WO2020026690A1 - Vehicle air conditioning device - Google Patents

Vehicle air conditioning device Download PDF

Info

Publication number
WO2020026690A1
WO2020026690A1 PCT/JP2019/026546 JP2019026546W WO2020026690A1 WO 2020026690 A1 WO2020026690 A1 WO 2020026690A1 JP 2019026546 W JP2019026546 W JP 2019026546W WO 2020026690 A1 WO2020026690 A1 WO 2020026690A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
temperature
heat
heat exchanger
air
Prior art date
Application number
PCT/JP2019/026546
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 石関
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN201980047713.4A priority Critical patent/CN112384392B/en
Publication of WO2020026690A1 publication Critical patent/WO2020026690A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices

Definitions

  • the present invention relates to a heat pump type vehicle air conditioner capable of adjusting the temperature of an object to be temperature controlled such as a battery mounted on a vehicle, and particularly to defrosting of an outdoor heat exchanger.
  • the refrigerant in the outdoor heat exchanger absorbs heat and has a low temperature, so that moisture in the outside air adheres to the outdoor heat exchanger as frost.
  • frost of the outdoor heat exchanger grows, heat exchange with the outside air is hindered, and the heating capacity is reduced. Therefore, the outdoor heat exchanger is defrosted by flowing the high-temperature refrigerant discharged from the compressor to the outdoor heat exchanger to release heat (for example, see Patent Document 1).
  • cooling water is circulated through the battery to control the temperature of the battery, and heat is exchanged between the cooling water and the refrigerant to transfer the heat generated by the battery to the outdoor heat exchanger by the refrigerant, thereby removing the outdoor heat exchanger.
  • Patent Document 2 a system that contributes to frost has also been proposed (for example, see Patent Document 2), there has been a problem that the temperature of the battery becomes too cold during defrosting.
  • the present invention has been made to solve the above-mentioned conventional technical problem, and prevents a compressor mounted on a vehicle while preventing damage to a compressor due to liquid compression when defrosting an outdoor heat exchanger. It is an object of the present invention to provide a vehicle air conditioner that can prevent a temperature control target from being too cold.
  • the vehicle air conditioner of the present invention is a compressor that compresses a refrigerant, a radiator for heating the air supplied to the vehicle interior by releasing the refrigerant, and an outdoor heat exchanger provided outside the vehicle interior,
  • the control device allows the refrigerant discharged from the compressor to radiate heat by the radiator, reduce the pressure of the radiated refrigerant, and absorb heat by the outdoor heat exchanger to heat the vehicle interior.
  • a temperature control target temperature control device for circulating a heat medium through the temperature control target mounted on the vehicle to adjust the temperature of the temperature control target.
  • the temperature control device has a refrigerant-heat medium heat exchanger for exchanging heat between the refrigerant and the heat medium, and a heating device for heating the heat medium.
  • the control device controls the refrigerant discharged from the compressor to the outdoor heat. After radiating heat in the exchanger and decompressing the radiated refrigerant, the refrigerant-heat Performing a defrosting operation in which the heat flows into the body heat exchanger and absorbs heat from the heat medium, and in this defrosting operation, the temperature of the temperature control target is controlled to be equal to or higher than a predetermined lower limit by a heating device. .
  • the control device controls the temperature of the temperature control target within an appropriate temperature range equal to or less than a predetermined upper limit and equal to or more than a lower limit in the defrosting operation.
  • the air conditioner for a vehicle according to a third aspect of the invention is characterized in that, in each of the above inventions, the object to be temperature-controlled is a battery and / or a traveling motor.
  • a vehicle air conditioner includes a heat absorber for cooling the air supplied to the vehicle interior by absorbing heat of the refrigerant in each of the above inventions, and the control device controls the refrigerant discharged from the compressor. After radiating the heat by the radiator and decompressing the radiated refrigerant, the heating operation of absorbing heat by the outdoor heat exchanger and the refrigerant discharged from the compressor were radiated by the radiator, and the radiated refrigerant was depressurized.
  • each air conditioning operation of a dehumidifying operation in which heat is absorbed by a heat absorber and a cooling operation in which the refrigerant discharged from the compressor is radiated by an outdoor heat exchanger, and the radiated refrigerant is decompressed and then absorbed by the heat absorber.
  • the temperature of the temperature control target can be adjusted by flowing the refrigerant into the refrigerant-heat medium heat exchanger and absorbing heat from the heat medium. It is characterized by the following.
  • an air conditioner for a vehicle according to the above invention, further comprising an accumulator connected to a refrigerant suction side of the compressor.
  • a compressor for compressing a refrigerant a radiator for radiating the refrigerant to heat air supplied to the vehicle interior, an outdoor heat exchanger provided outside the vehicle interior, and a control device are provided.
  • the control device the refrigerant discharged from the compressor is radiated by a radiator, the radiated refrigerant is depressurized, and then the heat is absorbed by an outdoor heat exchanger so that the vehicle interior can be heated.
  • the air-conditioning apparatus includes a temperature control target temperature adjustment device for circulating a heat medium through the temperature control target mounted on the vehicle to adjust the temperature of the temperature control target.
  • the device has a refrigerant-heat medium heat exchanger for exchanging heat between the refrigerant and the heat medium, and a heating device for heating the heat medium, and the control device controls the refrigerant discharged from the compressor to an outdoor heat exchanger. And the pressure of the radiated refrigerant is reduced. Since the defrosting operation of flowing into the medium heat exchanger and absorbing heat from the heat medium is performed, the refrigerant is condensed in the outdoor heat exchanger with the outdoor heat exchanger as the high pressure side, and the refrigerant-heat medium heat exchanger Thus, a defrosting operation for evaporating the refrigerant can be performed.
  • the liquid refrigerant when defrosting the outdoor heat exchanger, the liquid refrigerant is present on the high pressure side including the outdoor heat exchanger, and is connected to the refrigerant suction side of the compressor as in the invention of claim 5. Without increasing the capacity of the accumulator, it is possible to avoid the disadvantage that the compressor causes liquid compression and damage.
  • the control device controls the temperature of the temperature control target to be equal to or higher than the predetermined lower limit value by the heating device of the temperature control target temperature adjustment device, so that the heat release of the temperature control target and While the heat of the heating device contributes to the defrosting of the outdoor heat exchanger, the inconvenience that the battery or the traveling motor as the object of temperature control as described in the third aspect of the present invention becomes too cold and malfunctions can be effectively solved. Will be able to do it.
  • control device controls the temperature of the temperature control target in the defrosting operation to be within a predetermined upper limit value and a lower limit value or more in the appropriate temperature range in the defrosting operation as described above, Prevents over-cooling and overheating and enables the device to function in an optimal state.
  • a heat absorber for cooling the air supplied to the vehicle interior by absorbing heat of the refrigerant as in the invention of claim 4, wherein the control device causes the refrigerant discharged from the compressor to radiate heat by the radiator, After the pressure of the refrigerant is reduced, the heating operation of absorbing heat in the outdoor heat exchanger is performed, and the refrigerant discharged from the compressor is radiated by the radiator, and the radiated refrigerant is reduced in pressure and absorbed by the heat absorber.
  • Dehumidifying operation and radiating the refrigerant discharged from the compressor in the outdoor heat exchanger, reducing the temperature of the radiated refrigerant, and allowing each air conditioning operation of the cooling operation to absorb heat by the heat absorber to be executable,
  • the refrigerant is caused to flow into the refrigerant-heat medium heat exchanger and absorbed from the heat medium, so that the temperature of the temperature-controlled object can be adjusted.
  • Good temperature control target while It is possible to function in the state.
  • FIG. 1 is a configuration diagram of an embodiment of a vehicle air conditioner to which the present invention is applied.
  • FIG. 2 is a block diagram of an air conditioning controller as a control device of the vehicle air conditioner of FIG. 1. It is a figure explaining the heating operation by the air-conditioning controller of FIG. It is a figure explaining the dehumidifying heating operation by the air conditioning controller of FIG.
  • FIG. 3 is a diagram illustrating an internal cycle operation by the air conditioning controller of FIG. 2.
  • FIG. 3 is a diagram illustrating a dehumidifying cooling operation / cooling operation by the air conditioning controller of FIG. 2.
  • FIG. 3 is a diagram illustrating a heating / temperature control target temperature control mode by the air conditioning controller of FIG. 2.
  • FIG. 3 is a diagram illustrating a dehumidifying cooling / temperature control target temperature control mode (cooling / temperature control target temperature control mode) by the air conditioning controller of FIG. 2.
  • FIG. 3 is a diagram illustrating an internal cycle / temperature control mode to be controlled by the air conditioning controller of FIG. 2.
  • FIG. 3 is a diagram for explaining a dehumidifying heating / temperature control target temperature control mode by the air conditioning controller of FIG. 2. It is a figure explaining the defrosting operation by the air-conditioning controller of FIG. It is a Ph diagram in the defrosting operation of FIG. It is a figure explaining the case where an outdoor heat exchanger carries out simple defrost.
  • FIG. 14 is a Ph diagram for the simple defrosting of FIG. 13.
  • FIG. 1 is a configuration diagram of a vehicle air conditioner 1 according to an embodiment to which the present invention is applied.
  • the vehicle according to the embodiment to which the present invention is applied is an electric vehicle (EV) without an engine (internal combustion engine).
  • the vehicle has a battery 55 (for example, a lithium battery).
  • the vehicle is driven and driven by supplying the charged electric power to a traveling motor (electric motor) 65.
  • the vehicle air conditioner 1 is also driven by being supplied with power from the battery 55.
  • the vehicle air conditioner 1 performs the heating operation by the heat pump operation using the refrigerant circuit R in the electric vehicle that cannot perform heating by the engine waste heat, and further performs the dehumidifying heating operation (the dehumidifying operation in the present invention) and the internal cycle.
  • Air conditioning of the vehicle interior is performed by selectively executing each of the air-conditioning operations of the operation (also the dehumidifying operation of the present invention), the dehumidifying and cooling operation (also the dehumidifying operation of the present invention), and the cooling operation.
  • the present invention is effective not only for an electric vehicle as a vehicle but also for a so-called hybrid vehicle using an engine and an electric motor for traveling.
  • the vehicle air conditioner 1 of the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a passenger compartment of an electric vehicle, and an electric compressor (electric compressor) 2 that compresses a refrigerant.
  • an electric compressor (electric compressor) 2 that compresses a refrigerant. Is provided in the air flow passage 3 of the HVAC unit 10 through which the vehicle interior air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G to radiate the refrigerant.
  • a heat sink 9 for cooling the air supplied to the passenger compartment by absorbed by the refrigerant, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is constituted by a cabin outside of.
  • the outdoor expansion valve 6 and the indoor expansion valve 8 are capable of decompressing and expanding the refrigerant, and can be fully opened and fully closed.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing the outside air through the outdoor heat exchanger 7, so that the outdoor blower 15 can stop the outdoor operation even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is configured such that outside air is passed through the heat exchanger 7.
  • the refrigerant pipe 13A connected to the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the refrigerant pipe 13B via a check valve 18.
  • the check valve 18 has the refrigerant pipe 13B side directed forward, and the refrigerant pipe 13B is connected to the indoor expansion valve 8.
  • the refrigerant pipe 13A that has exited from the outdoor heat exchanger 7 is branched, and the branched refrigerant pipe 13D is a refrigerant pipe 13C that is located on the outlet side of the heat absorber 9 via an electromagnetic valve 21 that is opened during heating.
  • Is connected to the A check valve 20 is connected to a refrigerant pipe 13C downstream of the connection point of the refrigerant pipe 13D, a refrigerant pipe 13C downstream of the check valve 20 is connected to the accumulator 12, and the accumulator 12 is connected to the compressor 2 Is connected to the refrigerant suction side.
  • the check valve 20 has a forward direction on the accumulator 12 side.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched into a refrigerant pipe 13J and a refrigerant pipe 13F just before the outdoor expansion valve 6 (upstream of the refrigerant), and one of the branched refrigerant pipes 13J is connected to the outdoor expansion valve 6F. Is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the The other branched refrigerant pipe 13F is connected to a refrigerant pipe 13B located downstream of the check valve 18 and upstream of the indoor expansion valve 8 via a solenoid valve 22 that is opened during dehumidification. Have been.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve are connected. 18 bypasses the circuit.
  • the air flow passage 3 on the upstream side of the heat absorber 9 is formed with an outside air suction port and an inside air suction port (represented by a suction port 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between inside air (inside air circulation) as air inside the vehicle compartment and outside air (introduction of outside air) as air outside the vehicle compartment. Further, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided downstream of the suction switching damper 26 in the air.
  • reference numeral 23 denotes an auxiliary heater as an auxiliary heating device.
  • the auxiliary heater 23 is formed of a PTC heater (electric heater) in the embodiment, and is provided in the air flow passage 3 on the downstream side of the radiator 4 with respect to the flow of air in the air flow passage 3. I have.
  • the auxiliary heater 23 When the auxiliary heater 23 is energized and generates heat, it becomes a so-called heater core, which complements the heating of the vehicle interior.
  • the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated into the air flow passage 3 upstream of the radiator 4 in the air.
  • An air mix damper 28 is provided for adjusting the rate of air flow to the heater 4 and the auxiliary heater 23.
  • FOOT (foot), VENT (vent), and DEF (def) outlets are formed in the air flow passage 3 downstream of the radiator 4 in the air.
  • the air outlet 29 is provided with an air outlet switching damper 31 for controlling the air blowing from each of the air outlets.
  • the vehicle air conditioner 1 includes a temperature-regulated target temperature adjusting device 61 for circulating a heat medium through the battery 55 and the traveling motor 65 to adjust the temperature of the battery 55 and the traveling motor 65.
  • the battery 55 and the traveling motor 65 are temperature controlled objects mounted on the vehicle.
  • the traveling motor 65 as an object to be temperature-controlled in the present invention is not limited to the electric motor itself, but includes an electric device such as an inverter circuit for driving the electric motor.
  • the temperature adjustment device 61 to be heated includes a circulation pump 62 as a circulation device for circulating a heat medium through the battery 55 and the traveling motor 65, a first heat medium heater 66A as a heating device, and a first heat medium heater 66A.
  • a heat medium heating heater 66B and a refrigerant-heat medium heat exchanger 64 are provided, and the battery 55 and the traveling motor 65 are connected to each other by a heat medium pipe 68.
  • the inlet of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of the heat medium passage 64A is connected to the heat medium pipe 68A and the heat medium pipe. It branches to 68B.
  • a series circuit of the first electromagnetic valve 81, the first heat medium heater 66A, and the battery 55 as a flow path control device is connected to the heat medium pipe 68A, and the heat medium pipe 68B is connected to the heat medium pipe 68B.
  • a series circuit of the second solenoid valve 82, the second heat medium heater 66B, and the traveling motor 65 is connected.
  • Each of the solenoid valves 81 and 82 may be constituted by an electric valve whose flow rate can be adjusted.
  • the heat medium used in the temperature control device 61 for example, water, a refrigerant such as HFO-1234yf, a liquid such as a coolant, or a gas such as air can be adopted.
  • water is used as the heat medium.
  • Each of the heat medium heaters 66A and 66B is configured by an electric heater such as a PTC heater.
  • a jacket structure is provided around the battery 55 and the traveling motor 65 so that, for example, a heat medium can flow through the heat exchange relationship with the battery 55 and the traveling motor 65.
  • the heat medium discharged from the circulation pump 62 flows into the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64. .
  • the heat medium that has flowed out of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is divided, and one of the divided heat medium reaches the first heat medium heater 66A via the first solenoid valve 81.
  • the first heat medium heater 66A generates heat, it is heated there, and then reaches the battery 55, where the heat medium exchanges heat with the battery 55.
  • the other divided heat medium reaches the second heat medium heater 66B via the second solenoid valve 82.
  • the second heat medium heater 66B If the second heat medium heater 66B is heated, it is heated there, and then the traveling motor is driven. At 65, the heat medium exchanges heat with the traveling motor 65 there. The heat medium that has exchanged heat with the battery 55 and the traveling motor 65 is merged and then sucked into the circulation pump 62 to be circulated in the heat medium pipe 68.
  • the first electromagnetic valve 81 When the first electromagnetic valve 81 is closed, the heat medium does not flow to the battery 55, and when the second electromagnetic valve 82 is closed, the heat medium does not flow to the traveling motor 65.
  • an outlet of the refrigerant pipe 13F of the refrigerant circuit R that is, a refrigerant pipe 13B located on the refrigerant downstream side of the connection portion between the refrigerant pipe 13F and the refrigerant pipe 13B and located on the refrigerant upstream side of the indoor expansion valve 8 is branched.
  • One end of a branch pipe 72 as a circuit is connected.
  • the branch pipe 72 is provided with an auxiliary expansion valve 73 constituted by an electric valve.
  • the auxiliary expansion valve 73 is capable of decompressing and expanding the refrigerant flowing into a refrigerant flow path 64B, which will be described later, of the refrigerant-heat medium heat exchanger 64, and is also capable of being fully closed.
  • the other end of the branch pipe 72 is connected to the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 74 is connected to the outlet of the refrigerant flow path 64B.
  • the other end is connected to a refrigerant pipe 13C downstream of the check valve 20 and upstream of the accumulator 12 (upstream of the refrigerant).
  • the auxiliary expansion valve 73 and the like also constitute a part of the refrigerant circuit R and also constitute a part of the temperature adjustment target temperature adjusting device 61.
  • the refrigerant (a part or all of the refrigerant) flowing out of the refrigerant pipe 13F or the outdoor heat exchanger 7 flows into the branch pipe 27 and is decompressed by the auxiliary expansion valve 73.
  • -It flows into the refrigerant passage 64B of the heat medium heat exchanger 64 and evaporates there.
  • the refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and is then sucked into the compressor 2 via the accumulator 12.
  • reference numeral 32 denotes an air conditioning controller 32 as a control device that controls the air conditioner 1 for a vehicle.
  • the air-conditioning controller 32 is connected via a vehicle communication bus 45 to a vehicle controller 35 (ECU) that controls the entire vehicle including drive control of the traveling motor 65 and charge / discharge control of the battery 55, and transmits and receives information. It has a configuration.
  • Each of the air conditioning controller 32 and the vehicle controller 35 (ECU) is configured by a microcomputer as an example of a computer having a processor.
  • the inputs of the air-conditioning controller 32 include an outside air temperature sensor 33 for detecting the outside air temperature (Tam) of the vehicle, an outside air humidity sensor 34 for detecting the outside air humidity, and a suction from the air inlet 25 into the air flow passage 3.
  • HVAC suction temperature sensor 36 for detecting the temperature of the air
  • inside air temperature sensor 37 for detecting the temperature of the air (inside air) in the cabin
  • inside air humidity sensor 38 for detecting the humidity of the air in the cabin
  • An indoor CO 2 concentration sensor 39 for detecting carbon concentration
  • An outlet temperature sensor 41 for detecting the temperature of the air blown into the passenger compartment from the outlet 29, a discharge pressure sensor 42 for detecting the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, and a discharge refrigerant temperature of the compressor 2
  • a suction temperature sensor 44 for detecting a suction refrigerant temperature of the compressor 2, a temperature of the radiator 4 (a temperature of the air passing through the radiator 4, or a temperature of the radiator 4 itself: heat radiation).
  • a radiator temperature sensor 46 for detecting the radiator temperature TCI) and a radiator for detecting the refrigerant pressure of the radiator 4 (pressure of the refrigerant in the radiator 4 or immediately after leaving the radiator 4: radiator pressure PCI).
  • a pressure sensor 47 a heat absorber temperature sensor 48 for detecting the temperature of the heat absorber 9 (the temperature of the air passing through the heat absorber 9, or the temperature of the heat absorber 9 itself: the heat absorber temperature Te), and the refrigerant pressure of the heat absorber 9 (Inside or out of the heat absorber 9
  • Heat sensor pressure sensor 49 for detecting the pressure of the subsequent refrigerant
  • a photosensor-type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior
  • a vehicle speed for detecting the moving speed (vehicle speed) of the vehicle.
  • the outdoor heat exchanger temperature TXO is the evaporation temperature of the refrigerant in the outdoor heat exchanger 7).
  • the input of the air-conditioning controller 32 further includes the temperature of the battery 55 (the temperature of the battery 55 itself, the temperature of the heat medium that has exited the battery 55, or the temperature of the heat medium that enters the battery 55: battery temperature Tb).
  • the temperature of the traveling motor 65 (the temperature of the traveling motor 65 itself, the temperature of the heat medium that has exited the traveling motor 65, or the temperature of the heating medium that enters the traveling motor 65: the traveling motor temperature Tm) is detected.
  • Each output of the running motor temperature sensor 78 is also connected.
  • the outputs of the air conditioning controller 32 include the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the air outlet switching damper 31, the outdoor
  • the auxiliary expansion valve 73 and the first and second solenoid valves 81 and 82 are connected.
  • the air-conditioning controller 32 controls these based on the outputs of the sensors, the settings input by the air-conditioning operation unit 53, and information from the vehicle controller 35.
  • the air-conditioning controller 32 switches among air-conditioning operations of a heating operation, a dehumidifying and heating operation (dehumidifying operation), an internal cycle operation (dehumidifying operation), a dehumidifying cooling operation (dehumidifying operation), and a cooling operation.
  • the temperature of the battery 55 (the object to be temperature-controlled) and the temperature of the traveling motor 65 (the object to be temperature-controlled) are adjusted within a predetermined appropriate temperature range in the embodiment.
  • each air conditioning operation of the refrigerant circuit R of the vehicle air conditioner 1 during operation of the vehicle will be described.
  • FIG. 3 shows the flow of the refrigerant in the refrigerant circuit R in the heating operation (solid line arrow).
  • the air conditioning controller 32 auto mode or the manual operation (manual mode) of the air conditioning operation unit 53
  • the air conditioning controller 32 opens the solenoid valve 21 (for heating), and the indoor expansion valve 8 is fully closed. Further, the solenoid valve 22 (for dehumidification) is closed.
  • the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is in a state of adjusting the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow path 3 is passed through the radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 gives heat to the air. It is taken away, cooled, and condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and draws heat by traveling or from outside air passed through the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump.
  • the low-temperature refrigerant that has exited the outdoor heat exchanger 7 passes through the refrigerant pipe 13A, the refrigerant pipe 13D, and the solenoid valve 21, and then enters the accumulator 12 from the refrigerant pipe 13C through the check valve 20, where it is separated into gas and liquid.
  • the circulation in which the gas refrigerant is sucked into the compressor 2 is repeated.
  • the air heated by the radiator 4 is blown out from the air outlet 29, thereby heating the vehicle interior.
  • the air-conditioning controller 32 calculates a target radiator pressure PCO (a target value of the pressure PCI of the radiator 4) from a target heater temperature TCO (a target value of the air temperature on the leeward side of the radiator 4) calculated from a target outlet temperature TAO described later. Is controlled, and the number of revolutions of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • FIG. 4 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) in the dehumidifying and heating operation.
  • the air-conditioning controller 32 opens the electromagnetic valve 22 and opens the indoor expansion valve 8 in the state of the heating operation to decompress and expand the refrigerant.
  • the air conditioning controller 32 controls the opening degree of the indoor expansion valve 8 so as to maintain the degree of superheat (SH) of the refrigerant at the outlet of the heat absorber 9 at a predetermined value. As the moisture in the air blown out from the indoor blower 27 condenses on the heat absorber 9 and adheres, the air is cooled and dehumidified. The remaining refrigerant that has flowed into the refrigerant pipe 13 ⁇ / b> J is decompressed by the outdoor expansion valve 6, and then evaporates in the outdoor heat exchanger 7.
  • SH superheat
  • the refrigerant evaporated by the heat absorber 9 flows out to the refrigerant pipe 13C and merges with the refrigerant from the refrigerant pipe 13D (the refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 via the check valve 20 and the accumulator 12. Repeated circulation. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification and heating of the vehicle interior is performed.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the valve opening of the outdoor expansion valve 6 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • FIG. 5 shows the flow of the refrigerant in the refrigerant circuit R in the internal cycle operation (solid arrow).
  • the air-conditioning controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating operation state (fully closed position).
  • the solenoid valve 21 is kept open, and the refrigerant outlet of the outdoor heat exchanger 7 is communicated with the refrigerant suction side of the compressor 2.
  • this internal cycle operation is a state in which the outdoor expansion valve 6 is fully closed by the control of the outdoor expansion valve 6 in the dehumidifying and heating operation, and therefore, this internal cycle operation can also be regarded as a part of the dehumidifying and heating operation.
  • the outdoor expansion valve 6 when the outdoor expansion valve 6 is closed, the inflow of the refrigerant into the outdoor heat exchanger 7 is prevented, so that the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 passes through the electromagnetic valve 22 and the refrigerant. All the fluid flows into the pipe 13F. Then, the refrigerant flowing through the refrigerant pipe 13F reaches the indoor expansion valve 8 via the refrigerant pipe 13B. After the pressure of the refrigerant is reduced by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. The moisture in the air blown out from the indoor blower 27 by the heat absorbing action at this time condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated by the heat absorber 9 flows through the refrigerant pipe 13C, and repeats the circulation sucked into the compressor 2 via the check valve 20 and the accumulator 12.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, thereby performing dehumidification and heating of the vehicle interior.
  • the air circulation on the indoor side is performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the path 3, heat is not pumped from the outside air, and heating for the power consumed by the compressor 2 is performed. The ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exerts the dehumidifying action, the dehumidifying capacity is higher but the heating capacity is lower than in the dehumidifying and heating operation.
  • the outdoor expansion valve 6 is closed, the solenoid valve 21 is open, and the refrigerant outlet of the outdoor heat exchanger 7 communicates with the refrigerant suction side of the compressor 2.
  • the refrigerant flows out to the refrigerant pipe 13C via the refrigerant pipe 13D and the electromagnetic valve 21, is collected by the accumulator 12, and the inside of the outdoor heat exchanger 7 is in a gas refrigerant state.
  • the amount of the refrigerant circulating in the refrigerant circuit R is increased as compared with when the electromagnetic valve 21 is closed, and the heating capacity of the radiator 4 and the dehumidifying capacity of the heat absorber 9 can be improved.
  • the air-conditioning controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the radiator pressure PCI (high pressure of the refrigerant circuit R) described above. At this time, the air-conditioning controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotation speeds obtained from either the calculation based on the temperature of the heat absorber 9 or the radiator pressure PCI.
  • FIG. 6 shows the flow of the refrigerant in the refrigerant circuit R in the dehumidifying cooling operation (solid line arrow).
  • the air-conditioning controller 32 opens the indoor expansion valve 8 so that the refrigerant is decompressed and expanded, and closes the solenoid valves 21 and 22. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state of adjusting the rate at which the air blown out from the indoor blower 27 is blown to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow path 3 is passed through the radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 gives heat to the air. It is taken away, cooled, and condensed and liquefied.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 via the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant that has flowed into the outdoor heat exchanger 7 is air-cooled and condensed there by traveling or by the outside air passed by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. After the pressure of the refrigerant is reduced by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates.
  • the moisture in the air blown out from the indoor blower 27 by the heat absorbing action at this time condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant evaporated by the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and repeats the circulation through which the refrigerant is sucked into the compressor 2.
  • the air that has been cooled and dehumidified by the heat absorber 9 is reheated (reheating: has a lower heat dissipation capacity than during heating) in the process of passing through the radiator 4, thereby performing dehumidification and cooling in the vehicle interior. become.
  • the air conditioning controller 32 sets the heat absorber temperature Te to the target heat absorber temperature TEO based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO as its target value.
  • the radiator pressure PCI high pressure of the refrigerant circuit R
  • the target radiator pressure PCO radius pressure
  • Cooling operation Next, the cooling operation will be described.
  • the flow of the refrigerant circuit R is the same as in the dehumidifying cooling operation of FIG.
  • the air conditioning controller 32 fully opens the outdoor expansion valve 6 in the state of the dehumidifying cooling operation.
  • the air mix damper 28 is in a state of adjusting the rate at which air is passed through the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated to the radiator 4, the ratio thereof is small (only for reheating at the time of cooling).
  • the refrigerant reaches the outdoor expansion valve 6 via the refrigerant pipe 13E.
  • the refrigerant directly passes through the refrigerant pipe 13J via the outdoor expansion valve 6, flows into the outdoor heat exchanger 7, and travels there or is ventilated by the outdoor blower 15.
  • the air is cooled by the outside air and condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. After the pressure of the refrigerant is reduced by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. At this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9 due to the heat absorbing action, and the air is cooled.
  • the refrigerant evaporated by the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and repeats the circulation through which the refrigerant is sucked into the compressor 2.
  • the air that has been cooled and dehumidified by the heat absorber 9 is blown out from the outlet 29 into the vehicle interior, whereby the vehicle interior is cooled.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • the air-conditioning controller 32 calculates the above-described target outlet temperature TAO from the following equation (I).
  • the target outlet temperature TAO is a target value of the temperature of the air blown from the outlet 29 into the vehicle interior.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) ⁇ ⁇ (I)
  • Tset is the temperature set in the cabin set by the air-conditioning operation unit 53
  • Tin is the temperature of the cabin air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the sunshine sensor 51 detects the temperature.
  • This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • the target outlet temperature TAO increases as the outside air temperature Tam decreases, and decreases as the outside air temperature Tam increases.
  • the air conditioning controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO. After the start, each air-conditioning operation is selected and switched according to changes in the environment such as the outside air temperature Tam and the target blow-out temperature TAO and the set conditions.
  • Temperature Adjustment of Temperature Control Target (Battery 55 and Traveling Motor 65)
  • the battery 55 and the traveling motor 65 (driven The temperature adjustment control for (temperature control target) will be described.
  • the temperature of the battery 55 changes due to the outside air temperature, and also changes due to self-heating.
  • the temperature of the battery 55 becomes extremely high or extremely low, and charging and discharging becomes difficult.
  • the temperature of the traveling motor 65 may become extremely high or extremely low depending on the operation and environmental conditions, and the traveling motor 65 may malfunction and break down.
  • the air conditioning controller 32 of the vehicle air conditioner 1 of the embodiment adjusts the temperature of the battery 55 and the traveling motor 65 to a predetermined appropriate temperature by the temperature adjustment target temperature adjusting device 61 while performing the air conditioning operation as described above. Adjust within the range (operating temperature range).
  • the appropriate temperature range of the battery 55 and the traveling motor 65 is generally known, but in this application, the appropriate temperature range of the battery 55 is, for example, 0 ° C or more and + 40 ° C or less. That is, the predetermined lower limit TL of the appropriate temperature range is 0 ° C., and the upper limit TH is + 40 ° C.
  • the suitable temperature range of the traveling motor 65 is different from that of the battery 55.
  • the suitable temperature range of the traveling motor 65 is set to -15 ° C or more and + 60 ° C or less, and a predetermined lower limit of the appropriate temperature range is set. ( ⁇ 15 ° C.) is indicated by TL, and the upper limit (+ 60 ° C.) is indicated by TH.
  • any one of the battery temperature Tb and the traveling motor temperature Tm detected by the battery temperature sensor 76 and the traveling motor temperature sensor 78 is set to the respective temperature.
  • the air-conditioning controller 32 executes the heating / temperature-controlled temperature control mode.
  • FIG. 7 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) and the flow of the heat medium of the temperature adjustment target temperature controller 61 (dashed arrow) in the heating / temperature adjustment target temperature adjustment mode.
  • the air conditioning controller 32 further opens the solenoid valve 22 and the auxiliary expansion valve 73 in the state of the heating operation of the refrigerant circuit R shown in FIG. Control state. Then, the circulating pump 62 of the temperature adjustment device 61 is controlled. As a result, part of the refrigerant that has flowed out of the radiator 4 is diverted on the upstream side of the refrigerant from the outdoor expansion valve 6, and reaches the upstream side of the indoor expansion valve 8 via the refrigerant pipe 13F.
  • the refrigerant enters the branch pipe 72, is decompressed by the auxiliary expansion valve 73, flows into the refrigerant passage 64 B of the refrigerant-heat medium heat exchanger 64 through the branch pipe 72, and evaporates. At this time, it exhibits an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats the circulation that is sucked into the compressor 2 through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 sequentially (indicated by a solid line arrow in FIG. 7).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 68, where the heat is absorbed by the refrigerant evaporated in the refrigerant flow path 64B, and the heat is absorbed.
  • the medium is cooled.
  • the heat medium that has exited the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is divided while the first and second solenoid valves 81 and 82 are open, and one of the divided heat medium is the second heat medium.
  • the first heat medium heater 66A After reaching the first heat medium heater 66A via the one electromagnetic valve 81, and heated there (when the first heat medium heater 66A generates heat), it reaches the battery 55 and exchanges heat with the battery 55.
  • the other divided heat medium reaches the second heat medium heater 66B via the second solenoid valve 82, and is heated there (when the second heat medium heater 66B generates heat).
  • heat exchange with the traveling motor 65 is performed. After the heat medium that has exchanged heat with the battery 55 and the traveling motor 65 joins, the circulation sucked by the circulation pump 62 is repeated (indicated by a broken arrow in FIG. 7).
  • the air-conditioning controller 32 constantly supplies the refrigerant to the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 and constantly cools the heat medium, while the battery temperature Tb detected by the battery temperature sensor 76 and the traveling motor temperature. Based on the traveling motor temperature Tm detected by the sensor 78 and the upper limit value TH and the lower limit value TL of the appropriate temperature range, heat generation of each of the heat medium heaters 66A and 66B, and opening and closing of each of the electromagnetic valves 81 and 82. Is controlled so that the battery temperature Tb falls within the appropriate temperature range and the traveling motor temperature Tm falls within the appropriate temperature range (in that case, the heating / temperature controlled object is actually replaced with the heating operation). The temperature control mode is always executed, or the temperature control mode is switched between the heating operation and the heating / temperature control target temperature control mode).
  • the air-conditioning controller 32 opens the first solenoid valve 81 and cools the battery 55 by not causing the first heat medium heater 66A to generate heat.
  • Tb is lower than the lower limit value TL of the appropriate temperature range
  • the first solenoid valve 81 is opened, and the battery 55 is heated by causing the first heat medium heater 66A to generate heat.
  • the traveling motor temperature Tm is higher than the upper limit value TH of the appropriate temperature range, the second solenoid valve 82 is opened, and the second heating medium heater 66B does not generate heat, thereby cooling the traveling motor 65, and
  • the traveling motor 65 is heated by opening the second solenoid valve 82 and causing the second heat medium heater 66B to generate heat.
  • the temperature of the battery 55 battery temperature Tb
  • the temperature of the travel motor 65 travel motor temperature Tm
  • the electromagnetic valves 81 and 82 of the battery 55 and the traveling motor 65 which do not require temperature adjustment are closed, and the heat medium heaters 66A and 66B do not generate heat.
  • the capacity of the refrigerant-heat medium heat exchanger 64 and each of the heat medium heaters 66A and 66B is based on the heat capacity of the battery 55 and the running motor 65 as a load, and the battery temperature Tb and the running motor are controlled as described above. Even when the heat medium flows through both of the temperatures Tm, the heat medium is set to a value that can be set within an appropriate temperature range.
  • the air-conditioning controller 32 independently controls the temperature Tb of the battery 55 and the temperature Tm of the traveling motor 65 within an appropriate temperature range.
  • FIG. 8 shows the flow of the refrigerant in the refrigerant circuit R (solid line arrow) and the flow of the heat medium of the temperature control target temperature adjusting device 61 (broken line arrow) in the cooling / temperature control target temperature control mode.
  • the air-conditioning controller 32 opens the auxiliary expansion valve 73 to control the opening degree of the auxiliary expansion valve 73 in the state of the refrigerant circuit R in the cooling operation in FIG.
  • the circulation pump 62 of the temperature adjusting device 61 is also operated to bring the refrigerant and the heat medium into heat exchange in the refrigerant-heat medium heat exchanger 64.
  • the high-temperature refrigerant discharged from the compressor 2 flows into the outdoor heat exchanger 7 via the radiator 4, where it exchanges heat with the outside air and traveling wind blown by the outdoor blower 15 to radiate heat and condense. I do.
  • Part of the refrigerant condensed in the outdoor heat exchanger 7 reaches the indoor expansion valve 8, where the pressure is reduced, and then flows into the heat absorber 9 to evaporate. Since the air in the air flow passage 3 is cooled by the heat absorbing action at this time, the vehicle interior is cooled.
  • the remainder of the refrigerant condensed in the outdoor heat exchanger 7 is diverted to the branch pipe 72, decompressed by the auxiliary expansion valve 73, and then evaporated in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64.
  • the refrigerant absorbs heat from the heat medium circulating in the temperature control device 61, so that the battery 55 and the traveling motor 65 are cooled as described above.
  • the refrigerant flowing out of the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C, the check valve 20, and the accumulator 12, and the refrigerant flowing out of the refrigerant-heat medium heat exchanger 64 also flows through the refrigerant pipe 74 into the accumulator 12. After that, it is sucked into the compressor 2.
  • the air conditioning controller 32 replaces the cooling operation, or performs the cooling operation and the cooling / temperature controlled object temperature similarly to the heating / temperature controlled object temperature control mode described above.
  • the cooling mode or shifting from the cooling operation to the cooling / temperature controlled temperature control mode and controlling the auxiliary expansion valve 73, the heating medium heaters 66A and 66B, and the solenoid valves 81 and 82 the battery
  • the temperature of 55 (battery temperature Tb) and the temperature of running motor 65 (running motor temperature Tm) are adjusted (controlled) within respective appropriate temperature ranges.
  • the air conditioning controller 32 dehumidifies.
  • the cooling / temperature control target temperature control mode is executed.
  • the flow of the refrigerant in the refrigerant circuit R (solid line arrow) and the flow of the heat medium of the temperature control target temperature adjusting device 61 (dashed arrow) in the dehumidifying / cooling / temperature control target temperature control mode are the same as those in FIG.
  • the outdoor expansion valve 6 is controlled not to be fully opened but to be slightly opened.
  • the air conditioning controller 32 replaces the dehumidification cooling operation, or switches between the dehumidification cooling operation and the dehumidification cooling / temperature control target temperature control mode, or the dehumidification cooling.
  • the air conditioning controller 32 By shifting from the operation to the dehumidifying / cooling / temperature control target temperature control mode and controlling the auxiliary expansion valve 73, the heat medium heaters 66A and 66B, and the solenoid valves 81 and 82, the battery temperature Tb and the running motor temperature are controlled. Tm is adjusted (controlled) within an appropriate temperature range.
  • the air-conditioning controller 32 executes the target temperature control mode.
  • the air conditioning controller 32 opens the auxiliary expansion valve 73 to control the valve opening degree in the state of the refrigerant circuit R in the internal cycle operation shown in FIG.
  • the circulating pump 62 of the adjustment target temperature adjusting device 61 is also operated to bring the refrigerant and the heat medium into heat exchange in the refrigerant-heat medium heat exchanger 64.
  • FIG. 9 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) and the flow of the heat medium (dashed arrow) in the temperature adjustment target temperature controller 61 in the internal cycle / temperature adjustment mode.
  • the high-temperature refrigerant discharged from the compressor 2 is radiated by the radiator 4 and then flows through the solenoid valve 22 to the refrigerant pipe 13F. Then, part of the refrigerant that has exited the refrigerant pipe 13F reaches the indoor expansion valve 8 via the refrigerant pipe 13B, where the pressure is reduced, and then flows into the heat absorber 9 to evaporate.
  • the moisture in the air blown out from the indoor blower 27 by the heat absorbing action at this time condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.
  • the refrigerant flowing out of the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C, the check valve 20, and the accumulator 12, and the refrigerant flowing out of the refrigerant-heat medium heat exchanger 64 also flows through the refrigerant pipe 74 into the accumulator 12. After that, it is sucked into the compressor 2.
  • the air-conditioning controller 32 replaces the internal cycle operation or executes the internal cycle operation and the internal cycle / control target similarly to the case of the heating / temperature control target temperature control mode described above.
  • the target temperature control mode is switched or the internal cycle operation is shifted to the internal cycle / temperature control target temperature control mode, and the auxiliary expansion valve 73, the heat medium heaters 66A and 66B, and the solenoid valves 81 and 82 are switched.
  • the battery temperature Tb and the traveling motor temperature Tm are adjusted (controlled) within an appropriate temperature range.
  • the air conditioning controller 32 operates / Execute the target temperature control mode.
  • the air-conditioning controller 32 opens the auxiliary expansion valve 73 and controls the opening degree of the auxiliary expansion valve 73 in the state of the refrigerant circuit R in the dehumidifying heating operation in FIG.
  • the circulating pump 62 of the adjustment target temperature adjusting device 61 is also operated to bring the refrigerant and the heat medium into heat exchange in the refrigerant-heat medium heat exchanger 64.
  • FIG. 10 shows the flow of the refrigerant in the refrigerant circuit R (solid line arrow) and the flow of the heat medium of the temperature control target temperature adjusting device 61 (broken line arrow) in the dehumidifying heating / temperature control target temperature control mode.
  • a part of the condensed refrigerant that has exited the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the electromagnetic valve 22, exits from the refrigerant pipe 13F, and a part of the refrigerant flows into the refrigerant pipe.
  • the refrigerant flows to the indoor expansion valve 8, and the remaining refrigerant flows to the outdoor expansion valve 6. That is, a part of the divided refrigerant is reduced in pressure by the indoor expansion valve 8, and then flows into the heat absorber 9 to evaporate.
  • the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9 due to the heat absorbing action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification and heating of the vehicle interior is performed. The remainder of the condensed refrigerant that has flowed out of the radiator 4 is decompressed by the outdoor expansion valve 6, then evaporates in the outdoor heat exchanger 7, and absorbs heat from the outside air.
  • the remainder of the refrigerant flowing out of the refrigerant pipe 13F flows into the branch pipe 72, is decompressed by the auxiliary expansion valve 73, and then evaporates in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64.
  • the refrigerant absorbs heat from the heat medium circulating in the temperature control device 61, so that the battery 55 and the traveling motor 65 are cooled as described above.
  • the refrigerant flowing out of the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C, the check valve 20, and the accumulator 12, and the refrigerant flowing out of the outdoor heat exchanger 7 is refrigerant pipe 13D, the electromagnetic valve 21, and the refrigerant pipe.
  • the refrigerant that has been drawn into the compressor 2 via the check valve 13 and the check valve 20 and the accumulator 12 and has exited the refrigerant-heat medium heat exchanger 64 is also drawn into the compressor 2 from the refrigerant pipe 74 via the accumulator 12.
  • the air conditioning controller 32 replaces the dehumidification / heating operation, or performs the dehumidification heating operation and the dehumidification heating / control in the same manner as in the heating / temperature control target temperature control mode described above.
  • the temperature control mode for the temperature control is switched, or the mode is switched from the dehumidifying / heating operation to the dehumidifying / heating / temperature control target temperature control mode.
  • the battery temperature Tb and the traveling motor temperature Tm are adjusted (controlled) within an appropriate temperature range.
  • the air-conditioning controller 32 calculates the outdoor heat exchanger temperature TXObase at the time of no frosting calculated from, for example, the outside air temperature Tam and the rotation speed of the compressor 2, etc., and calculates the outdoor heat exchanger temperature TXObase at the time of no frosting and the outdoor temperature.
  • the outdoor heat exchanger temperature TXO detected by the heat exchanger temperature sensor 54 is constantly compared with the outdoor heat exchanger temperature TXO.
  • the outdoor heat exchanger temperature TXO is lower than the outdoor heat exchanger temperature TXObase when no frost is formed, and the difference is a predetermined value. In the case described above, the defrosting operation of the outdoor heat exchanger 7 is performed.
  • FIG. 11 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) and the flow of the heat medium of the temperature control target temperature adjusting device 61 (dashed arrow) in the defrosting operation.
  • the air conditioning controller 32 operates the compressor 2 and the outdoor blower 15 stops.
  • the indoor expansion valve 8 is fully closed, and the auxiliary expansion valve 37 is opened to reduce the pressure of the refrigerant.
  • the outdoor expansion valve 6 is fully opened. Further, the air conditioning controller 32 closes the solenoid valve 21 and stops the indoor blower 27.
  • the circulating pump 62 is operated to bring the refrigerant and the heat medium into heat exchange in the refrigerant-heat medium heat exchanger 64.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 reaches the outdoor expansion valve 6 from the refrigerant pipe 13E via the radiator 4.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully opened, the refrigerant passes through the refrigerant pipe 13J and flows into the outdoor heat exchanger 7 as it is.
  • the outdoor heat exchanger 7 is defrosted by the high-temperature gas refrigerant flowing into the outdoor heat exchanger 7. After the refrigerant radiates heat to condense and liquefy, the refrigerant exits the outdoor heat exchanger 7.
  • the refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A. At this time, since the indoor expansion valve 8 is fully closed, all the refrigerant that has exited the outdoor heat exchanger 7 is branched. It reaches the auxiliary expansion valve 73 via the pipe 72. After the pressure of the refrigerant is reduced by the auxiliary expansion valve 73, the refrigerant flows into the refrigerant passage 64 B of the refrigerant-heat medium heat exchanger 64 and evaporates. At this time, it exhibits an endothermic effect.
  • the refrigerant evaporated in the refrigerant flow path 64B repeats the circulation sucked into the compressor 2 through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 sequentially. That is, in this defrosting operation, the refrigerant circuit R upstream of the auxiliary expansion valve 73 including the outdoor heat exchanger 7 on the refrigerant side is on the high pressure side.
  • the heat medium discharged from the circulation pump 62 flows into the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64.
  • the heat medium that has flowed out of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is diverted.
  • One of the divided heat medium reaches the first heat medium heater 66A via the first solenoid valve 81, and If the one heat medium heating heater 66A generates heat, it is heated there and then reaches the battery 55, where the heat medium exchanges heat with the battery 55.
  • the other divided heat medium reaches the second heat medium heater 66B via the second solenoid valve 82.
  • the second heat medium heater 66B If the second heat medium heater 66B is heated, it is heated there, and then the traveling motor is driven. At 65, the heat medium exchanges heat with the traveling motor 65 there. After the heat medium that has exchanged heat with the battery 55 and the traveling motor 65 is merged, the heat medium is sucked into the circulation pump 62 and circulated in the heat medium pipe 68 (indicated by a broken arrow in FIG. 11).
  • the air-conditioning controller 32 controls the auxiliary expansion valve 73, the heating medium heaters 66A and 66B, and the electromagnetic valves 81 and 82 in this defrosting operation, as in the case of the above-described heating / temperature-control target temperature control mode. By doing so, the temperature of the battery 55 (battery temperature Tb) and the temperature of the traveling motor 65 (traveling motor temperature Tm) are adjusted within an appropriate temperature range, and the battery temperature Tb and the traveling motor temperature Tm are controlled independently. . This prevents the battery 55 and the traveling motor 65 from being too cold or overheated.
  • FIG. 12 shows a Ph diagram of the refrigerant circuit R in the defrosting operation.
  • a line indicated by X1 in FIG. 12 is a region that contributes to the defrosting of the outdoor heat exchanger 7 (the same applies to FIG. 14).
  • FIG. 13 shows the flow of the refrigerant in the refrigerant circuit R when performing so-called simple defrosting of the outdoor heat exchanger 7 instead of the defrosting operation
  • FIG. 14 shows a Ph diagram in that case.
  • the opening degree of the outdoor expansion valve 6 is slightly reduced, the electromagnetic valve 21 is opened, the electromagnetic valve 22 is closed, and the indoor expansion valve 8 and the auxiliary expansion valve 73 are fully closed. Then, the compressor 2 is operated.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 passes through the radiator 4 and reaches the outdoor expansion valve 6 from the refrigerant pipe 13E.
  • the refrigerant is slightly throttled and then flows into the outdoor heat exchanger 7 via the refrigerant pipe 13J.
  • the outdoor heat exchanger 7 is defrosted by the relatively high-temperature gas refrigerant flowing into the outdoor heat exchanger 7.
  • the refrigerant radiates heat, but leaves the outdoor heat exchanger 7 in a gas state.
  • the refrigerant passes through the check valves 20 via the refrigerant pipes 13A and 13D and the electromagnetic valve 21, and enters the accumulator 12 via the refrigerant pipe 13C. Then, it is sucked into the compressor 2.
  • the downstream side of the refrigerant from the outdoor expansion valve 6 is on the low pressure side, and the entire refrigerant circuit R becomes gas refrigerant, so that a large amount of refrigerant is left over, and the liquid refrigerant overflows from the accumulator 12.
  • the compressor 2 may be damaged by liquid compression.
  • the refrigerant is condensed in the outdoor heat exchanger 7 with the outdoor heat exchanger 7 as the high pressure side, and the refrigerant-heat medium heat exchanger 64
  • the refrigerant can be evaporated. Accordingly, when defrosting the outdoor heat exchanger 7, the liquid refrigerant is present on the high pressure side of the refrigerant circuit R including the outdoor heat exchanger 7, so that the liquid refrigerant can be supplied without increasing the capacity of the accumulator 12. It is possible to prevent or suppress the refrigerant from overflowing from the accumulator 12, and it is possible to prevent a disadvantage that the compressor 2 causes liquid compression and damage.
  • the air conditioning controller 32 determines the temperature of the battery 55 and the traveling motor 65 as the temperature control target by the respective heating medium heaters 66A and 66B of the temperature control target temperature adjusting device 61.
  • the battery 55 and the traveling motor 65 and the heat of the heat medium heaters 66A and 66B are removed from the outdoor heat exchanger 7 by adjusting the temperature within a suitable temperature range not more than the upper limit value and not less than the lower limit value. While contributing to frost, the battery 55 and the traveling motor 65 can be prevented from being too cold or overheated, and can function in an optimal state.
  • the refrigerant in each of the air conditioning operations of the heating operation, the dehumidifying heating operation (dehumidifying operation), the internal cycle operation (dehumidifying operation), the dehumidifying cooling operation (dehumidifying operation), and the cooling operation, the refrigerant is used as the refrigerant-heat medium heat exchanger.
  • the temperature of the battery 55 and the running motor 65 can be adjusted by flowing heat into the heating medium 64 and absorbing heat from the heat medium. It can function in a good state.
  • the temperatures of the battery 55 and the traveling motor 65 are controlled within an appropriate temperature range.
  • the control may be performed at TL or more.
  • the battery 55 and the traveling motor 65 become too cold while the exhaust heat of the battery 55 and the traveling motor 65 and the heat of the heat medium heaters 66A and 66B contribute to the defrosting of the outdoor heat exchanger 7. The inconvenience of malfunction can be effectively eliminated.
  • the configuration of the air conditioning controller 32 described in the embodiment, the configuration of the refrigerant circuit R of the vehicle air conditioner 1 and the configuration of the temperature adjustment target temperature adjustment device 61 are not limited thereto, and do not depart from the gist of the present invention. Needless to say, it can be changed within the range.

Abstract

Provided is a vehicle air conditioning device that can prevent damage to a compressor due to liquid compression when defrosting an outdoor heat exchanger, and that can prevent excessive cooling of a battery or the like. This invention is provided with an object-to-be-temperature-regulated temperature regulation device (61) that regulates the temperature of an object that is subject to temperature regulation such as a battery (55) by circulating a heat medium through the object. The object-to-be-temperature-regulated temperature regulation device has a refrigerant/heat-medium heat exchanger (64) that causes heat exchange between a refrigerant and the heat medium, and heat medium heaters (66A, 66B). The refrigerant discharged from a compressor (2) is caused to release heat in an outdoor heat exchanger (7) and is then decompressed. Thereafter, a defrosting operation is executed, in which heat is absorbed from the heat medium in the refrigerant/heat-medium heat exchanger. Through the defrosting operation, the heat medium heaters control the temperature of the object that is subject to temperature regulation so as to be at least a prescribed lower limit value TL.

Description

車両用空気調和装置Vehicle air conditioner
 本発明は、車両に搭載されたバッテリ等の被温調対象の温度を調整可能とされたヒートポンプ式の車両用空気調和装置であって、特に、室外熱交換器の除霜に関するものである。 The present invention relates to a heat pump type vehicle air conditioner capable of adjusting the temperature of an object to be temperature controlled such as a battery mounted on a vehicle, and particularly to defrosting of an outdoor heat exchanger.
 近年の環境問題の顕在化から、搭載されたバッテリから供給される電力で走行用モータを駆動するハイブリッド自動車や電気自動車等の車両が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、圧縮機と、放熱器と、吸熱器と、室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させることで車室内を暖房し、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させることで車室内を冷房するものが開発されている。 (4) With the emergence of environmental problems in recent years, vehicles such as hybrid vehicles and electric vehicles that drive a driving motor with electric power supplied from a mounted battery have become widespread. As an air conditioner that can be applied to such a vehicle, a compressor, a radiator, a heat sink, and a refrigerant circuit to which an outdoor heat exchanger is connected are provided, and refrigerant discharged from the compressor is provided. Heat is radiated in the radiator, the refrigerant radiated in the radiator is absorbed in the outdoor heat exchanger to heat the vehicle interior, and the refrigerant discharged from the compressor is radiated in the outdoor heat exchanger and absorbed in the heat absorber. The thing which cools a vehicle interior by this is developed.
 また、車室内を暖房する場合、室外熱交換器では冷媒が吸熱して低温となるため、室外熱交換器には外気中の水分が霜となって付着する。この室外熱交換器の着霜が成長すると、外気との熱交換が阻害されるため、暖房能力が低下してしまう。そこで、圧縮機から吐出された高温の冷媒を室外熱交換器に流して放熱させることで室外熱交換器を除霜するようにしていた(例えば、特許文献1参照)。 暖房 Also, when heating the vehicle interior, the refrigerant in the outdoor heat exchanger absorbs heat and has a low temperature, so that moisture in the outside air adheres to the outdoor heat exchanger as frost. When the frost of the outdoor heat exchanger grows, heat exchange with the outside air is hindered, and the heating capacity is reduced. Therefore, the outdoor heat exchanger is defrosted by flowing the high-temperature refrigerant discharged from the compressor to the outdoor heat exchanger to release heat (for example, see Patent Document 1).
特開2011-237052号公報JP 2011-237052 A 特開2012-17056号公報JP 2012-17056 A
 しかしながら、係る除霜方式では冷媒回路内が全てガス冷媒となってしまうため、冷媒が多く余るようになり、圧縮機の冷媒吸込側に接続されたアキュムレータから液冷媒が溢れ、圧縮機が液圧縮を起こして破損してしまう危険性があった。 However, in such a defrosting method, since the entire refrigerant circuit becomes gas refrigerant, a large amount of refrigerant is left over, and the liquid refrigerant overflows from the accumulator connected to the refrigerant suction side of the compressor, causing the compressor to perform liquid compression. There was a danger that it would cause damage.
 一方、バッテリに冷却水を循環させてバッテリを温調すると共に、この冷却水と冷媒とを熱交換させてバッテリが発生する熱を冷媒により室外熱交換器に搬送し、室外熱交換器の除霜に寄与するシステムも提案されているが(例えば、特許文献2参照)、除霜中にバッテリの温度が冷え過ぎてしまう課題があった。 On the other hand, cooling water is circulated through the battery to control the temperature of the battery, and heat is exchanged between the cooling water and the refrigerant to transfer the heat generated by the battery to the outdoor heat exchanger by the refrigerant, thereby removing the outdoor heat exchanger. Although a system that contributes to frost has also been proposed (for example, see Patent Document 2), there has been a problem that the temperature of the battery becomes too cold during defrosting.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、室外熱交換器を除霜する際に液圧縮による圧縮機の損傷を防止しながら、車両に搭載された被温調対象の冷え過ぎも防止することができる車両用空気調和装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned conventional technical problem, and prevents a compressor mounted on a vehicle while preventing damage to a compressor due to liquid compression when defrosting an outdoor heat exchanger. It is an object of the present invention to provide a vehicle air conditioner that can prevent a temperature control target from being too cold.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、制御装置を備え、この制御装置により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させることで車室内を暖房可能とされたものであって、車両に搭載された被温調対象に熱媒体を循環させて当該被温調対象の温度を調整するための被温調対象温度調整装置を備え、この被温調対象温度調整装置は、冷媒
と熱媒体とを熱交換させる冷媒-熱媒体熱交換器と、熱媒体を加熱するための加熱装置を有し、制御装置は、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、冷媒-熱媒体熱交換器に流入させて熱媒体から吸熱させる除霜運転を実行すると共に、この除霜運転において、加熱装置により被温調対象の温度を所定の下限値以上に制御することを特徴とする。
The vehicle air conditioner of the present invention is a compressor that compresses a refrigerant, a radiator for heating the air supplied to the vehicle interior by releasing the refrigerant, and an outdoor heat exchanger provided outside the vehicle interior, The control device allows the refrigerant discharged from the compressor to radiate heat by the radiator, reduce the pressure of the radiated refrigerant, and absorb heat by the outdoor heat exchanger to heat the vehicle interior. A temperature control target temperature control device for circulating a heat medium through the temperature control target mounted on the vehicle to adjust the temperature of the temperature control target. The temperature control device has a refrigerant-heat medium heat exchanger for exchanging heat between the refrigerant and the heat medium, and a heating device for heating the heat medium. The control device controls the refrigerant discharged from the compressor to the outdoor heat. After radiating heat in the exchanger and decompressing the radiated refrigerant, the refrigerant-heat Performing a defrosting operation in which the heat flows into the body heat exchanger and absorbs heat from the heat medium, and in this defrosting operation, the temperature of the temperature control target is controlled to be equal to or higher than a predetermined lower limit by a heating device. .
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は除霜運転において、被温調対象の温度を所定の上限値以下、下限値以上の適温範囲内に制御することを特徴とする。 According to a second aspect of the invention, in the vehicle air conditioner, the control device controls the temperature of the temperature control target within an appropriate temperature range equal to or less than a predetermined upper limit and equal to or more than a lower limit in the defrosting operation. And
 請求項3の発明の車両用空気調和装置は、上記各発明において被温調対象は、バッテリ及び/又は走行用モータであることを特徴とする。 The air conditioner for a vehicle according to a third aspect of the invention is characterized in that, in each of the above inventions, the object to be temperature-controlled is a battery and / or a traveling motor.
 請求項4の発明の車両用空気調和装置は、上記各発明において冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器を備え、制御装置は、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房運転と、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿運転と、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房運転の各空調運転を切り換えて実行可能とされており、これら各空調運転において、冷媒を冷媒-熱媒体熱交換器に流入させて熱媒体から吸熱させることで、被温調対象の温度を調整可能とされていることを特徴とする。 A vehicle air conditioner according to a fourth aspect of the present invention includes a heat absorber for cooling the air supplied to the vehicle interior by absorbing heat of the refrigerant in each of the above inventions, and the control device controls the refrigerant discharged from the compressor. After radiating the heat by the radiator and decompressing the radiated refrigerant, the heating operation of absorbing heat by the outdoor heat exchanger and the refrigerant discharged from the compressor were radiated by the radiator, and the radiated refrigerant was depressurized. After that, each air conditioning operation of a dehumidifying operation in which heat is absorbed by a heat absorber and a cooling operation in which the refrigerant discharged from the compressor is radiated by an outdoor heat exchanger, and the radiated refrigerant is decompressed and then absorbed by the heat absorber. In each of these air conditioning operations, the temperature of the temperature control target can be adjusted by flowing the refrigerant into the refrigerant-heat medium heat exchanger and absorbing heat from the heat medium. It is characterized by the following.
 請求項5の発明の車両用空気調和装置は、上記各発明において圧縮機の冷媒吸込側に接続されたアキュムレータを備えたことを特徴とする。 According to a fifth aspect of the present invention, there is provided an air conditioner for a vehicle according to the above invention, further comprising an accumulator connected to a refrigerant suction side of the compressor.
 本発明によれば、冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、制御装置を備え、この制御装置により、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させることで車室内を暖房可能とされた車両用空気調和装置において、車両に搭載された被温調対象に熱媒体を循環させて当該被温調対象の温度を調整するための被温調対象温度調整装置を備え、この被温調対象温度調整装置が、冷媒と熱媒体とを熱交換させる冷媒-熱媒体熱交換器と、熱媒体を加熱するための加熱装置を有し、制御装置が、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、冷媒-熱媒体熱交換器に流入させて熱媒体から吸熱させる除霜運転を実行するようにしたので、室外熱交換器を高圧側として当該室外熱交換器で冷媒を凝縮させ、冷媒-熱媒体熱交換器で冷媒を蒸発させる除霜運転を行うことができるようになる。 According to the present invention, a compressor for compressing a refrigerant, a radiator for radiating the refrigerant to heat air supplied to the vehicle interior, an outdoor heat exchanger provided outside the vehicle interior, and a control device are provided. By using this control device, the refrigerant discharged from the compressor is radiated by a radiator, the radiated refrigerant is depressurized, and then the heat is absorbed by an outdoor heat exchanger so that the vehicle interior can be heated. The air-conditioning apparatus includes a temperature control target temperature adjustment device for circulating a heat medium through the temperature control target mounted on the vehicle to adjust the temperature of the temperature control target. The device has a refrigerant-heat medium heat exchanger for exchanging heat between the refrigerant and the heat medium, and a heating device for heating the heat medium, and the control device controls the refrigerant discharged from the compressor to an outdoor heat exchanger. And the pressure of the radiated refrigerant is reduced. Since the defrosting operation of flowing into the medium heat exchanger and absorbing heat from the heat medium is performed, the refrigerant is condensed in the outdoor heat exchanger with the outdoor heat exchanger as the high pressure side, and the refrigerant-heat medium heat exchanger Thus, a defrosting operation for evaporating the refrigerant can be performed.
 これにより、室外熱交換器を除霜する際、当該室外熱交換器を含む高圧側に液冷媒が存在することになるので、請求項5の発明の如く圧縮機の冷媒吸込側に接続されるアキュムレータの容量を拡大すること無く、圧縮機が液圧縮を起こして損傷を来す不都合を未然に回避することができるようになる。 Accordingly, when defrosting the outdoor heat exchanger, the liquid refrigerant is present on the high pressure side including the outdoor heat exchanger, and is connected to the refrigerant suction side of the compressor as in the invention of claim 5. Without increasing the capacity of the accumulator, it is possible to avoid the disadvantage that the compressor causes liquid compression and damage.
 特に、この除霜運転において、制御装置が被温調対象温度調整装置の加熱装置により被温調対象の温度を所定の下限値以上に制御するようにしたので、被温調対象の排熱や加熱装置の熱を室外熱交換器の除霜に寄与させながら、請求項3の発明の如き被温調対象としてのバッテリや走行用モータが冷え過ぎて機能不全に陥る不都合も効果的に解消することができるようになる。 In particular, in the defrosting operation, the control device controls the temperature of the temperature control target to be equal to or higher than the predetermined lower limit value by the heating device of the temperature control target temperature adjustment device, so that the heat release of the temperature control target and While the heat of the heating device contributes to the defrosting of the outdoor heat exchanger, the inconvenience that the battery or the traveling motor as the object of temperature control as described in the third aspect of the present invention becomes too cold and malfunctions can be effectively solved. Will be able to do it.
 更に、請求項2の発明の如く制御装置が、除霜運転において被温調対象の温度を所定の上限値以下、下限値以上の適温範囲内に制御するようにすれば、被温調対象の冷え過ぎや過熱を防止して、最適な状態で機能させることができるようになる。 Furthermore, if the control device controls the temperature of the temperature control target in the defrosting operation to be within a predetermined upper limit value and a lower limit value or more in the appropriate temperature range in the defrosting operation as described above, Prevents over-cooling and overheating and enables the device to function in an optimal state.
 そして、請求項4の発明の如く冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器を備え、制御装置が、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房運転と、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿運転と、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房運転の各空調運転を切り換えて実行可能ととし、これら各空調運転においても、冷媒を冷媒-熱媒体熱交換器に流入させて熱媒体から吸熱させることで、被温調対象の温度を調整可能とすることで、車室内の空調運転を行っている最中にも被温調対象を良好な状態で機能させることができるようになる。 And a heat absorber for cooling the air supplied to the vehicle interior by absorbing heat of the refrigerant as in the invention of claim 4, wherein the control device causes the refrigerant discharged from the compressor to radiate heat by the radiator, After the pressure of the refrigerant is reduced, the heating operation of absorbing heat in the outdoor heat exchanger is performed, and the refrigerant discharged from the compressor is radiated by the radiator, and the radiated refrigerant is reduced in pressure and absorbed by the heat absorber. Dehumidifying operation, and radiating the refrigerant discharged from the compressor in the outdoor heat exchanger, reducing the temperature of the radiated refrigerant, and allowing each air conditioning operation of the cooling operation to absorb heat by the heat absorber to be executable, In each of these air-conditioning operations, the refrigerant is caused to flow into the refrigerant-heat medium heat exchanger and absorbed from the heat medium, so that the temperature of the temperature-controlled object can be adjusted. Good temperature control target while It is possible to function in the state.
本発明を適用した車両用空気調和装置の一実施例の構成図である。1 is a configuration diagram of an embodiment of a vehicle air conditioner to which the present invention is applied. 図1の車両用空気調和装置の制御装置としての空調コントローラのブロック図である。FIG. 2 is a block diagram of an air conditioning controller as a control device of the vehicle air conditioner of FIG. 1. 図2の空調コントローラによる暖房運転を説明する図である。It is a figure explaining the heating operation by the air-conditioning controller of FIG. 図2の空調コントローラによる除湿暖房運転を説明する図である。It is a figure explaining the dehumidifying heating operation by the air conditioning controller of FIG. 図2の空調コントローラによる内部サイクル運転を説明する図である。FIG. 3 is a diagram illustrating an internal cycle operation by the air conditioning controller of FIG. 2. 図2の空調コントローラによる除湿冷房運転/冷房運転を説明する図である。FIG. 3 is a diagram illustrating a dehumidifying cooling operation / cooling operation by the air conditioning controller of FIG. 2. 図2の空調コントローラによる暖房/被温調対象温調モードを説明する図である。FIG. 3 is a diagram illustrating a heating / temperature control target temperature control mode by the air conditioning controller of FIG. 2. 図2の空調コントローラによる除湿冷房/被温調対象温調モード(冷房/被温調対象温調モード)を説明する図である。FIG. 3 is a diagram illustrating a dehumidifying cooling / temperature control target temperature control mode (cooling / temperature control target temperature control mode) by the air conditioning controller of FIG. 2. 図2の空調コントローラによる内部サイクル/被温調対象温調モードを説明する図である。FIG. 3 is a diagram illustrating an internal cycle / temperature control mode to be controlled by the air conditioning controller of FIG. 2. 図2の空調コントローラによる除湿暖房/被温調対象温調モードを説明する図である。FIG. 3 is a diagram for explaining a dehumidifying heating / temperature control target temperature control mode by the air conditioning controller of FIG. 2. 図2の空調コントローラによる除霜運転を説明する図である。It is a figure explaining the defrosting operation by the air-conditioning controller of FIG. 図11の除霜運転におけるP-h線図である。It is a Ph diagram in the defrosting operation of FIG. 室外熱交換器を簡易除霜する場合を説明する図である。It is a figure explaining the case where an outdoor heat exchanger carries out simple defrost. 図13の簡易除霜の場合のP-h線図である。FIG. 14 is a Ph diagram for the simple defrosting of FIG. 13.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明を適用した一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両にバッテリ55(例えば、リチウム電池)が搭載され、外部電源からバッテリ55に充電された電力を走行用モータ(電動モータ)65に供給することで駆動し、走行するものである。そして、車両用空気調和装置1も、バッテリ55から給電されて駆動されるものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of a vehicle air conditioner 1 according to an embodiment to which the present invention is applied. The vehicle according to the embodiment to which the present invention is applied is an electric vehicle (EV) without an engine (internal combustion engine). The vehicle has a battery 55 (for example, a lithium battery). The vehicle is driven and driven by supplying the charged electric power to a traveling motor (electric motor) 65. The vehicle air conditioner 1 is also driven by being supplied with power from the battery 55.
 即ち、車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房運転を行い、更に、除湿暖房運転(本発明における除湿運転)や内部サイクル運転(これも本発明の除湿運転)、除湿冷房運転(これも本発明における除湿運転)、冷房運転の各空調運転を選択的に実行することで車室内の空調を行うものである。尚、車両として係る電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明が有効であることは云うまでもない。 That is, the vehicle air conditioner 1 performs the heating operation by the heat pump operation using the refrigerant circuit R in the electric vehicle that cannot perform heating by the engine waste heat, and further performs the dehumidifying heating operation (the dehumidifying operation in the present invention) and the internal cycle. Air conditioning of the vehicle interior is performed by selectively executing each of the air-conditioning operations of the operation (also the dehumidifying operation of the present invention), the dehumidifying and cooling operation (also the dehumidifying operation of the present invention), and the cooling operation. It is needless to say that the present invention is effective not only for an electric vehicle as a vehicle but also for a so-called hybrid vehicle using an engine and an electric motor for traveling.
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機(電動圧縮機)2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を放熱させて車室内に供給する空気を加熱するための放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせるための室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させて車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。室外膨張弁6や室内膨張弁8は、冷媒を減圧膨張させると共に、全開や全閉も可能とされている。 The vehicle air conditioner 1 of the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a passenger compartment of an electric vehicle, and an electric compressor (electric compressor) 2 that compresses a refrigerant. Is provided in the air flow passage 3 of the HVAC unit 10 through which the vehicle interior air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G to radiate the refrigerant. A radiator 4 for heating the air supplied to the vehicle interior, an outdoor expansion valve 6 comprising an electric valve for reducing and expanding the refrigerant during heating, and a radiator for radiating the refrigerant during cooling and absorbing the refrigerant during heating An outdoor heat exchanger 7 for exchanging heat between the refrigerant and the outside air to function as an evaporator to perform the operation, an indoor expansion valve 8 comprising an electric valve for decompressing and expanding the refrigerant, and provided in the air flow passage 3. Cooled and dehumidified A heat sink 9 for cooling the air supplied to the passenger compartment by absorbed by the refrigerant, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is constituted by a cabin outside of. The outdoor expansion valve 6 and the indoor expansion valve 8 are capable of decompressing and expanding the refrigerant, and can be fully opened and fully closed.
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。 The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing the outside air through the outdoor heat exchanger 7, so that the outdoor blower 15 can stop the outdoor operation even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is configured such that outside air is passed through the heat exchanger 7.
 また、室外熱交換器7の冷媒出口側に接続された冷媒配管13Aは、逆止弁18を介して冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B側が順方向とされ、この冷媒配管13Bは室内膨張弁8に接続されている。 The refrigerant pipe 13A connected to the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the refrigerant pipe 13B via a check valve 18. The check valve 18 has the refrigerant pipe 13B side directed forward, and the refrigerant pipe 13B is connected to the indoor expansion valve 8.
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して吸熱器9の出口側に位置する冷媒配管13Cに連通接続されている。そして、この冷媒配管13Dの接続点より下流側の冷媒配管13Cに逆止弁20が接続され、この逆止弁20より下流側の冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。尚、逆止弁20はアキュムレータ12側が順方向とされている。 The refrigerant pipe 13A that has exited from the outdoor heat exchanger 7 is branched, and the branched refrigerant pipe 13D is a refrigerant pipe 13C that is located on the outlet side of the heat absorber 9 via an electromagnetic valve 21 that is opened during heating. Is connected to the A check valve 20 is connected to a refrigerant pipe 13C downstream of the connection point of the refrigerant pipe 13D, a refrigerant pipe 13C downstream of the check valve 20 is connected to the accumulator 12, and the accumulator 12 is connected to the compressor 2 Is connected to the refrigerant suction side. The check valve 20 has a forward direction on the accumulator 12 side.
 更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐しており、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される電磁弁22を介して逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。 Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is branched into a refrigerant pipe 13J and a refrigerant pipe 13F just before the outdoor expansion valve 6 (upstream of the refrigerant), and one of the branched refrigerant pipes 13J is connected to the outdoor expansion valve 6F. Is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the The other branched refrigerant pipe 13F is connected to a refrigerant pipe 13B located downstream of the check valve 18 and upstream of the indoor expansion valve 8 via a solenoid valve 22 that is opened during dehumidification. Have been.
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスする回路となる。 Thereby, the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve are connected. 18 bypasses the circuit.
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 The air flow passage 3 on the upstream side of the heat absorber 9 is formed with an outside air suction port and an inside air suction port (represented by a suction port 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between inside air (inside air circulation) as air inside the vehicle compartment and outside air (introduction of outside air) as air outside the vehicle compartment. Further, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided downstream of the suction switching damper 26 in the air.
 また、図1において23は補助加熱装置としての補助ヒータである。この補助ヒータ23は実施例ではPTCヒータ(電気ヒータ)から構成されており、空気流通路3の空気の流れに対して、放熱器4の空気下流側となる空気流通路3内に設けられている。そして、補助ヒータ23が通電されて発熱すると、これが所謂ヒータコアとなり、車室内の暖房を補完する。 In FIG. 1, reference numeral 23 denotes an auxiliary heater as an auxiliary heating device. The auxiliary heater 23 is formed of a PTC heater (electric heater) in the embodiment, and is provided in the air flow passage 3 on the downstream side of the radiator 4 with respect to the flow of air in the air flow passage 3. I have. When the auxiliary heater 23 is energized and generates heat, it becomes a so-called heater core, which complements the heating of the vehicle interior.
 また、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 
Further, the air (inside air or outside air) flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated into the air flow passage 3 upstream of the radiator 4 in the air. An air mix damper 28 is provided for adjusting the rate of air flow to the heater 4 and the auxiliary heater 23. Further, FOOT (foot), VENT (vent), and DEF (def) outlets (represented by the outlet 29 in FIG. 1) are formed in the air flow passage 3 downstream of the radiator 4 in the air. The air outlet 29 is provided with an air outlet switching damper 31 for controlling the air blowing from each of the air outlets.
 更に、車両用空気調和装置1は、バッテリ55や走行用モータ65に熱媒体を循環させてこれらバッテリ55や走行用モータ65の温度を調整するための被温調対象温度調整装置61を備えている。即ち、実施例においてはバッテリ55や走行用モータ65が車両に搭載された被温調対象となる。尚、本発明における被温調対象としての走行用モータ65は電動モータそのものに限らず、これを駆動するためのインバータ回路等の電気機器も含む概念とする。 Further, the vehicle air conditioner 1 includes a temperature-regulated target temperature adjusting device 61 for circulating a heat medium through the battery 55 and the traveling motor 65 to adjust the temperature of the battery 55 and the traveling motor 65. I have. That is, in the embodiment, the battery 55 and the traveling motor 65 are temperature controlled objects mounted on the vehicle. It should be noted that the traveling motor 65 as an object to be temperature-controlled in the present invention is not limited to the electric motor itself, but includes an electric device such as an inverter circuit for driving the electric motor.
 実施例の被温調対象温度調整装置61は、バッテリ55や走行用モータ65に熱媒体を循環させるための循環装置としての循環ポンプ62と、加熱装置としての第1熱媒体加熱ヒータ66A及び第2熱媒体加熱ヒータ66Bと、冷媒-熱媒体熱交換器64を備え、それらとバッテリ55及び走行用モータ65が熱媒体配管68にて接続されている。 The temperature adjustment device 61 to be heated according to the embodiment includes a circulation pump 62 as a circulation device for circulating a heat medium through the battery 55 and the traveling motor 65, a first heat medium heater 66A as a heating device, and a first heat medium heater 66A. A heat medium heating heater 66B and a refrigerant-heat medium heat exchanger 64 are provided, and the battery 55 and the traveling motor 65 are connected to each other by a heat medium pipe 68.
 この実施例の場合、循環ポンプ62の吐出側に冷媒-熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口は熱媒体配管68Aと熱媒体配管68Bに分岐している。そして、このうちの熱媒体配管68Aに流路制御装置としての第1電磁弁81、第1熱媒体加熱ヒータ66A及びバッテリ55の直列回路が接続され、熱媒体配管68Bに流路制御装置としての第2電磁弁82、第2熱媒体加熱ヒータ66B及び走行用モータ65の直列回路が接続されている。そして、バッテリ55の出口側の熱媒体配管68Aと走行用モータ65の出口側の熱媒体配管68Aは合流した後、循環ポンプ62の吸込側に接続されている。尚、上記各電磁弁81、82は流量を調整可能な電動弁にて構成してもよい。 In the case of this embodiment, the inlet of the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64 is connected to the discharge side of the circulation pump 62, and the outlet of the heat medium passage 64A is connected to the heat medium pipe 68A and the heat medium pipe. It branches to 68B. A series circuit of the first electromagnetic valve 81, the first heat medium heater 66A, and the battery 55 as a flow path control device is connected to the heat medium pipe 68A, and the heat medium pipe 68B is connected to the heat medium pipe 68B. A series circuit of the second solenoid valve 82, the second heat medium heater 66B, and the traveling motor 65 is connected. Then, the heat medium pipe 68A on the outlet side of the battery 55 and the heat medium pipe 68A on the outlet side of the traveling motor 65 merge, and are then connected to the suction side of the circulation pump 62. Each of the solenoid valves 81 and 82 may be constituted by an electric valve whose flow rate can be adjusted.
 この被温調対象温度調整装置61で使用される熱媒体としては、例えば水、HFO-1234yfのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、各熱媒体加熱ヒータ66A、66BはPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55や走行用モータ65の周囲には例えば熱媒体が当該バッテリ55や走行用モータ65と熱交換関係で流通可能なジャケット構造が施されているものとする。 As the heat medium used in the temperature control device 61, for example, water, a refrigerant such as HFO-1234yf, a liquid such as a coolant, or a gas such as air can be adopted. In the embodiment, water is used as the heat medium. Each of the heat medium heaters 66A and 66B is configured by an electric heater such as a PTC heater. Further, a jacket structure is provided around the battery 55 and the traveling motor 65 so that, for example, a heat medium can flow through the heat exchange relationship with the battery 55 and the traveling motor 65.
 そして、各電磁弁81、82が開いている状態で循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は分流され、分流された一方の熱媒体は第1電磁弁81を経て第1熱媒体加熱ヒータ66Aに至り、当該第1熱媒体加熱ヒータ66Aが発熱されている場合にはそこで加熱された後、バッテリ55に至り、熱媒体はそこでバッテリ55と熱交換する。分流された他方の熱媒体は第2電磁弁82を経て第2熱媒体加熱ヒータ66Bに至り、当該第2熱媒体加熱ヒータ66Bが発
熱されている場合にはそこで加熱された後、走行用モータ65に至り、熱媒体はそこで走行用モータ65と熱交換する。これらバッテリ55及び走行用モータ65と熱交換した熱媒体は合流した後、循環ポンプ62に吸い込まれることで熱媒体配管68内を循環される。また、第1電磁弁81が閉じると熱媒体はバッテリ55には流れず、第2電磁弁82が閉じると熱媒体は走行用モータ65には流れなくなる。
When the circulation pump 62 is operated in a state where the solenoid valves 81 and 82 are open, the heat medium discharged from the circulation pump 62 flows into the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64. . The heat medium that has flowed out of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is divided, and one of the divided heat medium reaches the first heat medium heater 66A via the first solenoid valve 81. When the first heat medium heater 66A generates heat, it is heated there, and then reaches the battery 55, where the heat medium exchanges heat with the battery 55. The other divided heat medium reaches the second heat medium heater 66B via the second solenoid valve 82. If the second heat medium heater 66B is heated, it is heated there, and then the traveling motor is driven. At 65, the heat medium exchanges heat with the traveling motor 65 there. The heat medium that has exchanged heat with the battery 55 and the traveling motor 65 is merged and then sucked into the circulation pump 62 to be circulated in the heat medium pipe 68. When the first electromagnetic valve 81 is closed, the heat medium does not flow to the battery 55, and when the second electromagnetic valve 82 is closed, the heat medium does not flow to the traveling motor 65.
 一方、冷媒回路Rの冷媒配管13Fの出口、即ち、冷媒配管13Fと冷媒配管13Bとの接続部の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bには分岐回路としての分岐配管72の一端が接続されている。この分岐配管72には電動弁から構成された補助膨張弁73が設けられている。この補助膨張弁73は冷媒-熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に全閉も可能とされている。 On the other hand, an outlet of the refrigerant pipe 13F of the refrigerant circuit R, that is, a refrigerant pipe 13B located on the refrigerant downstream side of the connection portion between the refrigerant pipe 13F and the refrigerant pipe 13B and located on the refrigerant upstream side of the indoor expansion valve 8 is branched. One end of a branch pipe 72 as a circuit is connected. The branch pipe 72 is provided with an auxiliary expansion valve 73 constituted by an electric valve. The auxiliary expansion valve 73 is capable of decompressing and expanding the refrigerant flowing into a refrigerant flow path 64B, which will be described later, of the refrigerant-heat medium heat exchanger 64, and is also capable of being fully closed.
 そして、分岐配管72の他端は冷媒-熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管74の一端が接続され、冷媒配管74の他端は逆止弁20の冷媒下流側であってアキュムレータ12の手前(冷媒上流側)の冷媒配管13Cに接続されている。そして、これら補助膨張弁73等も冷媒回路Rの一部を構成すると同時に、被温調対象温度調整装置61の一部をも構成することになる。 The other end of the branch pipe 72 is connected to the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 74 is connected to the outlet of the refrigerant flow path 64B. The other end is connected to a refrigerant pipe 13C downstream of the check valve 20 and upstream of the accumulator 12 (upstream of the refrigerant). The auxiliary expansion valve 73 and the like also constitute a part of the refrigerant circuit R and also constitute a part of the temperature adjustment target temperature adjusting device 61.
 補助膨張弁73が開いている場合、冷媒配管13Fや室外熱交換器7から出た冷媒(一部又は全ての冷媒)は分岐配管27に流入し、補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれることになる。 When the auxiliary expansion valve 73 is open, the refrigerant (a part or all of the refrigerant) flowing out of the refrigerant pipe 13F or the outdoor heat exchanger 7 flows into the branch pipe 27 and is decompressed by the auxiliary expansion valve 73. -It flows into the refrigerant passage 64B of the heat medium heat exchanger 64 and evaporates there. The refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and is then sucked into the compressor 2 via the accumulator 12.
 次に、図2において32は車両用空気調和装置1の制御を司る制御装置としての空調コントローラ32である。この空調コントローラ32は、走行用モータ65の駆動制御やバッテリ55の充放電制御を含む車両全般の制御を司る車両コントローラ35(ECU)に車両通信バス45を介して接続され、情報の送受信を行う構成とされている。これら空調コントローラ32や車両コントローラ35(ECU)は何れもプロセッサを備えたコンピュータの一例としてのマイクロコンピュータから構成されている。 Next, in FIG. 2, reference numeral 32 denotes an air conditioning controller 32 as a control device that controls the air conditioner 1 for a vehicle. The air-conditioning controller 32 is connected via a vehicle communication bus 45 to a vehicle controller 35 (ECU) that controls the entire vehicle including drive control of the traveling motor 65 and charge / discharge control of the battery 55, and transmits and receives information. It has a configuration. Each of the air conditioning controller 32 and the vehicle controller 35 (ECU) is configured by a microcomputer as an example of a computer having a processor.
 空調コントローラ32(制御装置)の入力には、車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、
吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ44と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や空調運転の切り換えを設定するための空調操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO。室外熱交換器7が蒸発器として機能するとき、室外熱交換器温度TXOは室外熱交換器7における冷媒の蒸発温度となる)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
The inputs of the air-conditioning controller 32 (control device) include an outside air temperature sensor 33 for detecting the outside air temperature (Tam) of the vehicle, an outside air humidity sensor 34 for detecting the outside air humidity, and a suction from the air inlet 25 into the air flow passage 3. HVAC suction temperature sensor 36 for detecting the temperature of the air, inside air temperature sensor 37 for detecting the temperature of the air (inside air) in the cabin, inside air humidity sensor 38 for detecting the humidity of the air in the cabin, An indoor CO 2 concentration sensor 39 for detecting carbon concentration,
An outlet temperature sensor 41 for detecting the temperature of the air blown into the passenger compartment from the outlet 29, a discharge pressure sensor 42 for detecting the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, and a discharge refrigerant temperature of the compressor 2 , A suction temperature sensor 44 for detecting a suction refrigerant temperature of the compressor 2, a temperature of the radiator 4 (a temperature of the air passing through the radiator 4, or a temperature of the radiator 4 itself: heat radiation). A radiator temperature sensor 46 for detecting the radiator temperature TCI) and a radiator for detecting the refrigerant pressure of the radiator 4 (pressure of the refrigerant in the radiator 4 or immediately after leaving the radiator 4: radiator pressure PCI). A pressure sensor 47, a heat absorber temperature sensor 48 for detecting the temperature of the heat absorber 9 (the temperature of the air passing through the heat absorber 9, or the temperature of the heat absorber 9 itself: the heat absorber temperature Te), and the refrigerant pressure of the heat absorber 9 (Inside or out of the heat absorber 9 Heat sensor pressure sensor 49 for detecting the pressure of the subsequent refrigerant, a photosensor-type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, and a vehicle speed for detecting the moving speed (vehicle speed) of the vehicle. A sensor 52, an air-conditioning operation unit 53 for setting a set temperature and switching of an air-conditioning operation, and a temperature of the outdoor heat exchanger 7 (a temperature of the refrigerant immediately after exiting from the outdoor heat exchanger 7, or an outdoor heat exchanger) 7 itself: the outdoor heat exchanger temperature TXO. When the outdoor heat exchanger 7 functions as an evaporator, the outdoor heat exchanger temperature TXO is the evaporation temperature of the refrigerant in the outdoor heat exchanger 7). A temperature sensor 54 for the exchanger and a pressure sensor 56 for the outdoor heat exchanger for detecting the refrigerant pressure of the outdoor heat exchanger 7 (the pressure of the refrigerant in the outdoor heat exchanger 7 or immediately after leaving the outdoor heat exchanger 7). Each output is connected.
 また、空調コントローラ32の入力には更に、バッテリ55の温度(バッテリ55自体の温度、又は、バッテリ55を出た熱媒体の温度、或いは、バッテリ55に入る熱媒体の温度:バッテリ温度Tb)を検出するバッテリ温度センサ76と、熱媒体加熱ヒータ66の温度(熱媒体加熱ヒータ66自体の温度、熱媒体加熱ヒータ66を出た熱媒体の温度)を検出する熱媒体加熱ヒータ温度センサ77と、走行用モータ65の温度(走行用モータ65自体の温度、又は、走行用モータ65を出た熱媒体の温度、或いは、走行用モータ65に入る熱媒体の温度:走行用モータ温度Tm)を検出する走行用モータ温度センサ78の各出力も接続されている。 The input of the air-conditioning controller 32 further includes the temperature of the battery 55 (the temperature of the battery 55 itself, the temperature of the heat medium that has exited the battery 55, or the temperature of the heat medium that enters the battery 55: battery temperature Tb). A battery temperature sensor 76 for detecting, a heat medium heater temperature sensor 77 for detecting the temperature of the heat medium heater 66 (the temperature of the heat medium heater 66 itself, and the temperature of the heat medium exiting the heat medium heater 66); The temperature of the traveling motor 65 (the temperature of the traveling motor 65 itself, the temperature of the heat medium that has exited the traveling motor 65, or the temperature of the heating medium that enters the traveling motor 65: the traveling motor temperature Tm) is detected. Each output of the running motor temperature sensor 78 is also connected.
 一方、空調コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、電磁弁22(除湿)、電磁弁21(暖房)の各電磁弁と、補助ヒータ23、循環ポンプ62、第1及び第2熱媒体加熱ヒータ66A、66B、補助膨張弁73、第1及び第2電磁弁81、82が接続されている。そして、空調コントローラ32は各センサの出力と空調操作部53にて入力された設定、車両コントローラ35からの情報に基づいてこれらを制御するものである。 On the other hand, the outputs of the air conditioning controller 32 include the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the air outlet switching damper 31, the outdoor The expansion valve 6, the indoor expansion valve 8, the electromagnetic valves 22 (dehumidifying), the electromagnetic valves 21 (heating), the auxiliary heater 23, the circulation pump 62, the first and second heat medium heaters 66A and 66B, The auxiliary expansion valve 73 and the first and second solenoid valves 81 and 82 are connected. The air-conditioning controller 32 controls these based on the outputs of the sensors, the settings input by the air-conditioning operation unit 53, and information from the vehicle controller 35.
 以上の構成で、次に実施例の車両用空気調和装置1の動作について説明する。空調コントローラ32(制御装置)は実施例では暖房運転と、除湿暖房運転(除湿運転)と、内部サイクル運転(除湿運転)と、除湿冷房運転(除湿運転)と、冷房運転の各空調運転を切り換えて実行すると共に、バッテリ55(被温調対象)や走行用モータ65(被温調対象)の温度を、実施例では所定の適温範囲内に調整する。先ず、車両の運転中における車両用空気調和装置1の冷媒回路Rの各空調運転について説明する。 Next, the operation of the vehicle air conditioner 1 according to the embodiment having the above configuration will be described. In the embodiment, the air-conditioning controller 32 (control device) switches among air-conditioning operations of a heating operation, a dehumidifying and heating operation (dehumidifying operation), an internal cycle operation (dehumidifying operation), a dehumidifying cooling operation (dehumidifying operation), and a cooling operation. In addition, the temperature of the battery 55 (the object to be temperature-controlled) and the temperature of the traveling motor 65 (the object to be temperature-controlled) are adjusted within a predetermined appropriate temperature range in the embodiment. First, each air conditioning operation of the refrigerant circuit R of the vehicle air conditioner 1 during operation of the vehicle will be described.
 (1)暖房運転
 最初に、図3を参照しながら暖房運転について説明する。図3は暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。空調コントローラ32により(オートモード)、或いは、空調操作部53へのマニュアル操作(マニュアルモード)により暖房運転が選択されると、空調コントローラ32は電磁弁21(暖房用)を開放し、室内膨張弁8を全閉とする。また、電磁弁22(除湿用)を閉じる。
(1) Heating operation First, the heating operation will be described with reference to FIG. FIG. 3 shows the flow of the refrigerant in the refrigerant circuit R in the heating operation (solid line arrow). When the heating operation is selected by the air conditioning controller 32 (auto mode) or the manual operation (manual mode) of the air conditioning operation unit 53, the air conditioning controller 32 opens the solenoid valve 21 (for heating), and the indoor expansion valve 8 is fully closed. Further, the solenoid valve 22 (for dehumidification) is closed.
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is in a state of adjusting the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow path 3 is passed through the radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 gives heat to the air. It is taken away, cooled, and condensed and liquefied.
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cから逆止弁20を経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。 (4) The refrigerant liquefied in the radiator 4 exits the radiator 4 and reaches the outdoor expansion valve 6 via the refrigerant pipes 13E and 13J. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and draws heat by traveling or from outside air passed through the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R serves as a heat pump. Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 passes through the refrigerant pipe 13A, the refrigerant pipe 13D, and the solenoid valve 21, and then enters the accumulator 12 from the refrigerant pipe 13C through the check valve 20, where it is separated into gas and liquid. The circulation in which the gas refrigerant is sucked into the compressor 2 is repeated. The air heated by the radiator 4 is blown out from the air outlet 29, thereby heating the vehicle interior.
 空調コントローラ32は、後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の風下側の空気温度の目標値)から目標放熱器圧力PCO(放熱器4の圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。前記目標ヒータ温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。また、放熱器4による暖房能力が不足する場合には補助ヒータ23に通電して発熱させ、暖房能力を補完する。 The air-conditioning controller 32 calculates a target radiator pressure PCO (a target value of the pressure PCI of the radiator 4) from a target heater temperature TCO (a target value of the air temperature on the leeward side of the radiator 4) calculated from a target outlet temperature TAO described later. Is controlled, and the number of revolutions of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. And controlling the opening degree of the outdoor expansion valve 6 based on the temperature of the radiator 4 (radiator temperature TCI) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47, The supercooling degree of the refrigerant at the outlet of the radiator 4 is controlled. Although the target heater temperature TCO is basically set to TCO = TAO, a predetermined restriction on control is provided. If the heating capacity of the radiator 4 is insufficient, the auxiliary heater 23 is energized to generate heat, thereby supplementing the heating capacity.
 (2)除湿暖房運転
 次に、図4を参照しながら除湿運転の一つとしての除湿暖房運転について説明する。図4は除湿暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿暖房運転では、空調コントローラ32は上記暖房運転の状態において電磁弁22を開放し、室内膨張弁8を開いて冷媒を減圧膨張させる状態とする。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bから室内膨張弁8に流れ、残りの冷媒が室外膨張弁6に流れるようになる。即ち、分流された一部の冷媒が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。
(2) Dehumidifying and heating operation Next, a dehumidifying and heating operation as one of the dehumidifying operations will be described with reference to FIG. FIG. 4 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) in the dehumidifying and heating operation. In the dehumidifying and heating operation, the air-conditioning controller 32 opens the electromagnetic valve 22 and opens the indoor expansion valve 8 in the state of the heating operation to decompress and expand the refrigerant. Thereby, a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the electromagnetic valve 22, and flows from the refrigerant pipe 13B to the indoor expansion valve 8. Then, the remaining refrigerant flows to the outdoor expansion valve 6. That is, a part of the divided refrigerant is decompressed by the indoor expansion valve 8 and then flows into the heat absorber 9 to evaporate.
 空調コントローラ32は吸熱器9の出口における冷媒の過熱度(SH)を所定値に維持するように室内膨張弁8の弁開度を制御するが、このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。分流されて冷媒配管13Jに流入した残りの冷媒は、室外膨張弁6で減圧された後、室外熱交換器7で蒸発することになる。 The air conditioning controller 32 controls the opening degree of the indoor expansion valve 8 so as to maintain the degree of superheat (SH) of the refrigerant at the outlet of the heat absorber 9 at a predetermined value. As the moisture in the air blown out from the indoor blower 27 condenses on the heat absorber 9 and adheres, the air is cooled and dehumidified. The remaining refrigerant that has flowed into the refrigerant pipe 13 </ b> J is decompressed by the outdoor expansion valve 6, and then evaporates in the outdoor heat exchanger 7.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、逆止弁20及びアキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。 The refrigerant evaporated by the heat absorber 9 flows out to the refrigerant pipe 13C and merges with the refrigerant from the refrigerant pipe 13D (the refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 via the check valve 20 and the accumulator 12. Repeated circulation. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification and heating of the vehicle interior is performed.
 空調コントローラ32は目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて室外膨張弁6の弁開度を制御する。 The air conditioning controller 32 controls the rotation speed of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. At the same time, the valve opening of the outdoor expansion valve 6 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
 (3)内部サイクル運転
 次に、図5を参照しながらこれも除湿運転の一つとしての内部サイクル運転について説明する。図5は内部サイクル運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。内部サイクル運転では、空調コントローラ32は上記除湿暖房運転の状態において室外膨張弁6を全閉とする(全閉位置)。但し、電磁弁21は開いた状態を維持し、室外熱交換器7の冷媒出口は圧縮機2の冷媒吸込側に連通させておく。即ち、この内部サイクル運転は除湿暖房運転における室外膨張弁6の制御で当該室外膨張弁6を全閉とした状態であるので、この内部サイクル運転も除湿暖房運転の一部と捉えることができる。
(3) Internal Cycle Operation Next, an internal cycle operation, which is also one of the dehumidifying operations, will be described with reference to FIG. FIG. 5 shows the flow of the refrigerant in the refrigerant circuit R in the internal cycle operation (solid arrow). In the internal cycle operation, the air-conditioning controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating operation state (fully closed position). However, the solenoid valve 21 is kept open, and the refrigerant outlet of the outdoor heat exchanger 7 is communicated with the refrigerant suction side of the compressor 2. That is, this internal cycle operation is a state in which the outdoor expansion valve 6 is fully closed by the control of the outdoor expansion valve 6 in the dehumidifying and heating operation, and therefore, this internal cycle operation can also be regarded as a part of the dehumidifying and heating operation.
 但し、室外膨張弁6が閉じられることにより、室外熱交換器7への冷媒の流入は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bを経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 However, when the outdoor expansion valve 6 is closed, the inflow of the refrigerant into the outdoor heat exchanger 7 is prevented, so that the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 passes through the electromagnetic valve 22 and the refrigerant. All the fluid flows into the pipe 13F. Then, the refrigerant flowing through the refrigerant pipe 13F reaches the indoor expansion valve 8 via the refrigerant pipe 13B. After the pressure of the refrigerant is reduced by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. The moisture in the air blown out from the indoor blower 27 by the heat absorbing action at this time condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は冷媒配管13Cを流れ、逆止弁20及びアキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクル運転では室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房運転に比較すると除湿能力は高いが、暖房能力は低くなる。 (4) The refrigerant evaporated by the heat absorber 9 flows through the refrigerant pipe 13C, and repeats the circulation sucked into the compressor 2 via the check valve 20 and the accumulator 12. The air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, thereby performing dehumidification and heating of the vehicle interior. In this internal cycle operation, the air circulation on the indoor side is performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the path 3, heat is not pumped from the outside air, and heating for the power consumed by the compressor 2 is performed. The ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exerts the dehumidifying action, the dehumidifying capacity is higher but the heating capacity is lower than in the dehumidifying and heating operation.
 また、室外膨張弁6は閉じられるものの、電磁弁21は開いており、室外熱交換器7の冷媒出口は圧縮機2の冷媒吸込側に連通しているので、室外熱交換器7内の液冷媒は冷媒配管13D及び電磁弁21を経て冷媒配管13Cに流出し、アキュムレータ12に回収され、室外熱交換器7内はガス冷媒の状態となる。これにより、電磁弁21を閉じたときに比して、冷媒回路R内を循環する冷媒量が増え、放熱器4における暖房能力と吸熱器9における除湿能力を向上させることができるようになる。 Although the outdoor expansion valve 6 is closed, the solenoid valve 21 is open, and the refrigerant outlet of the outdoor heat exchanger 7 communicates with the refrigerant suction side of the compressor 2. The refrigerant flows out to the refrigerant pipe 13C via the refrigerant pipe 13D and the electromagnetic valve 21, is collected by the accumulator 12, and the inside of the outdoor heat exchanger 7 is in a gas refrigerant state. Thereby, the amount of the refrigerant circulating in the refrigerant circuit R is increased as compared with when the electromagnetic valve 21 is closed, and the heating capacity of the radiator 4 and the dehumidifying capacity of the heat absorber 9 can be improved.
 空調コントローラ32は吸熱器9の温度、又は、前述した放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御する。このとき、空調コントローラ32は吸熱器9の温度によるか放熱器圧力PCIによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。 (4) The air-conditioning controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the radiator pressure PCI (high pressure of the refrigerant circuit R) described above. At this time, the air-conditioning controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotation speeds obtained from either the calculation based on the temperature of the heat absorber 9 or the radiator pressure PCI.
 (4)除湿冷房運転
 次に、図6を参照しながらこれも除湿運転の一つとしての除湿冷房運転について説明する。図6は除湿冷房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿冷房運転では、空調コントローラ32は室内膨張弁8を開いて冷媒を減圧膨張させる状態とし、電磁弁21と電磁弁22を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
(4) Dehumidifying / cooling operation Next, the dehumidifying / cooling operation as one of the dehumidifying operations will be described with reference to FIG. FIG. 6 shows the flow of the refrigerant in the refrigerant circuit R in the dehumidifying cooling operation (solid line arrow). In the dehumidifying / cooling operation, the air-conditioning controller 32 opens the indoor expansion valve 8 so that the refrigerant is decompressed and expanded, and closes the solenoid valves 21 and 22. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state of adjusting the rate at which the air blown out from the indoor blower 27 is blown to the radiator 4 and the auxiliary heater 23. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow path 3 is passed through the radiator 4, the air in the air flow path 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 gives heat to the air. It is taken away, cooled, and condensed and liquefied.
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 (4) The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 via the outdoor expansion valve 6 that is controlled to open. The refrigerant that has flowed into the outdoor heat exchanger 7 is air-cooled and condensed there by traveling or by the outside air passed by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. After the pressure of the refrigerant is reduced by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. The moisture in the air blown out from the indoor blower 27 by the heat absorbing action at this time condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程でリヒート(再加熱:暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。 (4) The refrigerant evaporated by the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and repeats the circulation through which the refrigerant is sucked into the compressor 2. The air that has been cooled and dehumidified by the heat absorber 9 is reheated (reheating: has a lower heat dissipation capacity than during heating) in the process of passing through the radiator 4, thereby performing dehumidification and cooling in the vehicle interior. become.
 空調コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)と目標ヒータ温度TCOから算出される目標放熱器圧力PCO(放熱器圧力PCIの目標値)に基づき、放熱器圧力PCIを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量を得る。 The air conditioning controller 32 sets the heat absorber temperature Te to the target heat absorber temperature TEO based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO as its target value. In addition to controlling the rotation speed of the compressor 2, the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target radiator pressure PCO (radiator pressure) calculated from the target heater temperature TCO. The required reheat amount by the radiator 4 is obtained by controlling the valve opening of the outdoor expansion valve 6 so that the radiator pressure PCI becomes the target radiator pressure PCO based on the PCI target value).
 (5)冷房運転
 次に、冷房運転について説明する。冷媒回路Rの流れは図6の除湿冷房運転と同様である。冷房運転では、空調コントローラ32は上記除湿冷房運転の状態において室外膨張弁6の弁開度を全開とする。尚、エアミックスダンパ28は放熱器4及び補助ヒータ23に空気が通風される割合を調整する状態とする。
(5) Cooling operation Next, the cooling operation will be described. The flow of the refrigerant circuit R is the same as in the dehumidifying cooling operation of FIG. In the cooling operation, the air conditioning controller 32 fully opens the outdoor expansion valve 6 in the state of the dehumidifying cooling operation. The air mix damper 28 is in a state of adjusting the rate at which air is passed through the radiator 4 and the auxiliary heater 23.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒートのみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそのまま室外膨張弁6を経て冷媒配管13Jを通過し、室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却される。 Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the air flow passage 3 is ventilated to the radiator 4, the ratio thereof is small (only for reheating at the time of cooling). The refrigerant reaches the outdoor expansion valve 6 via the refrigerant pipe 13E. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant directly passes through the refrigerant pipe 13J via the outdoor expansion valve 6, flows into the outdoor heat exchanger 7, and travels there or is ventilated by the outdoor blower 15. The air is cooled by the outside air and condensed and liquefied. The refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. After the pressure of the refrigerant is reduced by the indoor expansion valve 8, the refrigerant flows into the heat absorber 9 and evaporates. At this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9 due to the heat absorbing action, and the air is cooled.
 吸熱器9で蒸発した冷媒は冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房運転においては、空調コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。 (4) The refrigerant evaporated by the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and repeats the circulation through which the refrigerant is sucked into the compressor 2. The air that has been cooled and dehumidified by the heat absorber 9 is blown out from the outlet 29 into the vehicle interior, whereby the vehicle interior is cooled. In this cooling operation, the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
 (6)空調運転の切り換え
 空調コントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
(6) Switching of air-conditioning operation The air-conditioning controller 32 calculates the above-described target outlet temperature TAO from the following equation (I). The target outlet temperature TAO is a target value of the temperature of the air blown from the outlet 29 into the vehicle interior.
TAO = (Tset−Tin) × K + Tbal (f (Tset, SUN, Tam))
・ ・ (I)
Here, Tset is the temperature set in the cabin set by the air-conditioning operation unit 53, Tin is the temperature of the cabin air detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the sunshine sensor 51 detects the temperature. This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33. In general, the target outlet temperature TAO increases as the outside air temperature Tam decreases, and decreases as the outside air temperature Tam increases.
 そして、空調コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各空調運転を選択し、切り換えていくものである。 Then, at the time of startup, the air conditioning controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO. After the start, each air-conditioning operation is selected and switched according to changes in the environment such as the outside air temperature Tam and the target blow-out temperature TAO and the set conditions.
 (7)被温調対象(バッテリ55及び走行用モータ65)の温度調整
 次に、図7~図10を参照しながら上記各空調運転中における空調コントローラ32によるバッテリ55及び走行用モータ65(被温調対象)の温度調整制御について説明する。ここで、バッテリ55は外気温度により温度が変化すると共に、自己発熱によっても温度が変化する。そして、外気温度が高温環境であるときや極低温環境であるときには、バッテリ55の温度が極めて高くなり、或いは、極めて低くなって、充放電が困難となる。また、走行用モータ65も同様に運転や環境条件によって温度が極めて高くなり、或いは、極めて低くなって、機能不全に陥って故障する場合がある。
(7) Temperature Adjustment of Temperature Control Target (Battery 55 and Traveling Motor 65) Next, referring to FIGS. 7 to 10, the battery 55 and the traveling motor 65 (driven The temperature adjustment control for (temperature control target) will be described. Here, the temperature of the battery 55 changes due to the outside air temperature, and also changes due to self-heating. When the outside air temperature is a high temperature environment or a very low temperature environment, the temperature of the battery 55 becomes extremely high or extremely low, and charging and discharging becomes difficult. Similarly, the temperature of the traveling motor 65 may become extremely high or extremely low depending on the operation and environmental conditions, and the traveling motor 65 may malfunction and break down.
 そこで、実施例の車両用空気調和装置1の空調コントローラ32は、上記の如き空調運転を実行しながら、被温調対象温度調整装置61により、バッテリ55や走行用モータ65の温度を所定の適温範囲内(使用温度範囲内)に調整する。バッテリ55や走行用モータ65の適温範囲は一般的に知られているものであるが、この出願では例えばバッテリ55の適温範囲を0℃以上+40℃以下とする。即ち、適温範囲の所定の下限値TLが0℃、上限値THが+40℃となる。尚、走行用モータ65の適温範囲はバッテリ55とは異なるものとなるが、この出願では例えばこの走行用モータ65の適温範囲を-15℃以上+60℃以下とし、当該適温範囲の所定の下限値(-15℃)もTL、上限値(+60℃)もTHで表記する。 Therefore, the air conditioning controller 32 of the vehicle air conditioner 1 of the embodiment adjusts the temperature of the battery 55 and the traveling motor 65 to a predetermined appropriate temperature by the temperature adjustment target temperature adjusting device 61 while performing the air conditioning operation as described above. Adjust within the range (operating temperature range). The appropriate temperature range of the battery 55 and the traveling motor 65 is generally known, but in this application, the appropriate temperature range of the battery 55 is, for example, 0 ° C or more and + 40 ° C or less. That is, the predetermined lower limit TL of the appropriate temperature range is 0 ° C., and the upper limit TH is + 40 ° C. The suitable temperature range of the traveling motor 65 is different from that of the battery 55. In this application, for example, the suitable temperature range of the traveling motor 65 is set to -15 ° C or more and + 60 ° C or less, and a predetermined lower limit of the appropriate temperature range is set. (−15 ° C.) is indicated by TL, and the upper limit (+ 60 ° C.) is indicated by TH.
 (7-1)暖房/被温調対象温調モード
 前述した暖房運転においてバッテリ温度センサ76及び走行用モータ温度センサ78が検出するバッテリ温度Tb及び走行用モータ温度Tmのうちの何れかがそれぞれの上記適温範囲から逸脱し、バッテリ55又は走行用モータ65の温度を調整することが必要となった場合、空調コントローラ32は暖房/被温調対象温調モードを実行する。図7はこの暖房/被温調対象温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象温度調整装置61の熱媒体の流れ(破線矢印)を示している。
(7-1) Heating / Temperature Control Target Temperature Control Mode In the heating operation described above, any one of the battery temperature Tb and the traveling motor temperature Tm detected by the battery temperature sensor 76 and the traveling motor temperature sensor 78 is set to the respective temperature. When it is necessary to adjust the temperature of the battery 55 or the traveling motor 65 because the temperature deviates from the appropriate temperature range, the air-conditioning controller 32 executes the heating / temperature-controlled temperature control mode. FIG. 7 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) and the flow of the heat medium of the temperature adjustment target temperature controller 61 (dashed arrow) in the heating / temperature adjustment target temperature adjustment mode.
 この暖房/被温調対象温調モードでは、空調コントローラ32は図3に示した冷媒回路Rの暖房運転の状態で、更に電磁弁22を開き、補助膨張弁73も開いてその弁開度を制御する状態とする。そして、被温調対象温度調整装置61の循環ポンプ62を運転する。これにより、放熱器4から出た冷媒の一部が室外膨張弁6の冷媒上流側で分流され、冷媒配管13Fを経て室内膨張弁8の冷媒上流側に至る。冷媒は次に分岐配管72に入り、補助膨張弁73で減圧された後、分岐配管72を経て冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は、冷媒配管74、冷媒配管13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す(図7に実線矢印で示す)。 In the heating / temperature controlled target temperature control mode, the air conditioning controller 32 further opens the solenoid valve 22 and the auxiliary expansion valve 73 in the state of the heating operation of the refrigerant circuit R shown in FIG. Control state. Then, the circulating pump 62 of the temperature adjustment device 61 is controlled. As a result, part of the refrigerant that has flowed out of the radiator 4 is diverted on the upstream side of the refrigerant from the outdoor expansion valve 6, and reaches the upstream side of the indoor expansion valve 8 via the refrigerant pipe 13F. Next, the refrigerant enters the branch pipe 72, is decompressed by the auxiliary expansion valve 73, flows into the refrigerant passage 64 B of the refrigerant-heat medium heat exchanger 64 through the branch pipe 72, and evaporates. At this time, it exhibits an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B repeats the circulation that is sucked into the compressor 2 through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 sequentially (indicated by a solid line arrow in FIG. 7).
 一方、循環ポンプ62から吐出された熱媒体は熱媒体配管68内を冷媒-熱媒体熱交換器64の熱媒体流路64Aに至り、そこで冷媒流路64B内で蒸発する冷媒により吸熱され、熱媒体は冷却される。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は、第1及び第2電磁弁81、82が開いている状態で分流され、分流された一方の熱媒体は第1電磁弁81を経て第1熱媒体加熱ヒータ66Aに至り、そこで加熱された後(第1熱媒体加熱ヒータ66Aが発熱している場合)、バッテリ55に至り、当該バッテリ55と熱交換する。分流された他方の熱媒体は第2電磁弁82を経て第2熱媒体加熱ヒータ66Bに至り、そこで加熱された後(第2熱媒体加熱ヒータ66Bが発熱している場合)、走行用モータ65に至り、当該走行用モータ65と熱交換する。そして、これらバッテリ55及び走行用モータ65と熱交換した熱媒体は合流した後、循環ポンプ62に吸い込まれる循環を繰り返す(図7に破線矢印で示す)。 On the other hand, the heat medium discharged from the circulation pump 62 reaches the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 in the heat medium pipe 68, where the heat is absorbed by the refrigerant evaporated in the refrigerant flow path 64B, and the heat is absorbed. The medium is cooled. The heat medium that has exited the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is divided while the first and second solenoid valves 81 and 82 are open, and one of the divided heat medium is the second heat medium. After reaching the first heat medium heater 66A via the one electromagnetic valve 81, and heated there (when the first heat medium heater 66A generates heat), it reaches the battery 55 and exchanges heat with the battery 55. The other divided heat medium reaches the second heat medium heater 66B via the second solenoid valve 82, and is heated there (when the second heat medium heater 66B generates heat). And heat exchange with the traveling motor 65 is performed. After the heat medium that has exchanged heat with the battery 55 and the traveling motor 65 joins, the circulation sucked by the circulation pump 62 is repeated (indicated by a broken arrow in FIG. 7).
 空調コントローラ32は、例えば常時冷媒-熱媒体熱交換器64の冷媒流路64Bに冷
媒を流し、熱媒体を常時冷却しながら、バッテリ温度センサ76が検出するバッテリ温度Tb、及び、走行用モータ温度センサ78が検出する走行用モータ温度Tmと、それらの適温範囲の上限値TH、及び、下限値TLに基づいて各熱媒体加熱ヒータ66A、66Bの発熱、及び、各電磁弁81、82の開閉を制御することで、バッテリ温度Tbが適温範囲内となり、且つ、走行用モータ温度Tmも適温範囲内となるようにする(その場合は、実際には暖房運転に代えて暖房/被温調対象温調モードを常時実行するか、又は、暖房運転と暖房/被温調対象温調モードを切り換えて実行することになる)。
For example, the air-conditioning controller 32 constantly supplies the refrigerant to the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 and constantly cools the heat medium, while the battery temperature Tb detected by the battery temperature sensor 76 and the traveling motor temperature. Based on the traveling motor temperature Tm detected by the sensor 78 and the upper limit value TH and the lower limit value TL of the appropriate temperature range, heat generation of each of the heat medium heaters 66A and 66B, and opening and closing of each of the electromagnetic valves 81 and 82. Is controlled so that the battery temperature Tb falls within the appropriate temperature range and the traveling motor temperature Tm falls within the appropriate temperature range (in that case, the heating / temperature controlled object is actually replaced with the heating operation). The temperature control mode is always executed, or the temperature control mode is switched between the heating operation and the heating / temperature control target temperature control mode).
 例えば、空調コントローラ32はバッテリ温度Tbが適温範囲の上限値THより高い場合、第1電磁弁81を開き、且つ、第1熱媒体加熱ヒータ66Aは発熱させないことでバッテリ55を冷却し、バッテリ温度Tbが適温範囲の下限値TLより低い場合、第1電磁弁81を開き、且つ、第1熱媒体加熱ヒータ66Aを発熱させることでバッテリ55を加熱する。 For example, when the battery temperature Tb is higher than the upper limit value TH of the appropriate temperature range, the air-conditioning controller 32 opens the first solenoid valve 81 and cools the battery 55 by not causing the first heat medium heater 66A to generate heat. When Tb is lower than the lower limit value TL of the appropriate temperature range, the first solenoid valve 81 is opened, and the battery 55 is heated by causing the first heat medium heater 66A to generate heat.
 また、走行用モータ温度Tmが適温範囲の上限値THより高い場合、第2電磁弁82を開き、且つ、第2熱媒体加熱ヒータ66Bは発熱させないことで走行用モータ65を冷却し、走行用モータ温度Tmが適温範囲の下限値TLより低い場合、第2電磁弁82を開き、且つ、第2熱媒体加熱ヒータ66Bを発熱させることで走行用モータ65を加熱する。これにより、バッテリ温度センサ76が検出するバッテリ55の温度(バッテリ温度Tb)と、走行用モータ温度センサ78が検出する走行用モータ65の温度(走行用モータ温度Tm)をそれぞれの適温範囲内に調整することで、バッテリ温度Tbと走行用モータ温度Tmを独立して制御する。 When the traveling motor temperature Tm is higher than the upper limit value TH of the appropriate temperature range, the second solenoid valve 82 is opened, and the second heating medium heater 66B does not generate heat, thereby cooling the traveling motor 65, and When the motor temperature Tm is lower than the lower limit value TL of the appropriate temperature range, the traveling motor 65 is heated by opening the second solenoid valve 82 and causing the second heat medium heater 66B to generate heat. As a result, the temperature of the battery 55 (battery temperature Tb) detected by the battery temperature sensor 76 and the temperature of the travel motor 65 (travel motor temperature Tm) detected by the travel motor temperature sensor 78 fall within the respective appropriate temperature ranges. By adjusting, the battery temperature Tb and the traveling motor temperature Tm are controlled independently.
 尚、バッテリ55及び走行用モータ65のうち温度調整が不要な方の電磁弁81、82は閉じ、熱媒体加熱ヒータ66A、66Bも発熱させない。また、冷媒-熱媒体熱交換器64や各熱媒体加熱ヒータ66A、66Bの能力は、負荷としてのバッテリ55や走行用モータ65の熱容量に基づき、上記の如き制御でバッテリ温度Tbと走行用モータ温度Tmの双方に熱媒体を流した場合にも、それらを適温範囲内とすることができる値に設定するものとする。このようにして空調コントローラ32は、バッテリ55の温度Tb及び走行用モータ65の温度Tmを適温範囲内に独立して制御するものである。 The electromagnetic valves 81 and 82 of the battery 55 and the traveling motor 65 which do not require temperature adjustment are closed, and the heat medium heaters 66A and 66B do not generate heat. The capacity of the refrigerant-heat medium heat exchanger 64 and each of the heat medium heaters 66A and 66B is based on the heat capacity of the battery 55 and the running motor 65 as a load, and the battery temperature Tb and the running motor are controlled as described above. Even when the heat medium flows through both of the temperatures Tm, the heat medium is set to a value that can be set within an appropriate temperature range. Thus, the air-conditioning controller 32 independently controls the temperature Tb of the battery 55 and the temperature Tm of the traveling motor 65 within an appropriate temperature range.
 (7-2)冷房/被温調対象温調モード
 次に、前述した冷房運転においてバッテリ55又は走行用モータ65の温度を調整することが必要となった場合、空調コントローラ32は冷房/被温調対象温調モードを実行する。図8はこの冷房/被温調対象温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象温度調整装置61の熱媒体の流れ(破線矢印)を示している。
(7-2) Cooling / Temperature Control Target Temperature Control Mode Next, when it is necessary to adjust the temperature of the battery 55 or the traveling motor 65 in the cooling operation described above, the air-conditioning controller 32 sets the cooling / temperature control mode. Execute the target temperature control mode. FIG. 8 shows the flow of the refrigerant in the refrigerant circuit R (solid line arrow) and the flow of the heat medium of the temperature control target temperature adjusting device 61 (broken line arrow) in the cooling / temperature control target temperature control mode.
 この冷房/被温調対象温調モードでは、空調コントローラ32は前述した図6の冷房運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、被温調対象温度調整装置61の循環ポンプ62も運転して、冷媒-熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。 In the cooling / temperature control target temperature control mode, the air-conditioning controller 32 opens the auxiliary expansion valve 73 to control the opening degree of the auxiliary expansion valve 73 in the state of the refrigerant circuit R in the cooling operation in FIG. The circulation pump 62 of the temperature adjusting device 61 is also operated to bring the refrigerant and the heat medium into heat exchange in the refrigerant-heat medium heat exchanger 64.
 これにより、圧縮機2から吐出された高温の冷媒は、放熱器4を経て室外熱交換器7に流入し、そこで室外送風機15により通風される外気や走行風と熱交換して放熱し、凝縮する。室外熱交換器7で凝縮した冷媒の一部は室内膨張弁8に至り、そこで減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で空気流通路3内の空気が冷却されるので、車室内は冷房される。 As a result, the high-temperature refrigerant discharged from the compressor 2 flows into the outdoor heat exchanger 7 via the radiator 4, where it exchanges heat with the outside air and traveling wind blown by the outdoor blower 15 to radiate heat and condense. I do. Part of the refrigerant condensed in the outdoor heat exchanger 7 reaches the indoor expansion valve 8, where the pressure is reduced, and then flows into the heat absorber 9 to evaporate. Since the air in the air flow passage 3 is cooled by the heat absorbing action at this time, the vehicle interior is cooled.
 室外熱交換器7で凝縮した冷媒の残りは分岐配管72に分流され、補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここで被温
調対象温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55及び走行用モータ65は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、逆止弁20、アキュムレータ12を経て圧縮機2に吸い込まれ、冷媒-熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。
The remainder of the refrigerant condensed in the outdoor heat exchanger 7 is diverted to the branch pipe 72, decompressed by the auxiliary expansion valve 73, and then evaporated in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64. Here, the refrigerant absorbs heat from the heat medium circulating in the temperature control device 61, so that the battery 55 and the traveling motor 65 are cooled as described above. The refrigerant flowing out of the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C, the check valve 20, and the accumulator 12, and the refrigerant flowing out of the refrigerant-heat medium heat exchanger 64 also flows through the refrigerant pipe 74 into the accumulator 12. After that, it is sucked into the compressor 2.
 空調コントローラ32はこの冷房/被温調対象温調モードでも、前述した暖房/被温調対象温調モードの場合と同様に、冷房運転に代え、又は、冷房運転と冷房/被温調対象温調モードを切り換え、或いは、冷房運転から冷房/被温調対象温調モードに移行して補助膨張弁73と各熱媒体加熱ヒータ66A、66B、各電磁弁81、82を制御することで、バッテリ55の温度(バッテリ温度Tb)と走行用モータ65の温度(走行用モータ温度Tm)をそれぞれの適温範囲内に調整(制御)する。 In the cooling / temperature controlled object temperature control mode, the air conditioning controller 32 replaces the cooling operation, or performs the cooling operation and the cooling / temperature controlled object temperature similarly to the heating / temperature controlled object temperature control mode described above. By switching the cooling mode or shifting from the cooling operation to the cooling / temperature controlled temperature control mode and controlling the auxiliary expansion valve 73, the heating medium heaters 66A and 66B, and the solenoid valves 81 and 82, the battery The temperature of 55 (battery temperature Tb) and the temperature of running motor 65 (running motor temperature Tm) are adjusted (controlled) within respective appropriate temperature ranges.
 (7-3)除湿冷房/被温調対象温調モード
 次に、前述した除湿冷房運転中においてバッテリ55又は走行用モータ65の温度を調整することが必要となった場合、空調コントローラ32は除湿冷房/被温調対象温調モードを実行する。尚、この除湿冷房/被温調対象温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象温度調整装置61の熱媒体の流れ(破線矢印)は図8と同様であるが、室外膨張弁6は全開では無く開き気味で制御される。そして、空調コントローラ32は冷房/被温調対象温調モードの場合と同様に、除湿冷房運転に代え、又は、除湿冷房運転と除湿冷房/被温調対象温調モードを切り換え、或いは、除湿冷房運転から除湿冷房/被温調対象温調モードに移行して補助膨張弁73と各熱媒体加熱ヒータ66A、66B、各電磁弁81、82を制御することで、バッテリ温度Tbと走行用モータ温度Tmを適温範囲内に調整(制御)する。
(7-3) Dehumidifying Cooling / Temperature Control Target Temperature Control Mode Next, if it becomes necessary to adjust the temperature of the battery 55 or the traveling motor 65 during the above-described dehumidifying cooling operation, the air conditioning controller 32 dehumidifies. The cooling / temperature control target temperature control mode is executed. The flow of the refrigerant in the refrigerant circuit R (solid line arrow) and the flow of the heat medium of the temperature control target temperature adjusting device 61 (dashed arrow) in the dehumidifying / cooling / temperature control target temperature control mode are the same as those in FIG. However, the outdoor expansion valve 6 is controlled not to be fully opened but to be slightly opened. Then, similarly to the case of the cooling / temperature control target temperature control mode, the air conditioning controller 32 replaces the dehumidification cooling operation, or switches between the dehumidification cooling operation and the dehumidification cooling / temperature control target temperature control mode, or the dehumidification cooling. By shifting from the operation to the dehumidifying / cooling / temperature control target temperature control mode and controlling the auxiliary expansion valve 73, the heat medium heaters 66A and 66B, and the solenoid valves 81 and 82, the battery temperature Tb and the running motor temperature are controlled. Tm is adjusted (controlled) within an appropriate temperature range.
 (7-4)内部サイクル/被温調対象温調モード
 次に、前述した内部サイクル運転においてバッテリ55又は走行用モータ65の温度を調整することが必要となった場合、空調コントローラ32は内部サイクル/被温調対象温調モードを実行する。この内部サイクル/被温調対象温調モードでは、空調コントローラ32は前述した図5の内部サイクル運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、被温調対象温度調整装置61の循環ポンプ62も運転して、冷媒-熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。図9はこの内部サイクル/被温調対象温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象温度調整装置61の熱媒体の流れ(破線矢印)を示している。
(7-4) Internal Cycle / Temperature Control Target Temperature Control Mode Next, when it is necessary to adjust the temperature of the battery 55 or the traveling motor 65 in the above-described internal cycle operation, the air-conditioning controller 32 / Execute the target temperature control mode. In the internal cycle / temperature control target temperature control mode, the air conditioning controller 32 opens the auxiliary expansion valve 73 to control the valve opening degree in the state of the refrigerant circuit R in the internal cycle operation shown in FIG. The circulating pump 62 of the adjustment target temperature adjusting device 61 is also operated to bring the refrigerant and the heat medium into heat exchange in the refrigerant-heat medium heat exchanger 64. FIG. 9 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) and the flow of the heat medium (dashed arrow) in the temperature adjustment target temperature controller 61 in the internal cycle / temperature adjustment mode.
 これにより、圧縮機2から吐出された高温の冷媒は放熱器4で放熱した後、電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを出た冷媒の一部は冷媒配管13Bを経て室内膨張弁8に至り、そこで減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。 Accordingly, the high-temperature refrigerant discharged from the compressor 2 is radiated by the radiator 4 and then flows through the solenoid valve 22 to the refrigerant pipe 13F. Then, part of the refrigerant that has exited the refrigerant pipe 13F reaches the indoor expansion valve 8 via the refrigerant pipe 13B, where the pressure is reduced, and then flows into the heat absorber 9 to evaporate. The moisture in the air blown out from the indoor blower 27 by the heat absorbing action at this time condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified.
 冷媒配管13Fを出た冷媒の残りは分岐配管72に分流され、補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここで被温調対象温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55及び走行用モータ65は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、逆止弁20、アキュムレータ12を経て圧縮機2に吸い込まれ、冷媒-熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。 (4) The remainder of the refrigerant that has flowed out of the refrigerant pipe 13F is diverted to the branch pipe 72, decompressed by the auxiliary expansion valve 73, and then evaporated in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64. Here, the refrigerant absorbs heat from the heat medium circulating in the temperature control device 61, so that the battery 55 and the traveling motor 65 are cooled as described above. The refrigerant flowing out of the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C, the check valve 20, and the accumulator 12, and the refrigerant flowing out of the refrigerant-heat medium heat exchanger 64 also flows through the refrigerant pipe 74 into the accumulator 12. After that, it is sucked into the compressor 2.
 空調コントローラ32はこの内部サイクル/被温調対象温調モードでも、前述した暖房/被温調対象温調モードの場合と同様に、内部サイクル運転に代え、又は、内部サイクル
運転と内部サイクル/被温調対象温調モードを切り換え、或いは、内部サイクル運転から内部サイクル/被温調対象温調モードに移行して補助膨張弁73と各熱媒体加熱ヒータ66A、66B、各電磁弁81、82を制御することで、バッテリ温度Tbと走行用モータ温度Tmを適温範囲内に調整(制御)する。
In this internal cycle / temperature control target temperature control mode, the air-conditioning controller 32 replaces the internal cycle operation or executes the internal cycle operation and the internal cycle / control target similarly to the case of the heating / temperature control target temperature control mode described above. The target temperature control mode is switched or the internal cycle operation is shifted to the internal cycle / temperature control target temperature control mode, and the auxiliary expansion valve 73, the heat medium heaters 66A and 66B, and the solenoid valves 81 and 82 are switched. By controlling, the battery temperature Tb and the traveling motor temperature Tm are adjusted (controlled) within an appropriate temperature range.
 (7-5)除湿暖房/被温調対象温調モード
 次に、前述した除湿暖房運転においてバッテリ55又は走行用モータ65の温度を調整することが必要となった場合、空調コントローラ32は除湿暖房/被温調対象温調モードを実行する。この除湿暖房/被温調対象温調モードでは、空調コントローラ32は前述した図4の除湿暖房運転の冷媒回路Rの状態において、補助膨張弁73を開いてその弁開度を制御し、被温調対象温度調整装置61の循環ポンプ62も運転して、冷媒-熱媒体熱交換器64において冷媒と熱媒体とを熱交換させる状態とする。図10はこの除湿暖房/被温調対象温調モードにおける冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象温度調整装置61の熱媒体の流れ(破線矢印)を示している。
(7-5) Dehumidifying and Heating / Temperature Control Target Temperature Control Mode Next, when it is necessary to adjust the temperature of the battery 55 or the traveling motor 65 in the above-described dehumidifying and heating operation, the air conditioning controller 32 operates / Execute the target temperature control mode. In the dehumidifying heating / temperature control target temperature control mode, the air-conditioning controller 32 opens the auxiliary expansion valve 73 and controls the opening degree of the auxiliary expansion valve 73 in the state of the refrigerant circuit R in the dehumidifying heating operation in FIG. The circulating pump 62 of the adjustment target temperature adjusting device 61 is also operated to bring the refrigerant and the heat medium into heat exchange in the refrigerant-heat medium heat exchanger 64. FIG. 10 shows the flow of the refrigerant in the refrigerant circuit R (solid line arrow) and the flow of the heat medium of the temperature control target temperature adjusting device 61 (broken line arrow) in the dehumidifying heating / temperature control target temperature control mode.
 これにより、放熱器4を出た凝縮冷媒の一部が分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Fから出てその内の一部が冷媒配管13Bから室内膨張弁8に流れ、残りの冷媒が室外膨張弁6に流れるようになる。即ち、分流された冷媒の内の一部が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。また、放熱器4から出た凝縮冷媒の残りは、室外膨張弁6で減圧された後、室外熱交換器7で蒸発し、外気から吸熱する。 As a result, a part of the condensed refrigerant that has exited the radiator 4 is diverted, and the diverted refrigerant flows into the refrigerant pipe 13F via the electromagnetic valve 22, exits from the refrigerant pipe 13F, and a part of the refrigerant flows into the refrigerant pipe. From 13B, the refrigerant flows to the indoor expansion valve 8, and the remaining refrigerant flows to the outdoor expansion valve 6. That is, a part of the divided refrigerant is reduced in pressure by the indoor expansion valve 8, and then flows into the heat absorber 9 to evaporate. At this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9 due to the heat absorbing action of the refrigerant generated in the heat absorber 9, so that the air is cooled and dehumidified. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidification and heating of the vehicle interior is performed. The remainder of the condensed refrigerant that has flowed out of the radiator 4 is decompressed by the outdoor expansion valve 6, then evaporates in the outdoor heat exchanger 7, and absorbs heat from the outside air.
 一方、冷媒配管13Fを出た冷媒の残りは分岐配管72に流入し、補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bで蒸発する。冷媒はここで被温調対象温度調整装置61内を循環する熱媒体から吸熱するのでバッテリ55や走行用モータ65は前述同様に冷却される。尚、吸熱器9から出た冷媒は冷媒配管13C、逆止弁20、アキュムレータ12を経て圧縮機2に吸い込まれ、室外熱交換器7から出た冷媒は冷媒配管13D、電磁弁21、冷媒配管13C、逆止弁20及びアキュムレータ12を経て圧縮機2に吸い込まれ、冷媒-熱媒体熱交換器64を出た冷媒も冷媒配管74からアキュムレータ12を経て圧縮機2に吸い込まれることになる。 On the other hand, the remainder of the refrigerant flowing out of the refrigerant pipe 13F flows into the branch pipe 72, is decompressed by the auxiliary expansion valve 73, and then evaporates in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64. Here, the refrigerant absorbs heat from the heat medium circulating in the temperature control device 61, so that the battery 55 and the traveling motor 65 are cooled as described above. The refrigerant flowing out of the heat absorber 9 is sucked into the compressor 2 through the refrigerant pipe 13C, the check valve 20, and the accumulator 12, and the refrigerant flowing out of the outdoor heat exchanger 7 is refrigerant pipe 13D, the electromagnetic valve 21, and the refrigerant pipe. The refrigerant that has been drawn into the compressor 2 via the check valve 13 and the check valve 20 and the accumulator 12 and has exited the refrigerant-heat medium heat exchanger 64 is also drawn into the compressor 2 from the refrigerant pipe 74 via the accumulator 12.
 空調コントローラ32はこの除湿暖房/被温調対象温調モードでも、前述した暖房/被温調対象温調モードの場合と同様に、除湿暖房運転に代え、又は、除湿暖房運転と除湿暖房/被温調対象温調モードを切り換え、或いは、除湿暖房運転から除湿暖房/被温調対象温調モードに移行して補助膨張弁73と各熱媒体加熱ヒータ66A、66B、各電磁弁81、82を制御することで、バッテリ温度Tbと走行用モータ温度Tmを適温範囲内に調整(制御)する。 In the dehumidifying heating / temperature control target temperature control mode, the air conditioning controller 32 replaces the dehumidification / heating operation, or performs the dehumidification heating operation and the dehumidification heating / control in the same manner as in the heating / temperature control target temperature control mode described above. The temperature control mode for the temperature control is switched, or the mode is switched from the dehumidifying / heating operation to the dehumidifying / heating / temperature control target temperature control mode. By controlling, the battery temperature Tb and the traveling motor temperature Tm are adjusted (controlled) within an appropriate temperature range.
 (8)室外熱交換器7の除霜運転
 次に、空調コントローラ32による室外熱交換器7の除霜運転について説明する。暖房運転中には前述した如く室外熱交換器7は蒸発器として機能するため、室外熱交換器7には外気中の水分が霜となって成長し、熱交換効率が低下して来る。空調コントローラ32は、例えば外気温度Tamや圧縮機2の回転数等から算出される無着霜時の室外熱交換器温度TXObaseを算出し、この無着霜時の室外熱交換器温度TXObaseと室外熱交換器温度センサ54が検出する室外熱交換器温度TXOとを常時比較しており、室外熱交換器温度TXOが無着霜時の室外熱交換器温度TXObaseより低下してその差が所定値以上となった場合、室外熱交換器7の除霜運転を実行する。
(8) Defrosting Operation of Outdoor Heat Exchanger 7 Next, the defrosting operation of the outdoor heat exchanger 7 by the air conditioning controller 32 will be described. As described above, since the outdoor heat exchanger 7 functions as an evaporator during the heating operation, moisture in the outside air grows as frost in the outdoor heat exchanger 7 and the heat exchange efficiency decreases. The air-conditioning controller 32 calculates the outdoor heat exchanger temperature TXObase at the time of no frosting calculated from, for example, the outside air temperature Tam and the rotation speed of the compressor 2, etc., and calculates the outdoor heat exchanger temperature TXObase at the time of no frosting and the outdoor temperature. The outdoor heat exchanger temperature TXO detected by the heat exchanger temperature sensor 54 is constantly compared with the outdoor heat exchanger temperature TXO. The outdoor heat exchanger temperature TXO is lower than the outdoor heat exchanger temperature TXObase when no frost is formed, and the difference is a predetermined value. In the case described above, the defrosting operation of the outdoor heat exchanger 7 is performed.
 図11はこの除霜運転における冷媒回路Rの冷媒の流れ(実線矢印)と被温調対象温度調整装置61の熱媒体の流れ(破線矢印)を示している。空調コントローラ32は圧縮機2を運転し、室外送風機15は停止する。また、室内膨張弁8を全閉とし、補助膨張弁37は開いて冷媒を減圧する状態とする。尚、室外膨張弁6は全開とする。更に、空調コントローラ32は電磁弁21を閉じ、室内送風機27を停止する。そして、循環ポンプ62を運転し、冷媒-熱媒体熱交換器64において冷媒と熱媒体を熱交換させる状態とする。 FIG. 11 shows the flow of the refrigerant in the refrigerant circuit R (solid arrow) and the flow of the heat medium of the temperature control target temperature adjusting device 61 (dashed arrow) in the defrosting operation. The air conditioning controller 32 operates the compressor 2 and the outdoor blower 15 stops. The indoor expansion valve 8 is fully closed, and the auxiliary expansion valve 37 is opened to reduce the pressure of the refrigerant. The outdoor expansion valve 6 is fully opened. Further, the air conditioning controller 32 closes the solenoid valve 21 and stops the indoor blower 27. Then, the circulating pump 62 is operated to bring the refrigerant and the heat medium into heat exchange in the refrigerant-heat medium heat exchanger 64.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4を経て冷媒配管13Eから室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので、冷媒は冷媒配管13Jを通過し、そのまま室外熱交換器7に流入する。室外熱交換器7に流入した高温のガス冷媒によって室外熱交換器7は除霜されていく。冷媒は放熱して凝縮液化した後、室外熱交換器7から出る。 Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 reaches the outdoor expansion valve 6 from the refrigerant pipe 13E via the radiator 4. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through the refrigerant pipe 13J and flows into the outdoor heat exchanger 7 as it is. The outdoor heat exchanger 7 is defrosted by the high-temperature gas refrigerant flowing into the outdoor heat exchanger 7. After the refrigerant radiates heat to condense and liquefy, the refrigerant exits the outdoor heat exchanger 7.
 室外熱交換器7を出た冷媒は冷媒配管13Aを経て冷媒配管13Bに入るが、このとき室内膨張弁8は全閉とされているので、室外熱交換器7を出た全ての冷媒は分岐配管72を経て補助膨張弁73に至る。冷媒はこの補助膨張弁73で減圧された後、冷媒-熱媒体熱交換器64の冷媒流路64Bに流入して蒸発する。このときに吸熱作用を発揮する。この冷媒流路64Bで蒸発した冷媒は冷媒配管74、冷媒配管13C、及び、アキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す。即ち、この除霜運転では、室外熱交換器7を含む補助膨張弁73より冷媒上流側の冷媒回路Rは高圧側となる。 The refrigerant that has exited the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A. At this time, since the indoor expansion valve 8 is fully closed, all the refrigerant that has exited the outdoor heat exchanger 7 is branched. It reaches the auxiliary expansion valve 73 via the pipe 72. After the pressure of the refrigerant is reduced by the auxiliary expansion valve 73, the refrigerant flows into the refrigerant passage 64 B of the refrigerant-heat medium heat exchanger 64 and evaporates. At this time, it exhibits an endothermic effect. The refrigerant evaporated in the refrigerant flow path 64B repeats the circulation sucked into the compressor 2 through the refrigerant pipe 74, the refrigerant pipe 13C, and the accumulator 12 sequentially. That is, in this defrosting operation, the refrigerant circuit R upstream of the auxiliary expansion valve 73 including the outdoor heat exchanger 7 on the refrigerant side is on the high pressure side.
 一方、各電磁弁81、82が開いている状態で、循環ポンプ62から吐出された熱媒体は冷媒-熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒-熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体分流され、分流された一方の熱媒体は第1電磁弁81を経て第1熱媒体加熱ヒータ66Aに至り、当該第1熱媒体加熱ヒータ66Aが発熱されている場合にはそこで加熱された後、バッテリ55に至り、熱媒体はそこでバッテリ55と熱交換する。分流された他方の熱媒体は第2電磁弁82を経て第2熱媒体加熱ヒータ66Bに至り、当該第2熱媒体加熱ヒータ66Bが発熱されている場合にはそこで加熱された後、走行用モータ65に至り、熱媒体はそこで走行用モータ65と熱交換する。これらバッテリ55及び走行用モータ65と熱交換した熱媒体は合流した後、循環ポンプ62に吸い込まれることで熱媒体配管68内を循環される(図11に破線矢印で示す)。 On the other hand, in a state where the electromagnetic valves 81 and 82 are open, the heat medium discharged from the circulation pump 62 flows into the heat medium passage 64A of the refrigerant-heat medium heat exchanger 64. The heat medium that has flowed out of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is diverted. One of the divided heat medium reaches the first heat medium heater 66A via the first solenoid valve 81, and If the one heat medium heating heater 66A generates heat, it is heated there and then reaches the battery 55, where the heat medium exchanges heat with the battery 55. The other divided heat medium reaches the second heat medium heater 66B via the second solenoid valve 82. If the second heat medium heater 66B is heated, it is heated there, and then the traveling motor is driven. At 65, the heat medium exchanges heat with the traveling motor 65 there. After the heat medium that has exchanged heat with the battery 55 and the traveling motor 65 is merged, the heat medium is sucked into the circulation pump 62 and circulated in the heat medium pipe 68 (indicated by a broken arrow in FIG. 11).
 空調コントローラ32はこの除霜運転でも、前述した暖房/被温調対象温調モード等の場合と同様に、補助膨張弁73と各熱媒体加熱ヒータ66A、66B、各電磁弁81、82を制御することで、バッテリ55の温度(バッテリ温度Tb)と走行用モータ65の温度(走行用モータ温度Tm)を適温範囲内に調整し、バッテリ温度Tbと走行用モータ温度Tmを独立して制御する。それにより、バッテリ55や走行用モータ65が冷え過ぎ、或いは、過熱することを回避する。 The air-conditioning controller 32 controls the auxiliary expansion valve 73, the heating medium heaters 66A and 66B, and the electromagnetic valves 81 and 82 in this defrosting operation, as in the case of the above-described heating / temperature-control target temperature control mode. By doing so, the temperature of the battery 55 (battery temperature Tb) and the temperature of the traveling motor 65 (traveling motor temperature Tm) are adjusted within an appropriate temperature range, and the battery temperature Tb and the traveling motor temperature Tm are controlled independently. . This prevents the battery 55 and the traveling motor 65 from being too cold or overheated.
 図12にこの除霜運転における冷媒回路RのP-h線図を示す。図12においてX1で示す線が室外熱交換器7の除霜に寄与する領域である(図14も同じ)。ここで、図13は係る除霜運転では無く、室外熱交換器7の所謂簡易除霜を行う場合の冷媒回路Rの冷媒の流れを示し、図14はその場合のP-h線図を示す。この簡易除霜では、室外膨張弁6の開度を若干絞り、電磁弁21を開き、電磁弁22を閉じ、室内膨張弁8及び補助膨張弁73を全閉とする。そして、圧縮機2を運転する。 FIG. 12 shows a Ph diagram of the refrigerant circuit R in the defrosting operation. A line indicated by X1 in FIG. 12 is a region that contributes to the defrosting of the outdoor heat exchanger 7 (the same applies to FIG. 14). Here, FIG. 13 shows the flow of the refrigerant in the refrigerant circuit R when performing so-called simple defrosting of the outdoor heat exchanger 7 instead of the defrosting operation, and FIG. 14 shows a Ph diagram in that case. . In this simple defrosting, the opening degree of the outdoor expansion valve 6 is slightly reduced, the electromagnetic valve 21 is opened, the electromagnetic valve 22 is closed, and the indoor expansion valve 8 and the auxiliary expansion valve 73 are fully closed. Then, the compressor 2 is operated.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4を経て冷媒配管13Eから室外膨張弁6に至る。ここで冷媒は若干絞られた後、冷媒配管13Jを経て室外熱交換器7に流入する。そして、室外熱交換器7に流入した比較的高温のガス冷媒によっ
て室外熱交換器7は除霜されていく。ここで冷媒は放熱するが、ガス状態のまま室外熱交換器7を出る。そして、冷媒配管13A、13D、電磁弁21を経て逆止弁20を通過し、冷媒配管13Cを経てアキュムレータ12に入る。そして、圧縮機2に吸い込まれることになる。
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 passes through the radiator 4 and reaches the outdoor expansion valve 6 from the refrigerant pipe 13E. Here, the refrigerant is slightly throttled and then flows into the outdoor heat exchanger 7 via the refrigerant pipe 13J. Then, the outdoor heat exchanger 7 is defrosted by the relatively high-temperature gas refrigerant flowing into the outdoor heat exchanger 7. Here, the refrigerant radiates heat, but leaves the outdoor heat exchanger 7 in a gas state. Then, the refrigerant passes through the check valves 20 via the refrigerant pipes 13A and 13D and the electromagnetic valve 21, and enters the accumulator 12 via the refrigerant pipe 13C. Then, it is sucked into the compressor 2.
 このような簡易除霜では、室外膨張弁6より冷媒下流側は低圧側となり、冷媒回路R内が全てガス冷媒となってしまうため、冷媒が多く余るようになり、アキュムレータ12から液冷媒が溢れ、圧縮機2が液圧縮を起こして破損してしまう危険性がある。 In such simple defrosting, the downstream side of the refrigerant from the outdoor expansion valve 6 is on the low pressure side, and the entire refrigerant circuit R becomes gas refrigerant, so that a large amount of refrigerant is left over, and the liquid refrigerant overflows from the accumulator 12. In addition, there is a danger that the compressor 2 may be damaged by liquid compression.
 一方、図11、図12に示す如き本発明の除霜運転の場合、室外熱交換器7を高圧側としてこの室外熱交換器7内で冷媒を凝縮させ、冷媒-熱媒体熱交換器64で冷媒を蒸発させることができるようになる。それにより、室外熱交換器7を除霜する際、室外熱交換器7を含む冷媒回路Rの高圧側に液冷媒が存在することになるので、アキュムレータ12の容量を拡大しなくても、液冷媒がアキュムレータ12から溢れ出ずことを防止若しくは抑制することができるようになり、圧縮機2が液圧縮を起こして損傷を来す不都合を未然に回避することができるようになる。 On the other hand, in the case of the defrosting operation of the present invention as shown in FIGS. 11 and 12, the refrigerant is condensed in the outdoor heat exchanger 7 with the outdoor heat exchanger 7 as the high pressure side, and the refrigerant-heat medium heat exchanger 64 The refrigerant can be evaporated. Accordingly, when defrosting the outdoor heat exchanger 7, the liquid refrigerant is present on the high pressure side of the refrigerant circuit R including the outdoor heat exchanger 7, so that the liquid refrigerant can be supplied without increasing the capacity of the accumulator 12. It is possible to prevent or suppress the refrigerant from overflowing from the accumulator 12, and it is possible to prevent a disadvantage that the compressor 2 causes liquid compression and damage.
 特に、本発明ではこの除霜運転において、空調コントローラ32が被温調対象温度調整装置61の各熱媒体加熱ヒータ66A、66Bにより被温調対象としてのバッテリ55や走行用モータ65の温度を所定の上限値以下、下限値以上の適温範囲内に調整するようにしているので、バッテリ55及び走行用モータ65の排熱や各熱媒体加熱ヒータ66A、66Bの熱を室外熱交換器7の除霜に寄与させながら、バッテリ55や走行用モータ65の冷え過ぎや過熱を防止して、最適な状態で機能させることができるようになる。 In particular, in the present invention, in this defrosting operation, the air conditioning controller 32 determines the temperature of the battery 55 and the traveling motor 65 as the temperature control target by the respective heating medium heaters 66A and 66B of the temperature control target temperature adjusting device 61. Of the battery 55 and the traveling motor 65 and the heat of the heat medium heaters 66A and 66B are removed from the outdoor heat exchanger 7 by adjusting the temperature within a suitable temperature range not more than the upper limit value and not less than the lower limit value. While contributing to frost, the battery 55 and the traveling motor 65 can be prevented from being too cold or overheated, and can function in an optimal state.
 また、実施例では暖房運転、除湿暖房運転(除湿運転)、内部サイクル運転(除湿運転)、除湿冷房運転(除湿運転)、冷房運転の各空調運転においても、冷媒を冷媒-熱媒体熱交換器64に流入させて熱媒体から吸熱させることで、バッテリ55や走行用モータ65の温度を調整可能としたので、車室内の空調運転を行っている最中にもバッテリ55や走行用モータ65を良好な状態で機能させることができるようになる。 Further, in the embodiment, in each of the air conditioning operations of the heating operation, the dehumidifying heating operation (dehumidifying operation), the internal cycle operation (dehumidifying operation), the dehumidifying cooling operation (dehumidifying operation), and the cooling operation, the refrigerant is used as the refrigerant-heat medium heat exchanger. The temperature of the battery 55 and the running motor 65 can be adjusted by flowing heat into the heating medium 64 and absorbing heat from the heat medium. It can function in a good state.
 尚、実施例ではバッテリ55や走行用モータ65(被温調対象)の温度を適温範囲内に制御するようにしたが、それに限らず、請求項1の発明ではそれらの温度を所定の下限値TL以上に制御するものでも良い。その場合にもバッテリ55及び走行用モータ65の排熱や各熱媒体加熱ヒータ66A、66Bの熱を室外熱交換器7の除霜に寄与させながら、バッテリ55や走行用モータ65が冷え過ぎて機能不全に陥る不都合も効果的に解消することができるようになる。 In the embodiment, the temperatures of the battery 55 and the traveling motor 65 (the object to be temperature-controlled) are controlled within an appropriate temperature range. However, the present invention is not limited to this. The control may be performed at TL or more. In this case as well, the battery 55 and the traveling motor 65 become too cold while the exhaust heat of the battery 55 and the traveling motor 65 and the heat of the heat medium heaters 66A and 66B contribute to the defrosting of the outdoor heat exchanger 7. The inconvenience of malfunction can be effectively eliminated.
 また、実施例で説明した空調コントローラ32の構成、車両用空気調和装置1の冷媒回路Rや被温調対象温度調整装置61の構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。 Further, the configuration of the air conditioning controller 32 described in the embodiment, the configuration of the refrigerant circuit R of the vehicle air conditioner 1 and the configuration of the temperature adjustment target temperature adjustment device 61 are not limited thereto, and do not depart from the gist of the present invention. Needless to say, it can be changed within the range.
 1 車両用空気調和装置
 2 圧縮機
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 21、22 電磁弁
 32 空調コントローラ(制御装置)
 55 バッテリ(被温調対象)
 61 被温調対象温度調整装置
 62 循環ポンプ
 64 冷媒-熱媒体熱交換器
 65 走行用モータ(被温調対象)
 66A 第1熱媒体加熱ヒータ(加熱装置)
 66B 第2熱媒体加熱ヒータ(加熱装置)
 72 分岐配管(分岐回路)
 73 補助膨張弁
 81 第1電磁弁
 82 第2電磁弁
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Compressor 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 21, 22 Solenoid valve 32 Air conditioning controller (control device)
55 Battery (for temperature control)
61 Temperature control device for temperature control 62 Circulation pump 64 Refrigerant-heat medium heat exchanger 65 Motor for traveling (Target for temperature control)
66A first heating medium heater (heating device)
66B 2nd heating medium heater (heating device)
72 Branch piping (branch circuit)
73 auxiliary expansion valve 81 first solenoid valve 82 second solenoid valve

Claims (5)

  1.  冷媒を圧縮する圧縮機と、
     前記冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、
     車室外に設けられた室外熱交換器と、
     制御装置を備え、
     該制御装置により、前記圧縮機から吐出された前記冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させることで前記車室内を暖房可能とされた車両用空気調和装置において、
     車両に搭載された被温調対象に熱媒体を循環させて当該被温調対象の温度を調整するための被温調対象温度調整装置を備え、
     該被温調対象温度調整装置は、前記冷媒と前記熱媒体とを熱交換させる冷媒-熱媒体熱交換器と、前記熱媒体を加熱するための加熱装置を有し、
     前記制御装置は、前記圧縮機から吐出された前記冷媒を前記室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記冷媒-熱媒体熱交換器に流入させて前記熱媒体から吸熱させる除霜運転を実行すると共に、
     該除霜運転において、前記加熱装置により前記被温調対象の温度を所定の下限値以上に制御することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant,
    A radiator for heating the air supplied into the vehicle cabin by radiating the refrigerant,
    An outdoor heat exchanger provided outside the vehicle compartment;
    Equipped with a control device,
    By the control device, the refrigerant discharged from the compressor is radiated by the radiator, the radiated refrigerant is depressurized, and the vehicle interior can be heated by absorbing heat in the outdoor heat exchanger. In the air conditioner for vehicles
    A temperature control target temperature adjusting device for circulating a heat medium through the temperature control target mounted on the vehicle to adjust the temperature of the temperature control target;
    The temperature control target temperature control device includes a refrigerant-heat medium heat exchanger for exchanging heat between the refrigerant and the heat medium, and a heating device for heating the heat medium,
    The controller radiates the refrigerant discharged from the compressor in the outdoor heat exchanger, and after decompressing the radiated refrigerant, flows the refrigerant into the refrigerant-heat medium heat exchanger, from the heat medium. While performing the defrosting operation to absorb heat,
    In the defrosting operation, the heating device controls the temperature of the temperature control target to be equal to or higher than a predetermined lower limit value.
  2.  前記制御装置は前記除霜運転において、前記被温調対象の温度を所定の上限値以下、前記下限値以上の適温範囲内に制御することを特徴とする請求項1に記載の車両用空気調和装置。 The vehicle air conditioner according to claim 1, wherein the control device controls the temperature of the temperature control target within an appropriate temperature range equal to or lower than a predetermined upper limit and equal to or higher than the lower limit in the defrosting operation. apparatus.
  3.  前記被温調対象は、バッテリ及び/又は走行用モータであることを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。 The vehicle air conditioner according to claim 1 or 2, wherein the temperature control target is a battery and / or a running motor.
  4.  前記冷媒を吸熱させて前記車室内に供給する空気を冷却するための吸熱器を備え、
     前記制御装置は、
     前記圧縮機から吐出された前記冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房運転と、前記圧縮機から吐出された前記冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿運転と、前記圧縮機から吐出された前記冷媒を前記室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる冷房運転の各空調運転を切り換えて実行可能とされており、
     前記各空調運転において、前記冷媒を前記冷媒-熱媒体熱交換器に流入させて前記熱媒体から吸熱させることで、前記被温調対象の温度を調整可能とされていることを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。
    A heat absorber for cooling the air supplied to the vehicle interior by absorbing the refrigerant,
    The control device includes:
    The refrigerant discharged from the compressor is radiated by the radiator, the radiated refrigerant is depressurized, and then the heating operation of absorbing heat in the outdoor heat exchanger is performed, and the refrigerant discharged from the compressor is discharged. After radiating the heat by the radiator and decompressing the radiated refrigerant, the dehumidifying operation of absorbing the heat by the heat absorber, and radiating the refrigerant discharged from the compressor by the outdoor heat exchanger to radiate the heat. After the pressure of the refrigerant has been reduced, each air conditioning operation of the cooling operation for absorbing heat by the heat absorber can be switched and executed,
    In each of the air conditioning operations, the temperature of the temperature-controlled object can be adjusted by flowing the refrigerant into the refrigerant-heat medium heat exchanger and absorbing heat from the heat medium. The vehicle air conditioner according to any one of claims 1 to 3.
  5.  前記圧縮機の冷媒吸込側に接続されたアキュムレータを備えたことを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。 The vehicle air conditioner according to any one of claims 1 to 4, further comprising an accumulator connected to a refrigerant suction side of the compressor.
PCT/JP2019/026546 2018-07-31 2019-07-04 Vehicle air conditioning device WO2020026690A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980047713.4A CN112384392B (en) 2018-07-31 2019-07-04 Air conditioning device for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018143679A JP7164986B2 (en) 2018-07-31 2018-07-31 Vehicle air conditioner
JP2018-143679 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020026690A1 true WO2020026690A1 (en) 2020-02-06

Family

ID=69230523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026546 WO2020026690A1 (en) 2018-07-31 2019-07-04 Vehicle air conditioning device

Country Status (3)

Country Link
JP (1) JP7164986B2 (en)
CN (1) CN112384392B (en)
WO (1) WO2020026690A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192760A1 (en) * 2020-03-26 2021-09-30 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022108685A (en) * 2021-01-13 2022-07-26 本田技研工業株式会社 vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017056A (en) * 2010-07-09 2012-01-26 Nippon Soken Inc Temperature adjustment system for vehicle
JP2012035812A (en) * 2010-08-11 2012-02-23 Hitachi Ltd Air conditioning system for vehicle
JP2013139995A (en) * 2011-12-05 2013-07-18 Denso Corp Heat pump cycle
JP2017035901A (en) * 2015-08-06 2017-02-16 株式会社デンソー Air conditioner for vehicle
JP2018140720A (en) * 2017-02-28 2018-09-13 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5851704B2 (en) * 2011-02-25 2016-02-03 サンデンホールディングス株式会社 Air conditioner for vehicles
JP2013193466A (en) * 2012-03-15 2013-09-30 Honda Motor Co Ltd Vehicle air conditioning device
JP6024305B2 (en) * 2012-09-05 2016-11-16 株式会社デンソー Air conditioner for vehicles
JP6047388B2 (en) * 2012-11-30 2016-12-21 サンデンホールディングス株式会社 Air conditioner for vehicles
JP2016049914A (en) * 2014-09-01 2016-04-11 本田技研工業株式会社 Vehicle air conditioner for electric vehicle
JP6900186B2 (en) * 2016-12-21 2021-07-07 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017056A (en) * 2010-07-09 2012-01-26 Nippon Soken Inc Temperature adjustment system for vehicle
JP2012035812A (en) * 2010-08-11 2012-02-23 Hitachi Ltd Air conditioning system for vehicle
JP2013139995A (en) * 2011-12-05 2013-07-18 Denso Corp Heat pump cycle
JP2017035901A (en) * 2015-08-06 2017-02-16 株式会社デンソー Air conditioner for vehicle
JP2018140720A (en) * 2017-02-28 2018-09-13 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192760A1 (en) * 2020-03-26 2021-09-30 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner

Also Published As

Publication number Publication date
JP7164986B2 (en) 2022-11-02
CN112384392A (en) 2021-02-19
CN112384392B (en) 2024-01-05
JP2020019337A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP7095848B2 (en) Vehicle air conditioner
JP6855281B2 (en) Vehicle air conditioner
CN110505968B (en) Air conditioner for vehicle
JP6997558B2 (en) Vehicle air conditioner
JP7268976B2 (en) Vehicle air conditioner
WO2020031569A1 (en) Vehicle air conditioning device
WO2020066719A1 (en) Vehicle air conditioner
WO2019021710A1 (en) Vehicular air conditioner
WO2018198582A1 (en) Vehicular air conditioner
JP7164994B2 (en) Vehicle air conditioner
WO2019150829A1 (en) Vehicle air-conditioning device
WO2019181311A1 (en) Control system for vehicle
CN114126900B (en) Air conditioning equipment for vehicle
WO2019163399A1 (en) Vehicle control system
WO2019163398A1 (en) Vehicle control system
WO2020026690A1 (en) Vehicle air conditioning device
WO2019058826A1 (en) Vehicle air conditioner
JP2019172267A (en) Vehicular air-conditioner
CN113811727B (en) Air conditioning device for vehicle
WO2019181310A1 (en) Vehicle air conditioner
JP7387520B2 (en) Vehicle air conditioner
WO2019150832A1 (en) Air conditioning device for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843179

Country of ref document: EP

Kind code of ref document: A1