WO2020027044A1 - 光学部材、コーティング剤、親水膜形成方法および親水性回復方法 - Google Patents

光学部材、コーティング剤、親水膜形成方法および親水性回復方法 Download PDF

Info

Publication number
WO2020027044A1
WO2020027044A1 PCT/JP2019/029637 JP2019029637W WO2020027044A1 WO 2020027044 A1 WO2020027044 A1 WO 2020027044A1 JP 2019029637 W JP2019029637 W JP 2019029637W WO 2020027044 A1 WO2020027044 A1 WO 2020027044A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
hydrophilic film
optical member
silica
coating agent
Prior art date
Application number
PCT/JP2019/029637
Other languages
English (en)
French (fr)
Inventor
友啓 渡邉
加本 貴則
小百合 中川
ジェニファー トレス ダマスコティ
秀 塩原
山本 明典
Original Assignee
日本電産株式会社
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社, 日本電産サンキョー株式会社 filed Critical 日本電産株式会社
Publication of WO2020027044A1 publication Critical patent/WO2020027044A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Definitions

  • the present invention relates to an optical member, a coating agent, a method for forming a hydrophilic film, and a method for restoring hydrophilicity.
  • Patent Document 1 It is known that a coating agent is applied to the surface of a substrate to make the surface of the substrate photocatalytically hydrophilic (Patent Document 1).
  • Patent Literature 1 describes that a suspension containing titania particles and silica particles is applied to the surface of a substrate and then sintered to form a photocatalytic film.
  • Japanese Patent Publication Japanese Patent No. 2756474
  • Patent Literature 1 when the photocatalytic coating contains titania particles and silica particles, the photocatalytic coating has insufficient hardness, and sufficient abrasion resistance cannot be obtained. There is.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an optical member, a coating agent, a method for forming a hydrophilic film, and a method for restoring hydrophilicity with improved abrasion resistance.
  • An exemplary optical member of the present invention includes a translucent member and a hydrophilic film.
  • the hydrophilic film covers the translucent member.
  • the hydrophilic film includes silica particles, titanium oxide particles, and silica fine particles having an average particle size smaller than the silica particles.
  • An exemplary coating agent of the present invention contains a solvent and a solid component.
  • the solid component includes silica particles, titanium oxide particles, and silica fine particles having an average particle diameter smaller than that of the silica particles.
  • An exemplary method for forming a hydrophilic film of the present invention includes a step of applying a coating agent to a light transmitting member, and a step of forming a hydrophilic film from the coating agent after applying the coating agent to the light transmitting member. Is included.
  • the coating agent contains a solvent and a solid component.
  • the coating agent is dried so that the solvent of the coating agent evaporates to form a hydrophilic film from the coating agent.
  • the solid component includes silica particles, titanium oxide particles, and silica fine particles having an average particle diameter smaller than that of the silica particles.
  • An exemplary method for restoring hydrophilicity of the present invention includes the steps of preparing the optical member described above and irradiating the hydrophilic film of the optical member with ultraviolet light.
  • the wear resistance of the optical member can be improved.
  • FIG. 1 is a schematic diagram of the optical member of the present embodiment.
  • FIG. 2 is a schematic diagram of a hydrophilic film in the optical member of the present embodiment.
  • FIG. 3 is a schematic diagram of the optical member of the present embodiment.
  • FIG. 4 is a schematic diagram of the coating agent of the present embodiment.
  • 5 (a) to 5 (c) are schematic views showing a method for preparing the coating agent of the present embodiment.
  • FIGS. 6A to 6C are schematic diagrams for explaining the hydrophilic film forming method of the present embodiment.
  • FIG. 7A and FIG. 7B are schematic diagrams for explaining the hydrophilicity recovery method of the present embodiment.
  • FIG. 8A is a diagram illustrating a result of performing a wear test on the optical member of the example, and FIG.
  • FIG. 8B is a diagram illustrating a result of performing a wear test on the optical member of the comparative example. is there.
  • FIG. 9 is a graph showing the relationship between the irradiation time of ultraviolet light and the contact angle in the optical member of the example after the abrasion test.
  • FIG. 1 is a schematic diagram of an optical member 100 of the present embodiment.
  • the optical member 100 includes a translucent member 110 and a hydrophilic film 120.
  • the translucent member 110 has translucency.
  • the light transmitting member 110 transmits light.
  • the translucent member 110 may be transparent or translucent.
  • the light transmitting member 110 may include glass.
  • the light transmitting member 110 may include a resin.
  • the light transmitting member 110 may be formed of a single member.
  • the translucent member 110 may be composed of a plurality of members.
  • the hydrophilic film 120 covers the light transmitting member 110.
  • the hydrophilic film 120 has hydrophilicity.
  • the hydrophilic film 120 has high wettability with water. When water droplets adhere to the hydrophilic film 120, a substantially uniform water film is formed on the surface of the hydrophilic film 120.
  • the contact angle of a water droplet on the surface of the hydrophilic film 120 is preferably 20 ° or less, and more preferably 10 ° or less.
  • the hydrophilic film 120 covers at least a part of the light transmitting member 110. It is preferable that the hydrophilic film 120 covers the entire surface of a portion of the translucent member 110 that is not covered by another member.
  • FIG. 2 is a schematic diagram of the hydrophilic film 120 in the optical member 100 of the present embodiment.
  • the hydrophilic film 120 contains silica particles 120a, titanium oxide particles 120b, and silica fine particles 120c.
  • the average particle size of the silica fine particles 120c is smaller than the average particle size of the silica particles 120a.
  • the silica particles 120a, the titanium oxide particles 120b, and the silica fine particles 120c are dispersed and adhere to each other.
  • the hydrophilic film 120 has high hydrophilicity because it contains the silica particles 120a and the titanium oxide particles 120b.
  • the hydrophilicity of the hydrophilic film 120 can be restored by irradiating the hydrophilic film 120 with light (ultraviolet light). Further, since the hydrophilic film 120 contains the silica fine particles 120c, the surface roughness of the hydrophilic film 120 can be reduced, and the wear resistance of the optical member 100 can be improved.
  • the silica particles 120a are particles made of silica.
  • the average particle size of the silica particles 120a is on the order of nm.
  • the “average particle size” is determined by observing the hydrophilic film 120 or its material using a scanning electron microscope (SEM). Specifically, for any 50 particles that can observe the whole of the particles, the maximum diameter and the minimum diameter of one particle are measured, and the average value is defined as the particle diameter of the one particle. The average value of the particle size of each particle is referred to as “average particle size”.
  • the average particle size of the silica particles 120a is preferably 1 nm or more and 200 nm or less.
  • the particle size of the silica particles 120a is 1 nm or more, the cost of the silica particles 120a can be reduced. Further, when the particle size of the silica particles 120a is 200 nm or less, the light transmittance of the hydrophilic film 120 can be improved.
  • the silica particles 120a preferably include hollow silica particles or porous silica particles.
  • the contact angle of a water droplet with respect to the hydrophilic film 120 can be maintained at 10 ° or less for a long period of time.
  • the hydrophilicity of the hydrophilic film 120 can be further improved.
  • hollow silica particles have a space inside.
  • the hollow silica particles can be formed by dissolving the core particles after silica coating the core particles by a sol-gel method.
  • hollow silica particles can be formed by coating core particles made of calcium carbonate with silica and then dissolving the core particles with an acid.
  • the porous silica particles have mesopores.
  • the size of the mesopores is 0.1 nm or more and 119 nm or less.
  • porous silica particles are formed by a sol-gel reaction.
  • the mass ratio of the silica particles 120a to the hydrophilic film 120 is preferably 35% or more and 45% or less. When the mass ratio of the silica particles 120a is 35% or more, the hydrophilicity of the hydrophilic film 120 can be improved. When the mass ratio of the silica particles 120a is 45% or less, the hydrophilic film 120 can significantly contain particles other than the silica particles 120a.
  • the titanium oxide particles 120b are particles made of titanium oxide.
  • the average particle size of the titanium oxide particles 120b is on the order of nm. Even if the hydrophilicity of the hydrophilic film 120 is reduced by the titanium oxide particles 120b, the hydrophilicity of the hydrophilic film 120 can be restored by irradiation with light (for example, ultraviolet light).
  • the average particle size of the titanium oxide particles 120b is preferably 1 nm or more and 100 nm or less. When the particle size of the titanium oxide particles 120b is 1 nm or more, the cost of the titanium oxide particles 120b can be reduced. When the particle diameter of the titanium oxide particles 120b is 100 nm or less, the light transmittance of the hydrophilic film 120 can be improved.
  • the mass ratio of the titanium oxide particles 120b to the hydrophilic film 120 is preferably 10% or more and 30% or less.
  • the titanium oxide particles 120b have a photocatalytic function.
  • the hydrophilicity of the hydrophilic film 120 can be recovered and the increase in reflectance can be suppressed. For example, if the optical member 100 is used for a long time, the hydrophilicity of the hydrophilic film 120 may be reduced.
  • the mass ratio of the titanium oxide particles 120b is 10% or more, when the optical member 100 is irradiated with ultraviolet light, the hydrophilicity of the hydrophilic film 120 can be restored.
  • the transmittance of the hydrophilic film 120 may decrease and the reflectance may increase.
  • the mass ratio of the titanium oxide particles 120b to the hydrophilic film 120 is 30% or less, an increase in reflectance can be suppressed.
  • the titanium oxide particles 120b may be any of anatase type, rutile type and brookite type.
  • the titanium oxide particles 120b are preferably anatase type from the viewpoint of photocatalytic performance.
  • the silica fine particles 120c are fine particles made of silica.
  • the average particle size of the silica fine particles 120c is on the order of nm.
  • the average particle size of the silica fine particles 120c is smaller than the average particle size of the silica particles 120a.
  • the average particle size of the silica fine particles 120c is not more than half of the average particle size of the silica particles 120a.
  • the average particle size of the silica fine particles 120c is more preferably 25% or less of the average particle size of the silica particles 120a.
  • the difference between the average particle size of the silica particles 120a and the average particle size of the silica fine particles 120c is preferably at least 5 nm or more, more preferably 10 nm or more.
  • the average particle diameter of the silica fine particles 120c is preferably 0.5 nm or more and 10 nm or less.
  • the particle size of the silica fine particles 120c is 0.5 nm or more, the cost of the silica fine particles 120c can be reduced.
  • the particle size of the silica fine particles 120c is 10 nm or less, the light transmittance of the hydrophilic film 120 can be improved.
  • the mass ratio of the silica fine particles 120c to the hydrophilic film 120 is preferably 35% or more and 45% or less. When the mass ratio of the silica fine particles 120c is 35% or more, the wear resistance of the hydrophilic film 120 can be improved. When the mass ratio of the silica fine particles 120c is 45% or less, particles other than the silica fine particles 120c can be significantly contained in the hydrophilic film 120.
  • the silica particles 120a may contain, as a minute component, particles having a particle size equal to or smaller than the average particle size of the silica fine particles 120c.
  • the component having an average particle size equal to or less than the silica fine particles 120c is equal to or less than 20% of the entire silica particles 120a.
  • the hydrophilic film 120 contains the silica particles 120a, the titanium oxide particles 120b, and the silica fine particles 120c, but the present embodiment is not limited to this.
  • the hydrophilic film 120 may further contain another compound.
  • the hydrophilic film 120 may further contain molybdenum in addition to the silica particles 120a, the titanium oxide particles 120b, and the silica fine particles 120c. Further, molybdenum may or may not be particles.
  • the light transmitting member 110 is shown as one member, but the present embodiment is not limited to this.
  • the translucent member 110 may be composed of a plurality of members.
  • FIG. 3 is a schematic diagram of the optical member 100 of the present embodiment.
  • the optical member 100 shown in FIG. 3 has the same configuration as the optical member 100 described above with reference to FIG. 1 except that the light-transmitting member 110 includes a base material 112 and an antireflection film 114. I have. Therefore, duplicate descriptions are omitted to avoid redundancy.
  • the light transmitting member 110 includes a base 112 and an antireflection film 114.
  • the antireflection film 114 covers the substrate 112.
  • the anti-reflection film 114 is located between the translucent member 110 and the hydrophilic film 120.
  • the base 112 has a light-transmitting property.
  • the substrate 112 transmits light.
  • the substrate 112 may be transparent or translucent.
  • Substrate 112 may include glass.
  • the base material 112 may include a resin.
  • the anti-reflection film 114 prevents reflection of light.
  • the anti-reflection film 114 can suppress reflection of light that is going to enter the translucent member 110 from the hydrophilic film 120 in the optical member 100.
  • the optical member 100 shown in FIGS. 1 and 3 has hydrophilicity and is suitably used in an environment where water adheres.
  • the optical member 100 is suitably used for a member used outdoors.
  • the optical member 100 is suitably used for a vehicle-mounted monitor that monitors the periphery of a vehicle.
  • the hydrophilic film 120 is formed from the coating agent CM.
  • the coating agent CM of the present embodiment will be described with reference to FIG.
  • FIG. 4 is a schematic diagram of the coating agent CM of the present embodiment.
  • the coating agent CM contains a solvent S and a solid component P.
  • the solid component P is dispersed in the solvent S.
  • the solid component P includes silica particles 120a, titanium oxide particles 120b, and silica fine particles 120c.
  • the solvent S is an aqueous solvent.
  • the solvent S is prepared by adding an additive to water.
  • additives include organic acids, alcohols or ammonia and the like.
  • the mass ratio of the additive is 20% or less.
  • organic acids include formic, acetic, propionic, succinic, citric or malic acid.
  • alcohols include methanol, ethanol, isopropanol, n-propanol or butanol.
  • FIG. 5 (a) to 5 (c) are schematic diagrams for explaining a method of preparing the coating agent CM.
  • a dispersion C1, a dispersion C2, and a dispersion C3 are prepared.
  • the dispersion C1, the dispersion C2, and the dispersion C3 are contained in different containers.
  • the dispersion C1 is prepared by dispersing the silica particles 120a in the solvent S1.
  • the solvent S1 is an aqueous solvent.
  • Dispersion C2 is prepared by dispersing titanium oxide particles 120b in solvent S2.
  • the solvent S2 is an aqueous solvent.
  • Dispersion C3 is prepared by dispersing silica fine particles 120c in solvent S3.
  • the solvent S3 is an aqueous solvent. Note that the solvent S1, the solvent S2, and the solvent S3 may be the same or different.
  • the dispersion C1, the dispersion C2, and the dispersion C3 are added to the container V.
  • the dispersion C1, the dispersion C2, and the dispersion C3 may be added to the container V in any order.
  • the dispersion C1, the dispersion C2, and the dispersion C3 may be simultaneously added to the container V.
  • the mixture in the container V is preferably stirred.
  • a coating agent CM is prepared.
  • the coating agent CM contains the solvent S and the solid component P.
  • the solvent S includes a solvent S1, a solvent S2, and a solvent S3.
  • the solid component P includes silica particles 120a, titanium oxide particles 120b, and silica fine particles 120c.
  • the hydrophilic film 120 is formed from the coating agent CM.
  • the method for forming a hydrophilic film according to the present embodiment will be described below with reference to FIGS.
  • a coating agent CM is prepared.
  • the coating agent CM contains a solvent S and a solid component P.
  • the solid component P includes silica particles 120a, titanium oxide particles 120b, and silica fine particles 120c.
  • a coating agent CM is applied.
  • the surface of the translucent member 110 is applied with a coating agent CM.
  • the method for applying the coating agent CM is not particularly limited.
  • the coating agent CM is applied to the surface of the translucent member 110 by spin coating, roll coating, bar coating, dip coating, or spray coating.
  • the coating agent CM is dried so that the solvent S of the coating agent CM evaporates, and the hydrophilic film 120 is formed from the coating agent CM.
  • the solvent S of the coating agent CM evaporates to form the hydrophilic film 120 from the solid component P.
  • the hydrophilic film 120 contains the silica particles 120a, the titanium oxide particles 120b, and the silica fine particles 120c.
  • the hydrophilic film 120 has high hydrophilicity because it contains the silica particles 120a and the titanium oxide particles 120b.
  • the hydrophilicity of the hydrophilic film 120 can be restored by irradiating the hydrophilic film 120 with light (ultraviolet light). Further, since the hydrophilic film 120 contains the silica fine particles 120c, the wear resistance of the optical member 100 can be improved.
  • the hydrophilic film 120 adheres to the light transmitting member 110, and the silica particles 120a, the titanium oxide particles 120b, and the silica fine particles 120c in the hydrophilic film 120 adhere to each other.
  • the drying process may include a heating process.
  • the substrate is heated to a temperature of 60 ° C to 200 ° C for 10 minutes to 10 hours.
  • the method of drying the coating of the coating agent CM applied to the main surface of the translucent member 110 is not particularly limited.
  • the hydrophilic film 120 can be formed by drying and curing the coating of the coating agent CM by hot-air drying. .
  • the surface of the translucent member 110 be pretreated before the coating agent CM is applied.
  • the pre-treatment is at least one of a high-frequency discharge plasma treatment, an electron beam treatment, a corona treatment, an atmospheric pressure glow discharge plasma treatment, and a flame treatment.
  • the hydrophilicity of the hydrophilic film 120 may decrease.
  • the hydrophilicity of the hydrophilic film 120 decreases, and the contact angle of water droplets attached to the hydrophilic film 120 increases.
  • the hydrophilicity of the hydrophilic film 120 can be restored.
  • FIG. 7A and FIG. 7B are schematic diagrams for explaining the hydrophilicity recovery method of the present embodiment.
  • an optical member 100 is prepared.
  • the optical member 100 includes the translucent member 110 and the hydrophilic film 120.
  • the hydrophilic film 120 contains silica particles 120a, titanium oxide particles 120b, and silica fine particles 120c.
  • the hydrophilic film 120 of the optical member 100 is irradiated with ultraviolet light.
  • the irradiation of the ultraviolet light restores the hydrophilicity of the hydrophilic film 120.
  • the hydrophilic film 120 contains the silica particles 120a and the titanium oxide particles 120b
  • the hydrophilicity of the hydrophilic film 120 can be restored by irradiation with ultraviolet light.
  • the hydrophilic film 120 contains the silica fine particles 120c
  • the wear resistance of the optical member 100 can be improved. According to the present embodiment, the abrasion resistance of the optical member 100 can be improved and the hydrophilicity can be restored.
  • ultraviolet light light from an external light source may be used as the ultraviolet light.
  • sunlight may be used as ultraviolet light.
  • the illuminance of ultraviolet light is relatively low, it is preferable to irradiate the optical member 100 with ultraviolet light for 10 hours or more.
  • ⁇ Preparation of Coating Agent CM The dispersion C1, the dispersion C2, and the dispersion C3 were mixed to prepare a coating CM.
  • a dispersion in which silica particles having an average particle diameter of 20 nm were dispersed in an aqueous solvent was used.
  • a dispersion in which anatase-type titanium oxide particles having an average particle diameter of 10 nm were dispersed in an aqueous solvent was used.
  • a dispersion in which silica fine particles having an average particle diameter of 2 nm were dispersed in an aqueous solvent was used.
  • the silica particles in the dispersion C1 were 45 parts by mass
  • the titanium oxide particles in the dispersion C2 were 10 parts by mass
  • the silica fine particles in the dispersion C3 were 45 parts by mass.
  • a lens composition: glass
  • an anti-reflection film composition: SiO 2 , TiO 2 , Ta 2 O 5
  • Plasma treatment was performed on the antireflection film as pretreatment. The plasma treatment was performed using a plasma surface modification device.
  • the coating agent CM was applied on the antireflection film. After applying the coating agent CM, a heat treatment was performed at a temperature of 125 ° C. for 30 minutes to evaporate the solvent S of the coating agent CM, thereby forming the optical member of the example.
  • the optical member of the example was installed in a wear tester, and the hydrophilic film of the optical member was abraded 1,000 times with a car wash brush in which a load of 1 kg was applied to the hydrophilic film of the optical member.
  • An abrasion test was performed on the optical member of the comparative example in the same manner as the optical member of the example. Thereafter, the optical members of Examples and Comparative Examples were observed at a magnification of 466 times with a laser microscope.
  • FIG. 8A is a diagram illustrating a result of performing a wear test on the optical member of the example. As shown in FIG. 8A, even when a wear test was performed on the optical member of the example, the hydrophilic film hardly abraded.
  • FIG. 8B is a diagram illustrating a result of performing a wear test on the optical member of the comparative example. As shown in FIG. 8B, a wear test was performed on the optical member of the comparative example. As a result, the hydrophilic film was found to have many scratches, and most of the hydrophilic film was worn.
  • the optical member of the example subjected to the abrasion test was irradiated with ultraviolet light having an illuminance of 1 mW / cm 2 from an ultraviolet light source (365 nm peak wavelength, FL15BL-B, manufactured by Toshiba Corporation). . Before the irradiation with the ultraviolet light, the contact angle of the water droplet adhered to the optical member was measured by changing the irradiation of the ultraviolet light to 2 hours, 4 hours, 18 hours, 22 hours, and 90 hours.
  • FIG. 9 is a graph showing the relationship between the irradiation time of ultraviolet light and the contact angle in the optical member of the example after the abrasion test. As shown in FIG. 9, the contact angle before irradiation with ultraviolet light was 70 °, and the hydrophilicity of the hydrophilic film was almost lost.
  • Irradiation with ultraviolet light for several hours reduced the contact angle by 10 ° to 20 °.
  • the contact angle decreased by about 30 ° as compared with that before the irradiation of the ultraviolet light.
  • the contact angle was reduced by about 60 ° as compared with that before the irradiation of the ultraviolet light, and the contact angle was reduced to 10 ° or less.
  • the contact angle of the optical member of the example measured before the abrasion test was 10 ° or less. Irradiation of ultraviolet light for about 90 hours substantially restored the hydrophilicity of the hydrophilic film.
  • each component shown in the above embodiment is an example, and is not particularly limited. Needless to say, various changes can be made without substantially departing from the effects of the present invention. .
  • This invention is utilized suitably for an optical member, a coating agent, a hydrophilic film formation method, and a hydrophilicity recovery method, for example.
  • the optical member of the present invention is suitably used outdoors.
  • the optical member of the present invention is suitably used as an in-vehicle monitor for monitoring the periphery of a vehicle.
  • optical member 110 translucent member 120 hydrophilic film 120 a silica particles 120 b titanium oxide particles 120 c silica fine particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Silicon Compounds (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

【課題】耐摩耗性の向上した光学部材を提供する。【解決手段】本発明による光学部材(100)は、透光性部材(110)と、親水膜(120)とを備える。親水膜(120)は、透光性部材(110)を被覆する。親水膜(120)は、シリカ粒子(120a)と、酸化チタン粒子(120b)と、シリカ微粒子(120c)とを含む。シリカ微粒子(120c)の平均粒径は、シリカ粒子(120a)の平均粒径よりも小さい。

Description

光学部材、コーティング剤、親水膜形成方法および親水性回復方法
本発明は、光学部材、コーティング剤、親水膜形成方法および親水性回復方法に関する。
基材の表面にコーティング剤を付与し、基材の表面を光触媒的に親水性にすることが知られている(特許文献1)。特許文献1には、チタニアの粒子とシリカの粒子とを含む懸濁液を基板の表面に塗布した後で焼結して光触媒性被膜を形成することが記載されている。
日本国特許公報:特許第2756474号公報
しかしながら、特許文献1に記載されているように、光触媒性被膜がチタニアの粒子とシリカの粒子とを含有する場合、光触媒性被膜の硬度が充分ではなく、充分な耐摩耗性が得られないことがある。 
本発明は上記課題に鑑みてなされたものであり、その目的は、耐摩耗性を向上させた光学部材、コーティング剤、親水膜形成方法および親水性回復方法を提供することにある。
本発明の例示的な光学部材は、透光性部材と、親水膜とを備える。前記親水膜は、前記透光性部材を被覆する。前記親水膜は、シリカ粒子と、酸化チタン粒子と、前記シリカ粒子よりも平均粒径の小さいシリカ微粒子とを含む。 
本発明の例示的なコーティング剤は、溶剤と固形成分とを含有する。前記固形成分は、シリカ粒子と、酸化チタン粒子と、前記シリカ粒子よりも平均粒径の小さいシリカ微粒子とを含む。 
本発明の例示的な親水膜形成方法は、コーティング剤を透光性部材に塗布する工程と、前記コーティング剤を前記透光性部材に塗布した後、前記コーティング剤から親水膜を形成する工程とを包含する。コーティング剤を透光性部材に塗布する工程において、前記コーティング剤は、溶剤と固形成分とを含有する。親水膜を形成する工程において、前記コーティング剤の前記溶剤が蒸発するように前記コーティング剤を乾燥させて前記コーティング剤から親水膜を形成する。前記固形成分は、シリカ粒子と、酸化チタン粒子と、前記シリカ粒子よりも平均粒径の小さいシリカ微粒子とを含む。 
本発明の例示的な親水性回復方法は、上記に記載の光学部材を用意する工程と、前記光学部材の前記親水膜に紫外光を照射する工程とを包含する。
例示的な本発明によれば、光学部材の耐摩耗性を向上できる。
図1は、本実施形態の光学部材の模式図である。 図2は、本実施形態の光学部材における親水膜の模式図である。 図3は、本実施形態の光学部材の模式図である。 図4は、本実施形態のコーティング剤の模式図である。 図5(a)~図5(c)は、本実施形態のコーティング剤の調製方法を示す模式図である。 図6(a)~図6(c)は、本実施形態の親水膜形成方法を説明するための模式図である。 図7(a)および図7(b)は、本実施形態の親水性回復方法を説明するための模式図である。 図8(a)は実施例の光学部材に対して摩耗試験を行った結果を示す図であり、図8(b)は比較例の光学部材に対して摩耗試験を行った結果を示す図である。 図9は、摩耗試験後の実施例の光学部材において紫外光の照射時間と接触角との関係を示すグラフである。
以下、図面を参照しながら本発明の実施形態を説明する。なお、図中、同一または相当部分には同一の参照符号を付して説明を繰り返さない。 
まず、図1および図2を参照して、本実施形態の光学部材100を説明する。図1は、本実施形態の光学部材100の模式図である。光学部材100は、透光性部材110と、親水膜120とを備える。 
透光性部材110は透光性を有する。透光性部材110は光を透過する。透光性部材110は、透明であってもよく、半透明であってもよい。透光性部材110は、ガラスを含んでもよい。あるいは、透光性部材110は、樹脂を含んでもよい。 
また、図1に示すように、透光性部材110は、単一部材から構成されてもよい。あるいは、透光性部材110は、複数の部材から構成されてもよい。
親水膜120は、透光性部材110を被覆する。親水膜120は、親水性を有する。親水膜120は、水に対して高い濡れ性を有する。親水膜120に水滴が付着すると、親水膜120の表面にほぼ均一な水の膜が形成される。例えば、親水膜120の表面にある水滴の接触角は20°以下であることが好ましく、接触角は10°以下であることがさらに好ましい。 
親水膜120は、透光性部材110の少なくとも一部を覆う。親水膜120は、透光性部材110のうちの他の部材によって覆われない部分の全面を覆うことが好ましい。 
図2は、本実施形態の光学部材100における親水膜120の模式図である。親水膜120は、シリカ粒子120aと、酸化チタン粒子120bと、シリカ微粒子120cとを含有する。シリカ微粒子120cの平均粒径は、シリカ粒子120aの平均粒径よりも小さい。本実施形態の光学部材100において、シリカ粒子120a、酸化チタン粒子120bおよびシリカ微粒子120cは、互いに分散して付着している。本実施形態の光学部材100において、親水膜120は、シリカ粒子120aおよび酸化チタン粒子120bを含有するため、高い親水性を示す。また、使用によって親水膜120の親水性が低下しても、親水膜120に光(紫外光)を照射することにより、親水膜120の親水性を回復できる。さらに、親水膜120はシリカ微粒子120cを含有するため、親水膜120の表面粗さを低減でき、光学部材100の耐摩耗性を向上できる。 
[シリカ粒子120a] シリカ粒子120aは、シリカからなる粒子である。シリカ粒子120aの平均粒径はnmオーダーである。 
なお、本願明細書において、「平均粒径」は、走査型電子顕微鏡(SEM)を用いて親水膜120またはその材料を観察することによって求められる。具体的に、粒子の全体を観察できる任意の50個の粒子について、1個の粒子の最大径および最小径をそれぞれ測定してその平均値を当該1個の粒子の粒径とし、50個のそれぞれの粒子の粒径の平均値を「平均粒径」とする。
シリカ粒子120aの平均粒径は、1nm以上200nm以下であることが好ましい。シリカ粒子120aの粒径が1nm以上であることにより、シリカ粒子120aのコストを低減できる。また、シリカ粒子120aの粒径が200nm以下であることにより、親水膜120の透光性を向上できる。 
シリカ粒子120aは、中空シリカ粒子またはポーラスシリカ粒子を含むことが好ましい。シリカ粒子120aが中空シリカ粒子またはポーラスシリカ粒子を含むことにより、親水膜120に対する水滴の接触角を長期間にわたって10°以下に維持できる。このように、シリカ粒子120aが中空シリカ粒子またはポーラスシリカ粒子を含むことにより、親水膜120の親水性をさらに向上できる。 
例えば、中空シリカ粒子は、内部に空間を有する。中空シリカ粒子は、コア粒子をゾルゲル法でシリカコーティングした後でコア粒子を溶解させることで形成できる。一例としては、炭酸カルシウムからなるコア粒子をシリカでコーティングした後で、酸でコア粒子を溶解させることにより、中空シリカ粒子を形成できる。 
また、ポーラスシリカ粒子は、メソ孔を有する。メソ孔の大きさは0.1nm以上119nm以下である。例えば、ポーラスシリカ粒子は、ゾルゲル反応によって形成される。 
親水膜120に対するシリカ粒子120aの質量比は、35%以上45%以下であることが好ましい。シリカ粒子120aの質量比が35%以上であることにより、親水膜120の親水性を向上できる。また、シリカ粒子120aの質量比が45%以下であることにより、親水膜120に、シリカ粒子120a以外の粒子を有意に含有させることができる。 
[酸化チタン粒子120b] 酸化チタン粒子120bは、酸化チタンからなる粒子である。酸化チタン粒子120bの平均粒径はnmオーダーである。酸化チタン粒子120bにより、親水膜120の親水性が低下しても、光(例えば、紫外光)の照射により、親水膜120の親水性を回復できる。 
酸化チタン粒子120bの平均粒径は、1nm以上100nm以下であることが好ましい。酸化チタン粒子120bの粒径が1nm以上であることにより、酸化チタン粒子120bのコストを低減できる。また、酸化チタン粒子120bの粒径が100nm以下であることにより、親水膜120の透光性を向上できる。 
親水膜120に対する酸化チタン粒子120bの質量比は、10%以上30%以下であることが好ましい。酸化チタン粒子120bは光触媒機能を有している。親水膜120に対する酸化チタン粒子120bの質量比が10%以上30%以下であることにより、親水膜120の親水性を回復できるとともに反射率の増加を抑制できる。例えば、光学部材100を長期間使用すると、親水膜120の親水性が低下することがある。酸化チタン粒子120bの質量比が10%以上であることにより、光学部材100に紫外光を照射すると、親水膜120の親水性を回復できる。また、酸化チタン粒子120bが多いと、親水膜120の透過率が減少し、反射率が増加することがある。しかしながら、親水膜120に対する酸化チタン粒子120bの質量比が30%以下であることにより、反射率の増加を抑制できる。 
酸化チタン粒子120bは、アナターゼ型、ルチル型およびブルッカイト型のいずれであってもよい。酸化チタン粒子120bは、光触媒性能の観点から、アナターゼ型であることが好ましい。 
[シリカ微粒子120c] シリカ微粒子120cは、シリカからなる微粒子である。シリカ微粒子120cの平均粒径はnmオーダーである。シリカ微粒子120cの平均粒径はシリカ粒子120aの平均粒径よりも小さい。
シリカ微粒子120cにより、隣接するシリカ粒子120aおよび酸化チタン粒子120bは互いに付着する。シリカ微粒子120cは、いわゆるバインダとして機能する。 
例えば、シリカ微粒子120cの平均粒径はシリカ粒子120aの平均粒径の半分以下である。シリカ微粒子120cの平均粒径は、シリカ粒子120aの平均粒径の25%以下であることがさらに好ましい。また、シリカ粒子120aの平均粒径とシリカ微粒子120cの平均粒径との差は、少なくとも5nm以上であることが好ましく、10nm以上であることがさらに好ましい。 
シリカ微粒子120cの平均粒径は、0.5nm以上10nm以下であることが好ましい。シリカ微粒子120cの粒径が0.5nm以上であることにより、シリカ微粒子120cのコストを低減できる。また、シリカ微粒子120cの粒径が10nm以下であることにより、親水膜120の透光性を向上できる。 
親水膜120に対するシリカ微粒子120cの質量比は、35%以上45%以下であることが好ましい。シリカ微粒子120cの質量比が35%以上であることにより、親水膜120の耐摩耗性を向上できる。また、シリカ微粒子120cの質量比が45%以下であることにより、親水膜120に、シリカ微粒子120c以外の粒子を有意に含有させることができる。 
なお、シリカ粒子120aおよびシリカ微粒子120cが粒径分布を有する場合、シリカ粒子120aは、微小成分として、シリカ微粒子120cの平均粒径以下の粒径の粒子を含有してもよい。この場合、シリカ粒子120a全体のうちシリカ微粒子120cの平均粒径以下
の成分は20%以下であることが好ましい。 
なお、図2では、親水膜120は、シリカ粒子120a、酸化チタン粒子120bおよびシリカ微粒子120cを含有したが、本実施形態はこれに限定されない。親水膜120は、さらに別の化合物を含有してもよい。例えば、親水膜120は、シリカ粒子120a、酸化チタン粒子120bおよびシリカ微粒子120cに加えてモリブデンをさらに含有してもよい。また、モリブデンは、粒子であってもよく、粒子でなくてもよい。 
なお、図1では、透光性部材110は一つの部材として示されたが、本実施形態はこれに限定されない。透光性部材110は、複数の部材から構成されてもよい。 
次に、図3を参照して本実施形態の光学部材100を説明する。図3は、本実施形態の光学部材100の模式図である。図3に示した光学部材100は、透光性部材110が基材112および反射防止膜114を含む点を除いて、図1を参照して上述した光学部材100と同様の構成を有している。このため、冗長を避けるために重複する記載を省略する。 
光学部材100において透光性部材110は基材112および反射防止膜114を含む。反射防止膜114は基材112を被覆する。反射防止膜114は、透光性部材110と親水膜120との間に位置する。透光性部材110が反射防止膜114を含むことにより、透光性部材110の透光性を向上できる。 
基材112は透光性を有する。基材112は光を透過する。基材112は、透明であってもよく、半透明であってもよい。基材112は、ガラスを含んでもよい。あるいは、基材112は、樹脂を含んでもよい。 
反射防止膜114は光の反射を防止する。反射防止膜114により、光学部材100において親水膜120から透光性部材110に進入しようとする光が反射することを抑制できる。 
図1および図3に示した光学部材100は、親水性を有しており、水の付着する環境下において好適に用いられる。例えば、光学部材100は、屋外で使用される部材に好適に用いられる。一例として、光学部材100は、車両の周囲をモニタする車載用モニタに好適に用いられる。 
本実施形態の光学部材100において親水膜120はコーティング剤CMから形成される。以下に、図4を参照して本実施形態のコーティング剤CMを説明する。図4は、本実施形態のコーティング剤CMの模式図である。 
コーティング剤CMは、溶剤Sと、固形成分Pとを含有する。固形成分Pは、溶剤Sに分散している。固形成分Pは、シリカ粒子120aと、酸化チタン粒子120bと、シリカ微粒子120cとを含む。 
[溶剤S] 溶剤Sは水系溶剤である。例えば、溶剤Sは、水に添加物を添加することによって調製される。例えば、添加物は、有機酸、アルコールまたはアンモニア等を含む。溶剤Sにおいて添加物の質量比は20%以下である。例えば、有機酸は、ギ酸、酢酸、プロピオン酸、コハク酸、クエン酸またはリンゴ酸を含む。例えば、アルコールは、メタノール、エタノール、イソプロパノール、n-プロパノールまたはブタノールを含む。 
次に、図5を参照して、本実施形態のコーティング剤CMの調製方法を説明する。図5(a)~図5(c)は、コーティング剤CMの調製方法を説明するための模式図である。 
図5(a)に示すように、分散液C1、分散液C2および分散液C3を調製する。分散液C1、分散液C2および分散液C3はそれぞれ異なる容器に入っている。 
分散液C1では、シリカ粒子120aを溶剤S1に分散して調製される。溶剤S1は、水系溶剤である。 
分散液C2は、酸化チタン粒子120bを溶剤S2に分散して調製される。溶剤S2は、水系溶剤である。 
分散液C3は、シリカ微粒子120cを溶剤S3に分散して調製される。溶剤S3は、水系溶剤である。なお、溶剤S1、溶剤S2および溶剤S3は互いに同じであってもよく、異なってもよい。 
その後、図5(b)に示すように、容器Vに、分散液C1、分散液C2および分散液C3を添加する。なお、分散液C1、分散液C2および分散液C3は、任意の順番に容器Vに添加されてもよい。あるいは、分散液C1、分散液C2および分散液C3は、同時に容器Vに添加されてもよい。容器Vに分散液C1、分散液C2および分散液C3を添加した後、容器V内の混合物を攪拌することが好ましい。 
図5(c)に示すように、コーティング剤CMが調製される。上述したように、コーティング剤CMは、溶剤Sと、固形成分Pとを含有する。溶剤Sは、溶剤S1、溶剤S2および溶剤S3を含む。また、固形成分Pは、シリカ粒子120aと、酸化チタン粒子120bと、シリカ微粒子120cとを含む。 
本実施形態の光学部材100において親水膜120はコーティング剤CMから形成される。以下に、図5および図6を参照して本実施形態の親水膜形成方法を説明する。 
図6(a)に示すように、コーティング剤CMを用意する。コーティング剤CMは、溶剤Sと、固形成分Pとを含有する。固形成分Pは、シリカ粒子120aと、酸化チタン粒子120bと、シリカ微粒子120cとを含む。 
図6(b)に示すように、コーティング剤CMを塗布する。例えば、透光性部材110の表面はコーティング剤CMで塗布される。コーティング剤CMの塗布方法は、特に限定されない。例えば、コーティング剤CMは、スピンコーティング、ロールコーティング、バーコーティング、ディップコーティング、または、スプレーコーティングで透光性部材110の表面に塗布される。 
その後、図6(c)に示すように、コーティング剤CMの溶剤Sが蒸発するようにコーティング剤CMを乾燥させてコーティング剤CMから親水膜120を形成する。コーティング剤CMの溶剤Sが蒸発して固形成分Pから親水膜120が形成される。このため、親水膜120は、シリカ粒子120aと、酸化チタン粒子120bと、シリカ微粒子120cとを含有する。親水膜120は、シリカ粒子120aおよび酸化チタン粒子120bを含有するため、高い親水性を示す。また、使用によって親水膜120の親水性が低下しても、親水膜120に光(紫外光)を照射することにより、親水膜120の親水性を回復できる。さらに、親水膜120はシリカ微粒子120cを含有するため、光学部材100の耐摩耗性を向上できる。 
なお、コーティング剤CMを塗布した後、コーティング剤CMの乾燥処理を行うことが好ましい。乾燥処理により、親水膜120が透光性部材110に付着するとともに、親水膜120中のシリカ粒子120a、酸化チタン粒子120bおよびシリカ微粒子120cが互いに付着する。 
乾燥処理は加熱処理を含んでもよい。加熱処理では、10分以上10時間以下にわたって、60℃以上200℃以下の温度に加熱される。透光性部材110の主面に塗布されたコーティング剤CMの塗膜を乾燥させる方法は特に限定されないが、例えば熱風乾燥によってコーティング剤CMの塗膜を乾燥および硬化して親水膜120を形成できる。 
なお、コーティング剤CMを塗布する前に、透光性部材110の表面に前処理することが好ましい。前処理は、高周波放電プラズマ処理、電子ビーム処理、コロナ処理、大気圧グロー放電プラズマ処理、及びフレーム処理のうちの少なくとも1つである。 
本実施形態の光学部材100において親水膜120の親水性が低下することがある。例えば、光学部材100の親水膜120が摩耗されると、親水膜120の親水性が低下し、親水膜120に付着する水滴の接触角が増大する。本実施形態において、親水膜120の親水性が低下しても、親水膜120の親水性を回復できる。 
以下に、図1、図2および図7を参照して本実施形態の親水性回復方法を説明する。図7(a)および図7(b)は、本実施形態の親水性回復方法を説明するための模式図である。 
図7(a)に示すように、光学部材100を用意する。上述したように、光学部材100は、透光性部材110と、親水膜120とを備える。親水膜120は、シリカ粒子120a、酸化チタン粒子120bおよびシリカ微粒子120cを含有する。 
図7(b)に示すように、光学部材100の親水膜120に紫外光を照射する。紫外光の照射により、親水膜120の親水性が回復する。上述したように、親水膜120は、シリカ粒子120aおよび酸化チタン粒子120bを含有するため、紫外光の照射により、親水膜120の親水性を回復できる。また、親水膜120はシリカ微粒子120cを含有するため、光学部材100の耐摩耗性を向上できる。本実施形態によれば、光学部材100の耐摩耗性を向上させるとともに親水性を回復できる。 
なお、紫外光として外部光源の光を利用してもよい。あるいは、紫外光として太陽光を利用してもよい。なお、紫外光の照度が比較的低い場合には、紫外光を10時間以上光学部材100に照射することが好ましい。
[実施例] [コーティング剤CMの調製] 分散液C1、分散液C2および分散液C3を混合してコーティング剤CMを調製した。分散液C1として、平均粒径20nmのシリカ粒子を水系溶剤に分散させた分散液を使用した。また、分散液C2として、平均粒径10nmのアナターゼ型酸化チタン粒子を水系溶剤に分散させた分散液を使用した。また、分散液C3として、平均粒径2nmのシリカ微粒子を水系溶剤に分散させた分散液を使用した。ここでは、コーティング剤CMの固形成分Pとして、分散液C1中のシリカ粒子を45質量部とし、分散液C2中の酸化チタン粒子を10質量部とし、分散液C3中のシリカ微粒子を45質量部とした。 
[透光性部材] 基体としてレンズ(組成:ガラス)を用意した。次に、レンズの上に反射防止膜(組成:SiO2、TiO2、Ta25)を形成した。反射防止膜に対して、前処理としてプラズマ処理を行った。プラズマ処理は、プラズマ表面改質装置を用いて行った。 
[塗布] 反射防止膜の上にコーティング剤CMを塗布した。コーティング剤CMを塗布した後、温度125℃で30分間の加熱処理を行い、コーティング剤CMの溶剤Sを蒸発させて、実施例の光学部材を形成した。 
[比較例] コーティング剤CMにおいて、分散液C3を添加することなく、分散液C1中のシリカ粒子を90質量部とし、分散液C2中の酸化チタン粒子を10質量部とした点を除いて、実施例と同様に、比較例の光学部材を形成した。 
[摩耗試験] 実施例の光学部材を摩耗試験機に設置して、光学部材の親水膜に対して1kgの荷重を負荷した洗車ブラシで光学部材の親水膜を1000回摩耗した。比較例の光学部材についても実施例の光学部材と同様に摩耗試験を行った。その後、実施例および比較例の光学部材をレーザ顕微鏡で466倍に拡大して観察した。 
図8(a)は、実施例の光学部材に対して摩耗試験を行った結果を示す図である。図8(a)に示すように、実施例の光学部材に摩耗試験を行っても、親水膜はほとんど摩耗しなかった。 
図8(b)は、比較例の光学部材に対して摩耗試験を行った結果を示す図である。図8(b)に示すように、比較例の光学部材に摩耗試験を行った結果、親水膜には多くのキズがつき、親水膜の大部分が摩耗した。 
[親水性回復試験] 摩耗試験を行った実施例の光学部材に対して、紫外光光源(ピーク波長365nm、FL15BL-B、株式会社東芝社製)から照度1mW/cm2の紫外光を照射した。紫外光の照射前、紫外光照射が2時間、4時間、18時間、22時間および90時間と変化させて光学部材に付着した水滴の接触角を測定した。 
図9は、摩耗試験後の
実施例の光学部材において紫外光の照射時間と接触角との関係を示すグラフである。図9に示すように、紫外光の照射前の接触角は70°であり、親水膜の親水性はほぼ失われていた。 
紫外光を数時間照射すると、接触角は10°~20°低下した。紫外光の照射時間が約20時間に達すると、接触角は紫外光の照射前と比べて約30°低下した。その後、紫外光の照射時間が約90時間に達すると、接触角は紫外光の照射前と比べて約60°低下して接触角は10°以下にまで低減した。なお、摩耗試験前に測定した実施例の光学部材の接触角は10°以下であった。約90時間の紫外光の照射により、親水膜の親水性をほぼ回復できた。 
以上、図面を参照して本発明の実施形態について説明した。ただし、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施できる。また、上記の実施形態に開示される複数の構成要素は適宜改変可能である。例えば、ある実施形態に示される全構成要素のうちのある構成要素を別の実施形態の構成要素に追加してもよく、または、ある実施形態に示される全構成要素のうちのいくつかの構成要素を実施形態から削除してもよい。 
また、図面は、発明の理解を容易にするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚さ、長さ、個数、間隔等は、図面作成の都合上から実際とは異なる場合もある。また、上記の実施形態で示す各構成要素の構成は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能であることは言うまでもない。 
本発明は、例えば、光学部材、コーティング剤、親水膜形成方法および親水性回復方法に好適に利用される。本発明の光学部材は、屋外で好適に使用される。例えば、本発明の光学部材は、車両の周囲をモニタする車載用モニタとして好適に用いられる。
100  光学部材  110  透光性部材  120  親水膜  120a シリカ粒子  120b 酸化チタン粒子  120c シリカ微粒子

Claims (12)

  1. 透光性部材と、 前記透光性部材を被覆する親水膜とを備え、 前記親水膜は、 シリカ粒子と、 酸化チタン粒子と、 前記シリカ粒子よりも平均粒径の小さいシリカ微粒子とを含む、光学部材。
  2. 前記シリカ粒子は、中空シリカ粒子またはポーラスシリカ粒子を含む、請求項1に記載の光学部材。
  3. 前記シリカ粒子の平均粒径は、1nm以上200nm以下である、請求項1または2に記載の光学部材。
  4. 前記酸化チタン粒子の平均粒径は、1nm以上100nm以下である、請求項1から3のいずれかに記載の光学部材。
  5. 前記シリカ微粒子の平均粒径は、0.5nm以上10nm以下である、請求項1から4のいずれかに記載の光学部材。
  6. 前記親水膜に対する前記シリカ粒子の質量比は、35%以上45%以下である、請求項1から5のいずれかに記載の光学部材。
  7. 前記親水膜に対する前記酸化チタン粒子の質量比は、10%以上30%以下である、請求項1から6のいずれかに記載の光学部材。
  8. 前記親水膜に対する前記シリカ微粒子の質量比は、35%以上45%以下である、請求項1から7のいずれかに記載の光学部材。
  9. 前記透光性部材は、 基材と、 前記基材を被覆する反射防止膜とを含む、請求項1から8のいずれかに記載の光学部材。
  10. 溶剤と固形成分とを含有するコーティング剤であって、 前記固形成分は、 シリカ粒子と、 酸化チタン粒子と、 前記シリカ粒子よりも平均粒径の小さいシリカ微粒子とを含む、コーティング剤。
  11. 溶剤と固形成分とを含有するコーティング剤を透光性部材に塗布する工程と、 前記コーティング剤を前記透光性部材に塗布した後、前記コーティング剤の前記溶剤が蒸発するように前記コーティング剤を乾燥させて前記コーティング剤から親水膜を形成する工程とを包含し、 前記固形成分は、シリカ粒子と、酸化チタン粒子と、前記シリカ粒子よりも平均粒径の小さいシリカ微粒子とを含む、親水膜形成方法。
  12. 請求項1から9のいずれかに記載の光学部材を用意する工程と、 前記光学部材の前記親水膜に紫外光を照射する工程とを包含する、親水性回復方法。
PCT/JP2019/029637 2018-07-31 2019-07-29 光学部材、コーティング剤、親水膜形成方法および親水性回復方法 WO2020027044A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-144168 2018-07-31
JP2018144168A JP2021179452A (ja) 2018-07-31 2018-07-31 光学部材、コーティング剤、親水膜形成方法および親水性回復方法

Publications (1)

Publication Number Publication Date
WO2020027044A1 true WO2020027044A1 (ja) 2020-02-06

Family

ID=69232496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029637 WO2020027044A1 (ja) 2018-07-31 2019-07-29 光学部材、コーティング剤、親水膜形成方法および親水性回復方法

Country Status (2)

Country Link
JP (1) JP2021179452A (ja)
WO (1) WO2020027044A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204323A (ja) * 1997-01-23 1998-08-04 Nissan Motor Co Ltd 親水性被膜形成用コーティング液およびその製造方法
JP2009035594A (ja) * 2007-07-31 2009-02-19 Jgc Catalysts & Chemicals Ltd 透明被膜付基材および透明被膜形成用塗料
JP2009053373A (ja) * 2007-08-24 2009-03-12 Panasonic Electric Works Co Ltd 反射防止膜付き基材
JP2016216717A (ja) * 2015-05-19 2016-12-22 長興材料工業股▲ふん▼有限公司Eternal Materials Co.,Ltd. 光線透過率を高める塗料組成物及びそれからなるコーティング層
WO2018020989A1 (ja) * 2016-07-28 2018-02-01 日本板硝子株式会社 低反射コーティング付ガラス板、低反射コーティング付基材を製造する方法、及び低反射コーティング付基材の低反射コーティングを形成するためのコーティング液

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204323A (ja) * 1997-01-23 1998-08-04 Nissan Motor Co Ltd 親水性被膜形成用コーティング液およびその製造方法
JP2009035594A (ja) * 2007-07-31 2009-02-19 Jgc Catalysts & Chemicals Ltd 透明被膜付基材および透明被膜形成用塗料
JP2009053373A (ja) * 2007-08-24 2009-03-12 Panasonic Electric Works Co Ltd 反射防止膜付き基材
JP2016216717A (ja) * 2015-05-19 2016-12-22 長興材料工業股▲ふん▼有限公司Eternal Materials Co.,Ltd. 光線透過率を高める塗料組成物及びそれからなるコーティング層
WO2018020989A1 (ja) * 2016-07-28 2018-02-01 日本板硝子株式会社 低反射コーティング付ガラス板、低反射コーティング付基材を製造する方法、及び低反射コーティング付基材の低反射コーティングを形成するためのコーティング液

Also Published As

Publication number Publication date
JP2021179452A (ja) 2021-11-18

Similar Documents

Publication Publication Date Title
JP7158765B2 (ja) 低反射率コーティングならびに基板に塗布するための方法およびシステム
US20100291295A1 (en) Hydrophilic-defogging and dirtproof film and production process for the same
JP2003113345A (ja) 帯電防止性塗料組成物
CN109791221B (zh) 带低反射涂层的玻璃板、制造带低反射涂层的基材的方法及用于形成低反射涂层的涂敷液
CA2620724A1 (en) Coating with infrared and ultraviolet blocking characteristics
CN107629760B (zh) 一种透明防雾剂及其制备方法
WO2010143425A1 (ja) 防汚ガラスの製造方法及び防汚ガラス
WO2020027044A1 (ja) 光学部材、コーティング剤、親水膜形成方法および親水性回復方法
JP2006224084A (ja) 光触媒性材料および光触媒性部材
WO2020027042A1 (ja) 光学部材、コーティング剤および親水膜形成方法
JP2007167833A (ja) ナノ光触媒ゾル及びその用途
US20140242289A1 (en) Method for forming titanium oxide film on surface of molded product composed of glass
JPH1192689A (ja) 無機コーティング剤
KR101608715B1 (ko) 광전기 셀용 다공질 금속산화물 반도체막 형성용 도료 및 광전기 셀
KR101487102B1 (ko) 유리 기판 구조물의 제조 방법
JP2006239495A (ja) 防曇性被膜被覆物品、防曇性被膜形成用塗工材料及び防曇性被膜被覆物品の製造方法
JPH09228073A (ja) 撥水性部材及びこの撥水性部材を用いた着氷雪防止方法
JP7499568B2 (ja) レンズユニット、光学ユニットおよびレンズに親水膜を形成する方法
JPH1067873A (ja) 基材表面の親水化方法
JP3707130B2 (ja) 保冷ショーケース
WO2020202875A1 (ja) 光学部材及びその製造方法
Yan et al. Long-Time Persisting Superhydrophilicity on Sapphire Surface via Femtosec-ond Laser Processing with the Var-nish of TiO2. Nanomaterials 2022, 12, 3403
Ozdemir et al. Comparison of photocatalytic properties of TiO2 thin films and fibers
JP2008260667A (ja) 酸化チタン薄膜の製造方法及び酸化チタン薄膜を有する樹脂製品
JP2000264680A (ja) 車両用ミラーの防曇性皮膜及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP