WO2020027241A1 - 車両走行制御装置 - Google Patents

車両走行制御装置 Download PDF

Info

Publication number
WO2020027241A1
WO2020027241A1 PCT/JP2019/030126 JP2019030126W WO2020027241A1 WO 2020027241 A1 WO2020027241 A1 WO 2020027241A1 JP 2019030126 W JP2019030126 W JP 2019030126W WO 2020027241 A1 WO2020027241 A1 WO 2020027241A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
unit
control device
travel
time
Prior art date
Application number
PCT/JP2019/030126
Other languages
English (en)
French (fr)
Inventor
英彰 城戸
敬一郎 長塚
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020534730A priority Critical patent/JP7002658B2/ja
Priority to US17/264,804 priority patent/US20210291859A1/en
Publication of WO2020027241A1 publication Critical patent/WO2020027241A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • B60W2420/408
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/50Magnetic or electromagnetic sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4048Field of view, e.g. obstructed view or direction of gaze
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4049Relationship among other objects, e.g. converging dynamic objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems

Definitions

  • the present invention particularly relates to a travel control device, a corresponding travel control method, a vehicle including the travel control device, and a computer program product adapted to execute the travel control method.
  • a travel control device a corresponding travel control method
  • a vehicle including the travel control device a vehicle including the travel control device
  • a computer program product adapted to execute the travel control method.
  • Patent Literature 1 and Patent Literature 2 provides a travel control device that supports and / or enables autonomous travel by controlling a vehicle according to a travel plan.
  • Patent Literature 1 discloses a method for judging whether or not detection of an obstacle in front is hindered. If the detection is hindered, the side of the host vehicle is detected so that an obstacle in front can be detected. A travel position determining device configured to adjust the position appropriately is described.
  • Patent Literature 2 discloses, for example, a vehicle control device that can correct the travel plan of the own vehicle when it is determined that a pedestrian crosses the travel route of the travel plan and there is a risk of collision. Has been described.
  • the vehicle has a vehicle surrounding observation unit for observing the periphery of the vehicle, and the autonomous vehicle has a It is contemplated that if objects around the vehicle cannot be continuously maintained in the field of view (or at least as long as possible) while guided along the route, it may pose a danger. Absent.
  • the subject matter described and claimed herein relates to an object surrounding the perimeter / perimeter of a vehicle, while the vehicle is traveling in accordance with a (future / planned) travel plan, a vehicle periphery observation unit of the vehicle. Address the technical issue that should be maintained for as long as possible within the field of view. This technical problem is solved by the invention according to the independent claims. Further preferred developments are described by the dependent claims.
  • a vehicle travel control device (or a driving assistance device) is proposed.
  • the vehicle travel control device is configured to receive data (the term “information” may be used below or from the vehicle) from a vehicle surrounding observation unit of the vehicle and detect an object around the vehicle from the received data.
  • An object detection unit may be included.
  • the vehicle travel control device includes: a planning unit configured to generate a travel plan (including a travel route) of the own vehicle; and an object detected while traveling along the travel plan. Visibility configured to determine a time (time interval) outside the field of view / range, ie, not within the range, and to input correction information to the planning unit if the determined time is greater than a preset allowable time.
  • a planning unit configured to determine a time (time interval) outside the field of view / range, ie, not within the range, and to input correction information to the planning unit if the determined time is greater than a preset allowable time.
  • time may be replaced with “distance”, or a combination of time and distance may be used.
  • the vehicle travel control device / drive support device may be installed in the own vehicle capable of autonomous travel based on the control of the vehicle travel control device and / or another control unit, for example.
  • the vehicle cruise control device may be part of another control device of the host vehicle, or may be a separate (possibly additional) device.
  • the data received by the object detection unit may include images taken by a camera, sensor measurement data, and the like.
  • the data may be provided by one or more vehicle surrounding observation units that the vehicle may have.
  • the vehicle periphery observation unit and the vehicle travel control device have a data connection to each other, for example a wired and / or wireless connection.
  • the vehicle periphery observation unit and the vehicle traveling control device may be arranged at different positions in the own vehicle, or may be integrated with each other.
  • the received data can be processed by the object detection unit to see if an object can be detected around / around the vehicle. More preferably, an object on or around the route of the travel plan, that is, an object located further below the travel route when viewed from the actual position of the own vehicle is confirmed.
  • the object searched / confirmed by the object detection unit may be a predefined object stored in a database, the database may be provided in the vehicle cruise control device, or the vehicle cruise control device may be a wireless device. It may be located in a remote storage space that may have access and data transfer connections.
  • the object detection process can include using an image processing technique that can detect a predefined object in the data, such as any object, or more preferably, an image taken by a vehicle camera. .
  • One possible method of detecting an object may include comparing the detected data to pre-stored data of a predefined object.
  • Predefined objects may include, for example, all types of objects that may affect the travel of the vehicle or may affect the realization of a travel plan. Particular examples may include other vehicles, other objects, traffic lights, road markings, traffic signs, obstacles, gates / barriers, pedestrians, and the like.
  • the planning unit may generate a travel plan that may include a route on which the vehicle travels from the current position and / or control parameters for controlling the vehicle such as speed, acceleration, steering, and shift. More preferably, the travel plan may include the entire set of parameters and information necessary for performing autonomous travel by the autonomous travel control, and the autonomous travel control may be the vehicle travel control device itself, or The control device may be connected.
  • the planning unit travels using data from the vehicle periphery observation unit, data from the GPS, data from a map provided to the vehicle travel control device via wireless data transfer, a travel destination input by the driver, and the like.
  • a plan may be generated.
  • a travel plan can be divided into subsections.
  • the travel plan may include navigation advice only to the driver, and / or the travel plan may be to drive the vehicle to the destination autonomously, ie, with no or minimal driver interaction. Parameters / commands required for
  • the visibility planning unit may determine the time (or time) for the detected object to move out of the field of view (which may be "range") of the vehicle surrounding observation unit while traveling along the travel plan (or "by" the travel plan). Time interval) can be determined. If the determined time or time interval is greater than an allowed time (or time interval) that can be preset / predefined, and more preferably can vary according to different predefined operating conditions, the correction information is sent to the planning unit. Is entered. Instead of or in combination with the above "time", the visibility planning unit may use the "distance" as already mentioned above.
  • the technical advantage of the above-described vehicle travel control device is that the objects present in the vicinity of the vehicle are detected and the objects are kept continuously or at least as long as possible in the field of view of the observation unit of the vehicle.
  • the vehicle travel plan can be adapted. Its further beneficial technical consequence is that autonomous driving becomes safer because the object is never "out of sight” / "invisible” or simply as short as possible, and the object suddenly "reappears” in the field of view, for example.
  • the travel plan can be based on more complete information (compared to the case where an object becomes "invisible” while traveling), because possible situations can be avoided, for example, sudden braking or sudden deceleration / acceleration. Autonomous driving becomes more comfortable as it can be adapted.
  • the planning unit of the vehicle cruise control device is configured to adapt the travel plan, which is preferably provided with correction information (exchanged / visibility plan unit / visibility plan unit). (Which is the data).
  • the travel plan may also be adapted to reduce or minimize the time (or time interval) during which the detected object is out of the field of view of the vehicle perimeter observation unit while the vehicle follows the travel plan. Good.
  • the adaptation will be performed such that the time or time interval is less than or equal to the allowed time (time interval) after adaptation of the driving plan.
  • it will be executed so that the traveling distance is equal to or less than the allowable distance.
  • the travel plan can be continuously adapted, preferably taking into account other reasons, such as having to take a new route due to traffic congestion or the like.
  • detection of the object by the object detection unit will further initiate a check procedure to determine whether a fit is required, the fit being more preferably performed before the actual run along the travel plan / path. That is, the travel plan is preferably a planned or future travel plan.
  • the determination or calculation of the time interval may actually be referred to as “predicting” or “estimating” the trip performed according to the settings / parameters of the actual trip plan.
  • the vehicle may follow the exemplary travel plan and may follow the exemplary travel plan.
  • the time interval required to drive the vehicle is predictable.
  • the travel plan is for a total of 100 meters. Or at least as long as possible to keep the detected object in the field of view of the vehicle surroundings observation unit.
  • the adaptation can preferably include adapting the speed of the vehicle, adapting the travel route and the like.
  • the visibility planning unit includes a visibility prediction unit configured to receive data regarding the configuration of the vehicle periphery observation unit from the (sensor) configuration unit.
  • the data may include information regarding the field of view / range of the vehicle perimeter observation unit, for example, this may include the area covered by the field of view / range for the vehicle, for example, where the data is one
  • the vehicle periphery observation unit may be a camera having a triangular field of view having a specific opening angle and a specific length (in a bird's eye view), and may include information indicating that it may be facing the front side in front of the vehicle. I can do it.
  • the visibility prediction unit may receive information about the detected object, such as a position (eg, relative to the actual position of the vehicle and / or an absolute position such as GPS data), a traffic light, etc.
  • a position eg, relative to the actual position of the vehicle and / or an absolute position such as GPS data
  • a traffic light etc.
  • the visibility prediction unit is configured to estimate, for example, for each, or at least various positions or times along the route of the travel plan, whether the detected object is in or out of view. , Extrapolation or the like.
  • the visibility planning unit includes a time (time interval) required for the vehicle to complete the travel plan (or a time required to reach a selected / set position) and a time when the detected object is a vehicle.
  • a risk assessment unit configured to determine a time (or distance) not within the field of view / range of the surrounding observation unit. This allows a quick and low computational complexity estimation of whether the driving plan should be adapted.
  • the risk evaluation unit or other subunits of the travel control device 1 sets a future evaluation period instead of calculating the time until the vehicle reaches the set position or the time until the end of the travel plan. Is also good.
  • the future evaluation period may be set so as to cover 5 seconds, 10 seconds, or the like of the future traveling route of the own vehicle starting from the actual position of the own vehicle. In this case, there is no need to calculate the time required to reach the set position or the end time of the travel plan, so that the calculation load is further reduced.
  • the future evaluation period may be restarted at least each time (as a loop) and the period before the future evaluation period ends.
  • the risk assessment unit is configured to receive information regarding the effective area of the detected object generated by the effective area estimation unit of the visibility planning unit.
  • the effective area may be, for example, an area near or around the object in which the object affects the traveling of the vehicle.
  • the effective area of the traffic sign or the traffic light may be a road area in front of the traffic sign or the traffic light, in other words, irrespective of the future traveling of the own vehicle (having no effect anymore)
  • the effective area estimating unit is arranged around the detected object (the perimeter is also only its front, its back only, according to a predefined pattern and / or based on data obtained from GPS, maps, etc. Only that aspect, which can mean neighborhood and / or any combination) is set.
  • the active area pattern may be read from a database, which is preferably stored in the cruise control or may be received via wireless data transfer from a remote location and may vary from object to object. May be defined. It can also be set as a generally rectangular area for all objects. It may also be set by a predefined radius around the object or a predefined distance from the object along the road area.
  • the settings may be made by using digital maps, GPS location data, etc., which may be stored in the mobility controller or obtained wirelessly from a remote source, such as the Internet or a remote database. .
  • the risk evaluation unit includes a time required for the vehicle to travel according to the travel plan in the effective area, a time required for the detected object not to be within the field of view / range of the vehicle surrounding observation unit in the effective area, and Is calculated.
  • Using an active area increases the reliability of the claimed device and reduces the computational burden, since only relevant areas of the travel plan are taken into account for the adaptation of the travel plan.
  • the visibility planning unit includes an allowance time controller that provides a predefined allowance time (or distance) that the detected object is outside the field of view / range of the vehicle perimeter observation unit.
  • the allowed time or time interval may be predefined, such as in a database (stored on the mobile control device or stored remotely) or the like, in which the visibility planning unit receives the respective allowed time of the detected object.
  • the control value calculation unit plans the correction information (data) if the time of view / out of range is greater than the predefined allowed time and (preferably) the vehicle is determined to be within the valid area.
  • the travel plan configured to provide the unit with the correction information is adapted to reduce the time that the detected object is out of view / range, resulting in less than or equal to a predefined allowable time.
  • the adaptation can cause the vehicle to be slower and faster, traveling on the road slightly off another route, or stopping earlier and later, and so on. For example, with a red traffic light, the traffic light may not be in view if the vehicle is just stopped at the traffic stop line. Thus, this adaptation can include stopping the vehicle shortly before the stop line (as far as possible) to keep the traffic light in view while waiting at the red light.
  • the adaptation of the driving plan is preferably performed repeatedly.
  • the adaptation may be feedback controlled using the correction information.
  • the "initial" travel plan can be adapted many times in a loop, for example, until the time interval falls below the allowed time interval. As a result, the accuracy of adapting the travel plan is improved.
  • the control loop may, in a further preferred example, include an emergency check unit that may request an emergency stop of the vehicle if the situation is determined to be too dangerous.
  • the risk assessment unit may determine if the accumulated time during which the detected object is out of the field of view is greater than a second allowable time longer than the (first) allowable time, and / or if the detected object or a further object is If the vehicle suddenly appears in front of the vehicle 100 and it takes too long to adapt the travel plan, the situation may be determined to be too dangerous.
  • the emergency check unit may be incorporated in the vehicle travel control device, and may issue an emergency stop command directly to a control unit capable of controlling the emergency stop or any other unit by issuing a braking command or the like.
  • control value calculation unit determines correction information including the speed of the own vehicle, the traveling direction and the planned route of the own vehicle, and / or the stop position of the own vehicle. Further correction information, such as information on acceleration / deceleration, can be used / determined.
  • the time during which the detected object is within the field of view / range of the vehicle surrounding observation unit is preferably maximized by adjusting the field of view / range in addition to the means described above, ie outside the field of view. Time is minimized.
  • This can be realized by controlling the focus of the vehicle periphery observation unit or the like.
  • a camera can be used as a vehicle perimeter observation unit that can be controlled to narrow / expand and / or diminish / expand the field of view. This can further expand the applications of the claimed device, so that the claimed device can be used more flexibly in different operating situations.
  • the detected objects include road objects, such as traffic signs, traffic lights, road markings, other vehicles and / or other objects such as humans, animals.
  • road objects such as traffic signs, traffic lights, road markings, other vehicles and / or other objects such as humans, animals.
  • the priority is set for different objects, and the target detector selects the detected object having the highest priority.
  • the configured arbitration unit is provided or connected to the travel control device.
  • the adaptation of the driving plan further takes into account safety aspects and / or driving comfort aspects, wherein the safety aspects are such that the detected object is on the path of the driving plan and the vehicle is detected by the detected object.
  • the safety aspects are such that the detected object is on the path of the driving plan and the vehicle is detected by the detected object.
  • the emergency stop of the own vehicle is included, and the driving comfort aspect includes avoiding a high G felt by the driver.
  • the claimed subject matter may also include a vehicle including at least one vehicle cruise control device and a vehicle perimeter observation unit according to the preceding claims, wherein the vehicle perimeter observation unit is a lidar unit, a camera unit, a stereo camera unit, a radar unit. , An electromagnetic wave unit or the like.
  • the claimed subject matter may include, as described above, a method of performing a travel plan adaptation of a vehicle with a (vehicle) travel control device, at least generating a travel plan of the vehicle. Detecting an object in the surroundings of the vehicle based on the data provided by the vehicle surroundings observation unit of the own vehicle, and detecting the object in the vehicle surroundings observation unit for a time longer than a predefined allowable time. Adapting the driving plan when out of sight. Further steps of the method can be derived from the configuration of the (vehicle) travel control device as described above.
  • the claimed subject matter is a computer program product storable in memory, the computer program product comprising instructions that, when executed by a computer or any other electronic computing device, cause the computer to perform the above method. Products may be included.
  • the present invention provides a solution for increasing the reliability of travel control devices for vehicles such as cars, trucks, motorcycles, etc. Driving safety and comfort can also be improved.
  • FIG. 1 is a schematic diagram of a host vehicle 100.
  • FIG. 1 is a schematic diagram of a travel control device 1. It is a figure showing an example of a technical function of cruise control device 1.
  • FIG. 4 is a diagram illustrating a first scenario in the example of FIG. 3.
  • FIG. 4 is a diagram illustrating a second scenario in the example of FIG. 3. It is a figure which shows the further technical function of the travel control apparatus 1. It is a figure which shows the further technical function of the travel control apparatus 1. It is a figure which shows the further technical function of the travel control apparatus 1. It is a figure which shows the further technical function of the travel control apparatus 1.
  • FIG. 1 can include, inter alia, a vehicle cruise control device 1 according to the claimed subject matter, a control unit 10 and at least one vehicle surroundings observation unit 4 connected to one another and installed in the host vehicle 100.
  • 1 shows an exemplary vehicle.
  • FIG. 1 shows the control unit 10 and the vehicle travel control device 1 as separate units, alternatively, the two units may be combined to form a single unit.
  • the host vehicle 100 can have a plurality of control units 10 that can include an engine control unit (ECU).
  • ECU engine control unit
  • the vehicle 100 includes at least one vehicle surrounding observation unit 4 (or sensor), and preferably includes a plurality of such units 4.
  • the vehicle surroundings observation unit 4 may include, for example, a camera, a stereo camera, a laser radar, a millimeter-wave radar, and / or a lidar.
  • the vehicle cruise control device 1 and / or the control unit 10 can include further sub-units for providing cruise control functions, such as a steering control unit, a throttle control unit, a braking control unit and the like.
  • the vehicle 100 does not include the control unit 10, and the vehicle travel control device 1 preferably combines all related control functions of the vehicle 100.
  • the vehicle 100 operates autonomously under the control of the control device / unit, and the control device / unit performs the information provided by the vehicle surrounding observation unit 4 and further information, for example, the information of the vehicle 100.
  • the communication unit may receive data from a remote data source such as the Internet, a remote server, and / or GPS. Further information may include map information, traffic information, and the like.
  • the vehicle travel control device 1 is connected to and / or includes a unit configured to generate a (vehicle) travel plan.
  • each unit will be referred to as "planning unit" 2.
  • the travel plan includes the driving route of the vehicle 100, which is generated based on the input from the vehicle surrounding observation unit 4, the GPS information and / or the map information, and the driving destination input by the driver.
  • the other relevant information may be included in the map information, or may include an obstacle on a road ahead in front of the vehicle, which may be detected by the vehicle surrounding observation unit 4.
  • FIG. 2 shows an exemplary internal configuration of the vehicle traveling control device 1 indicated by a thick outer frame denoted by reference numeral 1.
  • the vehicle periphery observation unit 4 inputs information to a subunit of the vehicle travel control device 1 which is the target detection unit 3.
  • the object detection unit 3 receives the data / information from the vehicle surrounding observation unit 4 and uses the information to perform the detection process.
  • the detection process aims at detecting one or more objects existing near or on the traveling route.
  • the actual travel plan is generated before the processing described here, and is already available to the movement control device 1 in this example.
  • the detection of the object is performed, for example, by detecting a predefined pattern in the information provided by the vehicle surroundings observation unit 4.
  • the objects to be detected can include predefined objects, or any type of (not necessarily predefined) related to the travel of the vehicle 100 along the travel plan using a machine learning process. Not) objects can be detected.
  • the target detection unit 3 is an image (as information / data from the vehicle periphery observation unit 4) captured by a camera of the own vehicle 100 (a camera that is the vehicle periphery observation unit 4 in this example).
  • the detection process may include an image evaluation process that detects objects in the image having a predefined shape or the like.
  • the predefined object and / or its predefined shape may be stored in a database that can be connected to the vehicle travel control device 1 by wire or wirelessly.
  • Predefined objects include road markings, traffic signs, other vehicles, pedestrians, other traffic participants such as cyclists or motorcycle drivers, as well as obstacles on the driving path and / or other on or near the driving path. Objects.
  • the target detection unit 3 When the target detection unit 3 detects an object, the target detection unit 3 inputs the respective data / information to the visibility planning unit 5 including further sub-units described later. Information from the target detection unit 3 is input to the visibility prediction unit 51, and the visibility prediction unit further receives information from the sensor configuration unit 56.
  • the information input from the object detection unit 3 preferably includes, for example, the position of the detected object relative to the vehicle 100 and / or in absolute position coordinates, the type of the detected object, and the state of the object and / or the object moving. It includes further optional information such as whether it is stationary or stationary.
  • the information input from the sensor configuration unit 56 includes configuration information regarding the field of view (range) of the vehicle surrounding observation unit 4 and / or the field of view of each vehicle surrounding observation unit 4.
  • the visibility prediction unit 51 determines that the detected object is It is determined whether it is continuous within the field of view of at least one vehicle surroundings observation unit 4 or whether the detected object is temporarily or continuously out of the field of view.
  • the visibility prediction unit 51 performs the above-described estimation (whether or not the detected object is in the field of view) for a plurality of points and / or positions on the traveling route ahead of the vehicle 100.
  • the information determined by the visibility prediction unit 51 is passed to the risk evaluation unit 52.
  • the risk evaluation unit 52 further receives data / information from the permissible time control device 54, and the risk evaluation unit 52 determines the total operation time required to travel according to the travel plan and the target time during travel according to the travel plan.
  • the cumulative time when the object detected by the detection unit 3 is out of the field of view is calculated. It should be noted that the calculation / estimation of the accumulated time during which the object detected by the object detection unit 3 is out of the field of view while traveling along the travel plan can be performed by the visibility prediction unit 51 or. Then, in this case, the accumulated time is input to the risk evaluation unit 52, and the risk evaluation unit 52 does not need to execute the respective calculations thereafter.
  • the total driving time required to travel according to the driving plan based on the actual driving state of the own vehicle 100 may also be executed by another unit, for example, the planning unit 2; , The risk assessment unit 52 need not calculate the time (neither). In a further preferred alternative, no time is required to travel to the set position or to the end of the travel plan, which is described further below.
  • the risk evaluation unit 52 determines whether or not the travel plan should be adapted / corrected.
  • the risk evaluation unit 52 or another unit of the vehicle travel control device 1 may set a position on the travel route ahead of the actual position of the vehicle 100.
  • the set position may be 50 m, 100 m, or the like ahead of the actual position of the vehicle 100.
  • the planning unit 2 or the risk evaluation unit 52 may calculate that the own vehicle 100 arrives at the set position after 1 second, 3 seconds, 6 seconds, or the like, based on the travel plan.
  • the set position may be an end of the travel route or an intermediate position between the actual position of the vehicle 100 and the (final) end of the travel route.
  • the above-described routine can be repeatedly executed like a loop, and the setting position is newly set for each iteration.
  • the total travel time determined as described above is determined by the visibility prediction unit 51 or the risk evaluation unit 52 and provides a period during which the detected object is not visible to the vehicle surrounding observation unit 4 until the set position is reached. , Cumulative time.
  • the relationship or difference between the two times may be compared by the risk assessment unit 4 with the allowed time, or the accumulated time in which the object is not visible may simply be compared with the allowed time.
  • the visibility prediction unit 51 instead of calculating the time and comparing the time with the allowable time, the visibility prediction unit 51 also calculates an estimated distance that the detected object is not in the field of view until the set position or the end of the travel plan is reached. Is also good.
  • the risk assessment unit 52 associates the estimated distance with the total mileage to the set position (eg, by dividing the distance or subtracting from each other) and using the relationship or difference in this alternative to provide an allowable distance. It can be compared to the allowable distance provided by the time controller 54.
  • the risk evaluation by the risk evaluation unit 52 can also be performed by setting a “future evaluation period”.
  • a “future evaluation period” For example, the risk evaluation unit 52 or another unit of the vehicle traveling control device 1 A period for future traveling of the own vehicle to be evaluated, that is, a “future evaluation period” may be set. The period may be set to, for example, 5 seconds, 10 seconds, 100 seconds, or the like, and may be started from the actual position of the vehicle 100.
  • the visibility planning unit 5 calculates a period in which the detected object is out of the field of view, and defines a time interval for the allowable time control device 54 to provide an allowable time (period).
  • the visibility predicting unit 51 determines the accumulated time during which the detected object does not exist in the visual field (the next 10 seconds after the vehicle travels) to 3 seconds.
  • the allowable time is 2 seconds
  • the risk evaluation unit 52 outputs the violation of the maximum allowable time after comparing the accumulated time of 3 seconds with the allowable time of 2 seconds.
  • the risk assessment unit 52 preferably determines if the time / time interval during which the detected object is outside the field of view is greater than the allowable time input from the allowable time controller 54 (or if the detected object is If the traveling distance outside the field of view is larger than the allowable distance), it is determined that the traveling plan needs to be adapted.
  • the allowed time (and / or distance) may be predefined and stored in the database of the allowed time controller 54.
  • the allowed time (distance) may be different for different predefined objects.
  • Using a future evaluation period makes it possible to replace the step of calculating the travel time to the set position or the end of the travel plan, which reduces the computational burden.
  • a future evaluation period may be used instead of the travel time to the set position.
  • the risk assessment unit 52 further receives information from the effective area estimation unit 52, which submits information on the effective area of the detected object to the risk assessment unit 52.
  • the effective area of the detected object may be near / periphery / perimeter of the detected object having a predefined shape, for example, circular, rectangular, etc.
  • the effective area may be a rectangular area arranged in front of the traffic light that covers a road on which the vehicle 100 is to travel according to the travel plan. .
  • the effective area has the technical advantage that the calculation / determination of the risk assessment unit 52 can be limited to a limited area of the effective area, so that the computational effort is reduced and / or the risk is reduced.
  • the evaluation unit 52 Only relevant information is immediately used by the evaluation unit 52. For example, if the risk evaluation unit 52 receives information about the effective area of the detected object, the calculation / determination of the traveling time along the traveling route and the time during which the detected object is out of the field of view, as described above, It can be limited to a limited area.
  • the risk evaluation unit 52 determines that it is necessary to adapt the travel plan, it inputs the respective information to the control value calculation unit 55, and the control value calculation unit 55 corrects the correction parameter / command for adapting the travel plan. Is determined and passed to the planning unit 2. After that, the planning unit 2 corrects the travel plan to the adapted travel plan and inputs the adapted travel plan to the visibility planning unit 5. This allows the adaptation of the travel plan until the travel plan satisfies the requirements in view of the decision of the risk assessment unit 52, for example, until the time / distance interval during which the detected object is out of the field of view is less than the permissible time / distance. A feedback control loop is established that can be performed.
  • the control loop may, in a further example, include an emergency check unit (not shown), which may request an emergency stop of the vehicle 100 if the situation is determined to be too dangerous.
  • the risk assessment unit 52 may determine if the accumulated time that the detected object is out of view is greater than a second allowable time that is greater than the (first) allowable time, and / or the detected object or a further object. May suddenly appear in front of the vehicle 100, and if the adaptation of the travel plan takes too long, the situation may be determined to be too dangerous.
  • FIG. 3 illustrates an example of the claimed subject matter having a host vehicle 100 traveling on a road according to a travel plan, which is herein marked by “P”. Further, the field of view of the exemplary vehicle surroundings observation unit 4 is indicated by “FOV”, and has a triangular shape when viewed from above in the example of FIG.
  • the target detection unit 3 detects a predefined object that is a traffic light (O mark) according to the example illustrated in FIG.
  • the traffic light O is arranged next to the road on which the vehicle 100 is traveling, and is within the field of view FOV as shown in FIG.
  • the road includes a road marking that is a stop line marked with “S” indicating a stop position of a vehicle traveling on the road when the traffic light O indicates a red light.
  • the target detection unit 3 detects an object, in this example, the traffic light O, it passes the relevant information to the visibility prediction unit 51. Specifically, the target detection unit 3 provides the visibility prediction unit 51 with information that the detected object is the traffic light O, its position, and the light color actually indicated by the signal O. The visibility prediction unit 51 further receives information on the field of view “FOV” from the sensor configuration unit 56, and based on the received information, the visibility prediction unit 51 causes the own vehicle 100 to travel along the travel plan route P. If so, determine or calculate the time at which the detected traffic light O will be in the field of view.
  • FOV field of view
  • the risk evaluation unit 52 that receives information from the visibility prediction unit 51 performs processing on the effective area received from the effective area estimation unit 53 and the allowable time during which the detected object received from the allowable time control device 54 is out of the field of view.
  • the detected effective area EA of the traffic light O has a rectangular shape and is set so as to “cover” the road between the position of the stop line S and the actual position of the own vehicle 100. Is schematically shown. In other words, applying the validity area has the advantage that the risk assessment unit 52 performs the calculation only within a limited area of the validity area EA. After the own vehicle 100 has passed the traffic light O, the area behind the stop line S can be ignored since the traffic light does not affect the further traveling of the own vehicle 100.
  • the visibility prediction unit 51 accumulates the time t that satisfies “Condition 1” where the position of the detected object is out of the field of view, thereby “ Estimate "lost” or “invisible” time (out-of-field time). The accumulated time is “dl”.
  • the risk evaluation unit 52 adds “condition 2” to “dl”.
  • Condition 2 includes that the own vehicle position is within the effective area EA of the detected traffic light O. The combination of these periods (condition 1 and condition 2) is “d”. If “d” is longer than the allowable period “Td” given by the allowable time control unit 54, the risk evaluation unit 52 issues a command to the control value calculation unit 55 that the travel plan should be corrected.
  • FIG. 4 shows an example in which the vehicle periphery observation unit 4, which is a camera here, records a triangular area in front of the vehicle 100.
  • the target detection unit 3 detects the stop line S and the traffic light O based on the image captured by the camera.
  • the object detection unit 3 then calculates the positions of the stop line S and the traffic light O. Additionally, the color of the traffic light is detected, blue, yellow, or red.
  • the visibility planning unit 5 or a sub-unit of the other vehicle travel control device 1 converts the travel plan and the actual movement of the own vehicle. Based on this, it can be calculated that the vehicle 100 reaches the stop line S within 5 seconds, for example.
  • the "lost" or “invisible” period of the traffic light is between 5 and 10 seconds, during which time the vehicle may have to wait, for example, at a red light.
  • the risk evaluation unit 52 can calculate the risk.
  • the evaluation includes a period evaluation. In FIG. 4, for 5 to 10 seconds, the position of the vehicle 100 is always within the effective area EA of the traffic light O, and the color display (blue, yellow, and red) of the traffic light O is valid within the effective area EA.
  • "d" is the same as lost time "dl”. For example, if the allowable time is 2 seconds, the risk evaluation unit 52 determines that there is a risk. Therefore, the control value calculation unit 55 issues a correction instruction / plan to the planning unit 2.
  • FIG. 4 shows respective graphs of the above example.
  • the solid line indicates the travel route / plan P
  • the upper horizontal dashed line indicates the position of the stop line
  • the area below the upper horizontal dashed line is the effective area of the traffic light O.
  • the lower horizontal dashed line indicates the boundary of the visible area of the traffic light O, and the area below it indicates the visible area.
  • the vehicle 100 After 5.0 seconds, the vehicle 100 arrives in an area that is within the effective area but outside the visible area, and then has to wait at the stop line S until the traffic light changes to “blue”, for example, "Remain in the area for an additional 5.0 seconds. Therefore, in the above example, "d” and “dl” are greater than 5.0 seconds, which is longer than the allowed time.
  • the control value calculation unit 55 may issue is that the planning unit 2 stops the own vehicle 100 at the boundary of the visible area instead of the stop line S at the red signal O, and as a result, The vehicle 100 may include maintaining the traffic light O in view while stopping at the red light O.
  • Other possible measures are to move the path P laterally on the road or to reduce / increase the speed of travel, so that the vehicle does not need to wait at a red light, or at least is shorter than the allowed time There is no need to wait at time intervals.
  • the control also adapts the driving plan as described above and furthermore moves the vehicle surroundings observation unit 4 or adjusts its range / field of view, for example when waiting at a stop line at a traffic light. Modifications may include an option to keep the traffic light O in view when at the stop line S.
  • the visibility predicting unit 51 estimates that the traffic light O is visible for the first 3.0 seconds, and when t_n (future evaluation period) is set to 10.0 seconds again, the traffic light O is left for the remaining 7 seconds. Cannot be seen. Therefore, the signal disappearance period is 3 to 10 seconds.
  • the risk evaluation unit 52 calculates the risk. The risk assessment evaluates the period. During a period of 3.0 to 3.2 seconds, the position of the vehicle 100 is within the effective area of the traffic light O. Therefore, "d" is only 0.2 seconds. If the allowable time is 2 seconds, the risk evaluation unit 52 determines that the situation is safe. Therefore, the control value calculation unit 55 does not issue the correction information to the planning unit 2.
  • FIG. 5 is a graph showing the above example.
  • the solid line indicates the operation plan P ', the upper horizontal dashed line indicates the position of the stop line, and the lower area is the effective area of the traffic light.
  • the lower horizontal dashed line indicates the visibility boundary of the traffic light, and the lower area indicates the visible area.
  • "D" is between 3.0 and 3.2 seconds, but less than the 2.0 second allowable time, and the driving plan is not adapted.
  • FIGS. 6 (a)-(c) show further examples of driving scenarios in which the claimed subject matter may be beneficially applied.
  • FIG. 6A particularly shows an initial state in which the own vehicle 100 controlled by the vehicle travel control device 1 approaches the other two vehicles, and “C1” and “C2” in FIG. ".
  • the vehicle C1 is traveling in the left lane of the road, is present immediately before the vehicle 100, and the vehicle 100 is also traveling in the lane of the road.
  • Vehicle C2 is on the right lane of the road and activates indicator light IA indicating that vehicle C2 is about to change to the left lane.
  • FIG. 6A also shows the assumed actual driving / driving plan P of the vehicle 100, and at least the driving route.
  • the travel route / plan P causes the vehicle 100 to remain in the left lane, follows the vehicle C1 on a straight line, and if safely possible. Control is performed so as to pass the vehicle C2 while shortening the distance to the vehicle C1.
  • FIG. 6B FIG.
  • the effective area EA can be set so as to end at the position of the indicator light IA of the vehicle C2.
  • the risk evaluation unit 52 may determine that there is no need to adapt the actual travel plan since the overtaking has been almost completed when the indicator light IA is out of the field of view of the own vehicle 100.
  • the allowable time may be longer than the time when the indicator light is out of the field of view.
  • the described subject matter is that when the object detection unit 3 of the vehicle travel control device 1 detects an object in front of the vehicle 100, an automatic determination based on objective criteria as to when the travel plan should be adapted is made. To be able to do. Specifically, the control provides an effective means for keeping the objects detected during the travel of the vehicle 100 along the travel plan / route in the field of view.
  • Various alternatives for making the determination of the visibility planning unit 5 and / or the vehicle cruise control 1 and for the configuration have been described above and are combined and provided that they are within the expertise of a person skilled in the art. And / or may be modified.
  • SYMBOLS 100 own vehicle, 10 ... control unit, 1 ... vehicle traveling control device, 2 ... planning unit, 3 ... target detection unit, 5 ... visibility planning unit, 51 ... visibility prediction unit, 52 ... risk evaluation unit, 53 ... Effective area estimation unit, 54: allowable time control device, 55: control value calculation unit, 56: sensor configuration unit, 4: vehicle surrounding observation unit

Abstract

本発明は、特に、走行制御装置、対応する走行制御方法、走行制御装置を含む自車および走行制御方法を実行するよう適合されたコンピュータプログラム製品に関する。この制御により、自車に設置されているセンサやカメラ等の視野内に自車の走行経路上またはその近傍に位置する物体を連続的に保つことができる。これにより、自車の走行制御の信頼性が向上し、運転者はより高い運転快適性および安全性を享受することができる。

Description

車両走行制御装置
 本発明は、特に、走行制御装置、対応する走行制御方法、走行制御装置を含む自車および走行制御方法を実行するよう適合されたコンピュータプログラム製品に関する。この制御により、自車に設置されているセンサやカメラ等の視野内に自車の走行経路上またはその近傍に位置する物体を連続的に保つことができる。これにより、自車の走行制御の信頼性が向上し、運転者はより高い運転快適性および安全性を享受することができる。
 特許文献1および特許文献2に記載されたような現在の技術は、走行計画に従って自車を制御することによって、自律走行を支援および/または可能にする走行制御装置を提供する。
 特許文献1には、前方の障害物の検出が阻害されているか否かを判断し、検出が阻害されている場合には、前方の障害物を検出することができるように、自車の横位置を適切に調整するよう構成された走行位置決定装置が記載されている。
 特許文献2には、例えば、歩行者が走行計画の走行経路を横切ると決定し、衝突の危険性があると決定した場合には、自車の走行計画を修正することができる車両制御装置が記載されている。
特開2000-011300号公報 特開2016-139163号公報
 上記の文献は、自律走行に関する特定の問題に対する解決策を提供しているが、自車が、車両の周辺を観察する車両周囲観察ユニットを有していること、および自律型車両が走行計画の経路に沿って案内されている間、自車の周囲の物体を連続して視野内に維持する(または少なくとも可能な限り長く)ことができない場合、危険をもたらす可能性があることは考慮されていない。
 本明細書に記載され特許請求される主題は、自車の周辺/周囲に存在する物体が、自車が(今後/予定の)走行計画に従って走行している間、自車の車両周囲観察ユニットの視野内に可能な限り長く維持されるべきであるという技術的問題に対処する。この技術的問題は、独立請求項による発明によって解決される。さらなる好ましい発展形態は、従属請求項によって記載されている。
 本願の主題によれば、車両走行制御装置(または運転支援装置)が提案される。前記車両走行制御装置は、自車の車両周囲観察ユニットからデータ(用語「情報」は下記でも使用されてもよい)を受信し、受信データから自車の周囲の物体を検出するよう構成された対象検出ユニットを含んでもよい。前記車両走行制御装置は、自車の走行計画(走行経路を含む)を生成するよう構成された計画ユニットと、走行計画に沿って走行している間、検出された物体が車両周囲観察ユニットの視野/範囲の外側、すなわち範囲内にない時間(時間間隔)を決定し、決定された時間が予め設定された許容時間よりも大きい場合、補正情報を計画ユニットに入力するよう構成された視認性計画ユニットとをさらに含んでもよい。
 上記および下記において、「時間」は「距離」に置き換えられてもよく、または時間と距離の組み合わせが使用されてもよい。
 車両走行制御装置/運転支援装置は、例えば車両走行制御装置および/または他の制御ユニットの制御に基づいて、自律走行可能な自車に設置されてもよい。車両走行制御装置は、自車の他の制御装置の一部であってもよく、あるいは別個の(場合によっては追加の)装置であってもよい。
 対象検出ユニットによって受信されるデータは、カメラによって撮影された画像、センサ測定データなどを含むことができる。データは、自車が有してもよい1つまたは複数の車両周囲観察ユニットによって提供されてもよい。車両周囲観察ユニットと車両走行制御装置とは互いにデータ接続、例えば有線および/または無線接続を有する。車両周囲観察ユニットおよび車両走行制御装置は、自車内の異なる位置に配置されていてもよいし、互いに一体化されていてもよい。
 受信したデータは、自車の周辺/周囲で物体を検出できるか否かを確認するために、対象検出ユニットによって処理され得る。より好ましくは、走行計画の経路の周囲上または周囲内の物体、すなわち自車の実際の位置から見た場合に走行経路のさらに下方に位置する物体を確認する。対象検出ユニットによって検索/確認される物体はデータベース内に格納された事前定義された物体であってもよく、データベースは車両走行制御装置内に提供されていてもよいし、車両走行制御装置が無線アクセスおよびデータ転送接続を有していてもよい遠隔記憶空間に位置していてもよい。例えば、物体検出プロセスは任意の物体、またはより好ましくは車両のカメラによって撮影された画像など、データ内の事前定義された物体を検出することができる画像処理技術を使用することを含むことができる。物体を検出する1つの可能な方法は、検出データを事前定義された物体の予め記憶されたデータと比較することを含み得る。
 事前定義された物体は、例えば、自車の走行に影響を及ぼし得る、または走行計画の実現に影響を及ぼし得る、あらゆる種類の物体を含み得る。特定の例は、他の車両、他の物体、信号機、道路標示、交通標識、障害物、門/バリア、歩行者などを含み得る。
 計画ユニットは、自車が現在位置から走行する経路、および/または速度、加速度、操舵、変速などの自車を制御するための制御パラメータを含み得る走行計画を生成してもよい。より好ましくは、走行計画は、自律走行制御によって自律走行を行うために必要なパラメータおよび情報の全体の組を含んでもよく、自律走行制御は車両走行制御装置自体であってもよく、または車両走行制御装置が接続していてもよい。計画ユニットは、車両周囲観察ユニットからのデータ、GPSからのデータ、無線データ転送を介して車両走行制御装置に提供される地図からのデータ、運転者によって入力された走行目的地などを用いて走行計画を生成してもよい。走行計画は小区分に分割することができる。走行計画は、運転者のみへのナビゲーションアドバイスを含むことができ、および/または走行計画は、自律的に、すなわち運転者の対話なしまたは最小限の対話で、自車を目的地に走行させるのに必要なパラメータ/指令を含むことができる。
 視認性計画ユニットは、検出された物体が、走行計画に沿って(または走行計画「によって」)走行中に車両周囲観察ユニットの視野(「範囲」であってもよい)外に出る時間(または時間間隔)を決定することができる。決定された時間または時間間隔が、事前設定/事前定義され得る、より好ましくは事前定義された異なる運転状況に応じて変動し得る許容時間(または時間間隔)より大きい場合、補正情報が計画ユニットに入力される。上記の「時間」の代わりに、またはそれと組み合わせて、視認性計画ユニットは、すでに前述したように「距離」を使用することができる。
 上記の車両走行制御装置の技術的な利点は、自車の周辺に存在する物体が検出され、連続的に、または少なくともできるだけ長い間、物体が車両の観察ユニットの視野内に維持されるように、車両走行計画を適合させることができることである。そのさらなる有益な技術的結果は、物体が「視界」外/「見えない」ことが決してないまたは単にできるだけ短いために自律走行がより安全になり、物体が、例えば視野に突然「再出現」した場合に起こり得る、例えば、急ブレーキや急激な減速/加速などを回避することができるため、(物体が走行中に「見えなく」なる場合と比較して)走行計画がより完全な情報に基づいて適合され得るので、自律走行がより快適になることである。
 好ましくは、車両走行制御装置の計画ユニットは、走行計画を適合させるよう構成され、好ましくは、これは、補正情報(視認性計画ユニットとの間で交換される/視認性計画ユニットから提供されるデータである)に基づいて適合された走行計画を生成することができる。走行計画は、自車が走行計画をたどっている間に、検出された物体が車両周囲観察ユニットの視野外となる時間(または時間間隔)を短くする、または最小にするように適合されてもよい。
 より好ましくは、適合は、時間または時間間隔が走行計画の適合後の許容時間(時間間隔)以下になるように実行されるであろう。あるいは、走行距離が許容距離以下になるように実行されるであろう。ここで、好ましくは、交通渋滞などのために新しい経路を取らなければならないなどの他の理由に配慮して、走行計画を連続的に適合させることができることに留意されたい。しかしながら、対象検出ユニットによる物体の検出は、適合が必要になるか否かのチェック手順をさらに開始することになり、適合は、より好ましくは走行計画/経路に沿った実際の走行の前に実行される、すなわち走行計画は好ましくは、計画されたまたは今後の走行計画であることが好ましい。言い換えれば、上述のように、時間間隔の決定または計算は、実際には、実際の走行計画の設定/パラメータに従って実行される走行の「予測」または「推定」と呼ばれることがある。例えば、実際の走行計画が45km/hで100m自車の実際の位置より前方の直線道路を走行することを含む場合、車両が前記例示的な走行計画に従って、また前記例示的な走行計画に沿って走行するのに要する時間間隔は予測可能である。しかしながら、自車の前方100メートル以内に物体が検出された(好ましくは、前記物体が走行計画の実現に影響を及ぼし得るか否かがチェックされる)場合、走行計画は、全100メートルの間、または少なくともできるだけ長い間、検出された物体を車両周囲観察ユニットの視野内に維持するように適合されなければならない。適合は、好ましくは、自車の速度を適合させること、走行経路を適合させることなどを含むことができる。
 検出された物体が自車に対して、すなわちその周囲観察ユニットに対して「見えない」時間間隔を減少させることは、走行の安全性および快適性を最大にする。長期的な走行計画戦略が可能になるため、制御の信頼性もまた向上する。
 好ましくは、視認性計画ユニットは、(センサ)構成ユニットから車両周囲観察ユニットの構成に関するデータを受け取るよう構成された視認性予測ユニットを含む。データは、車両周囲観察ユニットの視野/範囲に関する情報を含むことができ、例えば、これは、自車に対する視野/範囲によってカバーされる領域を含むことができ、それは、例えば、データが、1つの車両周囲観察ユニットが特定の開口角度および特定の長さを有する三角形の視野を有するカメラであってもよく(鳥瞰図において)、自車前方の前側を向いていてもよいという情報を含むことを意味し得る。さらに、視認性予測ユニットは、検出された物体に関する情報を受け取ることができ、これは、位置(例えば、自車の実際の位置に対する相対位置、および/またはGPSデータなどの絶対位置)、信号機などの検出された物体の種類、動いている、固定されている、青信号、赤信号などの検出された物体の状態のうちの1つまたは複数を含んでもよい。
 好ましくは、視認性予測ユニットは、検出された物体が視野内にあるか視野外にあるかにかかわらず、走行計画の経路に沿ったそれぞれの、あるいは少なくとも様々な位置または時間について、例えば、推定、外挿などによって予測するよう構成される。好ましくは、視認性計画ユニットは、自車が走行計画を完了するのに必要となる時間(時間間隔)(または選択/設定された位置に到達するまでの時間)と、検出された物体が車両周囲観察ユニットの視野/範囲内にない時間(または距離)とを決定するよう構成されるリスク評価ユニットを含む。これにより、走行計画を適合させるべきか否かについての迅速で計算上の複雑さの少ない推定が可能になる。
 あるいは、走行制御装置1のリスク評価ユニットまたは他のサブユニットは、自車が設定位置に到達するまでの時間や走行計画の終了までの時間を算出する代わりに、今後の評価期間を設定してもよい。今後の評価期間が適用される場合、自車の実際の位置から始まる自車の今後の走行経路の5秒、10秒などをカバーするように設定され得る。この場合、設定位置に到達するまでの時間や走行計画の終了時間を算出する必要がないので、計算負荷が一層軽減される。今後の評価期間は、毎回少なくとも(ループとして)再開されてもよく、今後の評価期間の前の期間は終了する。
 好ましくは、リスク評価ユニットは、視認性計画ユニットの有効領域推定ユニットによって生成された検出された物体の有効領域に関する情報を受け取るよう構成される。有効領域とは、例えば、物体が自車の走行に影響を及ぼす物体の近傍または周辺の領域であってもよい。具体的には、例えば、交通標識または信号機の有効領域は、交通標識または信号機の前方にある道路領域であってもよく、言い換えれば、今後の自車の走行に関係ない(もはや影響を及ぼさない)交通標識/信号機の後方の道路(走行方向に)であり、そのため、この例では交通標識/信号機の前方の領域のみが有効領域として考えられてもよい。
 好ましくは、有効領域推定ユニットは、事前定義されたパターンに従って、かつ/またはGPSから取得したデータ、地図などに基づいて、検出された物体の周囲(周囲はまた、その正面のみ、その背面のみ、その側面のみ、近傍および/または任意の組み合わせを意味することができる)の有効領域を設定する。例えば、有効領域パターンはデータベースから読み取られてもよく、データベースは好ましくは走行制御装置内に格納されているか、または遠隔位置からの無線データ転送を介して受信されてもよく、また物体ごとに異なって定義されてもよい。全ての物体に対して一般的に長方形の領域として設定することもできる。それはまた、物体の周囲の事前定義された半径、または道路領域に沿った物体からの事前定義された距離によって設定されてもよい。設定は、移動制御装置内に記憶されていてもよいか、あるいはインターネットまたは遠隔データベースなどの遠隔ソースから無線で取得されてもよいデジタル地図、GPS位置データなどを使用することによって行われてもよい。
 好ましくは、リスク評価ユニットは、自車が有効領域内の走行計画に沿って走行するのに要する時間と、検出された物体が有効領域内の車両周囲観察ユニットの視野/範囲内にない時間とを算出する。
 有効領域を使用することは、走行計画の関連領域のみが走行計画の適合のために考慮されるので、特許請求される装置の信頼性を高め、計算上の負担を軽減する。
 好ましくは、視認性計画ユニットは、検出された物体が車両周囲観察ユニットの視野/範囲外にある事前定義された許容時間(または距離)を提供する許容時間制御装置を含む。許容時間または時間間隔は、視認性計画ユニットが検出された物体のそれぞれの許容時間を受信するデータベース(移動制御装置に格納されているか遠隔に格納されている)などに事前定義され得る。
 好ましくは、視野/範囲外の時間が事前定義された許容時間より大きく、かつ(好ましくは)自車が有効領域内にあると決定された場合、制御値計算ユニットは補正情報(データ)を計画ユニットへ提供するよう構成され、補正情報により走行計画は、検出された物体が視野/範囲外である時間を減らすように適合され、その結果事前定義された許容時間以下になる。適合は、車両がより遅く、より速く、道路上を、別の経路をわずかにずらして走行すること、またはより早く、より遅く停止することなどを引き起こし得る。例えば、赤い信号機では、車両がまさに信号機の停止線で停止している場合、信号機が視野内にないことがあり得る。したがって、この適合は、赤信号で待機している間に信号機を視野内に維持するために、車両が停止線の少し手前で(可能な限り)停止することを含むことができる。
 走行計画の適合は反復的に実行されることが好ましい。例えば、適合は、補正情報を用いてフィードバック制御されてもよい。「初期」走行計画は、例えば時間間隔が許容時間間隔を下回るまで、ループ内で何度も適合させることができる。これにより、走行計画適合の精度が向上する。
 前記制御ループは、さらに好ましい例では、状況が危険すぎると決定された場合、自車の緊急停止を要求することがある緊急チェックユニットを含むことができる。例えば、リスク評価ユニットは、検出された物体が視野外にある累積時間が(第1の)許容時間よりも長い第2の許容時間よりも大きい場合、および/または検出された物体またはさらなる物体が自車100の前方に突然出現し、走行計画の適合には時間がかかりすぎる場合に、状況が危険すぎると決定してもよい。緊急チェックユニットは、車両走行制御装置に組み込まれてもよく、制動指令を発するなどにより、緊急停止を制御し得る制御ユニットまたは任意の他のユニットに対して直接緊急停止指令を発してもよい。
 好ましくは、制御値計算ユニットは、自車の速度、自車の進行方向および予定経路、および/または自車の停止位置を含む補正情報を決定する。加速/減速に関する情報などのさらなる補正情報を使用/決定することができる。
 好ましくは、検出された物体が車両周囲観察ユニットの視野/範囲内にある時間は、好ましくは、上記で説明した手段に加えて、視野/範囲を調整することによって最大化され、すなわち、視野外の時間が最小になる。これは、車両周囲観察ユニットの焦点の制御などによって実現することができる。例えば、カメラは、視野を狭める/広げる、および/または視野を減少させる/拡張するように制御できる車両周囲観察ユニットとして使用することができる。これにより、特許請求された装置の用途をさらに拡大することができ、その結果、特許請求された装置を異なる運転状況においてさらに柔軟に使用することができる。
 好ましくは、検出された物体は、交通標識、信号機、道路標示、他の車両および/または人間、動物などの他の物体などの道路物体を含む。
 好ましくは、対象検出器によって複数の物体が検出された場合、異なる物体に対して優先度を設定するように構成され、かつ対象検出器が最も高い優先度を有する検出された物体を選択するよう構成される調停ユニットが、走行制御装置に設けられるかまたは接続される。
 好ましくは、走行計画の適合は、さらに安全面および/または運転快適性の面を考慮に入れ、安全面は、検出された物体が走行計画の経路上にあり、自車を検出された物体の周りに案内する代替経路が利用不可能である場合に、自車の緊急停止を含み、運転快適性の面は運転者が感じる高いGを回避することを含む。
 また、特許請求される主題は、少なくとも1つの先行請求項による車両走行制御装置および車両周囲観察ユニットを含む車両を含んでもよく、車両周囲観察ユニットはライダユニット、カメラユニット、ステレオカメラユニット、レーダユニット、電磁波ユニットなどを含む装置の1つまたはこれらの組み合わせである。
 さらに、特許請求される主題は、上記のように、(車両)走行制御装置を備えた自車の走行計画の適合を実行する方法を含んでもよく、少なくとも、自車の走行計画を生成するステップと、自車の車両周囲観察ユニットによって提供されたデータに基づいて自車の周囲内の物体を検出するステップと、検出された物体が事前定義された許容時間よりも長い時間車両周囲観察ユニットの視野外にある場合に走行計画を適合させるステップとを含む。本方法のさらなるステップは、上記のような(車両)走行制御装置の構成から導出可能である。
 さらに、特許請求される主題は、メモリに格納可能なコンピュータプログラム製品であって、コンピュータまたは他の任意の電子計算装置によって実行された場合、コンピュータに上記の方法を実行させる命令を含む、コンピュータプログラム製品を含んでもよい。
 要約すると、本発明は、自動車、トラック、オートバイなどの車両の走行制御装置の信頼性を高めるための解決策を提供する。走行の安全性および快適性も向上させることができる。
 以下において、特許請求される主題は、添付の例示的図面を参照しながら、少なくとも1つの好ましい例に基づいてさらに説明される。
自車100の概略図である。 走行制御装置1の概略図である。 走行制御装置1の技術的機能の一例を示す図である。 図3の例における第1のシナリオを示す図である。 図3の例における第2のシナリオを示す図である。 走行制御装置1のさらなる技術的機能を示す図である。 走行制御装置1のさらなる技術的機能を示す図である。 走行制御装置1のさらなる技術的機能を示す図である。
 図1は、とりわけ、特許請求される主題による車両走行制御装置1と、制御ユニット10と、互いに接続され、自車100内に設置された少なくとも1つの車両周囲観察ユニット4とを含むことができる例示的な車両を示す。図1は、制御ユニット10および車両走行制御装置1を別個のユニットとして示しているが、代替として、2つのユニットを組み合わせて単一のユニットを形成してもよい。自車100は、エンジン制御ユニット(ECU)を含むことができる複数の制御ユニット10を有することができる。
 自車100は、少なくとも1つの車両周囲観察ユニット4(またはセンサ)を含み、好ましくは複数のこのようなユニット4を含む。車両周囲観察ユニット4は、例えば、カメラ、ステレオカメラ、レーザレーダ、ミリ波レーダおよび/またはライダを含み得る。車両走行制御装置1および/または制御ユニット10は、操舵制御ユニット、スロットル制御ユニット、制動制御ユニットなどの走行制御機能を提供するためのさらなるサブユニットを含むことができる。好ましくは、自車100は制御ユニット10を備えず、車両走行制御装置1が自車100の全ての関連制御機能を組み合わせることが好ましい。上記の概略構成に基づいて、自車100は、制御装置/ユニットによって制御されて自律運転し、制御装置/ユニットは車両周囲観察ユニット4によって提供された情報およびさらなる情報、例えば、自車100の任意の通信ユニットを介して受信された情報/データを使用し、通信ユニットは、インターネット、遠隔サーバ、および/またはGPSなどの遠隔データソースからデータを受信することができる。さらなる情報は、地図情報、交通情報などを含み得る。
 車両走行制御装置1は、(車両)走行計画を生成するよう構成されるユニットと接続されるおよび/または該ユニットを含む。以下で、それぞれのユニットは「計画ユニット」2と呼ばれる。特に、走行計画は自車100の運転経路を含み、これは車両周囲観察ユニット4からの入力、GPS情報および/または地図情報、ならびに運転者によって入力された運転目的地に基づいて生成される。他の関連情報は、地図情報に含まれていてもよいか、または車両周囲観察ユニット4によって検出されてもよい前方の道路上の障害物などを含んでもよい。
 図2は、符号1を付した太い外枠で示されている車両走行制御装置1の例示的内部構成を示す。車両周囲観察ユニット4は、図2に示すように、対象検出ユニット3である車両走行制御装置1のサブユニットに情報を入力する。対象検出ユニット3は、車両周囲観察ユニット4からデータ/情報を受信し、検出処理を実行するために前記情報を使用する。検出処理は、走行経路の近傍または上に存在する1つまたは複数の物体を検出することを目的とする。実際の走行計画は、ここで説明した処理の前に生成されたものであり、この例では移動制御装置1にはすでに利用可能である。物体の検出は、例えば、車両周囲観察ユニット4によって提供される情報内の事前定義されたパターンを検出することによって実行される。検出すべき物体は、事前定義された物体を含むことができ、または機械学習プロセスを使用して、走行計画に沿った自車100の走行に関連する任意の種類の(必ずしも事前定義されたものではない)物体を検出することができる。
 検出処理の一例によれば、対象検出ユニット3は、自車100のカメラ(この例では車両周囲観察ユニット4であるカメラ)によって撮影された画像(車両周囲観察ユニット4からの情報/データとして)を受信してもよく、検出プロセスは、事前定義された形状などを有する画像内の物体を検出する画像評価プロセスを含むことができる。事前定義された物体および/またはその事前定義された形状は、有線または無線で車両走行制御装置1に接続可能なデータベースに格納されていてもよい。事前定義された物体は、道路標示、交通標識、他の車両、歩行者、サイクリストまたはオートバイドライバなどの他の交通参加者、ならびに運転経路上の障害物および/または運転経路上またはその近傍の他の物体を含み得る。
 対象検出ユニット3が物体を検出する場合、対象検出ユニット3はそれぞれのデータ/情報を、後述するさらなるサブユニットを含む視認性計画ユニット5に入力する。対象検出ユニット3からの情報は視認性予測ユニット51に入力され、視認性予測ユニットはセンサ構成ユニット56からの情報をさらに受信する。対象検出ユニット3から入力される情報は、好ましくは、例えば自車100に対するおよび/または絶対位置座標における検出された物体の位置、検出された物体の種類、ならびに物体の状態および/または物体が動いているか静止しているかなどさらなる任意の情報を含む。センサ構成ユニット56から入力される情報は、車両周囲観察ユニット4の視野(範囲)および/または各車両周囲観察ユニット4の視野に関する構成情報を含む。
 上記の情報により、自車100が走行計画の(実際に使用された/存在する)走行経路に沿って走行するとき、視認性予測ユニット51は、実際の走行経路について、検出された物体が、少なくとも1つの車両周囲観察ユニット4の視野内に連続してあるか否か、または検出された物体が一時的または連続して、前記視野外にあるか否かを決定する。
 例えば、視認性予測ユニット51は、自車100の前方の走行経路の複数の時点および/または位置について、上述したような推定(検出された物体が視野内にあるか否か)を行う。
 視認性予測ユニット51により決定された情報は、リスク評価ユニット52に渡される。リスク評価ユニット52は、許容時間制御装置54からデータ/情報をさらに受け取り、リスク評価ユニット52は、走行計画に沿って走行するのに必要な総運転時間と、走行計画に沿って走行する間対象検出ユニット3によって検出された物体が視野外になる累積時間とを計算する。走行計画に沿って走行する間対象検出ユニット3によって検出された物体が視野外になる累積時間の計算/推定はまたは、視認性予測ユニット51によって実行できることに留意されたい。そして、この場合、前記累積時間はリスク評価ユニット52に入力され、リスク評価ユニット52はその後それぞれの計算を実行する必要がない。さらに好ましくは、自車100の実際の運転状態に基づく走行計画に沿って走行するのに要する総運転時間はまた、他のユニット、例えば、計画ユニット2によって実行されてもよく、したがって、この場合、リスク評価ユニット52は前記時間を計算する必要がない(どちらも)。さらに好ましい代替案では、設定位置まで、または走行計画の終わりまで走行するのに必要な時間はまったく行われず、これについては以下でさらに説明する。
 例えば、物体の視野外の累積時間が比較される、許容時間制御装置54から入力された情報に基づいて、リスク評価ユニット52は、走行計画を適合/修正すべきか否かを決定する。上記の例では、リスク評価ユニット52または車両走行制御装置1の他のユニットが、自車100の実際の位置よりも前方の走行経路上の位置を設定してもよい。例えば、設定位置は、自車100の実際の位置よりも50メートル、100メートルなど前方にあってもよい。次に、計画ユニット2またはリスク評価ユニット52は、走行計画に基づいて、例えば自車100が1秒後、3秒後、6秒後などに設定位置に到着することを算出してもよい。設定位置は、走行経路の端部でもよいし、自車100の実際の位置と走行経路の(最終)端部との中間位置でもよい。後者の場合、上述したルーチンをループ様に繰り返し実行することができ、設定位置は繰り返しごとに新たに設定される。上述のように決定された総走行時間は、視認性予測ユニット51またはリスク評価ユニット52によって決定され、かつ設定位置に達するまで、検出された物体が車両周囲観察ユニット4に見えない期間を提供する、累積時間と比較されてもよい。2つの時間の間の関係または差は、リスク評価ユニット4によって許容時間と比較されてもよく、または物体が見えない累積時間は単に許容時間と比較されてもよい。
 また時間を算出して時間を許容時間と比較する代わりに、視認性予測ユニット51はまた、設定位置または走行計画の終了に達するまで、検出された物体が視野内にない推定距離を計算してもよい。リスク評価ユニット52は、推定距離を設定位置までの全走行距離に関連付け(例えば、距離を分割するかまたは互いに減算することによって)、前記関係または差を、この代替案では許容距離を提供する許容時間制御装置54によって提供される許容距離と比較することができる。
 リスク評価ユニット52によるリスク評価はまた、「今後の評価期間」を設定することによって行うことができ、例えば、リスク評価ユニット52または車両走行制御装置1の他のユニットが、視認性計画ユニット5により評価される自車の今後の走行のための期間、すなわち「今後の評価期間」を設定してもよい。前記期間は、例えば、5秒、10秒、100秒などに設定されてもよく、自車100の実際の位置から開始してもよい。次に、前記期間は、視認性計画ユニット5が検出された物体が視野外にある期間を計算し、許容時間制御装置54が許容時間(期間)を提供するための時間間隔を定義する。すなわち、今後の評価期間が10秒に設定されている場合、視認性予測ユニット51は、検出された物体が視野に存在しない累積時間(自車走行の次の10秒間)を3秒に決定し、許容時間は2秒であるとき、リスク評価ユニット52は、3秒の累積時間を2秒の許容時間と比較した後、最大許容時間の違反を出力する。
 したがって、リスク評価ユニット52は、好ましくは検出された物体が視野外にある時間/時間間隔が、許容時間制御装置54から入力される許容時間よりも大きい場合には(または、検出された物体が視野外にある走行距離が許容距離よりも大きい場合)、走行計画を適合させる必要があると判断する。許容時間(および/または距離)は、予め定義され、許容時間制御装置54のデータベース内に格納されてもよい。許容時間(距離)は、異なる事前定義された物体ごとに異なってもよい。今後の評価期間を使用することは、設定位置または走行計画の終わりまでの走行時間を計算するステップを置き換えることを可能にし、これは計算の負担を軽減する。設定位置までの走行時間などに代えて、今後の評価期間を用いてもよい。
 さらなる好ましい例では、リスク評価ユニット52は、検出された物体の有効領域に関する情報をリスク評価ユニット52に提出する有効領域推定ユニット52から情報をさらに受け取る。検出された物体の有効領域は、例えば円形、長方形などの事前定義された形状を有する検出された物体の近傍/周囲/周辺であり得る。具体的には、例えば、検出された物体が信号機である場合、有効領域は、走行計画に従って自車100が走行する予定の道路を覆う信号機の前方に配置された矩形の領域であってもよい。有効領域を考慮に入れることは、リスク評価ユニット52の計算/決定を有効領域の限られた領域に限定することができるという技術的利点を有するので、計算の手間が軽減され、および/またはリスク評価ユニット52によって直ちに関連情報のみが使用される。例えば、リスク評価ユニット52が検出された物体の有効領域に関する情報を受信した場合、上述した走行経路に沿った走行時間および検出された物体が視野外にある時間の算出/決定は、有効領域の限られた領域に限定することができる。
 リスク評価ユニット52が、走行計画を適合させる必要があると判断した場合、それぞれの情報を制御値計算ユニット55に入力し、制御値計算ユニット55は、走行計画を適合させるための修正パラメータ/指令を決定し、計画ユニット2に渡す。その後、計画ユニット2は、走行計画を適合された走行計画に修正して、適合された走行計画を視認性計画ユニット5に入力する。これにより、リスク評価ユニット52の決定に鑑みて走行計画が要求を満たすまで、例えば、検出された物体が視野外である時間/距離間隔が許容時間/距離以下になるまで、走行計画の適合を実行することができるフィードバック制御ループが確立される。
 前記制御ループは、さらなる例では、状況が危険すぎると決定された場合、自車100の緊急停止を要求することがある緊急チェックユニット(図示せず)を含むことができる。例えば、リスク評価ユニット52は、検出された物体が視野外にある累積時間が(第1の)許容時間よりも長い第2の許容時間よりも大きい場合、および/または検出された物体またはさらなる物体が自車100の前方に突然出現し、走行計画の適合には時間がかかりすぎる場合に、状況が危険すぎると決定してもよい。
 図3は、本明細書では「P」でマークされている走行計画に従って道路を走行する自車100を有する特許請求された主題の一例を示す。さらに、例示的な車両周囲観察ユニット4の視野は「FOV」で示されており、図3の例では、上から見たときに三角形の形状をしている。上述した車両走行制御装置1の構成によれば、対象検出ユニット3は、図3に示す例による信号機(O印)である事前定義された物体を検出する。信号機Oは、自車100が走行している道路の隣に配置されており、図3に示すように視野FOV内にある。さらに、道路は、信号機Oが赤信号を示す場合に、道路上を走行する車両の停止位置を示す「S」でマークされた停止線である道路標示を含む。
 上述のように、対象検出ユニット3は、物体、この例では信号機Oを検出するとすぐに、関連情報を視認性予測ユニット51に渡す。具体的には、対象検出ユニット3は、検出された物体が信号機Oであること、その位置およびそれが実際に示す光色の情報を視認性予測ユニット51に提供する。視認性予測ユニット51は、センサ構成ユニット56から視野「FOV」に関する情報をさらに受信し、受信した情報に基づいて、視認性予測ユニット51は、自車100が走行計画経路Pに沿って走行する場合、検出された信号機Oが視野内にあるであろう時間を決定または計算する。また、視認性予測ユニット51から情報を受信するリスク評価ユニット52は、有効領域推定ユニット53から受信した有効エリア、および許容時間制御装置54から受信した検出された物体が視野外である許容時間についての情報を考慮する。
 図3の例では、検出された信号機Oの有効領域EAが矩形状を有し、停止線Sの位置と自車100の実際の位置との間の道路を「覆う」ように設定されたことが模式的に示されている。言い換えれば、有効領域を適用することは、リスク評価ユニット52が有効領域EAの限られた領域内でのみ計算を実行するという利点を有する。自車100が信号機Oを通過した後は、自車100のさらなる走行に信号機が影響しないため、停止線Sの後方の領域は無視できる。
 検出された信号機Oの上述の例において、2つの可能なシナリオが図3、4および5に関連してより詳細に説明される。以下の仮定がシナリオ例に対して使用され、視認性予測ユニット51は、検出された物体の位置が視野外である「条件1」を満たす時点tを累積することによって、検出された物体の「失われた」または「見えない」時間(視野外の時間)を推定する。累積時間は「dl」とする。その後、リスク評価ユニット52は、「条件2」を「dl」に加える。条件2は、自車位置が検出された信号機Oの有効領域EA内にあることを含む。これらの期間(条件1および条件2)の組み合わせを「d」とする。「d」が、許容時間制御ユニット54から与えられる許容期間「Td」より大きい場合、リスク評価ユニット52は、走行計画の修正を実行すべきであるとの指令を制御値計算ユニット55に出す。
 より具体的には、図4は、ここではカメラである車両周囲観察ユニット4が、自車100の前方に三角形の領域を記録する例を示している。対象検出ユニット3は、カメラで撮影した画像に基づいて、停止線Sおよび信号機Oを検出する。対象検出ユニット3は次に、停止線Sおよび信号機Oの位置を計算する。さらに信号機の色が検出され、青色、黄色、または赤色である。視認性計画ユニット5に渡された対象検出ユニット3からの情報を使用して、視認性計画ユニット5または他の車両走行制御装置1のサブユニットは、走行計画と実際の自車の動きとに基づいて、自車100が例えば5秒以内に停止線Sに到達することを計算できる。本例では、視認性予測ユニット51は、検出された信号機Oの(近い)将来、例えばt_0からt_nまでの期間(今後の評価期間として)の視界を推定し、ここで、t_0は自車100の実際の位置にあり、実際の走行計画Pおよびセンサ構成ユニット56によって提供されるカメラの視野を考慮に入れる。また、例えば、車両走行制御装置1がt_n=10.0秒と設定し、信号機Oが停止線Sから始めて視野外となる場合、今後の評価期間の初めの5秒間信号機は可視であり、今後の評価期間の残りの5秒間は不可視であると計算される。したがって、信号機の「失われた」または「見えない」期間は、5~10秒の時点の間であり、その間、自車は、例えば、赤信号で待機しなければならない可能性がある。この推定の後、リスク評価ユニット52はリスクを計算することができる。評価には期間の評価が含まれる。図4において、5~10秒の間、自車100の位置は常に信号機Oの有効領域EA内にあり、有効領域EA内で信号機Oの色表示(青、黄および赤)は有効である。したがって、「d」は失われた時間「dl」と同じである。例えば、許容時間が2秒である場合、リスク評価ユニット52はリスクがあると判断する。したがって、制御値計算ユニット55は、修正指示/計画を計画ユニット2に発する。
 図4は、上記の例のそれぞれのグラフを示す。横軸はt_0=0.0からの時間を示し、縦軸は自車位置を示す。実線は走行経路/計画Pを示し、上側横方向破線は停止線の位置を示し、上側横方向破線の下の領域は信号機Oの有効領域である。下側横方向破線は信号機Oの可視領域の境界を示し、その下の領域は可視領域を示す。
 5.0秒後、自車100は有効領域内であるが可視領域の外側である領域に到着し、その後、例えば信号機が「青」に変わるまで停止線Sで待たなければならないので、「不可視」領域内にさらに5.0秒間留まる。それ故、上記の例では「d」および「dl」は5.0秒よりも大きく、これは許容時間よりも長い。
 上記の例において、制御値計算ユニット55が発行してもよい手段の一例は、計画ユニット2が自車100を停止線Sの代わりに可視領域の境界で赤信号Oで停止させ、その結果自車100は赤信号Oで停止する間、信号機Oを視野内に維持することを含んでもよい。他の可能な手段は、経路Pを道路の横方向に移動させること、または走行速度を減少/増加させ、これにより、自車が赤信号で待機する必要がないか、あるいは少なくとも許容時間より短い時間間隔で待機する必要がなくなる。代替の好ましい例では、制御はまた、上述したように走行計画を適合させ、さらに、例えば、信号機の停止線で待機しているとき、車両周囲観察ユニット4を動かすか、またはその範囲/視野を修正して、停止線Sにいるときに、信号機Oを視野内に維持するオプションを含み得る。
 しかしながら、再び図3の例を参照すると、信号機は青色の信号を示し、自車100は3.0秒後に停止線を通過すると仮定している。その後、視認性予測ユニット51は、初めの3.0秒間は信号機Oが見えると推定し、t_n(今後の評価期間)が再び10.0秒に設定された場合、残りの7秒は信号機Oは見えない。したがって、信号機の消失期間は3~10秒である。この推定の後、リスク評価ユニット52はリスクを計算する。リスク評価は期間を評価する。3.0~3.2秒の間、自車100の位置は信号機Oの有効領域内にある。したがって、「d」は0.2秒に過ぎない。許容時間が2秒である場合、リスク評価ユニット52は状況が安全であると判断する。したがって、制御値計算ユニット55は、修正情報を計画ユニット2に発しない。
 図5は、上記の例をグラフで示したものである。横軸はto=0.0からの時間を示し、縦軸は車位置を示す。実線は運転計画P’を示し、上側横方向破線は停止線の位置を示し、下の領域は信号機の有効領域である。下側横方向破線は信号機の視認性境界を示し、下の領域は可視領域を示す。3.0秒後、自車100は有効領域と可視領域との間の不可視領域に到達する。「d」は3.0秒から3.2秒の間であるが、2.0秒の許容時間よりも小さく、走行計画は適合されない。
 図6(a)~(c)は、本明細書に特許請求された主題が有益に適用され得る運転シナリオのさらなる例を示す。図6(a)は、とりわけ、車両走行制御装置1によって制御される自車100が他の2台の車両に接近する初期状態を示しており、図6(a)において「C1」および「C2」で示されている。車両C1は、道路の左車線を走行しており、自車100の直前に存在し、自車100も道路の車線を走行している。車両C2は道路の右車線上にあり、車両C2が左車線に変更しようとしていることを示す表示灯IAを作動させる。自車100が車両C2を追い越した後に車両C2が左車線に進路変更を行おうとしていると仮定すると、自車100(車両周囲観察ユニット4がより良い)が視野内に車両C2の表示灯IAを維持すると安全性が向上することになる。図6(a)には、自車100の仮定した実際の走行/運転計画Pがまた示され、少なくとも走行経路に関して示されている。図6(b)に概略的に示すように、実際の例では、走行経路/計画Pは、自車100を左車線に留まらせ、直線上で車両C1の後に続き、安全に可能であれば車両C1への距離を縮めながら車両C2を追い越すように制御する。しかし、図6(b)に示すように、自車100が実際の走行計画に従うと、自車100の車両周囲観察ユニット4の視野内に表示灯IAはないことを図6(b)は示している。したがって、両方の車線ならびに他の車両C1およびC2の両方をカバーする有効領域EAを適用する場合、上記のような視認性計画ユニット5およびそのサブユニットは、自車100によって追い越されるべき車両C2の表示灯IAが、図6(b)に示す自車100の位置から始まる視野の外側にあることを決定し、視野は有効領域の長さの約半分である。リスク評価ユニット52が、有効領域の後半を走行するのに許容時間を超えるか、またはこの例では検出された物体である表示灯IAが視野外にあることが、有効領域EAの長さの半分程度の距離に対して許可されないと決定する場合、リスクを回避するために制御値計算ユニット55への入力が発せられ、走行計画が修正される。リスク評価ユニット52が、状況が十分に安全ではないと判断した場合、制御値計算ユニット55は、計画ユニット2が実際の走行計画を適合/修正するためのパラメータ/指令などを決定する。このような修正の1つの可能な結果は図6(c)に示され、走行計画が経路を維持する(左側車線をまっすぐ走行する)が、車両C2を追い越しながら、先行車両C1までの最小距離はより大きくなるように設定され、それにより、図6(c)に概略的に示すように、検出された物体、この例では表示灯IAが長時間視野内に保持される。無論、自車100の速度を増加させる(これは車両C1が存在しない場合にのみ可能であり得る)、自車100の速度を減少させる、さらに車両C1への距離を増加させ、それにより他車両C2が自車100の前方の左車線に変更することができるなど、他の適合が代替的または追加的に適用され得る。
 さらに、車両C1が上記の例に存在しない場合、車両C2の表示灯IAの位置で終わるように、有効領域EAを設定することも可能である。この場合、リスク評価ユニット52は、表示灯IAが自車100の視野外にあるときに追い越しはほぼ終了しているため、実際の走行計画を適合させる必要がないと判断してもよく、したがって許容時間は、表示灯が視野外にある時間よりも長くてもよい。
 要約すると、記載された主題は、車両走行制御装置1の対象検出ユニット3が自車100の前方の物体を検出する場合、走行計画がいつ適合されるべきかに関する客観的基準に基づく自動決定を行うことを可能にする。具体的には、制御は、走行計画/経路に沿った自車100の走行中に検出された物体を視野内に維持するための有効な手段を提供する。視認性計画ユニット5および/または車両走行制御装置1の決定を行い、かつ構成のための様々な代替案が上述されており、それらが当業者の専門知識の範囲内である限り、組み合わされおよび/または修正され得る。
100…自車、10…制御ユニット、1…車両走行制御装置、2…計画ユニット、3…対象検出ユニット、5…視認性計画ユニット、51…視認性予測ユニット、52…リスク評価ユニット、53…有効領域推定ユニット、54…許容時間制御装置、55…制御値計算ユニット、56…センサ構成ユニット、4…車両周囲観察ユニット

Claims (15)

  1.  自車に設置されるよう構成された車両走行制御装置であって、
     前記自車の走行計画を生成するよう構成された計画ユニットと、
     対象検出ユニットであって、前記自車の車両周囲観察ユニットから情報を受信し、受信した情報に基づいて、前記自車の周囲において物体を検出するよう構成された、対象検出ユニットと、
     前記自車が前記走行計画に沿って走行する間、前記検出された物体が前記車両周囲観察ユニットの視野の外側にある時間を決定し、前記決定された時間が予め設定された許容時間よりも大きい場合、補正情報を前記計画ユニットに入力するよう構成された視認性計画ユニットと
     を備えることを特徴とする、車両走行制御装置。
  2.  前記計画ユニットは、前記走行計画に沿って走行する間、前記検出された物体が前記車両周囲観察ユニットの視野の外側にある時間が減少するように、前記視認性計画ユニットによって提供された前記補正情報に基づいて、前記走行計画を適合させて適合走行計画を生成するよう構成されることを特徴とする、請求項1に記載の車両走行制御装置。
  3.  前記視認性計画ユニットは、視認性予測ユニットであって、前記車両周囲観察ユニットの構成に関する情報を受信し、視認性予測ユニットの前記視野を含み、検出された物体に関する情報を受信するよう構成された視認性予測ユニットを含み、前記視認性予測ユニットは、前記走行計画の経路に沿った複数の位置について、前記検出された物体が前記視野内にあるか否かを予測するよう構成されることを特徴とする、請求項1または請求項2に記載の車両走行制御装置。
  4.  前記視認性計画ユニットは、前記自車が前記走行計画の経路に沿って走行するのに必要となる時間と、前記検出された物体が前記車両周囲観察ユニットの視野内にない時間とを決定するよう構成されるリスク評価ユニットを含むことを特徴とする、請求項1~3の少なくとも1つに記載の車両走行制御装置。
  5.  前記リスク評価ユニットは、前記視認性計画ユニットの有効領域推定ユニットにより生成された前記検出された物体の有効領域に関する情報を受信するよう構成され、
     前記有効領域推定ユニットは、事前定義されたパターンに従って、および/または地図から取得されたデータに基づいて、前記検出された物体の近傍に仮想有効領域を設定し、
     前記リスク評価ユニットは、前記自車が前記有効領域内で前記走行計画に沿って走行するのに必要となる前記時間と、前記自車が前記有効領域内を走行するとき、前記検出された物体が前記車両周囲観察ユニットの前記視野内にない前記時間とを計算することを特徴とする、請求項4に記載の車両走行制御装置。
  6.  前記視認性計画ユニットは、検出された物体が前記車両周囲観察ユニットの前記視野外にある事前定義された許容時間を提供する許容時間制御装置を含み、
     前記リスク評価ユニットによって、前記視野外の前記時間が前記事前定義された許容時間より大きいと決定された場合、制御値計算ユニットは前記補正情報を前記計画ユニットへ提供するよう構成され、前記補正情報により前記走行計画は、前記検出された物体が前記視野外である前記時間を前記事前定義された許容時間値以下に減らすよう適合されることを特徴とする、請求項4に記載の車両走行制御装置。
  7.  前記走行計画の適合は、反復的に実行されることを特徴とする、請求項1~6の少なくとも1つに記載の車両走行制御装置。
  8.  前記制御値計算ユニットは、前記自車の速度、前記自車の進行方向および予定経路、および/または前記自車の停止位置を含む補正情報を決定することを特徴とする、請求項6に記載の車両走行制御装置。
  9.  前記検出された物体が前記車両周囲観察ユニットの前記視野内にある前記時間が前記車両周囲観察ユニットの前記視野を調整することによってさらに最大化されることを特徴とする、請求項1~8の少なくとも1つに記載の車両走行制御装置。
  10.  前記検出された物体は、交通標識、信号機、道路標示、および/または他の車両または他の物体などの道路物体を含むことを特徴とする、請求項1~9の少なくとも1つに記載の車両走行制御装置。
  11.  前記車両走行制御装置は、前記対象検出ユニットによって複数の物体が検出された場合、異なる物体に対して優先度を設定するよう構成される調停ユニットをさらに含み、前記対象検出ユニットが最も高い優先度を有する前記検出された物体を選択するよう構成されることを特徴とする、請求項1~10の少なくとも1つに記載の車両走行制御装置。
  12.  前記計画ユニットはさらに安全面および運転快適性の面を考慮に入れることによって前記走行計画を適合させ、安全面は、前記検出された物体が前記走行計画内にあり、前記自車を前記検出された物体の周りに案内する代替走行計画が利用不可能である場合に、前記自車の緊急停止を含み、前記運転快適性の面は前記自車の運転者に対する高いGを回避することを含むことを特徴とする、請求項1~11の少なくとも1つに記載の車両走行制御装置。
  13.  請求項1~12の少なくとも1つに記載の車両走行制御装置および車両周囲観察ユニットを含む自車であって、前記車両周囲観察ユニットはライダユニット、カメラユニット、ステレオカメラユニット、レーダユニット、電磁波ユニットの1つまたはこれらの組み合わせであることを特徴とする、自車。
  14.  請求項1~12の少なくとも1つに記載の車両走行制御装置を備えた自車の走行計画の適合を実行する方法であって、
     前記自車の走行計画を生成するステップと、前記自車の車両周囲観察ユニットによって提供されたデータに基づく前記自車の周囲内の物体を検出するステップと、
     前記検出された物体が事前定義された許容時間よりも長い時間前記車両周囲観察ユニットの視野外にある場合に前記走行計画を適合させるステップと
     を含むことを特徴とする、方法。
  15.  コンピュータによって実行されると、請求項14に記載の方法を前記コンピュータに実行させる命令を含むメモリに格納可能なコンピュータプログラム製品。
PCT/JP2019/030126 2018-08-01 2019-08-01 車両走行制御装置 WO2020027241A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020534730A JP7002658B2 (ja) 2018-08-01 2019-08-01 車両走行制御装置
US17/264,804 US20210291859A1 (en) 2018-08-01 2019-08-01 Vehicle Travelling Control Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18290091.0A EP3604065B1 (en) 2018-08-01 2018-08-01 Vehicle travelling control apparatus
EP18290091.0 2018-08-01

Publications (1)

Publication Number Publication Date
WO2020027241A1 true WO2020027241A1 (ja) 2020-02-06

Family

ID=63294180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030126 WO2020027241A1 (ja) 2018-08-01 2019-08-01 車両走行制御装置

Country Status (4)

Country Link
US (1) US20210291859A1 (ja)
EP (1) EP3604065B1 (ja)
JP (1) JP7002658B2 (ja)
WO (1) WO2020027241A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112009479A (zh) * 2019-05-31 2020-12-01 通用汽车环球科技运作有限责任公司 调整传感器视场的方法和设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102604821B1 (ko) * 2018-11-09 2023-11-20 에스케이텔레콤 주식회사 차량의 위치 추정 장치 및 방법
DE102019133642A1 (de) * 2018-12-12 2020-06-18 Magna Closures Inc. Digitales bildgebungssystem einschliesslich optischer plenoptik-vorrichtung und bilddaten-verarbeitungsverfahren zur erfassung von fahrzeughindernissen und gesten
CN113781818B (zh) * 2020-06-08 2022-11-08 北京京东乾石科技有限公司 规划车辆行驶信息的方法和装置
US20230030815A1 (en) * 2021-07-29 2023-02-02 Argo AI, LLC Complementary control system for an autonomous vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124479A (ja) * 2015-01-07 2016-07-11 トヨタ自動車株式会社 車両走行制御装置
JP2016212775A (ja) * 2015-05-13 2016-12-15 トヨタ自動車株式会社 車両姿勢制御装置
WO2017179198A1 (ja) * 2016-04-15 2017-10-19 三菱電機株式会社 駐車支援装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3674316B2 (ja) 1998-06-25 2005-07-20 日産自動車株式会社 走行位置決定装置
DE10149146A1 (de) * 2001-10-05 2003-04-17 Bosch Gmbh Robert Geschwindigkeitsregler mit Abstandsregelfunktion
DE10254423A1 (de) * 2002-11-21 2004-06-03 Lucas Automotive Gmbh System zur Beeinflussung der Geschwindigkeit eines Kraftfahrzeuges
CN103842228B (zh) * 2011-10-03 2016-09-07 丰田自动车株式会社 车辆的驾驶辅助系统
US9760092B2 (en) * 2012-03-16 2017-09-12 Waymo Llc Actively modifying a field of view of an autonomous vehicle in view of constraints
JP6067623B2 (ja) * 2014-06-27 2017-01-25 本田技研工業株式会社 走行制御装置
JP6294247B2 (ja) 2015-01-26 2018-03-14 株式会社日立製作所 車両走行制御装置
IL239129A0 (en) * 2015-06-01 2015-11-30 Brightway Vision Ltd Image improvements in car imaging systems
WO2017017794A1 (ja) * 2015-07-28 2017-02-02 日産自動車株式会社 走行制御装置の制御方法および走行制御装置
DE102015118578A1 (de) * 2015-10-30 2017-05-04 Valeo Schalter Und Sensoren Gmbh Verfahren zum Manövrieren eines Kraftfahrzeugs mit Bewegen des Kraftfahrzeugs in eine Erfassungsposition, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102016117712A1 (de) * 2016-09-20 2018-03-22 Valeo Schalter Und Sensoren Gmbh Verfahren zum zumindest semi-autonomen Manövrieren eines Kraftfahrzeugs unter Berücksichtigung eines Erfassungsbereichs eines Sensors, Fahrerassistenzsystem sowie Kraftfahrzeug
DE102017200897B4 (de) * 2017-01-20 2022-01-27 Audi Ag Verfahren zum Betrieb eines Kraftfahrzeugs
US20180339730A1 (en) * 2017-05-26 2018-11-29 Dura Operating, Llc Method and system for generating a wide-area perception scene graph
EP3536574A1 (en) * 2018-03-06 2019-09-11 Pablo Alvarez Troncoso Vehicle control system
KR20210022570A (ko) * 2018-06-29 2021-03-03 소니 세미컨덕터 솔루션즈 가부시키가이샤 정보 처리 장치 및 정보 처리 방법, 촬상 장치, 컴퓨터 프로그램, 정보 처리 시스템, 그리고 이동체 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016124479A (ja) * 2015-01-07 2016-07-11 トヨタ自動車株式会社 車両走行制御装置
JP2016212775A (ja) * 2015-05-13 2016-12-15 トヨタ自動車株式会社 車両姿勢制御装置
WO2017179198A1 (ja) * 2016-04-15 2017-10-19 三菱電機株式会社 駐車支援装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112009479A (zh) * 2019-05-31 2020-12-01 通用汽车环球科技运作有限责任公司 调整传感器视场的方法和设备

Also Published As

Publication number Publication date
EP3604065B1 (en) 2020-11-04
EP3604065A1 (en) 2020-02-05
US20210291859A1 (en) 2021-09-23
JPWO2020027241A1 (ja) 2021-08-02
JP7002658B2 (ja) 2022-01-20

Similar Documents

Publication Publication Date Title
US11835956B2 (en) Vehicle control device and vehicle control method
WO2020027241A1 (ja) 車両走行制御装置
EP3611469B1 (en) Driving control method and driving control device
US11267474B2 (en) Vehicle control device, vehicle control method, and storage medium
US11498577B2 (en) Behavior prediction device
US11900812B2 (en) Vehicle control device
JP2018062244A (ja) 車両制御装置
RU2760046C1 (ru) Способ помощи при вождении и устройство помощи при вождении
JP7243524B2 (ja) 自動運転システム
US11613254B2 (en) Method to monitor control system of autonomous driving vehicle with multiple levels of warning and fail operations
US11281224B2 (en) Vehicle control device
JP2001109998A (ja) 車両走行支援装置
JPWO2020025991A1 (ja) 走行軌跡補正方法、走行制御方法、及び走行軌跡補正装置
JP2020128167A (ja) 車両制御装置
US11753035B2 (en) Vehicle control system
RU2759277C1 (ru) Способ помощи при передвижении и устройство помощи при передвижении
JP2021062780A (ja) 車両制御システム
JP7379033B2 (ja) 運転支援方法及び運転支援装置
JP7341806B2 (ja) 運転制御方法及び運転制御装置
JP2019043191A (ja) 車両制御装置
JP2022141325A (ja) 車両制御装置及び車両制御方法
EP4140848A2 (en) Planning under prediction with confidence region for an autonomous driving vehicle
US20240067172A1 (en) Moving body control system, moving body control method, and non-transitory computer-readable recording medium
JP2021011168A (ja) 運転制御方法及び運転制御装置
JP2021018743A (ja) 画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534730

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844724

Country of ref document: EP

Kind code of ref document: A1