备及终端
CN207249886U (zh) * 2017-07-24 2018-04-17 北京佰才邦技术有限公司 一种无人机系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106843263A (zh) * 2016-12-22 2017-06-13 深圳市书呆科技有限公司 一种无人机飞行控制方法及系统
CN108064360A (zh) * 2017-11-02 2018-05-22 北京小米移动软件有限公司 无人机的控制方法及装置
CN108064465A (zh) * 2017-11-02 2018-05-22 北京小米移动软件有限公司 无人机飞行信息的传输方法、装置、基站及核心网设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on Flight Path Information", 3GPP TSG-RAN WG2 MEETING #101BIS R2-1805125, 6 April 2018 (2018-04-06), XP051415864 *
See also references of EP3836728A4 *
XIAOMI COMMUNICATIONS: "Discussion on the Procedure for the Flight Path Information Reporting", 3GPP TSG-RAN WG2 MEETING #102 R2-1808685, 20 May 2018 (2018-05-20), XP051444925 *

Also Published As

Publication number Publication date
CN109155668A (zh) 2019-01-04
US20210295712A1 (en) 2021-09-23
EP3836728A4 (en) 2022-03-30
EP3836728A1 (en) 2021-06-16
CN109155668B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
US11601861B2 (en) Unmanned aerial vehicle control method and apparatus
US10560491B2 (en) Methods and apparatuses for binding with device
JP6286105B2 (ja) クラウドカードの送信方法、装置、プログラム及び記録媒体
US10136459B2 (en) Method, device, and system for establishing wireless network connection
EP3038397A1 (en) Method and device for connection
US20160255521A1 (en) Method and apparatus for testing a smart device
US10237214B2 (en) Methods and devices for sharing media data between terminals
US9954691B2 (en) Method and apparatus for binding intelligent device
JP6250867B2 (ja) ネットワーク接続方法、装置、プログラム及び記録媒体
WO2020029025A1 (zh) 飞行路径配置方法和装置
CN109451877B (zh) 无人机控制方法及装置、无人机和遥控设备
US11805562B2 (en) User device pairing method and apparatus
WO2020124322A1 (zh) 网络注册的方法及装置
WO2019019164A1 (zh) 无人机管理方法及装置、通信连接建立方法及装置
CN105100439A (zh) 操作控制方法及装置
WO2020029024A1 (zh) 飞行路径配置方法和装置
WO2020029104A1 (zh) 传输飞行信息的方法及装置
WO2019080101A1 (zh) 信息接收、发送方法及装置、无人机和网络设备
US11950162B2 (en) Unmanned aerial vehicle control method and apparatus
CN107295462B (zh) 无线连接控制方法及装置
WO2019028839A1 (zh) 系统消息获取方法和装置、系统消息传输方法和装置
EP3790298B1 (en) Methods for acquiring and sending route information of unmanned aerial vehicle
WO2019041125A1 (zh) 执行接入控制的方法、装置和系统
CN108683471B (zh) 同步信息处理方法及装置
CN105228110A (zh) 传输联系信息的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018929785

Country of ref document: EP

Effective date: 20210309