WO2019150829A1 - Vehicle air-conditioning device - Google Patents

Vehicle air-conditioning device Download PDF

Info

Publication number
WO2019150829A1
WO2019150829A1 PCT/JP2018/047128 JP2018047128W WO2019150829A1 WO 2019150829 A1 WO2019150829 A1 WO 2019150829A1 JP 2018047128 W JP2018047128 W JP 2018047128W WO 2019150829 A1 WO2019150829 A1 WO 2019150829A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refrigerant
heat medium
temperature
heating
Prior art date
Application number
PCT/JP2018/047128
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 石関
武史 東宮
岡本 佳之
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Publication of WO2019150829A1 publication Critical patent/WO2019150829A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and more particularly to a vehicle air conditioner suitable for a hybrid vehicle or an electric vehicle.
  • a compressor that compresses and discharges the refrigerant
  • a radiator that is provided on the vehicle interior side and dissipates the refrigerant, and is provided on the vehicle interior side.
  • a heat sink that absorbs the refrigerant and a refrigerant circuit that is provided outside the passenger compartment and vents the outside air and that is connected to an outdoor heat exchanger that absorbs or dissipates the refrigerant, and dissipates the refrigerant discharged from the compressor.
  • a mode cooling operation
  • the charge / discharge performance of the battery mounted on the vehicle is lowered in a low temperature environment.
  • the deterioration proceeds, and there is a risk of causing malfunction and eventually damaging.
  • a low water temperature loop that circulates cooling water (heat medium) to the battery
  • refrigerant and cooling water that circulate in the refrigerant circuit in a chiller (refrigerant-heat medium heat exchanger)
  • the temperature of the battery is adjusted by heating the cooling water (heating medium) with a hot water heater (heating device), and further heating assistance with waste heat from the battery or heating with the hot water heater (heating device)
  • a device that can perform the above has also been developed (see, for example, Patent Document 2).
  • JP 2014-213765 A Japanese Patent No. 5860360
  • the temperature of the battery is equal to or higher than the lower limit temperature of use, but a refrigerant-heat medium heat exchanger ( In a situation where the temperature of the battery is lower than the temperature of the heat medium (cooling water) necessary for heating the refrigerant in the chiller), the heating capacity of the heating device (hot water heater) is deprived until the battery warms up. As a result, there is a drawback that wasteful power is consumed.
  • the present invention has been made to solve the conventional technical problem, and realizes an efficient air-conditioning operation without being affected by the temperature of a heating device mounted on a vehicle such as a battery.
  • An object of the present invention is to provide an air conditioner for a vehicle that can perform the above.
  • the vehicle air conditioner of the present invention heats the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air that dissipates the refrigerant and is supplied from the air flow passage to the vehicle interior.
  • a heat sink an outdoor heat exchanger that is provided outside the vehicle cabin to absorb the refrigerant, a heat medium circulation device that circulates the heat medium to a heat generating device mounted on the vehicle, and a control device.
  • the heat medium circulation device flows through a refrigerant-heat medium heat exchanger for exchanging heat between the refrigerant and the heat medium, a heating device for heating the heat medium, and a heat generating device.
  • the vehicle air conditioner according to a second aspect of the present invention is characterized in that, in the above invention, the control device controls the flow path switching device based on the temperature of the heat generating device.
  • the control device causes the refrigerant discharged from the compressor to dissipate heat with a radiator, depressurizes the radiated refrigerant, and the outdoor heat exchanger.
  • the vehicle air conditioner according to a fourth aspect of the present invention is characterized in that, in the above invention, the control device determines that it is not necessary to heat the heat generating device when the temperature of the heat generating device is equal to or higher than a predetermined lower limit temperature.
  • a vehicular air conditioner wherein, in each of the above-described inventions, when the control device can recover the waste heat of the heat generating device, the refrigerant discharged from the compressor is dissipated by the heat radiator. After reducing the pressure of the refrigerant, heat is absorbed by the outdoor heat exchanger and the refrigerant-heat medium heat exchanger, and the heat medium is caused to flow to the heat generating device by the flow path switching device.
  • the control device is a refrigerant-heat-medium heat exchanger that determines whether or not the temperature of the heat generating device can recover waste heat of the heat generating device.
  • the control device heats the heat medium by the heating device and heats the heat generating device by the flow path switching device when the heat generating device needs to be heated. It is characterized by flowing a medium.
  • the vehicle air conditioner according to claim 8 is characterized in that, in the above invention, the control device determines that the heat generating device needs to be heated when the temperature of the heat generating device is lower than a predetermined use lower limit temperature.
  • the control device causes the refrigerant discharged from the compressor to dissipate heat with a radiator when it is necessary to cool the heat generating device, and the heat dissipated. After the pressure is reduced, heat is absorbed by the refrigerant-heat medium heat exchanger, heating of the heat medium by the heating device is stopped, and the heat medium is caused to flow to the heat generating device by the flow path switching device.
  • the vehicle air conditioner according to claim 10 is characterized in that, in the above invention, the control device determines that the heat generating device needs to be cooled when the temperature of the heat generating device is higher than a predetermined use upper limit temperature. To do.
  • a compressor for compressing a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, and a radiator for heating the air to be radiated from the refrigerant and supplied to the vehicle interior from the air flow passage.
  • an outdoor heat exchanger that is provided outside the vehicle cabin to absorb the refrigerant, a heat medium circulation device that circulates the heat medium to a heat generating device mounted on the vehicle, and a control device, and a vehicle that air-conditions the vehicle interior
  • the air conditioner for an industrial use without causing the heat medium circulation device to flow through the refrigerant-heat medium heat exchanger for exchanging heat between the refrigerant and the heat medium, the heating device for heating the heat medium, and the heating device, Since the bypass circuit for circulating the heat medium and the flow path switching device for switching between flowing the heat medium to the heat generating device or flowing the heat medium to the bypass circuit are provided, Heating device for heat medium of circulation device By switching between the state of flowing through the refrigerant-heat medium heat exchanger and the heat generating device and the state of flowing the heat medium through the heating device, the refrigerant-heat medium heat exchanger and the bypass circuit without flowing through the heat generating device, It is possible to realize an efficient air conditioning operation without being affected by the temperature.
  • the flow switching device is controlled by the control device based on the temperature of the heat generating device as in the invention of claim 2, the flow switching device can be appropriately controlled according to the temperature condition of the heat generating device. become able to.
  • the control device causes the refrigerant discharged from the compressor to dissipate heat with a radiator, decompresses the dissipated refrigerant, and then converts the refrigerant into the outdoor heat exchanger and the refrigerant-heat medium heat exchanger.
  • the heat transfer device is added to the bypass circuit by the flow path switching device.
  • the control device heats the heat generating device by determining that it is not necessary to heat the heat generating device. It becomes possible to control the flow path switching device by accurately determining that it is not necessary.
  • the control device can recover the waste heat of the heat generating device as in the invention of claim 5, the refrigerant discharged from the compressor is radiated with a radiator, and the radiated refrigerant is decompressed, Heat is absorbed by the outdoor heat exchanger and the refrigerant-heat medium heat exchanger, and the heat medium is caused to flow to the heat generating device by the flow path switching device, so that the waste heat of the heat generating device is effectively used to efficiently carry out the vehicle. It becomes possible to perform indoor heating and air conditioning, to suppress the temperature rise of the heat generating device, and to suppress frost formation on the outdoor heat exchanger.
  • the heat at the outlet side of the refrigerant-heat medium heat exchanger which is a criterion for determining whether or not the temperature of the heat generating device can recover the waste heat of the heat generating device by the control device as in the invention of claim 6, for example.
  • the control device as in the invention of claim 7 heats the heat medium by the heating device and causes the heat medium to flow to the heat generating device by the flow path switching device.
  • the heat generating device can be heated without any trouble by the heat medium heated by the heating device.
  • the control device heats the heat generating device by determining that the heat generating device needs to be heated. It becomes possible to control the flow path switching device by accurately determining the necessity.
  • the control device as in the ninth aspect of the invention causes the refrigerant discharged from the compressor to dissipate heat with a radiator and decompresses the dissipated refrigerant.
  • Heat is absorbed by the medium heat exchanger, and heating of the heat medium by the heating device is stopped, and the heat medium is caused to flow to the heat generating device by the flow path switching device, so that the refrigerant is cooled by the refrigerant in the refrigerant-heat medium heat exchanger.
  • the heat generating device can cool the heat generating device without any trouble. Also in this case, for example, when the temperature of the heat generating device is higher than a predetermined upper limit temperature, the control device cools the heat generating device by determining that the heat generating device needs to be cooled. It becomes possible to control the flow path switching device by accurately determining the necessity.
  • FIG. 2 It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. It is a figure explaining the heating operation by the controller of FIG. It is a figure explaining the dehumidification heating operation by the controller of FIG. It is a figure explaining the internal cycle driving
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted.
  • the battery 55 is mounted on the vehicle, and electric power charged in the battery 55 is used for traveling.
  • the vehicle air conditioner 1 according to the present invention is driven by the electric power of the battery 55.
  • the vehicle air conditioner 1 of the present invention is also driven by being supplied to an electric motor (not shown).
  • the vehicle air conditioner 1 of the embodiment performs heating operation by heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat, and further performs dehumidification heating operation, internal cycle operation, and dehumidification cooling. Air conditioning of the passenger compartment is performed by selectively executing each air conditioning operation of the operation and the cooling operation.
  • the present invention is not limited to an electric vehicle as a vehicle, but is also applicable to a so-called hybrid vehicle that uses an engine and an electric motor for traveling, and is also applicable to a normal vehicle that travels with an engine. Needless to say.
  • the battery 55 is exemplified as a heat generating device mounted on a vehicle.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment.
  • an outdoor expansion valve 6 comprising an electric valve (electronic expansion valve) that decompresses and expands the refrigerant during heating, a refrigerant that functions as a radiator that radiates the refrigerant during cooling, and an evaporator that absorbs the refrigerant during heating.
  • An outdoor heat exchanger 7 that exchanges heat with the outside air
  • an indoor expansion valve 8 that includes an electric valve (electronic expansion valve) that decompresses and expands the refrigerant
  • an air flow passage 3 that is provided during cooling and dehumidification
  • the outdoor expansion valve 6 expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7 under reduced pressure, and can be fully closed.
  • the indoor expansion valve 8 expands the refrigerant flowing into the heat absorber 9 under reduced pressure and can be fully closed.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7.
  • the refrigerant pipe 13 ⁇ / b> A connected to the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the refrigerant pipe 13 ⁇ / b> B via the check valve 18.
  • the check valve 18 has a forward direction on the refrigerant pipe 13B side.
  • the refrigerant pipe 13B is connected to the indoor expansion valve 8.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched in front of the check valve 18 (the refrigerant upstream side), and this branched refrigerant pipe 13D is connected via an electromagnetic valve 21 opened during heating.
  • the refrigerant pipe 13 ⁇ / b> C located on the outlet side of the heat absorber 9 is connected in communication.
  • coolant piping 13D was connected is connected to the accumulator 12 via the non-return valve 20, and the accumulator 12 is connected to the refrigerant
  • FIG. The check valve 20 has a forward direction on the accumulator 12 side.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 branches into a refrigerant pipe 13J and a refrigerant pipe 13F before the outdoor expansion valve 6 (the refrigerant upstream side), and one of the branched refrigerant pipes 13J is an outdoor expansion valve.
  • the refrigerant pipe 13F is connected to a connection portion between the refrigerant pipe 13A and the refrigerant pipe 13B located on the refrigerant downstream side of the check valve 18 via an electromagnetic valve 22 that is opened during dehumidification.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. 18 will be bypassed.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG.
  • 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is air inside the vehicle compartment and the outside air (outside air introduction) which is outside the vehicle compartment. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26. Further, the air (inside air and outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated into the air flow passage 3 on the air upstream side of the radiator 4. An air mix damper 28 that adjusts the rate of ventilation through the vessel 4 is provided.
  • a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is air inside the vehicle compartment and the outside air (outside air introduction) which is outside the vehicle compartment.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the
  • FOOT foot
  • VENT vent
  • DEF def outlets
  • the air outlet 29 is provided with an air outlet switching damper 31 for switching and controlling the air blowing from the air outlets.
  • the vehicle air conditioner 1 of the present invention heats the battery 55 by circulating a heat medium to the battery 55 (heat generating device), collects waste heat of the battery 55, or cools the battery 55.
  • a heat medium circulating device 61 is provided.
  • the heat medium circulation device 61 of the embodiment includes a circulation pump 62 as a circulation device for circulating the heat medium through the battery 55, a heat medium heater 66 as a heating device, a refrigerant-heat medium heat exchanger 64, A three-way valve 23 as a flow path switching device is provided, and these and a battery 55 are connected in a ring shape by a heat medium pipe 68.
  • the heat medium heater 66 is connected to the discharge side of the circulation pump 62
  • the inlet of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is connected to the outlet of the heat medium heater 66
  • the inlet of the three-way valve 23 is connected to the outlet of the heat medium flow path 64A.
  • An inlet of the battery 55 is connected to one outlet of the three-way valve 23, and a bypass circuit 67 for circulating the heat medium is connected to the other outlet without flowing to the battery 55.
  • the junction of the outlet of the bypass circuit 67 and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
  • the heat medium used in the heat medium circulation device 61 for example, water, a refrigerant such as HFO-1234f, a liquid such as a coolant, or a gas such as air can be employed. In the embodiment, water is used as the heat medium.
  • the heat medium heater 66 is composed of an electric heater such as a PTC heater.
  • a jacket structure is provided around the battery 55 so that the heat medium can circulate with the battery 55 in a heat exchange relationship.
  • the circulation pump 62 When the circulation pump 62 is operated, the heat medium discharged from the circulation pump 62 reaches the heat medium heater 66. If the heat medium heater 66 generates heat, it is heated there, and then It flows into the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64. The heat medium that has exited the heat medium flow path 64 ⁇ / b> A of the refrigerant-heat medium heat exchanger 64 reaches the three-way valve 23.
  • the heat medium When the inlet and the outlet of the three-way valve 23 are in communication with each other, the heat medium reaches the battery 55 from the three-way valve 23, and the heat medium exchanges heat with the battery 55 and is then sucked into the circulation pump 62. .
  • the heat medium flows from the three-way valve 23 to the bypass circuit 67 and is sucked into the circulation pump 62 without flowing to the battery 55. In this way, the heat medium is circulated in the heat medium pipe 68.
  • one end of a branch pipe 72 is connected to the refrigerant downstream side of the solenoid valve 22 of the refrigerant pipe 13F of the refrigerant circuit R.
  • the branch pipe 72 is provided with an auxiliary expansion valve 73 composed of an electric valve (electronic expansion valve).
  • the auxiliary expansion valve 73 decompresses and expands the refrigerant flowing into a refrigerant flow path 64B (described later) of the refrigerant-heat medium heat exchanger 64 and can be fully closed.
  • the other end of the branch pipe 72 is connected to the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 74 is connected to the outlet of the refrigerant flow path 64B.
  • the other end is connected to the refrigerant pipe 13 ⁇ / b> C in front of the accumulator 12 (upstream of the refrigerant) and downstream of the check valve 20.
  • the auxiliary expansion valve 73 and the like also constitute part of the refrigerant circuit R and at the same time constitute part of the heat medium circulation device 61.
  • the refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and then is sucked into the compressor 2 through the accumulator 12.
  • 32 is a controller (ECU) as a control device.
  • the controller 32 includes a microcomputer as an example of a computer having a processor, and inputs include an outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle and an outside air humidity sensor that detects the outside air humidity.
  • an HVAC suction temperature sensor 36 for detecting the temperature of the air sucked into the air flow passage 3 from the suction port 25
  • an inside air temperature sensor 37 for detecting the temperature of the air (inside air) in the passenger compartment, and the air in the passenger compartment
  • Inside air humidity sensor 38 that detects humidity and indoor CO that detects the carbon dioxide concentration in the passenger compartment 2 From concentration sensor 39 and air outlet 29
  • a discharge temperature sensor 41 for detecting the temperature of the air blown into the passenger compartment, a discharge pressure sensor 42 for detecting the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, and a discharge for detecting the discharge refrigerant temperature of the compressor 2
  • a radiator temperature sensor 46 that detects the refrigerant pressure
  • a radiator pressure sensor 47 that detects the ref
  • the pressure of the refrigerant immediately after leaving the heat sink 9 For example, a photosensor-type solar sensor 51 for detecting the amount of solar radiation into the vehicle interior, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and setting.
  • An air conditioning operation unit 53 air conditioner operation unit for setting the temperature and switching of the air conditioning operation, and the temperature of the outdoor heat exchanger 7 (the temperature of the refrigerant immediately after coming out of the outdoor heat exchanger 7, or the outdoor heat exchanger Temperature of the outdoor unit 7: outdoor heat exchanger temperature TXO.
  • the outdoor heat exchanger 7 functions as an evaporator, the outdoor heat exchanger temperature TXO becomes the refrigerant evaporation temperature in the outdoor heat exchanger 7).
  • a first outlet temperature sensor 78 that detects the temperature of the heat medium on the outlet side of the heat medium flow path 64A of the heat medium heat exchanger 64 (outlet heat medium temperature Tout), and the temperature of the refrigerant that has exited the refrigerant flow path 64B.
  • Each output of the second outlet temperature sensor 79 to be detected is also connected.
  • the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion.
  • the solenoid valve 22, the indoor expansion valve 8, the solenoid valve 22 (dehumidification), the solenoid valve 21 (heating), the three-way valve 23, the circulation pump 62, the heat medium heater 66, and the auxiliary expansion valve 73 are connected. Yes. And the controller 32 controls these based on the output of each sensor and the setting input in the air-conditioning operation part 53. FIG. Next, the operation of the vehicle air conditioner 1 having the above-described configuration will be described. In the embodiment, the controller 32 switches between the air-conditioning operation of the heating operation, the dehumidifying heating operation, the internal cycle operation, the dehumidifying cooling operation, and the cooling operation, and performs the heating auxiliary operation using the heat medium heater 66. Do.
  • FIG. 3 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the heating operation.
  • the outdoor expansion valve 6 is opened to perform a decompression control of the refrigerant, and the electromagnetic valve 22 (for dehumidification) is closed.
  • the control of the auxiliary expansion valve 73 during the heating operation will be described in detail later.
  • the compressor 2 and each air blower 15 and 27 are drive
  • the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipes 13E and 13J.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat absorption).
  • the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 reaches the refrigerant pipe 13C through the refrigerant pipe 13A, the refrigerant pipe 13D, and the electromagnetic valve 21, enters the accumulator 12 through the check valve 20, and is separated into gas and liquid there. Thereafter, the circulation in which the gas refrigerant is sucked into the compressor 2 is repeated. Since the air heated by the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.
  • the controller 32 calculates a target radiator pressure PCO (a target value of the pressure PCI of the radiator 4) from a target heater temperature TCO (a target value of the temperature TH of the air that has passed through the radiator 4) calculated from a target outlet temperature TAO described later.
  • the number of revolutions of the compressor 2 is controlled based on this target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the valve opening degree of the outdoor expansion valve 6 is controlled based on the temperature of the radiator 4 (the radiator temperature TCI) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47, The degree of supercooling of the refrigerant at the outlet of the vessel 4 is controlled.
  • the auxiliary expansion valve 73 is fully closed (fully closed position).
  • the indoor expansion valve 8 is also opened to control the decompression of the refrigerant.
  • a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is divided, and the divided refrigerant flows into the refrigerant pipe 13F through the electromagnetic valve 22, and flows from the refrigerant pipe 13B to the indoor expansion valve 8.
  • the remaining refrigerant flows into the outdoor expansion valve 6. That is, a part of the divided refrigerant is decompressed by the indoor expansion valve 8 and then flows into the heat absorber 9 to evaporate.
  • the controller 32 controls the opening degree of the indoor expansion valve 8 so that the degree of superheat (SH) of the refrigerant at the outlet of the heat absorber 9 is maintained at a predetermined value. Since moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, the air is cooled and dehumidified. The remaining refrigerant that is divided and flows into the refrigerant pipe 13J is depressurized by the outdoor expansion valve 6 and then evaporated by the outdoor heat exchanger 7.
  • the refrigerant evaporated in the heat absorber 9 is discharged to the refrigerant pipe 13C and merged with the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then sucked into the compressor 2 through the check valve 20 and the accumulator 12. Repeat the cycle. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the controller 32 controls the rotational speed of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the valve opening degree of the outdoor expansion valve 6 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • (3) Internal cycle operation Next, the internal cycle operation will be described with reference to FIG. FIG. 5 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the internal cycle operation.
  • the controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating operation state (fully closed position).
  • the solenoid valve 21 is kept open, and the refrigerant outlet of the outdoor heat exchanger 7 is communicated with the refrigerant suction side of the compressor 2.
  • this internal cycle operation is a state in which the outdoor expansion valve 6 is fully closed by the control of the outdoor expansion valve 6 in the dehumidifying and heating operation
  • this internal cycle operation can also be regarded as a part of the dehumidifying and heating operation.
  • the condensed refrigerant flowing through the refrigerant pipe 13 ⁇ / b> E via the radiator 4 passes through the electromagnetic valve 22 and becomes refrigerant. All flows into the pipe 13F.
  • the refrigerant flowing through the refrigerant pipe 13F reaches the indoor expansion valve 8 through the refrigerant pipe 13B.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13 ⁇ / b> C and repeats circulation that is sucked into the compressor 2 through the check valve 20 and the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed.
  • Ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than the dehumidifying and heating operation, but the heating capacity is lowered.
  • the outdoor expansion valve 6 is closed, the electromagnetic valve 21 is open, and the refrigerant outlet of the outdoor heat exchanger 7 communicates with the refrigerant suction side of the compressor 2, so that the liquid in the outdoor heat exchanger 7 is
  • the refrigerant flows out through the refrigerant pipe 13D and the electromagnetic valve 21 to the refrigerant pipe 13C, is collected by the accumulator 12, and the outdoor heat exchanger 7 is in a gas refrigerant state.
  • the controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the above-described radiator pressure PCI (high pressure of the refrigerant circuit R). At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the radiator pressure PCI. (4) Dehumidifying and cooling operation Next, the dehumidifying and cooling operation will be described with reference to FIG. FIG. 6 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the dehumidifying and cooling operation.
  • the controller 32 opens the outdoor expansion valve 6 and the indoor expansion valve 8 to perform the decompression control of the refrigerant, and closes the electromagnetic valve 21. Further, the electromagnetic valve 22 is closed. And the compressor 2 and each air blower 15 and 27 are drive
  • the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the check valve 20 through the refrigerant pipe 13 ⁇ / b> C, and then repeats the circulation sucked into the compressor 2 through the accumulator 12.
  • Air that has been cooled and dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 (reheating: lower heat dissipation capacity than during heating), so that dehumidification and cooling of the passenger compartment is performed. become.
  • the controller 32 sets the heat absorber temperature Te to the target heat absorber temperature TEO based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value. While controlling the rotation speed of the compressor 2, the target radiator pressure PCO (radiator pressure PCI) calculated from the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target heater temperature TCO.
  • the required reheat amount by the radiator 4 is obtained by controlling the valve opening degree of the outdoor expansion valve 6 so that the radiator pressure PCI becomes the target radiator pressure PCO.
  • (5) Cooling operation Next, the cooling operation will be described with reference to FIG. FIG. 7 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the cooling operation.
  • the controller 32 fully opens the outdoor expansion valve 6 in the state of the dehumidifying and cooling operation (fully opened position).
  • the air mix damper 28 is in a state of adjusting the ratio of air passing through the radiator 4. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is ventilated to the radiator 4, the ratio is small (because of only reheating during cooling), so this almost passes through, and the refrigerant exiting the radiator 4 is The refrigerant reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant passes through the refrigerant pipe 13J and flows into the outdoor heat exchanger 7 as it is, where it is cooled by running or by outside air ventilated by the outdoor blower 15. Condensed liquid.
  • the refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8.
  • the refrigerant After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, and the air is cooled.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 from the check valve 20 through the refrigerant pipe 13C, and repeats circulation that is sucked into the compressor 2 there through.
  • the air cooled and dehumidified by the heat absorber 9 is blown out from the outlet 29 into the vehicle interior, thereby cooling the vehicle interior.
  • the controller 32 controls the rotational speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
  • (6) Switching air conditioning operation The controller 32 calculates the target blowing temperature TAO described above from the following formula (I).
  • This target blowing temperature TAO is a target value of the temperature of the air blown out from the blowout port 29 into the vehicle interior.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) ..
  • Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53
  • Tin is the temperature of the passenger compartment air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
  • the controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of activation.
  • the air conditioning operations are selected and switched in accordance with changes in the environment and setting conditions such as the outside air temperature Tam and the target blowing temperature TAO.
  • Control of heat medium circulation device 61 Next, the control of the heat medium circulating device 61 executed by the controller 32 will be described with reference to FIGS. As described above, the charge / discharge performance of the battery 55 is lowered under a low temperature environment. Further, when the battery 55 is charged / discharged in an environment where the battery 55 is at a high temperature due to self-heating or the like, deterioration proceeds.
  • the controller 32 basically controls the heat medium circulating device 61 to set the battery temperature Tb to a predetermined value based on the temperature (battery temperature Tb) of the battery 55 (heat generating device) detected by the battery temperature sensor 76.
  • the heat medium heater 61 is provided in the heat medium circulation device 61.
  • the heat medium circulation device 61 is provided within the use temperature range of the use lower limit temperature BL (for example, 0 ° C.) or more and the use upper limit temperature BH (for example, + 40 ° C.) or less. Therefore, in a situation where the heating capability of the radiator 4 is insufficient at a low outside air temperature or the like, the heating medium heater 66 is used to assist the heating of the vehicle interior.
  • the controller 32 may 22 is opened, the auxiliary expansion valve 73 is opened, and the refrigerant pressure reduction control is performed.
  • a part of the refrigerant flowing out of the radiator 4 and flowing through the refrigerant circuit 13E is diverted to the refrigerant pipe 13F as shown by a solid line arrow in FIG. 8, and the remaining refrigerant is decompressed by the outdoor expansion valve 6 to perform outdoor heat exchange. It flows into the vessel 7 and evaporates to absorb heat from the outside air.
  • the refrigerant divided into the refrigerant pipe 13F is decompressed by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, where it evaporates.
  • the refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and then is sucked into the compressor 2 through the accumulator 12.
  • the controller 32 first operates the circulation pump 62 of the heat medium circulation device 61 in a state where the inlet and the one outlet of the three-way valve 23 are in communication with each other.
  • the battery temperature Tb detected by the battery temperature sensor 76 is equal to or higher than the use lower limit temperature TL (TL ⁇ Tb)
  • a criterion for determining whether or not the waste heat of the battery 55 can be recovered to the refrigerant circuit R side When the temperature of the heat medium on the outlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 (exit heat medium temperature Tout) is not more than a predetermined value Tout1 (for example, about + 10 ° C.) (Tb ⁇ Tout1) ), The controller 32 switches the three-way valve 23 to a state where the inlet and the other outlet communicate with each other.
  • the heat medium in the heat medium circulation device 61 flows to the bypass circuit 67 without passing through the battery 55 as shown by the broken line arrow in FIG.
  • the controller 32 energizes the heat medium heater 66 to generate heat (ON).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium heater 66, and after being heated by the heat medium heater 66, flows into the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64, and flows into the refrigerant flow path. Heat is exchanged with the refrigerant in the refrigerant circuit R flowing through 64B.
  • the refrigerant evaporating in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 pumps up the heat of the heat medium heated by the heat medium heater 66.
  • the heat generated by the heat medium heater 66 is generated.
  • the amount is transferred to the radiator 4 and added to the amount of heat pumped up from the outside air by the outdoor heat exchanger 7 to supplement the heating capacity of the passenger compartment.
  • the controller 32 controls energization of the heat medium heater 66 using the following formula (IV) based on, for example, the difference (Qtgt ⁇ Qhp) between the required heating capacity Qtgt and the heating capacity Qhp.
  • Qech Qtgt ⁇ Qhp (IV)
  • Qech is the required capacity (heat generation amount) of the heat medium heater 66. This assists (complements) the shortage of the heating capacity Qhp to the required heating capacity Qtgt, comfortably heats the vehicle interior, and suppresses frost formation on the outdoor heat exchanger 7.
  • the three-way valve 23 communicates the inlet and the other outlet to flow the heat medium to the bypass circuit 67, and no heat medium flows to the battery 55, so the heat medium flow of the refrigerant-heat medium heat exchanger 64 It is also avoided that the heat medium exiting the path 64A is absorbed by the battery 55 and the temperature of the heat medium is lowered.
  • the refrigerant discharged from the compressor 2 is radiated by the radiator 4, and the radiated refrigerant is decompressed and then absorbed by the outdoor heat exchanger 7 and the refrigerant-heat medium heat exchanger 64 to heat the heat medium.
  • the battery temperature Tb is low, but when the temperature is equal to or higher than the lower limit temperature TL (TL ⁇ Tb) and the battery 55 does not need to be heated, the three-way valve 23
  • the heat medium heated by the heat medium heater 66 decreases in temperature due to heat exchange with the battery 55.
  • the controller 32 determines that it is not necessary to heat the battery 55 when the temperature of the battery 55 (battery temperature Tb) is equal to or higher than the use lower limit temperature TL.
  • the three-way valve 23 can be switched and controlled by accurately determining that it is not necessary. (7-2) Battery waste heat recovery operation
  • the battery temperature Tb is increased by charge / discharge, for example (assuming that it is higher than the lower limit use temperature TL).
  • FIG. 9 is a diagram for explaining the battery waste heat recovery operation.
  • the controller 32 switches the three-way valve 23 to a state where the inlet and one outlet are in communication. Then, the circulation pump 62 is operated.
  • the controller 32 opens the electromagnetic valve 22 and opens the auxiliary expansion valve 73 in the same manner as in the above-described heating assist operation, so that the decompression control of the refrigerant is performed.
  • a part of the refrigerant flowing out of the radiator 4 and flowing through the refrigerant circuit 13E is diverted to the refrigerant pipe 13F as shown by a solid line arrow in FIG. 9, and the remaining refrigerant is decompressed by the outdoor expansion valve 6 to exchange the heat outdoors. It flows into the vessel 7 and evaporates to absorb heat from the outside air.
  • the refrigerant branched into the refrigerant pipe 13F is decompressed by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, where it evaporates.
  • the refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and then is sucked into the compressor 2 through the accumulator 12.
  • the heat medium in the heat medium circulation device 61 flows to the battery 55 instead of the bypass circuit 67 as shown by the broken line arrow in FIG.
  • the controller 32 energizes the heat medium heater 66 to generate heat (ON).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium heater 66, is heated by the heat medium heater 66, and then flows into the heat medium flow path 64 ⁇ / b> A of the refrigerant-heat medium heat exchanger 64.
  • the heat medium flowing out of the heat medium flow path 64A flows through the three-way valve 23 to the battery 55 to exchange heat, absorbs heat from the battery 55, and the battery 55 is cooled by the heat medium. .
  • the controller 32 controls energization of the heat medium heater 66 using, for example, the following equation (V).
  • the waste heat of the battery 55 is also transferred to the refrigerant-heat medium heat exchanger 64 by the heat medium, and is pumped up by the refrigerant to contribute to the heating of the vehicle interior. Reduces waste heat and saves energy.
  • the controller 32 represents the equation (V ), The energization of the heat medium heater 66 is stopped (OFF). In other words, only the waste heat of the battery 55 is used to assist heating with the radiator 4 to achieve the most energy saving state.
  • the controller 32 radiates the refrigerant discharged from the compressor 2 with the radiator 4, decompresses the radiated refrigerant, and then heats the outdoor heat.
  • the heat is absorbed by the exchanger 7 and the refrigerant-heat medium heat exchanger 64 and the heat medium is caused to flow to the battery 55 by the three-way valve 23. Therefore, the waste heat of the battery 55 is effectively used and the vehicle interior is efficiently Heating can be performed, the temperature rise of the battery 55 beyond that can be suppressed, and frost formation on the outdoor heat exchanger can also be suppressed.
  • the controller 32 uses the heat at the outlet side of the heat medium flow path 64B of the refrigerant-heat medium heat exchanger 64 as a criterion for determining whether or not the battery temperature Tb is recoverable from the battery 55.
  • the temperature of the medium (outlet heat medium temperature Tout) is higher than the predetermined value Tout1
  • Tout1 the predetermined value
  • the controller 32 again returns to the heating auxiliary operation in which the heat medium heater 66 is energized by the above formula (IV) or the heating operation in FIG.
  • the battery heating operation performed by the controller 32 will be described.
  • the controller 32 determines that the battery 55 needs to be heated, and sets the three-way valve 23 at its inlet and one side.
  • the outlet is in a state of communication (for example, when the inlet and the other outlet are in communication in the heating assist operation, the inlet is switched to a state of communication with one of the outlets).
  • the circulation pump 62 is operated.
  • the heat medium in the heat medium circulation device 61 flows to the battery 55 instead of the bypass circuit 67 as shown by the broken line arrow in FIG. Will come to be.
  • the controller 32 energizes the heat medium heater 66 to generate heat (ON).
  • the heat medium discharged from the circulation pump 62 reaches the heat medium heater 66, is heated by the heat medium heater 66, and then flows into the heat medium flow path 64 ⁇ / b> A of the refrigerant-heat medium heat exchanger 64.
  • the heat medium that has flowed out of the heat medium flow path 64 ⁇ / b> A flows through the three-way valve 23 to the battery 55 to exchange heat, thereby heating the battery 55.
  • the controller 32 controls the energization of the heat medium heater 66 using, for example, the following formula (VI).
  • the energization of the heat medium heater 66 is controlled so as to generate a heat amount for raising the temperature of the heat medium to the lower limit temperature TL.
  • the controller 32 controls energization of the heat medium heater 66 using the following formula (VII), not the above formula (VI).
  • k1 is the specific heat [kj / kg ⁇ K] of the heat medium circulating in the heat medium circulating device 61
  • k2 is the flow rate of the heat medium [m. 3 / H]. That is, the heat generation amount is generated only for heating the battery 55.
  • the controller 32 heats the heat medium by the heat medium heater 66 and causes the heat medium to flow to the battery 55 by the three-way valve 23. It becomes possible to heat the battery 55 with the heat medium heated by the heater 66 until it reaches the use lower limit temperature TL or higher without any trouble.
  • the controller 32 determines that the battery 55 needs to be heated when the temperature of the battery 55 is lower than the use lower limit temperature TL.
  • the three-way valve 23 can be switched and controlled.
  • the controller 32 ends the battery heating operation and returns to the other operation (heating operation, auxiliary heating operation, etc.) described above, or heat medium heater The energization of 66 and the operation of the compressor 2 and the circulation pump 62 are stopped.
  • the controller 32 stops heating of the heat medium by the heat medium heater 66 (OFF), and switches the three-way valve 23 to a state where the inlet and one outlet communicate with each other to operate the circulation pump 62.
  • the refrigerant discharged from the compressor 2 radiates heat by the radiator 4, and all the refrigerant radiated by the radiator 4 is decompressed by the auxiliary expansion valve 73, and the refrigerant flow path of the refrigerant-heat medium heat exchanger 64 It flows into 64B and evaporates.
  • the heat medium discharged from the circulation pump 62 passes through the heat medium heater 66 without being heated by the heat medium heater 66 and flows into the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64, where it is absorbed by the refrigerant and cooled. After that, it flows to the battery 55 through the three-way valve 23, and cools by absorbing heat from the battery 55.
  • the controller 32 uses, for example, the following equation (VIII) to calculate the heat medium circulating device 61 based on the temperature of the battery 55 (battery temperature Tb) detected by the battery temperature sensor 76 and the above-described upper limit temperature TH.
  • the required battery cooling capacity Qbat which is the cooling capacity of the battery 55 required for the above, is calculated.
  • the controller 32 radiates the refrigerant discharged from the compressor 2 by the radiator 4 and decompresses the radiated refrigerant, and then the refrigerant-heat medium heat exchanger. 64, the heating of the heat medium by the heat medium heater 66 is stopped, and the heat medium is caused to flow to the battery 55 by the three-way valve 23.
  • the battery 55 can be cooled without any trouble by the heat medium. Also in this case, in the embodiment, since the controller 32 determines that the battery 55 needs to be cooled when the battery temperature Tb is higher than the upper limit temperature TH, the battery 55 needs to be cooled. Can be determined accurately.
  • the heat medium circulating device 61 is caused to circulate the heat medium without flowing to the battery 55, and the heat medium is made to flow to the battery 55 or to the bypass circuit 67.
  • the three-way valve 23 causes the heat medium of the heat medium circulation device 61 to flow to the heat medium heater 66, the refrigerant-heat medium heat exchanger 64, and the battery 55. And switching to a state in which the heat medium flows to the heat medium heater 66, the refrigerant-heat medium heat exchanger 64 and the bypass circuit 67 without flowing to the battery 55, without being affected by the temperature of the battery 55, Efficient air conditioning operation can be realized.
  • the controller 32 controls the three-way valve 23 based on the battery temperature Tb, the three-way valve 23 can be appropriately switched and controlled according to the temperature state of the battery 55.
  • the configuration of the refrigerant circuit R and the heat medium circulating device 61 described in the above embodiment, the numerical values such as the temperatures, and the control factors are not limited thereto and can be changed without departing from the spirit of the present invention. Needless to say.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Provided is a vehicle air-conditioning device with which it is possible to achieve efficient air-conditioning operation without being affected by the temperature of heat-generating devices mounted to the vehicle. The vehicle air-conditioning device comprises: a compressor 2; a heat sink 4; an outdoor heat exchanger 7; a heating medium circulating device 61 which circulates a heating medium to a battery 55 (heat-generating device) mounted to a vehicle; and a controller. The heating medium circulating device comprises: a refrigerant-heating medium heat exchanger 64 for performing heat exchange between a refrigerant and a heating medium; a heating medium heater 66 for heating the heating medium; a bypass circuit 67 for circulating the heating medium without flowing to the battery; and a three-way valve 23 for switching between having the heating medium flow to the battery and having the heating medium flow to the bypass circuit.

Description

車両用空気調和装置Air conditioner for vehicles
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にハイブリッド自動車や電気自動車に好適な車両用空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and more particularly to a vehicle air conditioner suitable for a hybrid vehicle or an electric vehicle.
 近年の環境問題の顕在化から、バッテリから供給される電力で走行用モータを駆動するハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室内側に設けられて冷媒を吸熱させる吸熱器と、車室外側に設けられて外気が通風されると共に、冷媒を吸熱又は放熱させる室外熱交換器が接続された冷媒回路を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モード(暖房運転)と、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モード(冷房運転)を切り換えて実行するものが開発されている(例えば、特許文献1参照)。
 一方、車両に搭載されたバッテリは低温環境下では充放電性能が低下する。また、自己発熱等で高温となった環境下で充放電を行うと、劣化が進行し、やがては作動不良を起こして破損する危険性がある。そこで、冷却水(熱媒体)をバッテリに循環させる低水温ループ(熱媒体循環装置)を設け、チラー(冷媒−熱媒体熱交換器)で冷媒回路を循環する冷媒と冷却水(熱媒体)とを熱交換させ、また、温水ヒータ(加熱装置)によって冷却水(熱媒体)を加熱することでバッテリの温度を調整し、更に、バッテリの廃熱や温水ヒータ(加熱装置)による加熱で暖房補助を行うことができるようにしたものも開発されている(例えば、特許文献2参照)。
With the recent emergence of environmental problems, hybrid vehicles and electric vehicles that drive a traction motor with electric power supplied from a battery have become widespread. As an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, a radiator that is provided on the vehicle interior side and dissipates the refrigerant, and is provided on the vehicle interior side. A heat sink that absorbs the refrigerant and a refrigerant circuit that is provided outside the passenger compartment and vents the outside air and that is connected to an outdoor heat exchanger that absorbs or dissipates the refrigerant, and dissipates the refrigerant discharged from the compressor. A heating mode (heating operation) in which heat is radiated in the radiator, and the refrigerant radiated in the radiator is absorbed in the outdoor heat exchanger, and cooling in which the refrigerant discharged from the compressor is radiated in the outdoor heat exchanger and absorbed in the heat absorber One that switches and executes a mode (cooling operation) has been developed (see, for example, Patent Document 1).
On the other hand, the charge / discharge performance of the battery mounted on the vehicle is lowered in a low temperature environment. In addition, when charging / discharging is performed in an environment where the temperature is high due to self-heating or the like, the deterioration proceeds, and there is a risk of causing malfunction and eventually damaging. Therefore, a low water temperature loop (heat medium circulation device) that circulates cooling water (heat medium) to the battery is provided, and refrigerant and cooling water (heat medium) that circulate in the refrigerant circuit in a chiller (refrigerant-heat medium heat exchanger) The temperature of the battery is adjusted by heating the cooling water (heating medium) with a hot water heater (heating device), and further heating assistance with waste heat from the battery or heating with the hot water heater (heating device) A device that can perform the above has also been developed (see, for example, Patent Document 2).
特開2014−213765号公報JP 2014-213765 A 特許第5860360号公報Japanese Patent No. 5860360
 しかしながら、上記特許文献2のような加熱装置(温水ヒータ)による加熱で暖房補助を行う暖房補助運転を実行する際、バッテリの温度は使用下限温度以上であるが、冷媒−熱媒体熱交換器(チラー)で冷媒の加熱に必要な熱媒体(冷却水)の温度よりバッテリの温度が低い状況では、バッテリが暖まるまで、このバッテリの熱容量分、加熱装置(温水ヒータ)の発熱量が奪われることになり、無駄な電力が消費されると云う欠点があった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、バッテリ等の車両に搭載された発熱機器の温度に影響されること無く、効率的な空調運転を実現することができる車両用空気調和装置を提供することを目的とする。
However, when performing a heating assist operation in which heating assist is performed by heating with a heating device (hot water heater) as in Patent Document 2, the temperature of the battery is equal to or higher than the lower limit temperature of use, but a refrigerant-heat medium heat exchanger ( In a situation where the temperature of the battery is lower than the temperature of the heat medium (cooling water) necessary for heating the refrigerant in the chiller), the heating capacity of the heating device (hot water heater) is deprived until the battery warms up. As a result, there is a drawback that wasteful power is consumed.
The present invention has been made to solve the conventional technical problem, and realizes an efficient air-conditioning operation without being affected by the temperature of a heating device mounted on a vehicle such as a battery. An object of the present invention is to provide an air conditioner for a vehicle that can perform the above.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させるための室外熱交換器と、車両に搭載された発熱機器に熱媒体を循環させる熱媒体循環装置と、制御装置を備え、車室内を空調するものであって、熱媒体循環装置は、冷媒と熱媒体とを熱交換させるための冷媒−熱媒体熱交換器と、熱媒体を加熱するための加熱装置と、発熱機器に流すこと無く、熱媒体を循環させるためのバイパス回路と、発熱機器に熱媒体を流すか、バイパス回路に熱媒体を流すかを切り換えるための流路切換装置を備えたことを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、発熱機器の温度に基づき、流路切換装置を制御することを特徴とする。
 請求項3の発明の車両用空気調和装置は、上記各発明において制御装置は、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器と冷媒−熱媒体熱交換器にて吸熱させ、加熱装置により熱媒体を加熱すると共に、発熱機器を加熱する必要が無い場合、流路切換装置によりバイパス回路に熱媒体を流すことを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記発明において制御装置は、発熱機器の温度が所定の使用下限温度以上である場合、当該発熱機器を加熱する必要が無いと判断することを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記各発明において制御装置は、発熱機器の廃熱を回収することができる場合、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器と冷媒−熱媒体熱交換器にて吸熱させると共に、流路切換装置により発熱機器に熱媒体を流すことを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記発明において制御装置は、発熱機器の温度が、当該発熱機器の廃熱を回収可能か否かの判断基準となる冷媒−熱媒体熱交換器の出口側の熱媒体の温度の所定値より高い場合、発熱機器の廃熱を回収することができると判断することを特徴とする。
 請求項7の発明の車両用空気調和装置は、上記各発明において制御装置は、発熱機器を加熱する必要がある場合、加熱装置により熱媒体を加熱すると共に、流路切換装置により発熱機器に熱媒体を流すことを特徴とする。
 請求項8の発明の車両用空気調和装置は、上記発明において制御装置は、発熱機器の温度が所定の使用下限温度より低い場合、当該発熱機器を加熱する必要があると判断することを特徴とする。
 請求項9の発明の車両用空気調和装置は、上記各発明において制御装置は、発熱機器を冷却する必要がある場合、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、冷媒−熱媒体熱交換器にて吸熱させると共に、加熱装置による熱媒体の加熱を停止し、流路切換装置により発熱機器に熱媒体を流すことを特徴とする。
 請求項10の発明の車両用空気調和装置は、上記発明において制御装置は、発熱機器の温度が所定の使用上限温度より高い場合、当該発熱機器を冷却する必要があると判断することを特徴とする。
The vehicle air conditioner of the present invention heats the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air that dissipates the refrigerant and is supplied from the air flow passage to the vehicle interior. A heat sink, an outdoor heat exchanger that is provided outside the vehicle cabin to absorb the refrigerant, a heat medium circulation device that circulates the heat medium to a heat generating device mounted on the vehicle, and a control device. The heat medium circulation device flows through a refrigerant-heat medium heat exchanger for exchanging heat between the refrigerant and the heat medium, a heating device for heating the heat medium, and a heat generating device. And a flow path switching device for switching between a bypass circuit for circulating the heat medium and a flow of heat medium to the heat generating device or a flow of heat medium to the bypass circuit.
The vehicle air conditioner according to a second aspect of the present invention is characterized in that, in the above invention, the control device controls the flow path switching device based on the temperature of the heat generating device.
According to a third aspect of the present invention, there is provided the vehicle air conditioner according to the first aspect, wherein the control device causes the refrigerant discharged from the compressor to dissipate heat with a radiator, depressurizes the radiated refrigerant, and the outdoor heat exchanger. When the heat medium is absorbed by the refrigerant-heat medium heat exchanger, the heat medium is heated by the heating device, and the heating device does not need to be heated, the heat medium is caused to flow through the bypass circuit by the flow path switching device.
The vehicle air conditioner according to a fourth aspect of the present invention is characterized in that, in the above invention, the control device determines that it is not necessary to heat the heat generating device when the temperature of the heat generating device is equal to or higher than a predetermined lower limit temperature. And
According to a fifth aspect of the present invention, there is provided a vehicular air conditioner, wherein, in each of the above-described inventions, when the control device can recover the waste heat of the heat generating device, the refrigerant discharged from the compressor is dissipated by the heat radiator. After reducing the pressure of the refrigerant, heat is absorbed by the outdoor heat exchanger and the refrigerant-heat medium heat exchanger, and the heat medium is caused to flow to the heat generating device by the flow path switching device.
According to a sixth aspect of the present invention, there is provided the vehicle air conditioner according to the first aspect, wherein the control device is a refrigerant-heat-medium heat exchanger that determines whether or not the temperature of the heat generating device can recover waste heat of the heat generating device. When the temperature of the heat medium on the outlet side of the heater is higher than a predetermined value, it is determined that the waste heat of the heat generating device can be recovered.
According to a seventh aspect of the present invention, in the air conditioning apparatus for a vehicle according to each of the above aspects, the control device heats the heat medium by the heating device and heats the heat generating device by the flow path switching device when the heat generating device needs to be heated. It is characterized by flowing a medium.
The vehicle air conditioner according to claim 8 is characterized in that, in the above invention, the control device determines that the heat generating device needs to be heated when the temperature of the heat generating device is lower than a predetermined use lower limit temperature. To do.
According to a ninth aspect of the present invention, there is provided an air conditioning apparatus for a vehicle according to the present invention, wherein the control device causes the refrigerant discharged from the compressor to dissipate heat with a radiator when it is necessary to cool the heat generating device, and the heat dissipated. After the pressure is reduced, heat is absorbed by the refrigerant-heat medium heat exchanger, heating of the heat medium by the heating device is stopped, and the heat medium is caused to flow to the heat generating device by the flow path switching device.
The vehicle air conditioner according to claim 10 is characterized in that, in the above invention, the control device determines that the heat generating device needs to be cooled when the temperature of the heat generating device is higher than a predetermined use upper limit temperature. To do.
 本発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられて冷媒を吸熱させるための室外熱交換器と、車両に搭載された発熱機器に熱媒体を循環させる熱媒体循環装置と、制御装置を備え、車室内を空調する車両用空気調和装置において、熱媒体循環装置に、冷媒と熱媒体とを熱交換させるための冷媒−熱媒体熱交換器と、熱媒体を加熱するための加熱装置と、発熱機器に流すこと無く、熱媒体を循環させるためのバイパス回路と、発熱機器に熱媒体を流すか、バイパス回路に熱媒体を流すかを切り換えるための流路切換装置を設けたので、この流路切換装置により、熱媒体循環装置の熱媒体を加熱装置、冷媒−熱媒体熱交換器及び発熱機器に流す状態と、発熱機器に流すこと無く、熱媒体を加熱装置、冷媒−熱媒体熱交換器及びバイパス回路に流す状態とに切り換えることで、発熱機器の温度に影響されること無く、効率的な空調運転を実現することが可能となる。
 この場合、請求項2の発明の如く発熱機器の温度に基づいて制御装置により流路切換装置を制御するようにすれば、発熱機器の温度の状況によって適切に流路切換装置を制御することができるようになる。
 例えば、請求項3の発明の如く制御装置が、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器と冷媒−熱媒体熱交換器にて吸熱させ、加熱装置により熱媒体を加熱する暖房補助を行う際に、発熱機器を加熱する必要が無いものの、当該発熱機器の温度が低い状況では、流路切換装置によりバイパス回路に熱媒体を流すようにすることで、加熱装置で加熱された熱媒体が発熱機器との熱交換で温度が低下してしまう不都合を解消することができるようになる。即ち、加熱装置による暖房補助を行う際、発熱機器の温度は低いが、加熱する必要は無い状況において、発熱機器の熱容量分の無駄な電力が加熱装置で消費される不都合を未然に回避し、効率的な暖房補助による空調運転を実現することができるようになるものである。
 この場合、例えば請求項4の発明の如く制御装置が、発熱機器の温度が所定の使用下限温度以上である場合、当該発熱機器を加熱する必要が無いと判断することで、発熱機器を加熱する必要が無いことを的確に判断して流路切換装置を制御することができるようになる。
 また、請求項5の発明の如く制御装置が、発熱機器の廃熱を回収することができる場合、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器と冷媒−熱媒体熱交換器にて吸熱させると共に、流路切換装置により発熱機器に熱媒体を流すようにすることで、発熱機器の廃熱を有効に利用して効率良く車室内の暖房空調を行うことができるようになると共に、発熱機器の温度上昇も抑制し、且つ、室外熱交換器への着霜を抑制することも可能となる。
 この場合、例えば請求項6の発明の如く制御装置により、発熱機器の温度が、当該発熱機器の廃熱を回収可能か否かの判断基準となる冷媒−熱媒体熱交換器の出口側の熱媒体の温度の所定値より高い場合、発熱機器の廃熱を回収することができると判断することで、発熱機器の廃熱を回収することができることを的確に判断して流路切換装置を制御することができるようになる。
 尚、発熱機器を加熱する必要がある場合には、請求項7の発明の如く制御装置が、加熱装置により熱媒体を加熱すると共に、流路切換装置により発熱機器に熱媒体を流すようにすることで、加熱装置により加熱された熱媒体で発熱機器を支障無く加熱することができるようになる。
 この場合も、例えば請求項8の発明の如く制御装置が、発熱機器の温度が所定の使用下限温度より低い場合、当該発熱機器を加熱する必要があると判断することで、発熱機器を加熱する必要があることを的確に判断して流路切換装置を制御することができるようになる。
 また、発熱機器を冷却する必要がある場合、請求項9の発明の如く制御装置が、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、冷媒−熱媒体熱交換器にて吸熱させると共に、加熱装置による熱媒体の加熱を停止し、流路切換装置により発熱機器に熱媒体を流すようにすることで、冷媒−熱媒体熱交換器で冷媒により冷却された熱媒体で発熱機器を支障無く冷却することができるようになる。
 この場合も、例えば請求項10の発明の如く制御装置が、発熱機器の温度が所定の使用上限温度より高い場合、当該発熱機器を冷却する必要があると判断することで、発熱機器を冷却する必要があることを的確に判断して流路切換装置を制御することができるようになる。
According to the present invention, a compressor for compressing a refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, and a radiator for heating the air to be radiated from the refrigerant and supplied to the vehicle interior from the air flow passage. And an outdoor heat exchanger that is provided outside the vehicle cabin to absorb the refrigerant, a heat medium circulation device that circulates the heat medium to a heat generating device mounted on the vehicle, and a control device, and a vehicle that air-conditions the vehicle interior In the air conditioner for an industrial use, without causing the heat medium circulation device to flow through the refrigerant-heat medium heat exchanger for exchanging heat between the refrigerant and the heat medium, the heating device for heating the heat medium, and the heating device, Since the bypass circuit for circulating the heat medium and the flow path switching device for switching between flowing the heat medium to the heat generating device or flowing the heat medium to the bypass circuit are provided, Heating device for heat medium of circulation device By switching between the state of flowing through the refrigerant-heat medium heat exchanger and the heat generating device and the state of flowing the heat medium through the heating device, the refrigerant-heat medium heat exchanger and the bypass circuit without flowing through the heat generating device, It is possible to realize an efficient air conditioning operation without being affected by the temperature.
In this case, if the flow switching device is controlled by the control device based on the temperature of the heat generating device as in the invention of claim 2, the flow switching device can be appropriately controlled according to the temperature condition of the heat generating device. become able to.
For example, as in the invention of claim 3, the control device causes the refrigerant discharged from the compressor to dissipate heat with a radiator, decompresses the dissipated refrigerant, and then converts the refrigerant into the outdoor heat exchanger and the refrigerant-heat medium heat exchanger. In the situation where the heat generating device does not need to be heated when the heating assist is performed by absorbing the heat and heating the heat medium by the heating device, in the situation where the temperature of the heat generating device is low, the heat transfer device is added to the bypass circuit by the flow path switching device. By making it flow, it becomes possible to eliminate the disadvantage that the temperature of the heat medium heated by the heating device decreases due to heat exchange with the heat generating device. That is, when performing heating assistance by the heating device, the temperature of the heat generating device is low, but in a situation where it is not necessary to heat, the disadvantage that wasteful power for the heat capacity of the heat generating device is consumed by the heating device is avoided in advance. It is possible to realize an air conditioning operation with efficient heating assistance.
In this case, for example, when the temperature of the heat generating device is equal to or higher than a predetermined lower limit temperature, the control device heats the heat generating device by determining that it is not necessary to heat the heat generating device. It becomes possible to control the flow path switching device by accurately determining that it is not necessary.
Further, when the control device can recover the waste heat of the heat generating device as in the invention of claim 5, the refrigerant discharged from the compressor is radiated with a radiator, and the radiated refrigerant is decompressed, Heat is absorbed by the outdoor heat exchanger and the refrigerant-heat medium heat exchanger, and the heat medium is caused to flow to the heat generating device by the flow path switching device, so that the waste heat of the heat generating device is effectively used to efficiently carry out the vehicle. It becomes possible to perform indoor heating and air conditioning, to suppress the temperature rise of the heat generating device, and to suppress frost formation on the outdoor heat exchanger.
In this case, the heat at the outlet side of the refrigerant-heat medium heat exchanger, which is a criterion for determining whether or not the temperature of the heat generating device can recover the waste heat of the heat generating device by the control device as in the invention of claim 6, for example. When the temperature of the medium is higher than the predetermined value, it is judged that the waste heat of the heat generating equipment can be recovered, and the flow path switching device is controlled by accurately judging that the waste heat of the heat generating equipment can be recovered. Will be able to.
When it is necessary to heat the heat generating device, the control device as in the invention of claim 7 heats the heat medium by the heating device and causes the heat medium to flow to the heat generating device by the flow path switching device. Thus, the heat generating device can be heated without any trouble by the heat medium heated by the heating device.
In this case as well, for example, when the temperature of the heat generating device is lower than the predetermined lower limit temperature, the control device heats the heat generating device by determining that the heat generating device needs to be heated. It becomes possible to control the flow path switching device by accurately determining the necessity.
Further, when it is necessary to cool the heat generating equipment, the control device as in the ninth aspect of the invention causes the refrigerant discharged from the compressor to dissipate heat with a radiator and decompresses the dissipated refrigerant. Heat is absorbed by the medium heat exchanger, and heating of the heat medium by the heating device is stopped, and the heat medium is caused to flow to the heat generating device by the flow path switching device, so that the refrigerant is cooled by the refrigerant in the refrigerant-heat medium heat exchanger. The heat generating device can cool the heat generating device without any trouble.
Also in this case, for example, when the temperature of the heat generating device is higher than a predetermined upper limit temperature, the control device cools the heat generating device by determining that the heat generating device needs to be cooled. It becomes possible to control the flow path switching device by accurately determining the necessity.
本発明を適用した一実施形態の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. 図2のコントローラによる暖房運転を説明する図である。It is a figure explaining the heating operation by the controller of FIG. 図2のコントローラによる除湿暖房運転を説明する図である。It is a figure explaining the dehumidification heating operation by the controller of FIG. 図2のコントローラによる内部サイクル運転を説明する図である。It is a figure explaining the internal cycle driving | operation by the controller of FIG. 図2のコントローラによる除湿冷房運転を説明する図である。It is a figure explaining the dehumidification cooling operation by the controller of FIG. 図2のコントローラによる冷房運転を説明する図である。It is a figure explaining the cooling operation by the controller of FIG. 図3の暖房運転において図2のコントローラが実行する暖房補助運転を説明する図である。It is a figure explaining the heating auxiliary operation which the controller of FIG. 2 performs in the heating operation of FIG. 図3の暖房運転や図8の暖房補助運転において図2のコントローラが実行するバッテリ廃熱回収運転と、バッテリ加熱運転を説明する図である。It is a figure explaining the battery waste heat recovery operation and battery heating operation which the controller of FIG. 2 performs in the heating operation of FIG. 3 and the heating auxiliary operation of FIG. 図2のコントローラが実行するバッテリ冷却運転を説明する図である。It is a figure explaining the battery cooling operation which the controller of FIG. 2 performs.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両にバッテリ55が搭載され、このバッテリ55に充電された電力を走行用の電動モータ(図示せず)に供給することで駆動し、走行するものであり、本発明の車両用空気調和装置1も、バッテリ55の電力で駆動されるものとする。
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを用いたヒートポンプ運転により暖房運転を行い、更に、除湿暖房運転や内部サイクル運転、除湿冷房運転、冷房運転の各空調運転を選択的に実行することで車室内の空調を行うものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明が有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。また、本出願ではバッテリ55を車両に搭載された発熱機器として例示するが、それに限らず、発熱機器としては前述した走行用の電動モータや、当該電動モータの制御用のインバータ等が挙げられる。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器として機能し、暖房時には冷媒を吸熱させる蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁(電子膨張弁)から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 室外膨張弁6は放熱器4から出て室外熱交換器7に流入する冷媒を減圧膨張させると共に全閉も可能とされている。また、室内膨張弁8は吸熱器9に流入する冷媒を減圧膨張させると共に全閉も可能とされている。
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7の冷媒出口側に接続された冷媒配管13Aは、逆止弁18を介して冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B側が順方向とされている。そして、この冷媒配管13Bは室内膨張弁8に接続されている。
 また、室外熱交換器7から出た冷媒配管13Aは逆止弁18の手前(冷媒上流側)で分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁21を介して吸熱器9の出口側に位置する冷媒配管13Cに連通接続されている。そして、この冷媒配管13Dが接続された箇所より冷媒下流側の冷媒配管13Cは、逆止弁20を介してアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。尚、逆止弁20はアキュムレータ12側が順方向とされている。
 更に、放熱器4の出口側の冷媒配管13Eは、室外膨張弁6の手前(冷媒上流側)で冷媒配管13Jと冷媒配管13Fに分岐しており、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される電磁弁22を介して逆止弁18の冷媒下流側に位置する冷媒配管13Aと冷媒配管13Bとの接続部に連通接続されている。これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスすることになる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口からの空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 更に、本発明の車両用空気調和装置1は、バッテリ55(発熱機器)に熱媒体を循環させて当該バッテリ55を加熱し、或いは、バッテリ55の廃熱を回収し、若しくは、バッテリ55を冷却するための熱媒体循環装置61を備えている。実施例の熱媒体循環装置61は、バッテリ55に熱媒体を循環させるための循環装置としての循環ポンプ62と、加熱装置としての熱媒体加熱ヒータ66と、冷媒−熱媒体熱交換器64と、流路切換装置としての三方弁23を備え、それらとバッテリ55が熱媒体配管68にて環状に接続されている。
 この実施例の場合、循環ポンプ62の吐出側に熱媒体加熱ヒータ66が接続され、熱媒体加熱ヒータ66の出口に冷媒−熱媒体熱交換器64の熱媒体流路64Aの入口が接続され、この熱媒体流路64Aの出口に三方弁23の入口が接続されている。この三方弁23の一方の出口にバッテリ55の入口が接続され、他方の出口にはバッテリ55に流すこと無く、熱媒体を循環させるためのバイパス回路67が接続されている。そして、このバイパス回路67の出口とバッテリ55の出口の合流箇所が循環ポンプ62の吸込側に接続されている。
 この熱媒体循環装置61で使用される熱媒体としては、例えば水、HFO−1234fのような冷媒、クーラント等の液体、空気等の気体が採用可能である。尚、実施例では水を熱媒体として採用している。また、熱媒体加熱ヒータ66はPTCヒータ等の電気ヒータから構成されている。更に、バッテリ55の周囲には例えば熱媒体が当該バッテリ55と熱交換関係で流通可能なジャケット構造が施されているものとする。
 そして、循環ポンプ62が運転されると、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66に至り、熱媒体加熱ヒータ66が発熱されている場合にはそこで加熱された後、次に冷媒−熱媒体熱交換器64の熱媒体流路64Aに流入する。この冷媒−熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体は三方弁23に至る。この三方弁23の入口と一方の出口が連通する状態である場合には、熱媒体は三方弁23からバッテリ55に至り、熱媒体はそこでバッテリ55と熱交換した後、循環ポンプ62に吸い込まれる。また、三方弁23が、その入口と他方の出口が連通する状態に切り換えられると、熱媒体は三方弁23からバイパス回路67に流れ、バッテリ55に流れること無く、循環ポンプ62に吸い込まれる。このようにして、熱媒体は熱媒体配管68内を循環される。
 一方、冷媒回路Rの冷媒配管13Fの電磁弁22の冷媒下流側には、分岐配管72の一端が接続されている。この分岐配管72には電動弁(電子膨張弁)から構成された補助膨張弁73が設けられている。この補助膨張弁73は冷媒−熱媒体熱交換器64の後述する冷媒流路64Bに流入する冷媒を減圧膨張させると共に全閉も可能とされている。そして、分岐配管72の他端は冷媒−熱媒体熱交換器64の冷媒流路64Bに接続されており、この冷媒流路64Bの出口には冷媒配管74の一端が接続され、冷媒配管74の他端はアキュムレータ12の手前(冷媒上流側)であって逆止弁20の冷媒下流側の冷媒配管13Cに接続されている。そして、これら補助膨張弁73等も冷媒回路Rの一部を構成すると同時に、熱媒体循環装置61の一部をも構成することになる。
 補助膨張弁73と電磁弁22が開いている場合、冷媒配管13Fに流入した冷媒はこの補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発する。冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれることになる。
 次に、図2において32は制御装置としてのコントローラ(ECU)である。このコントローラ32は、プロセッサを備えたコンピュータの一例としてのマイクロコンピュータから構成されており、その入力には車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO濃度センサ39と、吹出口29から
車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒温度を検出する吸込温度センサ44と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TCI)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や空調運転の切り換えを設定するための空調操作部53(エアコン操作部)と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO。室外熱交換器7が蒸発器として機能するとき、室外熱交換器温度TXOは室外熱交換器7における冷媒の蒸発温度となる)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、コントローラ32の入力には更に、バッテリ55の温度(バッテリ55自体の温度、又は、バッテリ55を出た熱媒体の温度、或いは、バッテリ55に入る熱媒体の温度:バッテリ温度Tb)を検出するバッテリ温度センサ76と、熱媒体加熱ヒータ66の温度(熱媒体加熱ヒータ66自体の温度、熱媒体加熱ヒータ66を出た熱媒体の温度)を検出する熱媒体加熱ヒータ温度センサ77と、冷媒−熱媒体熱交換器64の熱媒体流路64Aの出口側の熱媒体の温度(出口熱媒体温度Tout)を検出する第1出口温度センサ78と、冷媒流路64Bを出た冷媒の温度を検出する第2の出口温度センサ79の各出力も接続されている。
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、電磁弁22(除湿)、電磁弁21(暖房)の各電磁弁と、三方弁23、循環ポンプ62、熱媒体加熱ヒータ66、補助膨張弁73が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御するものである。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では暖房運転と、除湿暖房運転と、内部サイクル運転と、除湿冷房運転と、冷房運転の各空調運転を切り換えて実行すると共に、熱媒体加熱ヒータ66を用いた暖房補助運転を行う。また、この熱媒体加熱ヒータ66を用いてバッテリ55を加熱すると共に、バッテリ55の廃熱を回収し、若しくは、バッテリ55を冷却することで、当該バッテリ55の温度を調整するものであるが、先ず、冷媒回路Rの各空調運転について説明する。
 (1)暖房運転
 最初に、図3を参照しながら暖房運転について説明する。図3は暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。コントローラ32により(オートモード)、或いは、空調操作部53へのマニュアル操作(マニュアルモード)により暖房運転が選択されると、コントローラ32は電磁弁21(暖房用)を開放し、室内膨張弁8を全閉(全閉位置)とする。また、室外膨張弁6は開放して冷媒の減圧制御を行う状態とし、電磁弁22(除湿用)は閉じる。尚、暖房運転中の補助膨張弁73の制御については後に詳述する。
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13E、13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(吸熱)。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、電磁弁21を経て冷媒配管13Cに至り、逆止弁20を経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 コントローラ32は、後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4を経た空気の温度THの目標値)から目標放熱器圧力PCO(放熱器4の圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TCI)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。前記目標ヒータ温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。
 (2)除湿暖房運転
 次に、図4を参照しながら除湿暖房運転について説明する。図4は除湿暖房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿暖房運転では、コントローラ32は上記暖房運転の状態において電磁弁22を開放する。但し、補助膨張弁73は全閉(全閉位置)とする。また、室内膨張弁8も開放して冷媒の減圧制御を行う状態とする。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、この分流された冷媒が電磁弁22を経て冷媒配管13Fに流入し、冷媒配管13Bから室内膨張弁8に流れ、残りの冷媒が室外膨張弁6に流れるようになる。即ち、分流された一部の冷媒が室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発する。
 コントローラ32は吸熱器9の出口における冷媒の過熱度(SH)を所定値に維持するように室内膨張弁8の弁開度を制御するが、このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。分流されて冷媒配管13Jに流入した残りの冷媒は、室外膨張弁6で減圧された後、室外熱交換器7で蒸発することになる。
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、逆止弁20及びアキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 コントローラ32は目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて室外膨張弁6の弁開度を制御する。
 (3)内部サイクル運転
 次に、図5を参照しながら内部サイクル運転について説明する。図5は内部サイクル運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。内部サイクル運転では、コントローラ32は上記除湿暖房運転の状態において室外膨張弁6を全閉とする(全閉位置)。但し、電磁弁21は開いた状態を維持し、室外熱交換器7の冷媒出口は圧縮機2の冷媒吸込側に連通させておく。即ち、この内部サイクル運転は除湿暖房運転における室外膨張弁6の制御で当該室外膨張弁6を全閉とした状態であるので、この内部サイクル運転も除湿暖房運転の一部と捉えることができる。
 但し、室外膨張弁6が閉じられることにより、室外熱交換器7への冷媒の流入は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は冷媒配管13Cを流れ、逆止弁20及びアキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクル運転では室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房運転に比較すると除湿能力は高いが、暖房能力は低くなる。
 また、室外膨張弁6は閉じられるものの、電磁弁21は開いており、室外熱交換器7の冷媒出口は圧縮機2の冷媒吸込側に連通しているので、室外熱交換器7内の液冷媒は冷媒配管13D及び電磁弁21を経て冷媒配管13Cに流出し、アキュムレータ12に回収され、室外熱交換器7内はガス冷媒の状態となる。これにより、電磁弁21を閉じたときに比して、冷媒回路R内を循環する冷媒量が増え、放熱器4における暖房能力と吸熱器9における除湿能力を向上させることができるようになる。
 コントローラ32は吸熱器9の温度、又は、前述した放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御する。このとき、コントローラ32は吸熱器9の温度によるか放熱器圧力PCIによるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。
 (4)除湿冷房運転
 次に、図6を参照しながら除湿冷房運転について説明する。図6は除湿冷房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿冷房運転では、コントローラ32は室外膨張弁6と室内膨張弁8を開放してそれぞれ冷媒の減圧制御を行う状態とし、電磁弁21を閉じる。また、電磁弁22を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は冷媒配管13Cを経て逆止弁20に至り、次にアキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程でリヒート(再加熱:暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。
 コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づき、吸熱器温度Teを目標吸熱器温度TEOにするように圧縮機2の回転数を制御すると共に、放熱器圧力センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)と目標ヒータ温度TCOから算出される目標放熱器圧力PCO(放熱器圧力PCIの目標値)に基づき、放熱器圧力PCIを目標放熱器圧力PCOにするように室外膨張弁6の弁開度を制御することで放熱器4による必要なリヒート量を得る。
 (5)冷房運転
 次に、図7を参照しながら冷房運転について説明する。図7は冷房運転における冷媒回路Rの冷媒の流れ(実線矢印)を示している。冷房運転では、コントローラ32は上記除湿冷房運転の状態において室外膨張弁6を全開とする(全開位置)。尚、エアミックスダンパ28は放熱器4に空気が通風される割合を調整する状態とする。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されるものの、その割合は小さくなるので(冷房時のリヒートのみのため)、ここは殆ど通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒は冷媒配管13Jを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却される。
 吸熱器9で蒸発した冷媒は冷媒配管13Cを経て逆止弁20からアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房運転においては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御する。
 (6)空調運転の切り換え
 コントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))
                                  ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 そして、コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各空調運転のうちの何れかの空調運転を選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各空調運転を選択し、切り換えていくものである。
 (7)熱媒体循環装置61の制御
 次に、図8~図10を参照しながらコントローラ32が実行する熱媒体循環装置61の制御について説明する。前述した如くバッテリ55は低温環境下では充放電性能が低下する。また、バッテリ55は自己発熱等で高温となった環境下で充放電を行うと、劣化が進行する。
 そこで、コントローラ32は基本的にはバッテリ温度センサ76が検出するバッテリ55(発熱機器)の温度(バッテリ温度Tb)に基づき、後述する如く熱媒体循環装置61を制御してバッテリ温度Tbを所定の使用下限温度BL(例えば、0℃)以上、使用上限温度BH(例えば、+40℃)以下の使用温度範囲内に調整するものであるが、熱媒体循環装置61には熱媒体加熱ヒータ66が設けられているので、低外気温時等に放熱器4による暖房能力が不足する状況では、この熱媒体加熱ヒータ66を利用して車室内の暖房補助を行う。
 (7−1)暖房補助運転
 先ず、図8を参照しながら図3の暖房運転においてコントローラ32が実行する暖房補助運転について説明する。コントローラ32は、暖房運転(図3)においては、例えば下記式(II)、(III)を用いて放熱器4に要求される車室内の暖房能力である要求暖房能力Qtgtと、放熱器4が発生可能な暖房能力Qhpを算出している。
 Qtgt=(TCO−Te)×Cpa×ρ×Qair         ・・(II)
 Qhp=f(Tam、NC、BLV、VSP、FANVout、Te)・・(III)
 ここで、Teは吸熱器温度センサ48が検出する吸熱器9の温度、Cpaは放熱器4に流入する空気の比熱[kj/kg・K]、ρは放熱器4に流入する空気の密度(比体積)[kg/m]、Qairは放熱器4を通過する風量[m/h](室内送風機27のブロワ電圧BLVなどから推定)、VSPは車速センサ52から得られる車速、FANVoutは室外送風機15の電圧である。
 そして、算出された要求暖房能力Qtgtが放熱器4が発生可能な暖房能力Qhpよりも大きくなり(Qhp<Qtgt)、放熱器4の暖房能力が不足する状況となった場合、コントローラ32は電磁弁22を開き、補助膨張弁73を開放して冷媒の減圧制御を行う状態とする。これにより、放熱器4を出て冷媒回路13Eを流れる冷媒の一部は、図8中実線矢印で示す如く冷媒配管13Fに分流され、残りの冷媒が室外膨張弁6で減圧されて室外熱交換器7に流入し、蒸発して外気から吸熱するようになる。一方、冷媒配管13Fに分流された冷媒は、補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発するようになる。この冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれる。
 他方、コントローラ32は、例えば先ず三方弁23の入口と一方の出口を連通した状態で、熱媒体循環装置61の循環ポンプ62を運転する。そのとき、バッテリ温度センサ76が検出するバッテリ温度Tbが使用下限温度TL以上ではあるが(TL≦Tb)、バッテリ55の廃熱を冷媒回路R側に回収することが可能か否かの判断基準となる冷媒−熱媒体熱交換器64の熱媒体流路64Aの出口側の熱媒体の温度(出口熱媒体温度Tout)の所定値Tout1(例えば、+10℃程)以下である場合(Tb≦Tout1)、コントローラ32は三方弁23を、入口と他方の出口が連通する状態に切り換える。
 これにより、熱媒体循環装置61内の熱媒体は、図8中破線矢印で示す如くバッテリ55を経ること無くバイパス回路67に流れ、循環ポンプ62に吸引されるようになる。また、コントローラ32は熱媒体加熱ヒータ66に通電して発熱させる(ON)。循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66に至り、この熱媒体加熱ヒータ66で加熱された後、冷媒−熱媒体熱交換器64の熱媒体流路64Aに流れ、冷媒流路64Bを流れる冷媒回路Rの冷媒と熱交換するようになる。
 この冷媒−熱媒体熱交換器64の冷媒流路64B内で蒸発する冷媒は、熱媒体加熱ヒータ66で加熱された熱媒体の熱を汲み上げることになるので、結果として熱媒体加熱ヒータ66の発熱量が放熱器4に搬送され、室外熱交換器7で外気から汲み上げられる熱量に加えられて、車室内の暖房能力を補完することになる。コントローラ32は、例えば要求暖房能力Qtgtと暖房能力Qhpとの差(Qtgt−Qhp)に基づき、下記式(IV)を用いて熱媒体加熱ヒータ66の通電を制御する。
 Qech=Qtgt−Qhp                    ・・(IV)
 尚、上記Qechは熱媒体加熱ヒータ66の要求能力(発熱量)である。これにより、要求暖房能力Qtgtに対して暖房能力Qhpが不足する分を補助(補完)し、車室内を快適に暖房すると共に、室外熱交換器7への着霜も抑制する。
 このとき、三方弁23は入口と他方の出口を連通してバイパス回路67に熱媒体を流しており、バッテリ55には熱媒体は流れないので、冷媒−熱媒体熱交換器64の熱媒体流路64Aを出た熱媒体がバッテリ55によって吸熱され、熱媒体の温度が低下してしまうことも回避される。
 即ち、圧縮機2から吐出された冷媒を放熱器4にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器7と冷媒−熱媒体熱交換器64にて吸熱させ、熱媒体加熱ヒータ66により熱媒体を加熱する暖房補助運転を実行する際、バッテリ温度Tbは低いが、使用下限温度TL以上であって(TL≦Tb)、バッテリ55を加熱する必要が無いときには、三方弁23により熱媒体をバイパス回路67に流すことで、熱媒体加熱ヒータ66で加熱された熱媒体が、バッテリ55との熱交換で温度が低下してしまう不都合を解消することができるようになり、バッテリ55の熱容量分の無駄な電力が熱媒体加熱ヒータ66で消費される不都合を未然に回避し、効率的な暖房補助運転を実現することができるようになる。
 特に、実施例ではコントローラ32が、バッテリ55の温度(バッテリ温度Tb)が使用下限温度TL以上である場合にバッテリ55を加熱する必要が無いと判断するようにしているので、バッテリ55を加熱する必要が無いことを的確に判断して三方弁23を切り換え制御することができるようになる。
 (7−2)バッテリ廃熱回収運転
 一方、例えば前述した図3の暖房運転や上述した図8の暖房補助運転を行っている状態で、例えば充放電によりバッテリ温度Tbが上昇し(使用下限温度TLより高いものとする)、前述した冷媒−熱媒体熱交換器64の熱媒体流路64Aの出口側の熱媒体の温度(出口熱媒体温度Tout)の所定値Tout1より高くなった場合(Tout1<Tb)、コントローラ32はバッテリ55の廃熱を回収することができるものと判断してバッテリ廃熱回収運転に移行する。図9はこのバッテリ廃熱回収運転を説明する図である。バッテリ廃熱回収運転では、コントローラ32は三方弁23をその入口と一方の出口が連通する状態に切り換える。そして、循環ポンプ62を運転する。また、暖房運転を行っていたときには、コントローラ32は前述した暖房補助運転の場合と同様に電磁弁22を開き、補助膨張弁73を開放して冷媒の減圧制御を行う状態とする。
 これにより、放熱器4を出て冷媒回路13Eを流れる冷媒の一部は、図9中実線矢印で示す如く冷媒配管13Fに分流され、残りの冷媒が室外膨張弁6で減圧されて室外熱交換器7に流入し、蒸発して外気から吸熱するようになる。冷媒配管13Fに分流された冷媒は、補助膨張弁73で減圧された後、冷媒−熱媒体熱交換器64の冷媒流路64Bに流入し、そこで蒸発するようになる。この冷媒は冷媒流路64Bを流れる過程で熱媒体流路64Aを流れる熱媒体から吸熱した後、アキュムレータ12を経て圧縮機2に吸い込まれる。
 一方、熱媒体循環装置61内の熱媒体は、図9中破線矢印で示す如くバイパス回路67では無くバッテリ55に流れ、循環ポンプ62に吸引されるようになる。また、コントローラ32は熱媒体加熱ヒータ66に通電して発熱させる(ON)。循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66に至り、この熱媒体加熱ヒータ66で加熱された後、冷媒−熱媒体熱交換器64の熱媒体流路64Aに流れる。そして、この熱媒体流路64Aから出た熱媒体は、三方弁23を経てバッテリ55に流れて熱交換し、当該バッテリ55から吸熱し、バッテリ55は逆に熱媒体によって冷却されるようになる。
 前述した図8の暖房補助運転を行っているときのバッテリ廃熱回収運転では、コントローラ32は例えば下記式(V)を用いて熱媒体加熱ヒータ66の通電を制御する。
 Qech=(Qtgt−Qhp)−(Tb−Tout1)×k1×k2  ・・(V)
 ここで、k1は熱媒体循環装置61内を循環する熱媒体の比熱[kj/kg・K]、k2は熱媒体の流量[m/h]である。
 従って、このバッテリ廃熱回収運転でコントローラ32は、冷媒−熱媒体熱交換器64の熱媒体流路64A内で蒸発する冷媒により汲み上げられる熱量から、バッテリ55により熱媒体が加熱される分の熱量を差し引いた熱量を発生するように熱媒体加熱ヒータ66の通電を制御することになる。即ち、バッテリ55の廃熱も熱媒体により冷媒−熱媒体熱交換器64に搬送され、冷媒により汲み上げられて車室内の暖房に寄与することになり、熱媒体加熱ヒータ66の発熱量はバッテリ55の廃熱分削減されて省エネルギーとなる。
 尚、放熱器4が発生可能な暖房能力Qhpが要求暖房能力Qtgtを満足する図3の暖房運転を行っているときのバッテリ廃熱回収運転では(Qtgt≦Qhp)、コントローラ32は上記式(V)によらず、熱媒体加熱ヒータ66の通電を停止する(OFF)。即ち、バッテリ55の廃熱のみを利用して放熱器4による暖房補助を行うようにして、最も省エネルギーとなる状態とする。
 このように、バッテリ55の廃熱を回収することができる場合には、コントローラ32が圧縮機2から吐出された冷媒を放熱器4にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器7と冷媒−熱媒体熱交換器64にて吸熱させると共に、三方弁23によりバッテリ55に熱媒体を流すようにするので、バッテリ55の廃熱を有効に利用して効率良く車室内の暖房を行うことができるようになると共に、バッテリ55のそれ以上の温度上昇も抑制し、且つ、室外熱交換器への着霜を抑制することも可能となる。
 この場合も、実施例ではコントローラ32は、バッテリ温度Tbが当該バッテリ55から廃熱回収可能か否かの判断基準となる冷媒−熱媒体熱交換器64の熱媒体流路64Bの出口側の熱媒体の温度(出口熱媒体温度Tout)の所定値Tout1より高い場合、バッテリ55の廃熱を回収することができると判断するので、バッテリ55の廃熱を回収することができることを的確に判断して三方弁23を切り換え制御することができるようになる。尚、バッテリ温度Tbが所定値Tout1以下となった場合には、コントローラ32は再び前記式(IV)で熱媒体加熱ヒータ66を通電する暖房補助運転か、図3の暖房運転に復帰することになる。
 (7−3)バッテリ加熱運転
 次に、コントローラ32が実行するバッテリ加熱運転について説明する。コントローラ32は、バッテリ温度センサ76が検出するバッテリ温度Tbが使用下限温度TLより低い場合(Tb<TL)、バッテリ55を加熱する必要があると判断して、三方弁23をその入口と一方の出口が連通する状態とする(例えば、暖房補助運転で入口と他方の出口が連通する状態であった場合には、入口が一方の出口に連通する状態に切り換える)。そして、循環ポンプ62を運転する。
 これにより、熱媒体循環装置61内の熱媒体は、前述したバッテリ廃熱回収運転の場合と同様に、図9中破線矢印で示す如くバイパス回路67では無くバッテリ55に流れ、循環ポンプ62に吸引されるようになる。また、コントローラ32は熱媒体加熱ヒータ66に通電して発熱させる(ON)。循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66に至り、この熱媒体加熱ヒータ66で加熱された後、冷媒−熱媒体熱交換器64の熱媒体流路64Aに流れる。そして、この熱媒体流路64Aから出た熱媒体は、三方弁23を経てバッテリ55に流れて熱交換し、当該バッテリ55を加熱するようになる。
 前述した図8の暖房補助運転を行っているときのバッテリ加熱運転では、コントローラ32は例えば下記式(VI)を用いて熱媒体加熱ヒータ66の通電を制御する。
 Qech=(Qtgt−Qhp)+(TL−Tb)×k1×k2    ・・(VI)
 ここで、同様にk1は熱媒体循環装置61内を循環する熱媒体の比熱[kj/kg・K]、k2は熱媒体の流量[m/h]である。即ち、このバッテリ加熱運転でコントローラ32は、冷媒−熱媒体熱交換器64の熱媒体流路64Aを熱媒体が流れるときに冷媒流路64B内で蒸発する冷媒によって汲み上げられる熱量に加え、バッテリ55の温度を使用下限温度TLまで上昇させるための熱量を発生するように熱媒体加熱ヒータ66の通電を制御することになる。
 尚、放熱器4が発生可能な暖房能力Qhpが要求暖房能力Qtgtを満足する図3の暖房運転を行っているときや(Qtgt≦Qhp)、暖房補助運転及び暖房運転以外の運転、若しくは、圧縮機2が停止しているときのバッテリ加熱運転では、コントローラ32は上記式(VI)によらず、下記式(VII)を用いて熱媒体加熱ヒータ66の通電を制御する。
 Qech=(TL−Tb)×k1×k2  ・・(VII)
 ここで、同様にk1は熱媒体循環装置61内を循環する熱媒体の比熱[kj/kg・K]、k2は熱媒体の流量[m/h]である。即ち、バッテリ55を加熱するためのみの発熱量を発生する状態とする。
 このように、バッテリ55を加熱する必要がある場合には、コントローラ32が熱媒体加熱ヒータ66により熱媒体を加熱すると共に、三方弁23によりバッテリ55に熱媒体を流すようにするので、熱媒体加熱ヒータ66により加熱された熱媒体でバッテリ55を支障無く使用下限温度TL以上になるまで加熱することができるようになる。
 この場合も、実施例ではコントローラ32は、バッテリ55の温度が使用下限温度TLより低い場合に、当該バッテリ55を加熱する必要があると判断するので、バッテリ55を加熱する必要があることを的確に判断して三方弁23を切り換え制御することができるようになる。
 尚、バッテリ温度Tbが使用下限温度TL以上となった場合、コントローラ32はバッテリ加熱運転を終了し、前述した他の運転(暖房運転や暖房補助運転等)に復帰し、若しくは、熱媒体加熱ヒータ66の通電や圧縮機2、循環ポンプ62の運転を停止することになる。
 (7−4)バッテリ冷却運転
 ここで、バッテリ55の充放電によりバッテリ温度Tbが急激に上昇し、使用上限温度THより高くなった場合(TH<Tb)、コントローラ32はバッテリ55を冷却する必要があると判断してバッテリ冷却運転を実行する。次に、図10を用いてバッテリ冷却運転について説明する。
 このバッテリ冷却運転では、コントローラ32は室外膨張弁6及び室内膨張弁8を全閉(全閉位置)とし、電磁弁22を開き、補助膨張弁73は開いて冷媒を減圧制御する状態とする。そして、圧縮機2を運転する。また、コントローラ32は熱媒体加熱ヒータ66による熱媒体の加熱を停止し(OFF)、三方弁23をその入口と一方の出口が連通する状態に切り換えて循環ポンプ62を運転する。
 これにより、圧縮機2から吐出された冷媒は放熱器4で放熱し、この放熱器4で放熱した全ての冷媒が補助膨張弁73で減圧され、冷媒−熱媒体熱交換器64の冷媒流路64Bに流入して蒸発するようになる。また、循環ポンプ62から吐出された熱媒体は熱媒体加熱ヒータ66で加熱されずに通過して冷媒−熱媒体熱交換器64の熱媒体流路64Aに流れ、そこで冷媒から吸熱されて冷却された後、三方弁23を経てバッテリ55に流れ、当該バッテリ55から吸熱して冷却するようになる。
 このバッテリ冷却運転では、コントローラ32はバッテリ温度センサ76が検出するバッテリ55の温度(バッテリ温度Tb)と上述した使用上限温度THとに基づき、例えば下記式(VIII)を用いて熱媒体循環装置61に要求されるバッテリ55の冷却能力である要求バッテリ冷却能力Qbatを算出する。
 Qbat=(Tb−TH)×k1×k2  ・・(VIII)
 ここで、同様にk1は熱媒体循環装置61内を循環する熱媒体の比熱[kj/kg・K]、k2は熱媒体の流量[m/h]である。そして、この要求バッテリ冷却能力Qbatを達成するように圧縮機2や補助膨張弁73を制御する。
 これにより、バッテリ温度Tbは迅速に低下していくことになる。尚、このバッテリ冷却運転で、バッテリ温度Tbが使用上限温度TH以下に低下した場合には、コントローラ32はバッテリ冷却運転を終了し、他の運転(暖房運転や暖房補助運転等)に復帰し、若しくは、圧縮機2や循環ポンプ62を停止することになる。
 このように、バッテリ55を冷却する必要がある場合、コントローラ32は圧縮機2から吐出された冷媒を放熱器4にて放熱させ、放熱した当該冷媒を減圧した後、冷媒−熱媒体熱交換器64にて吸熱させると共に、熱媒体加熱ヒータ66による熱媒体の加熱を停止し、三方弁23によりバッテリ55に熱媒体を流すようにするので、冷媒−熱媒体熱交換器64で冷媒により冷却された熱媒体でバッテリ55を支障無く冷却することができるようになる。
 この場合も、実施例ではコントローラ32は、バッテリ温度Tbが使用上限温度THより高い場合、当該バッテリ55を冷却する必要があると判断するようにしているので、バッテリ55を冷却する必要があることを的確に判断することができるようになる。
 本発明では、以上詳述した如く熱媒体循環装置61に、バッテリ55に流すこと無く、熱媒体を循環させるためのバイパス回路67と、バッテリ55に熱媒体を流すか、バイパス回路67に熱媒体を流すかを切り換えるための三方弁23を設けたことで、三方弁23により、熱媒体循環装置61の熱媒体を熱媒体加熱ヒータ66、冷媒−熱媒体熱交換器64及びバッテリ55に流す状態と、バッテリ55に流すこと無く、熱媒体を熱媒体加熱ヒータ66、冷媒−熱媒体熱交換器64及びバイパス回路67に流す状態とに切り換えることで、バッテリ55の温度に影響されること無く、効率的な空調運転を実現することが可能となる。
 また、実施例ではコントローラ32により、バッテリ温度Tbに基づいて三方弁23を制御するようにしているので、バッテリ55の温度の状況によって適切に三方弁23を切り換え制御することができるようになる。
 尚、上記実施例で説明した冷媒回路Rや熱媒体循環装置61の構成、各温度等の数値や制御ファクタはそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention. A vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted. The battery 55 is mounted on the vehicle, and electric power charged in the battery 55 is used for traveling. The vehicle air conditioner 1 according to the present invention is driven by the electric power of the battery 55. The vehicle air conditioner 1 of the present invention is also driven by being supplied to an electric motor (not shown).
That is, the vehicle air conditioner 1 of the embodiment performs heating operation by heat pump operation using the refrigerant circuit R in an electric vehicle that cannot be heated by engine waste heat, and further performs dehumidification heating operation, internal cycle operation, and dehumidification cooling. Air conditioning of the passenger compartment is performed by selectively executing each air conditioning operation of the operation and the cooling operation.
Note that the present invention is not limited to an electric vehicle as a vehicle, but is also applicable to a so-called hybrid vehicle that uses an engine and an electric motor for traveling, and is also applicable to a normal vehicle that travels with an engine. Needless to say. In the present application, the battery 55 is exemplified as a heat generating device mounted on a vehicle. However, the heat generating device is not limited thereto, and the above-described electric motor for traveling, an inverter for controlling the electric motor, and the like can be given.
The vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment. And an outdoor expansion valve 6 comprising an electric valve (electronic expansion valve) that decompresses and expands the refrigerant during heating, a refrigerant that functions as a radiator that radiates the refrigerant during cooling, and an evaporator that absorbs the refrigerant during heating. An outdoor heat exchanger 7 that exchanges heat with the outside air, an indoor expansion valve 8 that includes an electric valve (electronic expansion valve) that decompresses and expands the refrigerant, and an air flow passage 3 that is provided during cooling and dehumidification Sometimes from outside to inside the vehicle A heat absorber 9 which heated, the accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
The outdoor expansion valve 6 expands the refrigerant flowing out of the radiator 4 and flowing into the outdoor heat exchanger 7 under reduced pressure, and can be fully closed. In addition, the indoor expansion valve 8 expands the refrigerant flowing into the heat absorber 9 under reduced pressure and can be fully closed.
The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7. FIG.
The refrigerant pipe 13 </ b> A connected to the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the refrigerant pipe 13 </ b> B via the check valve 18. The check valve 18 has a forward direction on the refrigerant pipe 13B side. The refrigerant pipe 13B is connected to the indoor expansion valve 8.
Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched in front of the check valve 18 (the refrigerant upstream side), and this branched refrigerant pipe 13D is connected via an electromagnetic valve 21 opened during heating. The refrigerant pipe 13 </ b> C located on the outlet side of the heat absorber 9 is connected in communication. And the refrigerant | coolant piping 13C of the refrigerant | coolant downstream rather than the location where this refrigerant | coolant piping 13D was connected is connected to the accumulator 12 via the non-return valve 20, and the accumulator 12 is connected to the refrigerant | coolant suction side of the compressor 2. FIG. The check valve 20 has a forward direction on the accumulator 12 side.
Furthermore, the refrigerant pipe 13E on the outlet side of the radiator 4 branches into a refrigerant pipe 13J and a refrigerant pipe 13F before the outdoor expansion valve 6 (the refrigerant upstream side), and one of the branched refrigerant pipes 13J is an outdoor expansion valve. 6 is connected to the refrigerant inlet side of the outdoor heat exchanger 7. Further, the other branched refrigerant pipe 13F is connected to a connection portion between the refrigerant pipe 13A and the refrigerant pipe 13B located on the refrigerant downstream side of the check valve 18 via an electromagnetic valve 22 that is opened during dehumidification. Thus, the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7 and the check valve are connected. 18 will be bypassed.
The air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation) which is air inside the vehicle compartment and the outside air (outside air introduction) which is outside the vehicle compartment. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
Further, the air (inside air and outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated into the air flow passage 3 on the air upstream side of the radiator 4. An air mix damper 28 that adjusts the rate of ventilation through the vessel 4 is provided. Further, FOOT (foot), VENT (vent), and DEF (def) outlets (represented by the outlet 29 as a representative in FIG. 1) are formed in the air flow passage 3 on the air downstream side of the radiator 4. The air outlet 29 is provided with an air outlet switching damper 31 for switching and controlling the air blowing from the air outlets.
Furthermore, the vehicle air conditioner 1 of the present invention heats the battery 55 by circulating a heat medium to the battery 55 (heat generating device), collects waste heat of the battery 55, or cools the battery 55. A heat medium circulating device 61 is provided. The heat medium circulation device 61 of the embodiment includes a circulation pump 62 as a circulation device for circulating the heat medium through the battery 55, a heat medium heater 66 as a heating device, a refrigerant-heat medium heat exchanger 64, A three-way valve 23 as a flow path switching device is provided, and these and a battery 55 are connected in a ring shape by a heat medium pipe 68.
In this embodiment, the heat medium heater 66 is connected to the discharge side of the circulation pump 62, the inlet of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 is connected to the outlet of the heat medium heater 66, The inlet of the three-way valve 23 is connected to the outlet of the heat medium flow path 64A. An inlet of the battery 55 is connected to one outlet of the three-way valve 23, and a bypass circuit 67 for circulating the heat medium is connected to the other outlet without flowing to the battery 55. The junction of the outlet of the bypass circuit 67 and the outlet of the battery 55 is connected to the suction side of the circulation pump 62.
As the heat medium used in the heat medium circulation device 61, for example, water, a refrigerant such as HFO-1234f, a liquid such as a coolant, or a gas such as air can be employed. In the embodiment, water is used as the heat medium. The heat medium heater 66 is composed of an electric heater such as a PTC heater. Furthermore, it is assumed that a jacket structure is provided around the battery 55 so that the heat medium can circulate with the battery 55 in a heat exchange relationship.
When the circulation pump 62 is operated, the heat medium discharged from the circulation pump 62 reaches the heat medium heater 66. If the heat medium heater 66 generates heat, it is heated there, and then It flows into the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64. The heat medium that has exited the heat medium flow path 64 </ b> A of the refrigerant-heat medium heat exchanger 64 reaches the three-way valve 23. When the inlet and the outlet of the three-way valve 23 are in communication with each other, the heat medium reaches the battery 55 from the three-way valve 23, and the heat medium exchanges heat with the battery 55 and is then sucked into the circulation pump 62. . When the three-way valve 23 is switched to a state in which the inlet and the other outlet communicate with each other, the heat medium flows from the three-way valve 23 to the bypass circuit 67 and is sucked into the circulation pump 62 without flowing to the battery 55. In this way, the heat medium is circulated in the heat medium pipe 68.
On the other hand, one end of a branch pipe 72 is connected to the refrigerant downstream side of the solenoid valve 22 of the refrigerant pipe 13F of the refrigerant circuit R. The branch pipe 72 is provided with an auxiliary expansion valve 73 composed of an electric valve (electronic expansion valve). The auxiliary expansion valve 73 decompresses and expands the refrigerant flowing into a refrigerant flow path 64B (described later) of the refrigerant-heat medium heat exchanger 64 and can be fully closed. The other end of the branch pipe 72 is connected to the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, and one end of the refrigerant pipe 74 is connected to the outlet of the refrigerant flow path 64B. The other end is connected to the refrigerant pipe 13 </ b> C in front of the accumulator 12 (upstream of the refrigerant) and downstream of the check valve 20. The auxiliary expansion valve 73 and the like also constitute part of the refrigerant circuit R and at the same time constitute part of the heat medium circulation device 61.
When the auxiliary expansion valve 73 and the electromagnetic valve 22 are open, the refrigerant flowing into the refrigerant pipe 13F is decompressed by the auxiliary expansion valve 73 and then flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64. There it evaporates. The refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and then is sucked into the compressor 2 through the accumulator 12.
Next, in FIG. 2, 32 is a controller (ECU) as a control device. The controller 32 includes a microcomputer as an example of a computer having a processor, and inputs include an outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle and an outside air humidity sensor that detects the outside air humidity. 34, an HVAC suction temperature sensor 36 for detecting the temperature of the air sucked into the air flow passage 3 from the suction port 25, an inside air temperature sensor 37 for detecting the temperature of the air (inside air) in the passenger compartment, and the air in the passenger compartment Inside air humidity sensor 38 that detects humidity and indoor CO that detects the carbon dioxide concentration in the passenger compartment 2 From concentration sensor 39 and air outlet 29
A discharge temperature sensor 41 for detecting the temperature of the air blown into the passenger compartment, a discharge pressure sensor 42 for detecting the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2, and a discharge for detecting the discharge refrigerant temperature of the compressor 2 The temperature sensor 43, the suction temperature sensor 44 for detecting the suction refrigerant temperature of the compressor 2, and the temperature of the radiator 4 (the temperature of the air passed through the radiator 4 or the temperature of the radiator 4 itself: the radiator temperature TCI) A radiator temperature sensor 46 that detects the refrigerant pressure, and a radiator pressure sensor 47 that detects the refrigerant pressure of the radiator 4 (the refrigerant pressure in the radiator 4 or immediately after leaving the radiator 4: the radiator pressure PCI) , A heat absorber temperature sensor 48 for detecting the temperature of the heat absorber 9 (the temperature of the air passing through the heat absorber 9 or the temperature of the heat absorber 9 itself: the heat absorber temperature Te), and the refrigerant pressure of the heat absorber 9 (the heat absorber 9). The pressure of the refrigerant immediately after leaving the heat sink 9 For example, a photosensor-type solar sensor 51 for detecting the amount of solar radiation into the vehicle interior, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, and setting. An air conditioning operation unit 53 (air conditioner operation unit) for setting the temperature and switching of the air conditioning operation, and the temperature of the outdoor heat exchanger 7 (the temperature of the refrigerant immediately after coming out of the outdoor heat exchanger 7, or the outdoor heat exchanger Temperature of the outdoor unit 7: outdoor heat exchanger temperature TXO. When the outdoor heat exchanger 7 functions as an evaporator, the outdoor heat exchanger temperature TXO becomes the refrigerant evaporation temperature in the outdoor heat exchanger 7). An exchanger temperature sensor 54 and an outdoor heat exchanger pressure sensor 56 for detecting the refrigerant pressure of the outdoor heat exchanger 7 (the pressure of the refrigerant in the outdoor heat exchanger 7 or the refrigerant just after coming out of the outdoor heat exchanger 7). Each output is connected.
Further, the input of the controller 32 further detects the temperature of the battery 55 (the temperature of the battery 55 itself, the temperature of the heat medium exiting the battery 55, or the temperature of the heat medium entering the battery 55: battery temperature Tb). A battery temperature sensor 76, a temperature of the heat medium heater 66 (a temperature of the heat medium heater 66 itself, a temperature of the heat medium that has exited the heat medium heater 66), and a refrigerant. A first outlet temperature sensor 78 that detects the temperature of the heat medium on the outlet side of the heat medium flow path 64A of the heat medium heat exchanger 64 (outlet heat medium temperature Tout), and the temperature of the refrigerant that has exited the refrigerant flow path 64B. Each output of the second outlet temperature sensor 79 to be detected is also connected.
On the other hand, the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion. The solenoid valve 22, the indoor expansion valve 8, the solenoid valve 22 (dehumidification), the solenoid valve 21 (heating), the three-way valve 23, the circulation pump 62, the heat medium heater 66, and the auxiliary expansion valve 73 are connected. Yes. And the controller 32 controls these based on the output of each sensor and the setting input in the air-conditioning operation part 53. FIG.
Next, the operation of the vehicle air conditioner 1 having the above-described configuration will be described. In the embodiment, the controller 32 switches between the air-conditioning operation of the heating operation, the dehumidifying heating operation, the internal cycle operation, the dehumidifying cooling operation, and the cooling operation, and performs the heating auxiliary operation using the heat medium heater 66. Do. In addition, while heating the battery 55 using the heat medium heater 66 and recovering waste heat of the battery 55 or cooling the battery 55, the temperature of the battery 55 is adjusted. First, each air conditioning operation of the refrigerant circuit R will be described.
(1) Heating operation
First, the heating operation will be described with reference to FIG. FIG. 3 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the heating operation. When the heating operation is selected by the controller 32 (auto mode) or by the manual operation (manual mode) to the air conditioning operation unit 53, the controller 32 opens the electromagnetic valve 21 (for heating) and opens the indoor expansion valve 8. Fully closed (fully closed position). In addition, the outdoor expansion valve 6 is opened to perform a decompression control of the refrigerant, and the electromagnetic valve 22 (for dehumidification) is closed. The control of the auxiliary expansion valve 73 during the heating operation will be described in detail later.
And the compressor 2 and each air blower 15 and 27 are drive | operated, and the air mix damper 28 sets it as the state which adjusts the ratio by which the air blown out from the indoor air blower 27 is ventilated by the heat radiator 4. FIG. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipes 13E and 13J. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15 (heat absorption). That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 reaches the refrigerant pipe 13C through the refrigerant pipe 13A, the refrigerant pipe 13D, and the electromagnetic valve 21, enters the accumulator 12 through the check valve 20, and is separated into gas and liquid there. Thereafter, the circulation in which the gas refrigerant is sucked into the compressor 2 is repeated. Since the air heated by the radiator 4 is blown out from the air outlet 29, the vehicle interior is thereby heated.
The controller 32 calculates a target radiator pressure PCO (a target value of the pressure PCI of the radiator 4) from a target heater temperature TCO (a target value of the temperature TH of the air that has passed through the radiator 4) calculated from a target outlet temperature TAO described later. The number of revolutions of the compressor 2 is controlled based on this target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. At the same time, the valve opening degree of the outdoor expansion valve 6 is controlled based on the temperature of the radiator 4 (the radiator temperature TCI) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47, The degree of supercooling of the refrigerant at the outlet of the vessel 4 is controlled. The target heater temperature TCO is basically set to TCO = TAO, but a predetermined restriction on control is provided.
(2) Dehumidifying heating operation
Next, the dehumidifying and heating operation will be described with reference to FIG. FIG. 4 shows the refrigerant flow (solid arrow) in the refrigerant circuit R in the dehumidifying heating operation. In the dehumidifying heating operation, the controller 32 opens the electromagnetic valve 22 in the heating operation state. However, the auxiliary expansion valve 73 is fully closed (fully closed position). In addition, the indoor expansion valve 8 is also opened to control the decompression of the refrigerant. Thereby, a part of the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 is divided, and the divided refrigerant flows into the refrigerant pipe 13F through the electromagnetic valve 22, and flows from the refrigerant pipe 13B to the indoor expansion valve 8. The remaining refrigerant flows into the outdoor expansion valve 6. That is, a part of the divided refrigerant is decompressed by the indoor expansion valve 8 and then flows into the heat absorber 9 to evaporate.
The controller 32 controls the opening degree of the indoor expansion valve 8 so that the degree of superheat (SH) of the refrigerant at the outlet of the heat absorber 9 is maintained at a predetermined value. Since moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, the air is cooled and dehumidified. The remaining refrigerant that is divided and flows into the refrigerant pipe 13J is depressurized by the outdoor expansion valve 6 and then evaporated by the outdoor heat exchanger 7.
The refrigerant evaporated in the heat absorber 9 is discharged to the refrigerant pipe 13C and merged with the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then sucked into the compressor 2 through the check valve 20 and the accumulator 12. Repeat the cycle. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
The controller 32 controls the rotational speed of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. The valve opening degree of the outdoor expansion valve 6 is controlled based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
(3) Internal cycle operation
Next, the internal cycle operation will be described with reference to FIG. FIG. 5 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the internal cycle operation. In the internal cycle operation, the controller 32 fully closes the outdoor expansion valve 6 in the dehumidifying and heating operation state (fully closed position). However, the solenoid valve 21 is kept open, and the refrigerant outlet of the outdoor heat exchanger 7 is communicated with the refrigerant suction side of the compressor 2. That is, since this internal cycle operation is a state in which the outdoor expansion valve 6 is fully closed by the control of the outdoor expansion valve 6 in the dehumidifying and heating operation, this internal cycle operation can also be regarded as a part of the dehumidifying and heating operation.
However, since the inflow of the refrigerant to the outdoor heat exchanger 7 is blocked by closing the outdoor expansion valve 6, the condensed refrigerant flowing through the refrigerant pipe 13 </ b> E via the radiator 4 passes through the electromagnetic valve 22 and becomes refrigerant. All flows into the pipe 13F. The refrigerant flowing through the refrigerant pipe 13F reaches the indoor expansion valve 8 through the refrigerant pipe 13B. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13 </ b> C and repeats circulation that is sucked into the compressor 2 through the check valve 20 and the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed. Ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than the dehumidifying and heating operation, but the heating capacity is lowered.
Although the outdoor expansion valve 6 is closed, the electromagnetic valve 21 is open, and the refrigerant outlet of the outdoor heat exchanger 7 communicates with the refrigerant suction side of the compressor 2, so that the liquid in the outdoor heat exchanger 7 is The refrigerant flows out through the refrigerant pipe 13D and the electromagnetic valve 21 to the refrigerant pipe 13C, is collected by the accumulator 12, and the outdoor heat exchanger 7 is in a gas refrigerant state. Thereby, compared with when the solenoid valve 21 is closed, the amount of refrigerant circulating in the refrigerant circuit R increases, and the heating capacity in the radiator 4 and the dehumidifying capacity in the heat absorber 9 can be improved.
The controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 or the above-described radiator pressure PCI (high pressure of the refrigerant circuit R). At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the radiator pressure PCI.
(4) Dehumidifying and cooling operation
Next, the dehumidifying and cooling operation will be described with reference to FIG. FIG. 6 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the dehumidifying and cooling operation. In the dehumidifying and cooling operation, the controller 32 opens the outdoor expansion valve 6 and the indoor expansion valve 8 to perform the decompression control of the refrigerant, and closes the electromagnetic valve 21. Further, the electromagnetic valve 22 is closed. And the compressor 2 and each air blower 15 and 27 are drive | operated, and the air mix damper 28 sets it as the state which adjusts the ratio by which the air blown out from the indoor air blower 27 is ventilated by the heat radiator 4. FIG. Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 reaches the check valve 20 through the refrigerant pipe 13 </ b> C, and then repeats the circulation sucked into the compressor 2 through the accumulator 12. Air that has been cooled and dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4 (reheating: lower heat dissipation capacity than during heating), so that dehumidification and cooling of the passenger compartment is performed. become.
The controller 32 sets the heat absorber temperature Te to the target heat absorber temperature TEO based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value. While controlling the rotation speed of the compressor 2, the target radiator pressure PCO (radiator pressure PCI) calculated from the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47 and the target heater temperature TCO. The required reheat amount by the radiator 4 is obtained by controlling the valve opening degree of the outdoor expansion valve 6 so that the radiator pressure PCI becomes the target radiator pressure PCO.
(5) Cooling operation
Next, the cooling operation will be described with reference to FIG. FIG. 7 shows a refrigerant flow (solid arrow) in the refrigerant circuit R in the cooling operation. In the cooling operation, the controller 32 fully opens the outdoor expansion valve 6 in the state of the dehumidifying and cooling operation (fully opened position). Note that the air mix damper 28 is in a state of adjusting the ratio of air passing through the radiator 4.
Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Although the air in the air flow passage 3 is ventilated to the radiator 4, the ratio is small (because of only reheating during cooling), so this almost passes through, and the refrigerant exiting the radiator 4 is The refrigerant reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through the refrigerant pipe 13J and flows into the outdoor heat exchanger 7 as it is, where it is cooled by running or by outside air ventilated by the outdoor blower 15. Condensed liquid. The refrigerant exiting the outdoor heat exchanger 7 enters the refrigerant pipe 13B through the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, and the air is cooled.
The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 from the check valve 20 through the refrigerant pipe 13C, and repeats circulation that is sucked into the compressor 2 there through. The air cooled and dehumidified by the heat absorber 9 is blown out from the outlet 29 into the vehicle interior, thereby cooling the vehicle interior. In this cooling operation, the controller 32 controls the rotational speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48.
(6) Switching air conditioning operation
The controller 32 calculates the target blowing temperature TAO described above from the following formula (I). This target blowing temperature TAO is a target value of the temperature of the air blown out from the blowout port 29 into the vehicle interior.
TAO = (Tset−Tin) × K + Tbal (f (Tset, SUN, Tam))
.. (I)
Here, Tset is the set temperature in the passenger compartment set by the air conditioning operation unit 53, Tin is the temperature of the passenger compartment air detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the solar radiation sensor 51 detects This is a balance value calculated from the amount of solar radiation SUN to be performed and the outside air temperature Tam detected by the outside air temperature sensor 33. And generally this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
The controller 32 selects one of the above air conditioning operations based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of activation. In addition, after the activation, the air conditioning operations are selected and switched in accordance with changes in the environment and setting conditions such as the outside air temperature Tam and the target blowing temperature TAO.
(7) Control of heat medium circulation device 61
Next, the control of the heat medium circulating device 61 executed by the controller 32 will be described with reference to FIGS. As described above, the charge / discharge performance of the battery 55 is lowered under a low temperature environment. Further, when the battery 55 is charged / discharged in an environment where the battery 55 is at a high temperature due to self-heating or the like, deterioration proceeds.
Therefore, the controller 32 basically controls the heat medium circulating device 61 to set the battery temperature Tb to a predetermined value based on the temperature (battery temperature Tb) of the battery 55 (heat generating device) detected by the battery temperature sensor 76. The heat medium heater 61 is provided in the heat medium circulation device 61. The heat medium circulation device 61 is provided within the use temperature range of the use lower limit temperature BL (for example, 0 ° C.) or more and the use upper limit temperature BH (for example, + 40 ° C.) or less. Therefore, in a situation where the heating capability of the radiator 4 is insufficient at a low outside air temperature or the like, the heating medium heater 66 is used to assist the heating of the vehicle interior.
(7-1) Heating assist operation
First, the heating auxiliary operation performed by the controller 32 in the heating operation of FIG. 3 will be described with reference to FIG. In the heating operation (FIG. 3), the controller 32 uses, for example, the following formulas (II) and (III) to calculate the required heating capacity Qtgt, which is the heating capacity of the vehicle interior required for the radiator 4, and the radiator 4 The possible heating capacity Qhp is calculated.
Qtgt = (TCO−Te) × Cpa × ρ × Qair (II)
Qhp = f (Tam, NC, BLV, VSP, FANVout, Te) (III)
Here, Te is the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48, Cpa is the specific heat [kj / kg · K] of the air flowing into the radiator 4, and ρ is the density of the air flowing into the radiator 4 ( Specific volume) [kg / m 3 Qair is the amount of air passing through the radiator 4 [m 3 / H] (estimated from the blower voltage BLV of the indoor blower 27), VSP is the vehicle speed obtained from the vehicle speed sensor 52, and FANVout is the voltage of the outdoor blower 15.
When the calculated required heating capacity Qtgt becomes larger than the heating capacity Qhp that can be generated by the radiator 4 (Qhp <Qtgt), and the heating capacity of the radiator 4 becomes insufficient, the controller 32 may 22 is opened, the auxiliary expansion valve 73 is opened, and the refrigerant pressure reduction control is performed. As a result, a part of the refrigerant flowing out of the radiator 4 and flowing through the refrigerant circuit 13E is diverted to the refrigerant pipe 13F as shown by a solid line arrow in FIG. 8, and the remaining refrigerant is decompressed by the outdoor expansion valve 6 to perform outdoor heat exchange. It flows into the vessel 7 and evaporates to absorb heat from the outside air. On the other hand, the refrigerant divided into the refrigerant pipe 13F is decompressed by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, where it evaporates. The refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and then is sucked into the compressor 2 through the accumulator 12.
On the other hand, for example, the controller 32 first operates the circulation pump 62 of the heat medium circulation device 61 in a state where the inlet and the one outlet of the three-way valve 23 are in communication with each other. At that time, although the battery temperature Tb detected by the battery temperature sensor 76 is equal to or higher than the use lower limit temperature TL (TL ≦ Tb), a criterion for determining whether or not the waste heat of the battery 55 can be recovered to the refrigerant circuit R side. When the temperature of the heat medium on the outlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 (exit heat medium temperature Tout) is not more than a predetermined value Tout1 (for example, about + 10 ° C.) (Tb ≦ Tout1) ), The controller 32 switches the three-way valve 23 to a state where the inlet and the other outlet communicate with each other.
As a result, the heat medium in the heat medium circulation device 61 flows to the bypass circuit 67 without passing through the battery 55 as shown by the broken line arrow in FIG. The controller 32 energizes the heat medium heater 66 to generate heat (ON). The heat medium discharged from the circulation pump 62 reaches the heat medium heater 66, and after being heated by the heat medium heater 66, flows into the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64, and flows into the refrigerant flow path. Heat is exchanged with the refrigerant in the refrigerant circuit R flowing through 64B.
The refrigerant evaporating in the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64 pumps up the heat of the heat medium heated by the heat medium heater 66. As a result, the heat generated by the heat medium heater 66 is generated. The amount is transferred to the radiator 4 and added to the amount of heat pumped up from the outside air by the outdoor heat exchanger 7 to supplement the heating capacity of the passenger compartment. The controller 32 controls energization of the heat medium heater 66 using the following formula (IV) based on, for example, the difference (Qtgt−Qhp) between the required heating capacity Qtgt and the heating capacity Qhp.
Qech = Qtgt−Qhp (IV)
Note that Qech is the required capacity (heat generation amount) of the heat medium heater 66. This assists (complements) the shortage of the heating capacity Qhp to the required heating capacity Qtgt, comfortably heats the vehicle interior, and suppresses frost formation on the outdoor heat exchanger 7.
At this time, the three-way valve 23 communicates the inlet and the other outlet to flow the heat medium to the bypass circuit 67, and no heat medium flows to the battery 55, so the heat medium flow of the refrigerant-heat medium heat exchanger 64 It is also avoided that the heat medium exiting the path 64A is absorbed by the battery 55 and the temperature of the heat medium is lowered.
That is, the refrigerant discharged from the compressor 2 is radiated by the radiator 4, and the radiated refrigerant is decompressed and then absorbed by the outdoor heat exchanger 7 and the refrigerant-heat medium heat exchanger 64 to heat the heat medium. When the auxiliary heating operation for heating the heat medium by the heater 66 is executed, the battery temperature Tb is low, but when the temperature is equal to or higher than the lower limit temperature TL (TL ≦ Tb) and the battery 55 does not need to be heated, the three-way valve 23 By causing the heat medium to flow through the bypass circuit 67, it is possible to eliminate the disadvantage that the heat medium heated by the heat medium heater 66 decreases in temperature due to heat exchange with the battery 55. Thus, it is possible to avoid the inconvenience that wasteful electric power corresponding to the heat capacity of 55 is consumed by the heat medium heater 66 and to realize efficient heating auxiliary operation.
In particular, in the embodiment, the controller 32 determines that it is not necessary to heat the battery 55 when the temperature of the battery 55 (battery temperature Tb) is equal to or higher than the use lower limit temperature TL. The three-way valve 23 can be switched and controlled by accurately determining that it is not necessary.
(7-2) Battery waste heat recovery operation
On the other hand, for example, in the state where the heating operation of FIG. 3 described above and the heating auxiliary operation of FIG. 8 described above are performed, the battery temperature Tb is increased by charge / discharge, for example (assuming that it is higher than the lower limit use temperature TL). When the temperature of the heat medium on the outlet side of the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 (outlet heat medium temperature Tout) becomes higher than a predetermined value Tout1 (Tout1 <Tb), the controller 32 It judges that waste heat can be collect | recovered and transfers to battery waste heat recovery operation | movement. FIG. 9 is a diagram for explaining the battery waste heat recovery operation. In the battery waste heat recovery operation, the controller 32 switches the three-way valve 23 to a state where the inlet and one outlet are in communication. Then, the circulation pump 62 is operated. Further, when the heating operation is being performed, the controller 32 opens the electromagnetic valve 22 and opens the auxiliary expansion valve 73 in the same manner as in the above-described heating assist operation, so that the decompression control of the refrigerant is performed.
As a result, a part of the refrigerant flowing out of the radiator 4 and flowing through the refrigerant circuit 13E is diverted to the refrigerant pipe 13F as shown by a solid line arrow in FIG. 9, and the remaining refrigerant is decompressed by the outdoor expansion valve 6 to exchange the heat outdoors. It flows into the vessel 7 and evaporates to absorb heat from the outside air. The refrigerant branched into the refrigerant pipe 13F is decompressed by the auxiliary expansion valve 73, and then flows into the refrigerant flow path 64B of the refrigerant-heat medium heat exchanger 64, where it evaporates. The refrigerant absorbs heat from the heat medium flowing through the heat medium flow path 64A in the process of flowing through the refrigerant flow path 64B, and then is sucked into the compressor 2 through the accumulator 12.
On the other hand, the heat medium in the heat medium circulation device 61 flows to the battery 55 instead of the bypass circuit 67 as shown by the broken line arrow in FIG. The controller 32 energizes the heat medium heater 66 to generate heat (ON). The heat medium discharged from the circulation pump 62 reaches the heat medium heater 66, is heated by the heat medium heater 66, and then flows into the heat medium flow path 64 </ b> A of the refrigerant-heat medium heat exchanger 64. The heat medium flowing out of the heat medium flow path 64A flows through the three-way valve 23 to the battery 55 to exchange heat, absorbs heat from the battery 55, and the battery 55 is cooled by the heat medium. .
In the battery waste heat recovery operation during the heating assist operation of FIG. 8 described above, the controller 32 controls energization of the heat medium heater 66 using, for example, the following equation (V).
Qech = (Qtgt−Qhp) − (Tb−Tout1) × k1 × k2 (V)
Here, k1 is the specific heat [kj / kg · K] of the heat medium circulating in the heat medium circulation device 61, and k2 is the flow rate of the heat medium [m. 3 / H].
Therefore, in this battery waste heat recovery operation, the controller 32 heats the heat medium heated by the battery 55 from the heat pumped up by the refrigerant evaporated in the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64. The energization of the heat medium heater 66 is controlled so as to generate the amount of heat obtained by subtracting. That is, the waste heat of the battery 55 is also transferred to the refrigerant-heat medium heat exchanger 64 by the heat medium, and is pumped up by the refrigerant to contribute to the heating of the vehicle interior. Reduces waste heat and saves energy.
In the battery waste heat recovery operation (Qtgt ≦ Qhp) during the heating operation of FIG. 3 in which the heating capability Qhp that can be generated by the radiator 4 satisfies the required heating capability Qtgt (Qtgt ≦ Qhp), the controller 32 represents the equation (V ), The energization of the heat medium heater 66 is stopped (OFF). In other words, only the waste heat of the battery 55 is used to assist heating with the radiator 4 to achieve the most energy saving state.
As described above, when the waste heat of the battery 55 can be recovered, the controller 32 radiates the refrigerant discharged from the compressor 2 with the radiator 4, decompresses the radiated refrigerant, and then heats the outdoor heat. The heat is absorbed by the exchanger 7 and the refrigerant-heat medium heat exchanger 64 and the heat medium is caused to flow to the battery 55 by the three-way valve 23. Therefore, the waste heat of the battery 55 is effectively used and the vehicle interior is efficiently Heating can be performed, the temperature rise of the battery 55 beyond that can be suppressed, and frost formation on the outdoor heat exchanger can also be suppressed.
Also in this case, in the embodiment, the controller 32 uses the heat at the outlet side of the heat medium flow path 64B of the refrigerant-heat medium heat exchanger 64 as a criterion for determining whether or not the battery temperature Tb is recoverable from the battery 55. When the temperature of the medium (outlet heat medium temperature Tout) is higher than the predetermined value Tout1, it is determined that the waste heat of the battery 55 can be recovered. Therefore, it is accurately determined that the waste heat of the battery 55 can be recovered. Thus, the three-way valve 23 can be switched and controlled. When the battery temperature Tb becomes equal to or lower than the predetermined value Tout1, the controller 32 again returns to the heating auxiliary operation in which the heat medium heater 66 is energized by the above formula (IV) or the heating operation in FIG. Become.
(7-3) Battery heating operation
Next, the battery heating operation performed by the controller 32 will be described. When the battery temperature Tb detected by the battery temperature sensor 76 is lower than the use lower limit temperature TL (Tb <TL), the controller 32 determines that the battery 55 needs to be heated, and sets the three-way valve 23 at its inlet and one side. The outlet is in a state of communication (for example, when the inlet and the other outlet are in communication in the heating assist operation, the inlet is switched to a state of communication with one of the outlets). Then, the circulation pump 62 is operated.
As a result, the heat medium in the heat medium circulation device 61 flows to the battery 55 instead of the bypass circuit 67 as shown by the broken line arrow in FIG. Will come to be. The controller 32 energizes the heat medium heater 66 to generate heat (ON). The heat medium discharged from the circulation pump 62 reaches the heat medium heater 66, is heated by the heat medium heater 66, and then flows into the heat medium flow path 64 </ b> A of the refrigerant-heat medium heat exchanger 64. The heat medium that has flowed out of the heat medium flow path 64 </ b> A flows through the three-way valve 23 to the battery 55 to exchange heat, thereby heating the battery 55.
In the battery heating operation during the heating auxiliary operation of FIG. 8 described above, the controller 32 controls the energization of the heat medium heater 66 using, for example, the following formula (VI).
Qech = (Qtgt−Qhp) + (TL−Tb) × k1 × k2 (VI)
Here, similarly, k1 is the specific heat [kj / kg · K] of the heat medium circulating in the heat medium circulating device 61, and k2 is the flow rate of the heat medium [m. 3 / H]. That is, in this battery heating operation, the controller 32 adds the amount of heat pumped up by the refrigerant evaporated in the refrigerant flow path 64B when the heat medium flows through the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64 to the battery 55. The energization of the heat medium heater 66 is controlled so as to generate a heat amount for raising the temperature of the heat medium to the lower limit temperature TL.
In addition, when performing the heating operation of FIG. 3 in which the heating capacity Qhp that can be generated by the radiator 4 satisfies the required heating capacity Qtgt (Qtgt ≦ Qhp), an operation other than the heating auxiliary operation and the heating operation, or compression In the battery heating operation when the machine 2 is stopped, the controller 32 controls energization of the heat medium heater 66 using the following formula (VII), not the above formula (VI).
Qech = (TL−Tb) × k1 × k2 (VII)
Here, similarly, k1 is the specific heat [kj / kg · K] of the heat medium circulating in the heat medium circulating device 61, and k2 is the flow rate of the heat medium [m. 3 / H]. That is, the heat generation amount is generated only for heating the battery 55.
As described above, when the battery 55 needs to be heated, the controller 32 heats the heat medium by the heat medium heater 66 and causes the heat medium to flow to the battery 55 by the three-way valve 23. It becomes possible to heat the battery 55 with the heat medium heated by the heater 66 until it reaches the use lower limit temperature TL or higher without any trouble.
In this case as well, in the embodiment, the controller 32 determines that the battery 55 needs to be heated when the temperature of the battery 55 is lower than the use lower limit temperature TL. Thus, the three-way valve 23 can be switched and controlled.
When the battery temperature Tb is equal to or higher than the lower limit temperature TL, the controller 32 ends the battery heating operation and returns to the other operation (heating operation, auxiliary heating operation, etc.) described above, or heat medium heater The energization of 66 and the operation of the compressor 2 and the circulation pump 62 are stopped.
(7-4) Battery cooling operation
Here, when the battery temperature Tb suddenly increases due to charging / discharging of the battery 55 and becomes higher than the use upper limit temperature TH (TH <Tb), the controller 32 determines that it is necessary to cool the battery 55 and cools the battery. Run the operation. Next, the battery cooling operation will be described with reference to FIG.
In this battery cooling operation, the controller 32 fully closes the outdoor expansion valve 6 and the indoor expansion valve 8 (fully closed position), opens the electromagnetic valve 22, and opens the auxiliary expansion valve 73 to control the decompression of the refrigerant. Then, the compressor 2 is operated. Further, the controller 32 stops heating of the heat medium by the heat medium heater 66 (OFF), and switches the three-way valve 23 to a state where the inlet and one outlet communicate with each other to operate the circulation pump 62.
Thereby, the refrigerant discharged from the compressor 2 radiates heat by the radiator 4, and all the refrigerant radiated by the radiator 4 is decompressed by the auxiliary expansion valve 73, and the refrigerant flow path of the refrigerant-heat medium heat exchanger 64 It flows into 64B and evaporates. The heat medium discharged from the circulation pump 62 passes through the heat medium heater 66 without being heated by the heat medium heater 66 and flows into the heat medium flow path 64A of the refrigerant-heat medium heat exchanger 64, where it is absorbed by the refrigerant and cooled. After that, it flows to the battery 55 through the three-way valve 23, and cools by absorbing heat from the battery 55.
In this battery cooling operation, the controller 32 uses, for example, the following equation (VIII) to calculate the heat medium circulating device 61 based on the temperature of the battery 55 (battery temperature Tb) detected by the battery temperature sensor 76 and the above-described upper limit temperature TH. The required battery cooling capacity Qbat, which is the cooling capacity of the battery 55 required for the above, is calculated.
Qbat = (Tb−TH) × k1 × k2 (VIII)
Here, similarly, k1 is the specific heat [kj / kg · K] of the heat medium circulating in the heat medium circulating device 61, and k2 is the flow rate of the heat medium [m. 3 / H]. Then, the compressor 2 and the auxiliary expansion valve 73 are controlled so as to achieve the required battery cooling capacity Qbat.
As a result, the battery temperature Tb decreases rapidly. In this battery cooling operation, when the battery temperature Tb falls below the use upper limit temperature TH, the controller 32 ends the battery cooling operation and returns to another operation (heating operation, heating auxiliary operation, etc.) Alternatively, the compressor 2 and the circulation pump 62 are stopped.
As described above, when the battery 55 needs to be cooled, the controller 32 radiates the refrigerant discharged from the compressor 2 by the radiator 4 and decompresses the radiated refrigerant, and then the refrigerant-heat medium heat exchanger. 64, the heating of the heat medium by the heat medium heater 66 is stopped, and the heat medium is caused to flow to the battery 55 by the three-way valve 23. The battery 55 can be cooled without any trouble by the heat medium.
Also in this case, in the embodiment, since the controller 32 determines that the battery 55 needs to be cooled when the battery temperature Tb is higher than the upper limit temperature TH, the battery 55 needs to be cooled. Can be determined accurately.
In the present invention, as described in detail above, the heat medium circulating device 61 is caused to circulate the heat medium without flowing to the battery 55, and the heat medium is made to flow to the battery 55 or to the bypass circuit 67. By providing the three-way valve 23 for switching whether to flow, the three-way valve 23 causes the heat medium of the heat medium circulation device 61 to flow to the heat medium heater 66, the refrigerant-heat medium heat exchanger 64, and the battery 55. And switching to a state in which the heat medium flows to the heat medium heater 66, the refrigerant-heat medium heat exchanger 64 and the bypass circuit 67 without flowing to the battery 55, without being affected by the temperature of the battery 55, Efficient air conditioning operation can be realized.
In the embodiment, since the controller 32 controls the three-way valve 23 based on the battery temperature Tb, the three-way valve 23 can be appropriately switched and controlled according to the temperature state of the battery 55.
It should be noted that the configuration of the refrigerant circuit R and the heat medium circulating device 61 described in the above embodiment, the numerical values such as the temperatures, and the control factors are not limited thereto and can be changed without departing from the spirit of the present invention. Needless to say.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 21、22 電磁弁
 32 コントローラ(制御装置)
 55 バッテリ(発熱機器)
 61 熱媒体循環装置
 62 循環ポンプ
 64 冷媒−熱媒体熱交換器
 66 熱媒体加熱ヒータ(加熱装置)
 67 バイパス回路
 73 補助膨張弁
 R 冷媒回路
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Compressor 3 Air flow path 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 21, 22 Solenoid valve 32 Controller (control device)
55 Battery (heat generating device)
61 Heat medium circulation device 62 Circulation pump 64 Refrigerant-heat medium heat exchanger 66 Heat medium heater (heating device)
67 Bypass circuit 73 Auxiliary expansion valve R Refrigerant circuit

Claims (10)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     前記冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     車室外に設けられて前記冷媒を吸熱させるための室外熱交換器と、
     車両に搭載された発熱機器に熱媒体を循環させる熱媒体循環装置と、
     制御装置を備え、前記車室内を空調する車両用空気調和装置において、
     前記熱媒体循環装置は、
     前記冷媒と前記熱媒体とを熱交換させるための冷媒−熱媒体熱交換器と、
     前記熱媒体を加熱するための加熱装置と、
     前記発熱機器に流すこと無く、前記熱媒体を循環させるためのバイパス回路と、
     前記発熱機器に前記熱媒体を流すか、前記バイパス回路に前記熱媒体を流すかを切り換えるための流路切換装置を備えたことを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant;
    An air flow passage through which air to be supplied into the passenger compartment flows;
    A radiator for dissipating the refrigerant and heating the air supplied from the air flow passage to the vehicle interior;
    An outdoor heat exchanger provided outside the passenger compartment for absorbing the refrigerant;
    A heat medium circulation device that circulates the heat medium in a heat generating device mounted on the vehicle;
    In a vehicle air conditioner that includes a control device and that air-conditions the vehicle interior,
    The heat medium circulation device is
    A refrigerant-heat medium heat exchanger for exchanging heat between the refrigerant and the heat medium;
    A heating device for heating the heat medium;
    A bypass circuit for circulating the heat medium without flowing to the heat generating device;
    An air conditioner for a vehicle comprising a flow path switching device for switching between flowing the heat medium through the heat generating device or flowing the heat medium through the bypass circuit.
  2.  前記制御装置は、前記発熱機器の温度に基づき、前記流路切換装置を制御することを特徴とする請求項1に記載の車両用空気調和装置。 The vehicle air conditioner according to claim 1, wherein the control device controls the flow path switching device based on a temperature of the heat generating device.
  3.  前記制御装置は、前記圧縮機から吐出された前記冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器と前記冷媒−熱媒体熱交換器にて吸熱させ、前記加熱装置により前記熱媒体を加熱すると共に、
     前記発熱機器を加熱する必要が無い場合、前記流路切換装置により前記バイパス回路に前記熱媒体を流すことを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。
    The control device causes the refrigerant discharged from the compressor to radiate heat with the radiator, depressurizes the radiated refrigerant, and then absorbs heat with the outdoor heat exchanger and the refrigerant-heat medium heat exchanger. And heating the heat medium by the heating device,
    3. The vehicle air conditioner according to claim 1, wherein when the heating device does not need to be heated, the heat medium is caused to flow through the bypass circuit by the flow path switching device. 4.
  4.  前記制御装置は、前記発熱機器の温度が所定の使用下限温度以上である場合、当該発熱機器を加熱する必要が無いと判断することを特徴とする請求項3に記載の車両用空気調和装置。 4. The vehicle air conditioner according to claim 3, wherein the control device determines that it is not necessary to heat the heat generating device when the temperature of the heat generating device is equal to or higher than a predetermined lower limit temperature.
  5.  前記制御装置は、前記発熱機器の廃熱を回収することができる場合、前記圧縮機から吐出された前記冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器と前記冷媒−熱媒体熱交換器にて吸熱させると共に、
     前記流路切換装置により前記発熱機器に前記熱媒体を流すことを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。
    When the control device can recover the waste heat of the heat generating device, the refrigerant discharged from the compressor is radiated by the radiator, the radiated refrigerant is decompressed, and then the outdoor heat exchange. Heat is absorbed by a heater and the refrigerant-heat medium heat exchanger,
    The vehicle air conditioner according to any one of claims 1 to 4, wherein the heat medium is caused to flow through the heat generating device by the flow path switching device.
  6.  前記制御装置は、前記発熱機器の温度が、当該発熱機器の廃熱を回収可能か否かの判断基準となる前記冷媒−熱媒体熱交換器の出口側の前記熱媒体の温度の所定値より高い場合、前記発熱機器の廃熱を回収することができると判断することを特徴とする請求項5に記載の車両用空気調和装置。 The control device determines whether the temperature of the heat generating device is a predetermined value of the temperature of the heat medium on the outlet side of the refrigerant-heat medium heat exchanger, which is a criterion for determining whether or not the waste heat of the heat generating device can be recovered. 6. The vehicle air conditioner according to claim 5, wherein when it is high, it is determined that the waste heat of the heat generating device can be recovered.
  7.  前記制御装置は、前記発熱機器を加熱する必要がある場合、前記加熱装置により前記熱媒体を加熱すると共に、
     前記流路切換装置により前記発熱機器に前記熱媒体を流すことを特徴とする請求項1乃至請求項6のうちの何れかに記載の車両用空気調和装置。
    When it is necessary to heat the heating device, the control device heats the heat medium by the heating device,
    The vehicle air conditioner according to any one of claims 1 to 6, wherein the heat medium is caused to flow through the heat generating device by the flow path switching device.
  8.  前記制御装置は、前記発熱機器の温度が所定の使用下限温度より低い場合、当該発熱機器を加熱する必要があると判断することを特徴とする請求項7に記載の車両用空気調和装置。 The vehicle air conditioner according to claim 7, wherein the control device determines that the heat generating device needs to be heated when the temperature of the heat generating device is lower than a predetermined lower limit temperature.
  9.  前記制御装置は、前記発熱機器を冷却する必要がある場合、前記圧縮機から吐出された前記冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記冷媒−熱媒体熱交換器にて吸熱させると共に、
     前記加熱装置による前記熱媒体の加熱を停止し、前記流路切換装置により前記発熱機器に前記熱媒体を流すことを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両用空気調和装置。
    When it is necessary to cool the heat generating device, the control device radiates the refrigerant discharged from the compressor with the radiator, depressurizes the radiated refrigerant, and then performs the refrigerant-heat medium heat exchange. While absorbing heat with a vessel,
    9. The vehicle according to claim 1, wherein heating of the heat medium by the heating device is stopped, and the heat medium is caused to flow to the heat generating device by the flow path switching device. Air conditioner.
  10.  前記制御装置は、前記発熱機器の温度が所定の使用上限温度より高い場合、当該発熱機器を冷却する必要があると判断することを特徴とする請求項9に記載の車両用空気調和装置。 10. The vehicle air conditioner according to claim 9, wherein the control device determines that the heat generating device needs to be cooled when the temperature of the heat generating device is higher than a predetermined use upper limit temperature.
PCT/JP2018/047128 2018-01-30 2018-12-14 Vehicle air-conditioning device WO2019150829A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-013500 2018-01-30
JP2018013500A JP2019130980A (en) 2018-01-30 2018-01-30 Vehicle air conditioner

Publications (1)

Publication Number Publication Date
WO2019150829A1 true WO2019150829A1 (en) 2019-08-08

Family

ID=67478045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047128 WO2019150829A1 (en) 2018-01-30 2018-12-14 Vehicle air-conditioning device

Country Status (2)

Country Link
JP (1) JP2019130980A (en)
WO (1) WO2019150829A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210197644A1 (en) * 2018-09-18 2021-07-01 Sanden Automotive Climate Systems Corporation Vehicular heat exchange system and motor unit used in same
CN113547896A (en) * 2020-09-30 2021-10-26 株式会社电装 Vehicle-mounted air conditioning system with battery heating function
CN114269574A (en) * 2019-08-26 2022-04-01 三电汽车空调系统株式会社 Battery cooling device for vehicle and vehicle air conditioner comprising same
CN114514130A (en) * 2019-09-18 2022-05-17 三电汽车空调系统株式会社 Air conditioner for vehicle

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021133723A (en) 2020-02-25 2021-09-13 マツダ株式会社 Vehicle air-conditioning device
JP2021138269A (en) * 2020-03-04 2021-09-16 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP2022128546A (en) * 2021-02-23 2022-09-02 株式会社デンソー Air conditioner
CN115122862A (en) * 2021-09-02 2022-09-30 株式会社电装 Heat pump air conditioning system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017056A (en) * 2010-07-09 2012-01-26 Nippon Soken Inc Temperature adjustment system for vehicle
US20160344075A1 (en) * 2015-05-20 2016-11-24 Ford Global Technologies, Llc Thermal Management System for a Vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017056A (en) * 2010-07-09 2012-01-26 Nippon Soken Inc Temperature adjustment system for vehicle
US20160344075A1 (en) * 2015-05-20 2016-11-24 Ford Global Technologies, Llc Thermal Management System for a Vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210197644A1 (en) * 2018-09-18 2021-07-01 Sanden Automotive Climate Systems Corporation Vehicular heat exchange system and motor unit used in same
US11964536B2 (en) * 2018-09-18 2024-04-23 Sanden Corporation Vehicular heat exchange system and motor unit used in same
CN114269574A (en) * 2019-08-26 2022-04-01 三电汽车空调系统株式会社 Battery cooling device for vehicle and vehicle air conditioner comprising same
CN114269574B (en) * 2019-08-26 2023-11-17 三电汽车空调系统株式会社 Battery cooling device for vehicle and air conditioning device for vehicle comprising same
CN114514130A (en) * 2019-09-18 2022-05-17 三电汽车空调系统株式会社 Air conditioner for vehicle
CN114514130B (en) * 2019-09-18 2024-03-19 三电汽车空调系统株式会社 Air conditioner for vehicle
CN113547896A (en) * 2020-09-30 2021-10-26 株式会社电装 Vehicle-mounted air conditioning system with battery heating function

Also Published As

Publication number Publication date
JP2019130980A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP7095848B2 (en) Vehicle air conditioner
WO2019150830A1 (en) Vehicle air-conditioning device
JP7268976B2 (en) Vehicle air conditioner
JP6997558B2 (en) Vehicle air conditioner
WO2019150829A1 (en) Vehicle air-conditioning device
WO2020031569A1 (en) Vehicle air conditioning device
WO2018193770A1 (en) Vehicular air conditioning device
WO2014175254A1 (en) Vehicle air conditioning device
JP7316872B2 (en) TEMPERATURE ADJUSTMENT FOR VEHICLE HEAT DEVICE AND VEHICLE AIR CONDITIONER INCLUDING THE SAME
WO2020066719A1 (en) Vehicle air conditioner
JP6963405B2 (en) Vehicle air conditioner
JP7372794B2 (en) Vehicle air conditioner
CN114126900B (en) Air conditioning equipment for vehicle
JP7164986B2 (en) Vehicle air conditioner
WO2021192760A1 (en) Vehicle air conditioner
WO2020235262A1 (en) Vehicle air conditioner
WO2021054042A1 (en) Vehicle air conditioner
WO2020262125A1 (en) Vehicle air-conditioner
JP2022053320A (en) Vehicular air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904373

Country of ref document: EP

Kind code of ref document: A1