WO2020026607A1 - メッキ造形物の製造方法、回路基板、および表面処理剤、ならびに表面処理剤キット - Google Patents

メッキ造形物の製造方法、回路基板、および表面処理剤、ならびに表面処理剤キット Download PDF

Info

Publication number
WO2020026607A1
WO2020026607A1 PCT/JP2019/023609 JP2019023609W WO2020026607A1 WO 2020026607 A1 WO2020026607 A1 WO 2020026607A1 JP 2019023609 W JP2019023609 W JP 2019023609W WO 2020026607 A1 WO2020026607 A1 WO 2020026607A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
surface treatment
resist pattern
organic solvent
treatment agent
Prior art date
Application number
PCT/JP2019/023609
Other languages
English (en)
French (fr)
Inventor
直希 西口
真 桂山
宏和 榊原
朋之 松本
彩子 遠藤
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to CN201980044459.2A priority Critical patent/CN112368643A/zh
Priority to KR1020217002738A priority patent/KR20210036350A/ko
Priority to JP2020534090A priority patent/JP7405079B2/ja
Publication of WO2020026607A1 publication Critical patent/WO2020026607A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material

Definitions

  • the present invention relates to a method for producing a plated object, a circuit board, a surface treatment agent, and a surface treatment agent kit.
  • ⁇ ⁇ ⁇ Plating objects such as wiring and bumps are formed by forming a resist pattern on a substrate having a metal foil such as copper and performing plating solution treatment using the resist pattern as a mask.
  • connection terminals such as wiring and bumps on circuit boards of semiconductor devices and display devices such as liquid crystal displays and touch panels.
  • semiconductor devices and display devices such as liquid crystal displays and touch panels.
  • resist patterns used for forming connection terminals has become necessary.
  • Patent Documents 1 and 2 When forming a plated object by plating solution treatment using a resist pattern as a mask, there is a known problem that a plating solution permeates between the resist pattern and the substrate (Patent Documents 1 and 2).
  • the present invention is to provide a method for manufacturing a plated object, in which a plating solution is not soaked between a resist pattern and a substrate during a plating solution treatment, and a plated object having a good shape can be manufactured.
  • a circuit board having a plated object manufactured by a method of manufacturing a plated object to provide a surface treatment agent suitably used in the method of manufacturing a plated object, and to provide a surface treatment agent kit With the goal.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, they have found that the above-mentioned problems can be solved by a method of manufacturing a plated molded article having the following configuration, and have completed the present invention. That is, the present invention relates to, for example, the following [1] to [11].
  • Step (1) of forming a surface-treated substrate by exposing a surface-treating agent containing 0.001 to 2% by mass and 90 to 99.999% by mass of the organic solvent (B) (hereinafter also referred to as “Step (1)”)
  • Step (2) of forming a resist composition coating film on the surface-treated substrate (hereinafter also referred to as “Step (2)”);
  • Step (3) of exposing and developing the coating film to form a resist pattern
  • step (4) of performing plating solution treatment using the resist pattern as a mask
  • step (5) The method according to any one of [1] to [4], further comprising a step (5) of removing the resist pattern (hereinafter, also referred to as “step (5)”) after the step (4).
  • step (5) The method for producing the plated object described in the above.
  • At least one triazole compound (A) selected from triazole (A1) and benzotriazole-based compound (A2) is contained in an amount of 0.001 to 2% by mass and an organic solvent (B) is contained in an amount of 90 to 99.999% by mass.
  • a surface treatment agent characterized by the following.
  • the first solution contains at least one triazole compound (A) selected from triazole (A1) and benzotriazole-based compound (A2) in an amount of more than 2% by mass and less than 100% by mass, and an organic solvent (B) And more than 0% by mass and 98% by mass or less,
  • the manufacturing method of the plating molded article of this invention can manufacture the plating molded article of a favorable shape, without a plating liquid seeping in between a resist pattern and a board
  • the circuit board of the present invention has high reliability because it has a plated object manufactured by the method of manufacturing a plated object of the present invention.
  • the surface treatment agent of the present invention can be suitably used in the method for producing a plated object of the present invention.
  • the surface treatment agent kit of the present invention can be suitably used for producing the surface treatment agent.
  • FIG. 1 is a schematic view of a method for producing a plated object of the present invention.
  • FIG. 2 is an electron micrograph of the resist pattern formed in Example 1B.
  • FIG. 3 is an electron micrograph of the resist pattern formed in Comparative Example 4B.
  • each component exemplified in the present specification for example, each component in the surface treatment agent may be used alone or in combination of two or more, unless otherwise specified.
  • the surface treatment agent of the present invention comprises 0.001-2% by mass of at least one triazole compound (A) selected from triazole (A1) and benzotriazole-based compound (A2) and an organic solvent (B ) 90 to 99.999% by mass. Further, other components (C) can be contained, if necessary, as long as the performance of the surface treatment agent of the present invention is not lost.
  • the surface treatment agent of the present invention can uniformly expose the triazole compound (A) to the entire surface of the copper-containing substrate.
  • the triazole compound (A) exposed on the surface of the copper-containing substrate can form a complex with copper and a derivative thereof, whereby the triazole compound (A) and the copper or a derivative thereof are formed on the surface of the copper-containing substrate.
  • a very thin film hereinafter, also referred to as a “surface treatment layer” containing a complex with is formed.
  • Triazole compound (A) makes the surface of the substrate hydrophobic by forming a complex with copper of the copper-containing film in the method for producing a plated object of the present invention, and improves the adhesion of the substrate to the resist pattern. The effect of improving is given.
  • the triazole compound (A) is at least one selected from a triazole (A1) and a benzotriazole compound (A2), and the triazole (A1) is 1,2,3-triazole or 1,2,4-triazole.
  • the benzotriazole-based compound (A2) includes benzotriazole and a compound in which 1 to 4 hydrogen atoms of a benzene ring of benzotriazole are replaced with a hydrophobic group.
  • hydrophobic group examples include alkyl groups such as methyl, ethyl, n-butyl, tert-butyl, iso-butyl, n-hexyl, 2-ethylhexyl, and n-dodecyl; Cycloalkyl groups such as cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclopentanyl group and isobornyl group; alkyl-substituted cycloalkyl groups such as cyclopentylmethyl group and cyclohexylmethyl group; phenyl group, 1-naphthyl group and 2-naphthyl An aryl group such as a benzyl group and an aralkyl group such as a 2-phenylethyl group; a halogen atom such as a fluorine atom, a perfluoromethyl group, a 1-fluorophenyl group,
  • the heterocyclic ring of the benzotriazole compound (A2) may be an isomer.
  • 1H-benzotriazole and 2H-benzotriazole are included.
  • the benzotriazole-based compound (A2) include benzotriazole and tolyltriazole.
  • the content of the triazole compound (A) contained in the surface treatment agent of the present invention is 0.001 to 2% by mass, preferably 0.01 to 1.5% by mass, and more preferably 0.05 to 1% by mass. It is.
  • the surface treatment of the triazole compound (A) is uniformly performed over the entire surface of the copper-containing substrate when the surface treatment agent of the present invention is spin-coated on the substrate.
  • a layer can be formed, and as a result, it is possible to manufacture a plated model without a plating solution soaked over the entire surface of the copper-containing substrate.
  • Organic solvent (B) is a component used for uniformly dissolving the triazole compound (A). By containing the organic solvent (B), the triazole compound (A) is uniformly dispersed over the entire surface of the copper-containing substrate. ) Can be exposed.
  • any organic solvent may be used as long as it can uniformly dissolve the triazole compound (A) and can well wet the copper-containing film.
  • ethylene glycol monomethyl ether Alcohols such as ethylene glycol monoethyl ether, diethylene glycol, diethylene glycol monoethyl ether, ethyl lactate, and propylene glycol monomethyl ether; ethyl acetate, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, and acetoacetic acid Esters such as methyl and ethyl ethoxyacetate; ketones such as methyl amyl ketone and cyclohexanone; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol Alkylene glycol dialkyl ethers such as n-propyl ether and dipropylene glycol dimethyl ether; and ethylene glycol monomethyl ether acetate,
  • alkylene glycol monoalkyl ether acetate and alcohol are preferred because they have high solubility in the triazole compound (A) and the surface treatment agent becomes well wetted with the copper-containing film.
  • the triazole compound (A) can be uniformly exposed to the entire surface of the copper-containing substrate by the surface treatment agent being well wetted by the copper-containing film.
  • the standard boiling point of the organic solvent (B) is usually from 80 to 200 ° C, preferably from 100 to 180 ° C, more preferably from 120 to 160 ° C. Since the organic solvent (B) is volatilized while the surface treating agent is exposed to the substrate, the triazole compound (A ) Cannot be uniformly exposed over the entire surface of the copper-containing substrate. When the standard boiling point of the organic solvent (B) is in the above range, the organic solvent (B) has an appropriate volatilization rate, and as a result, uniformly exposes the triazole compound (A) to the entire surface of the copper-containing substrate. be able to. In addition, the standard boiling point in this specification is a boiling point at 1 atm.
  • organic solvent (B) propylene glycol monomethyl ether acetate (standard boiling point: 146 ° C.), propylene glycol monomethyl ether (standard boiling point: 121 ° C.), and ethyl lactate (standard boiling point: 154 ° C.) are preferable.
  • the content ratio of the organic solvent (B) contained in the surface treatment agent of the present invention is 90 to 99.999% by mass, preferably 95 to 99.999% by mass, more preferably 98 to 99.999% by mass. .
  • the triazole compound (A) can be uniformly and thinly exposed to the entire surface of the copper-containing substrate. Therefore, the surface treatment layer of the triazole compound (A) can be uniformly applied to the entire surface of the copper-containing substrate. Can be formed, and as a result, it is possible to manufacture a plated molded article free of a plating solution soak.
  • the surface treating agent of the present invention may contain other components (C) such as a surfactant and a reducing agent, if necessary, as long as the effects of the surface treating agent of the present invention are not lost.
  • the surfactant is a component used for improving the wettability of the surface treatment agent of the present invention to the substrate so that a surface treatment layer can be uniformly formed on the surface of the copper-containing substrate.
  • nonionic surfactants such as polyoxyalkylene phenyl ether, polyoxyalkylene methyl phenyl ether, polyoxyalkylene octyl phenyl ether, polyoxyalkylene nonyl phenyl ether; sodium dodecylbenzene sulfonate And an anionic surfactant such as an alkyl aryl sulfonate.
  • the content ratio of the other component (C) contained in the surface treatment agent of the present invention is 8% by mass or less, preferably 4% by mass or less, more preferably 1.999% by mass or less, and further preferably 0% by mass. . That is, the surface treatment agent of the present invention more preferably comprises only the triazole compound (A) and the organic solvent (B).
  • the surface treatment agent of the present invention is produced by uniformly dissolving the triazole compound (A) and, if necessary, the other component (C) in the organic solvent (B). Can be.
  • the mixed solution after dissolution can be filtered through a filter such as a microporous membrane filter to remove impurities.
  • the surface treatment agent kit of the present invention is a surface treatment agent kit for producing the surface treatment agent of the present invention, and includes at least a first solution and a second solution described below. Have a solution.
  • the first solution contains at least one triazole compound (A) selected from triazole (A1) and benzotriazole (A2) in an amount of more than 2% by mass and less than 100% by mass, and an organic solvent (B) of 0% by mass. % And more than 98% by mass.
  • the first solution can contain the other component (C).
  • the second solution contains an organic solvent (B).
  • the content ratio of the organic solvent (B) contained in the second solution is usually 95% by mass or more, preferably 99% by mass or more.
  • the component other than the organic solvent (B) contained in the second solution includes the other component (C).
  • the details of the organic solvent (B) and the other component (C) contained in the second solution are the same as those of the organic solvent (B) and the other component (C) described in the description of the surface treatment agent of the present invention.
  • the organic solvent (B) contained in the second solution may be the same or different from the organic solvent (B) contained in the first solution, but is preferably contained in the first solution. Same as the organic solvent (B).
  • the surface treatment agent of the present invention can be produced using the surface treatment agent kit of the present invention.
  • the first solution and the second solution are prepared by mixing 0.001 to 2% by mass of at least one triazole compound (A) selected from triazole (A1) and benzotriazole (A2), and an organic solvent. It can be produced by mixing so that (B) is 90 to 99.999% by mass.
  • the method for producing a plated object provides a method for producing a plated object on a substrate having a copper-containing film on its surface, at least one triazole compound selected from triazole (A1) and benzotriazole (A2).
  • A a step of exposing a surface treating agent containing 0.001 to 2% by mass and 90 to 99.999% by mass of an organic solvent (B) to form a surface treated substrate (1); a resist on the surface treated substrate Forming a coating film of the composition (2); exposing and developing the coating film to form a resist pattern (3); and performing a plating solution treatment using the resist pattern as a mask (4); Having.
  • the method of manufacturing a plated object according to the present invention may further include, after the step (4), a step (5) of removing the resist pattern.
  • FIG. 1 shows an outline of the steps of the method for producing a plated object of the present invention.
  • the triazole compound (A) can improve the adhesiveness between the resist pattern and the copper-containing film, the contact surface between the resist pattern and the copper-containing substrate where the plating solution has penetrated, that is, especially the adhesive It is presumed that the penetration of the plating solution can be prevented where the force is weak.
  • Step (1) a surface-treated substrate having a surface-treated layer on the surface of the copper-containing substrate is formed by exposing the surface-treating agent of the present invention onto the copper-containing substrate.
  • the surface treatment layer is a layer which cannot be measured by a normal film thickness measuring device such as a stylus type film thickness measuring device or spectroscopic ellipsometry.
  • Examples of the copper-containing substrate include a substrate in which a copper-containing film is provided on the surface of a substrate such as a silicon wafer or a glass substrate.
  • Examples of the planar shape of the substrate include a square and a circle.
  • Examples of the shape of the substrate surface include a flat shape and an uneven shape such as a TSV structure.
  • the copper-containing film includes a film containing copper or a copper compound such as copper oxide.
  • the thickness of the copper-containing film is usually from 10 to 100,000 °.
  • Examples of the method of exposing the surface treatment agent include a method of forming a coating film by dip coating, spin coating, screen coating, gravure coating, wire bar coating, slit coating, inkjet, or the like.
  • exposure by spin coating or slit coating can uniformly expose the triazole compound (A) to the entire surface of the copper-containing substrate, and can form a favorable surface treatment layer, and as a result, the plating solution At the time of the treatment, it is particularly preferable from the viewpoint that there is no penetration of the plating solution between the resist pattern and the substrate, and a plated product having a good shape can be manufactured.
  • the surface treatment agent is placed on the copper-containing substrate while rotating the copper-containing substrate, so that the surface treatment agent is uniformly spread over the entire surface of the copper-containing substrate by centrifugal force due to the rotation.
  • a volatile component such as an organic solvent in the surface treatment agent is volatilized while rotating, and the surface treatment agent is exposed to the copper-containing substrate.
  • the amount of the surface treatment agent to be placed in the spin coating can be appropriately selected depending on the surface area of the copper-containing substrate, and is usually 1 to 20 cc, preferably 2 to 10 cc.
  • the maximum rotation speed in spin coating is usually 400 to 4000 rpm, preferably 800 to 3000 rpm.
  • the time for performing the maximum rotation speed in the spin coating is usually 10 to 3000 seconds, preferably 30 to 2000 seconds.
  • Exposure by the slit coat is performed by evaporating volatile components such as organic solvents in the surface treatment agent while pressing a slit nozzle having a slit-shaped hole at a portion where the surface treatment agent is discharged onto the copper-containing substrate. This is a method of exposing a surface treatment agent to the surface of the substrate.
  • the discharge speed of the surface treatment agent in the slit coat can be appropriately selected depending on the surface area of the copper-containing substrate, and is usually 0.01 to 1.0 cc / sec.
  • the moving speed of the slit nozzle in the slit coating is usually 1 to 50 cm / sec.
  • the copper-containing substrate can be heated.
  • the organic solvent (B) can be volatilized, and a good surface treatment layer can be formed on the surface of the copper-containing substrate.
  • the heating can promote the formation of a complex between the triazole compound (A) and the copper-containing film, and as a result, it is presumed that a good surface treatment layer can be formed.
  • the heating temperature is usually 200 ° C. or lower, preferably 70 to 150 ° C.
  • the heating time is usually 0.5 to 20 minutes, preferably 1 to 10 minutes.
  • Step (2) a coating film of the resist composition is formed on the surface-treated substrate formed in the step (1).
  • Examples of the resist composition include known resist compositions used in the production of a molded object, for example, JP-A-2004-309775, JP-A-2007-248727, JP-A-2015-194715, And a positive resist composition containing an acid-dissociable alkali sparingly soluble resin and a photoacid generator described in JP-A-2009-169085; and JP-A-2000-039709 and JP-A-2007-293306. , WO2018 / 114635, WO2013 / 084886 and the like, and a negative resist composition containing an alkali-soluble resin, an acrylic compound and a photoradical polymerization initiator.
  • the negative resist composition When the negative resist composition is exposed and then developed, the exposed resist coating shrinks after swelling. If the adhesiveness between the resist coating film and the substrate during contraction is weak, the resist pattern after development may have an undercut shape. When the resist pattern has an undercut shape, the plating solution penetrates into the space created by the undercut shape, so that the plating solution is more likely to permeate. Therefore, it is preferable to use the negative resist composition as the resist composition, since the effect of the method for producing a plated object of the present invention is remarkably exhibited.
  • the positive resist composition since the resist pattern formed after exposure and development is an uncrosslinked resin film, the adhesion to the copper-containing substrate is weak, so that the plating solution is likely to soak. Therefore, even when the positive resist composition is used as the resist composition, the effect of the method of manufacturing a plated object of the present invention is remarkably exhibited, which is preferable.
  • the coating film of the resist composition can be formed by, for example, spin coating, transfer using a dry film, or slit coating, and detailed conditions for forming the coating film are appropriately selected depending on the type of the resist composition.
  • the maximum rotation speed of spin coating is usually 800 to 4000 rpm, and the time is usually 10 to 3000 seconds. Thereafter, the coating is usually formed by heating at 50 to 200 ° C. for 0.5 to 20 minutes.
  • the thickness of the coating film is usually the same as or slightly larger than the thickness of the resist pattern formed in step (3), and is usually 0 to 10% thicker than the thickness of the resist pattern.
  • step (3) the coating film formed in step (2) is exposed and developed to form a resist pattern.
  • the exposure is usually performed by a 1: 1 projection exposure or a reduced projection exposure through a mask (for example, a reticle) having a light-shielding pattern conforming to a resist pattern to be formed.
  • a mask for example, a reticle
  • a laser having a wavelength of 190 to 500 nm is usually used.
  • the exposure amount is appropriately selected depending on the type of the resist composition and the thickness of the coating film. For example, when the resist composition is the negative resist composition, the exposure light is an i-line (365 nm) laser, and the thickness of the coating film is 50 ⁇ m, the exposure amount is usually 100 to 10,000 mJ / cm 2. It is.
  • a heat treatment can be performed after exposure and before development.
  • heat treatment is usually performed, and the condition is usually 70 to 180 ° C. for 1 to 10 minutes.
  • the development is usually performed with a developer.
  • the selective exposure causes a difference in the solubility in the developer for each part of the coating film, so that when the developer comes into contact with the coating film, the coating part with high solubility is dissolved, and as a result, the coating part that does not dissolve Forms a resist pattern.
  • an alkaline developer such as an aqueous potassium hydroxide solution and an aqueous tetramethylammonium hydroxide solution is usually used.
  • Developing methods include, for example, a puddle method, a dipping method, a paddle method, a spray method, and a shower method.
  • the development time is usually from 30 to 600 seconds at 23 ° C.
  • the resist pattern can be washed with water or the like. Then, it can be dried by an air gun or a hot plate.
  • the film thickness of the resist pattern is usually 0.8 to 300 ⁇ m, usually 0.8 to 50 ⁇ m when the plated object is a wiring, and 1 to 300 ⁇ m when the plated object is an electrode. is there.
  • the shape of the resist pattern should be selected according to the type of parts to be applied to the printed circuit board.
  • the shape of the resist pattern is a line and space pattern
  • the shape of the resist pattern is a cubic hole pattern
  • Step (4) plating solution treatment is performed using the resist pattern formed in the step (3) as a mask to produce a plated molded article.
  • the plating solution treatment is usually an electrolytic plating solution treatment.
  • a copper-containing film on the surface of the substrate is usually used, but a plating film formed on the inner wall of the resist pattern by the electroless plating solution treatment can also be used as the seed layer.
  • the barrier layer may be formed before forming the seed layer, and the seed layer can be used as the barrier layer.
  • Ashing processing, flux processing, and desmear processing can be performed.
  • the surface treatment layer is not removed even if it is removed before the plating solution treatment. Or both. Since the surface treatment layer is very thin, it does not hinder plating solution treatment, so that plating solution treatment can be performed without removing the surface treatment layer.
  • Examples of the plating solution treatment include a copper plating solution treatment, a tin plating solution treatment, a tin-silver plating treatment solution, a solder plating solution treatment, a gold plating solution treatment, a nickel plating solution treatment, a nickel-gold plating solution treatment, and a chrome plating solution treatment. Is mentioned.
  • the copper plating solution treatment includes, for example, a plating solution treatment using a plating bath containing copper sulfate or copper pyrophosphate; the gold plating solution treatment includes, for example, plating using a plating bath containing potassium potassium cyanide. Solution treatment; Examples of the nickel plating solution treatment include a plating solution treatment using a plating bath containing nickel sulfate or nickel carbonate.
  • the conditions for the electroplating solution treatment may be appropriately selected depending on the composition of the plating solution.
  • the conditions are usually a temperature of 10 to 90 ° C. and a current density of 0.1 to 100 A / Dm 2 .
  • plating solution treatment different plating solution treatments can be sequentially performed.
  • copper pillars in solder copper pillar bumps can be formed by performing a copper plating solution treatment first and then performing a nickel plating solution treatment.
  • Step (5) After performing the plating solution treatment in the step (4), the resist pattern is further removed.
  • the removal of the resist pattern includes, for example, a method of dipping the substrate after the step (4) in a resist stripper.
  • a resist stripping solution for example, an organic solution containing a basic substance such as tetramethylammonium is used.
  • the copper-containing film other than the region where the plated object is formed can be removed by wet etching or the like.
  • the plated object conforming to the purpose such as the wiring and the bump can be formed into a defective shape due to the permeation of the plating solution between the resist pattern and the substrate. And a plated molded article having a good shape can be manufactured.
  • Circuit board of the present invention has a plated object manufactured by the method of manufacturing a plated object of the present invention.
  • the plated object manufactured by the method of manufacturing a plated object according to the present invention is close to the entire surface of the circuit board because there is no defective shape due to the infiltration of the plating solution between the resist pattern and the substrate, and it has a good shape. Since there is no short circuit between the wiring and the bump, the circuit board has high reliability.
  • the circuit board includes a circuit board having wirings or bumps, and specific examples include a semiconductor device, a display device, and an industrial device.
  • Examples 1A to 4A, Comparative Examples 1A to 3A Production of Surface Treatment Agents 1A to 7A
  • the components shown in Table 1 below were uniformly mixed at the content ratios shown in Table 1 to obtain surface treatment agents 1A to 7A. Manufactured.
  • Example 1A Formation of surface-treated substrate 1A and measurement of contact angle Spin-coating of surface-treating agent 1A (placement of surface-treating agent 1A) on a 12-inch silicon wafer having a copper foil (thickness: 3000 °) on its surface (Amount: 5 cc, maximum number of revolutions: 1,000 rpm, time: 0.5 minute), and heated at 90 ° C. for 1 minute on a hot plate to form a surface-treated substrate 1A.
  • Example 8A Formation of surface-treated substrate 1A and measurement of contact angle A surface treatment agent 1A was screened on a glass-epoxy substrate (size: 50 cm, width 40 cm) having a copper foil (thickness: 3000 °) on the surface. Coating (slit nozzle: 70 ⁇ m GAP, discharge speed of surface treatment agent 1A: 0.1 cc / sec: moving speed: 2 cm / sec), and heating at 90 ° C. for 1 minute on a hot plate to form surface treatment substrate 8A.
  • Example 1B Formation of resist pattern and production of plated molded article
  • a negative resist composition (trade name “THB-151N”, manufactured by JSR Corporation, an alkali-soluble resin, an acrylic compound, A resist composition containing a photoradical polymerization initiator) was spin-coated, and heated on a hot plate at 120 ° C. for 300 seconds to form a coating film of the resist composition.
  • the coating film of the resist composition was exposed through a pattern mask using a stepper (manufactured by Nikon Corporation, model “NSR-i10D”), and immersed in a 2.38% by mass aqueous solution of tetramethylammonium hydroxide for 200 seconds.
  • a resist pattern (a hole pattern having a length of 20 ⁇ m, a width of 20 ⁇ m, and a depth of 50 ⁇ m) was formed.
  • FIG. 2 shows an electron micrograph of the resist pattern formed in Example 1B.
  • electrolytic plating was performed by the following method to produce a plated molded article.
  • ashing with oxygen plasma output: 100 W, oxygen flow rate: 100 ml, treatment time: 60 seconds
  • sulfuric acid treatment contact with a 10% by mass sulfuric acid aqueous solution for 60 seconds
  • the substrate after the pre-treatment is immersed in 1 L of a copper plating solution (product name “MICROFAB SC-40”, manufactured by Enthone), set to a plating bath temperature of 40 ° C. and a current density of 2 A / dm 2 , and electroplate for 15 minutes.
  • a treatment was performed to produce a plated molded article.
  • A No soaking of plating solution.
  • B There is soaking of plating solution.
  • Example 2B to 4B Formation of a resist pattern and production of a plated molded article
  • Example 1B except that a surface-treated substrate shown in Table 3 below was used, the same operation as in Example 1B was performed. A resist pattern was formed, and a plated product was manufactured. The same evaluation as in Example 1B was performed. The evaluation results are shown in Table 3 below.
  • Comparative Example 4B a 12-inch silicon wafer having no surface treatment with a surface treatment agent and having a copper foil (thickness: 3000 mm) on the surface was used as a substrate.
  • FIG. 3 shows an electron micrograph of the resist pattern formed in Comparative Example 4B.
  • Example 5B Formation of resist pattern and production of plated molded article
  • a negative resist composition (trade name "THB-151N", manufactured by JSR Corporation, an alkali-soluble resin, an acrylic compound, A resist composition containing a photo-radical polymerization initiator) was slit-coated, and heated on a hot plate at 120 ° C. for 300 seconds to form a coating film of the resist composition.
  • the coating film of the resist composition was exposed through a pattern mask using an aligner (manufactured by SussMicrotech, model “MA150”), immersed in a 2.38% by mass aqueous solution of tetramethylammonium hydroxide for 200 seconds, and developed. Then, a resist pattern (a hole pattern having a length of 20 ⁇ m, a width of 20 ⁇ m, and a depth of 50 ⁇ m) was formed.
  • an aligner manufactured by SussMicrotech, model “MA150”
  • Example 1B The resist pattern was evaluated in the same manner as in Example 1B, and a plated model was manufactured, and the same evaluation as in Example 1B was performed. The evaluation results are shown in Table 3 below.
  • Example 6B Formation of resist pattern and manufacture of plated molded article On surface-treated substrate 1A, a positive resist composition (trade name "THB-820P", manufactured by JSR Corporation, acid-dissociable alkali-soluble resin, And a resist composition containing a photoacid generator), and heated on a hot plate at 120 ° C. for 300 seconds to form a coating film of the resist composition.
  • the coating film of the resist composition was exposed through a pattern mask using a stepper (manufactured by Nikon Corporation, model “NSR-i10D”), and heated on a hot plate at 110 ° C. for 300 seconds to obtain 2.38% by mass.
  • the resist pattern (hole pattern having a length of 20 ⁇ m, a width of 20 ⁇ m, and a depth of 50 ⁇ m) was formed by immersing in a tetramethylammonium hydroxide aqueous solution for 300 seconds and developing.
  • Example 1B The resist pattern was evaluated in the same manner as in Example 1B, and a plated model was manufactured, and the same evaluation as in Example 1B was performed. The evaluation results are shown in Table 3 below.
  • Example 5B Formation of resist pattern and production of plated product
  • a resist pattern was formed by the same operation as in Example 6B except for using the same, a plated molded article was manufactured, and the same evaluation as in Example 1B was performed. The evaluation results are shown in Table 3 below.
  • Example 7B Formation of resist pattern and production of plated object Same as Example 1B in Example 1B except that a 1L / 1S line and space pattern having a height of 30 ⁇ m and a pitch of 20 ⁇ m was formed as the resist pattern. Was evaluated. The evaluation results are shown in Table 3 below. In Table 3 below, the terms representing the resist composition and the meanings of the letters representing the resist pattern shape are as follows.
  • -Resist composition negative A resist composition containing "THB-151N” (trade name), manufactured by JSR Corporation, an alkali-soluble resin, an acrylic compound, and a photoradical polymerization initiator.
  • Positive A resist composition containing “THB-820P” (trade name), manufactured by JSR Corporation, containing an acid-dissociable alkali sparingly soluble resin, and a photoacid generator.
  • Resist pattern shape A hole pattern having a length of 20 ⁇ m, a width of 20 ⁇ m, and a depth of 50 ⁇ m.
  • B 1 L / 1S line and space pattern having a height of 30 ⁇ m and a pitch of 20 ⁇ m.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

本発明の課題は、メッキ液の染み込みなく、良好な形状のメッキ造形物を製造することできるメッキ造形物の製造方法を提供することである。本発明は、表面に銅含有膜を有する基板上に、トリアゾール(A1)およびベンゾトリアゾール系化合物(A2)から選ばれる少なくとも1種のトリアゾール化合物(A)を0.001~2質量%および有機溶剤(B)を90~99.999質量%を含有する表面処理剤を曝露し、表面処理基板を形成する工程(1);前記表面処理基板上にレジスト組成物の塗膜を形成する工程(2);前記塗膜を露光および現像し、レジストパターンを形成する工程(3);ならびに前記レジストパターンをマスクにしてメッキ液処理を行う工程(4);を有することを特徴とするメッキ造形物の製造方法である。

Description

メッキ造形物の製造方法、回路基板、および表面処理剤、ならびに表面処理剤キット
 本発明は、メッキ造形物の製造方法、回路基板および表面処理剤、ならびに表面処理剤キットに関する。
 配線やバンプ等のメッキ造形物は、銅等の金属箔を有する基板上にレジストパターンを形成し、このレジストパターンをマスクとしてメッキ液処理を行うことで形成される。
 近年、半導体装置や、液晶ディスプレイ、タッチパネル等の表示装置の回路基板の配線やバンプ等の接続端子においては、高密度に実装することに対する要求が高まっていることから、接続端子の微細化が進んでいる。これに伴い、配線やバンプ等の接続端子の形成に用いられるレジストパターンにおいても微細化が必要になってきている。
 ところで、レジストパターンをマスクとしてメッキ液処理によりメッキ造形物を形成する場合、レジストパターンと基板との間にメッキ液が染み込むという問題が知られている(特許文献1~2)。
特開2005-274920号公報 特開2007-065642号公報
 レジストパターンが微細化すると、メッキ液の染み込みにより隣り合う配線やバンプ同士が接続してしまうリスクが大きくなる。
 本発明は、メッキ液処理の際、レジストパターンと基板との間にメッキ液の染み込みがなく、良好な形状のメッキ造形物を製造することできる、メッキ造形物の製造方法を提供すること、前記メッキ造形物の製造方法により製造するメッキ造形物を有する回路基板を提供すること、前記メッキ造形物の製造方法に好適に用いられる表面処理剤を提供すること、および表面処理剤キットを提供することを目的とする。
 本発明者らは前記課題を解決すべく鋭意検討を行った。その結果、以下の構成を有するメッキ造形物の製造方法により前記課題を解決できることを見出し、本発明を完成するに至った。すなわち本発明は、例えば以下の[1]~[11]に関する。
 [1]表面に銅含有膜を有する基板(以下、「銅含有基板」ともいう)上に、トリアゾール(A1)およびベンゾトリアゾール系化合物(A2)から選ばれる少なくとも1種のトリアゾール化合物(A)0.001~2質量%および有機溶剤(B)90~99.999質量%を含有する表面処理剤を曝露し、表面処理基板を形成する工程(1)(以下、「工程(1)」ともいう);前記表面処理基板上にレジスト組成物の塗膜を形成する工程(2)(以下、「工程(2)」ともいう);前記塗膜を露光および現像し、レジストパターンを形成する工程(3)(以下、「工程(3)」ともいう);ならびに前記レジストパターンをマスクにしてメッキ液処理を行う工程(4)(以下、「工程(4)」ともいう);を有することを特徴とするメッキ造形物の製造方法。
 [2]前記レジスト組成物が、アルカリ可溶性樹脂、アクリル化合物、および光ラジカル重合開始剤を含有する、前記[1]に記載のメッキ造形物の製造方法。
 [3]前記レジスト組成物が、酸解離性樹脂、および光酸発生剤を含有する、前記[1]に記載のメッキ造形物の製造方法。
 [4]前記レジストパターンの膜厚が0.8~300μmである、前記[1]~[3]のいずれかに記載のメッキ造形物の製造方法。
 [5]前記工程(4)の後に、さらに、前記レジストパターンを除去する工程(5)(以下、「工程(5)」ともいう)を有する、前記[1]~[4]のいずれかに記載のメッキ造形物の製造方法。
 [6]前記表面処理剤が、トリアゾール化合物(A)0.001~2質量%および有機溶剤(B)98~99.999質量%を含有する、前記[1]~[5]のいずれかに記載のメッキ造形物の製造方法。
 [7]前記有機溶剤(B)が、アルキレングリコールモノアルキルエーテルアセテート、またはアルコールである前記[1]~[6]のいずれかに記載のメッキ造形物の製造方法。
 [8]前記有機溶剤(B)の標準沸点が80~200℃である前記[1]~[7]のいずれかに記載のメッキ造形物の製造方法。
 [9]前記[1]~[8]のいずれかに記載のメッキ造形物の製造方法によって製造されたメッキ造形物を有する回路基板。
 [10]トリアゾール(A1)およびベンゾトリアゾール系化合物(A2)から選ばれる少なくとも1種のトリアゾール化合物(A)0.001~2質量%および有機溶剤(B)90~99.999質量%を含有することを特徴とする表面処理剤。
 [11]前記[10]に記載の表面処理剤を製造するための表面処理剤キットであって、
 少なくとも、第1の溶液と、第2の溶液を有し、
 前記第1の溶液が、トリアゾール(A1)およびベンゾトリアゾール系化合物(A2)から選ばれる少なくとも1種のトリアゾール化合物(A)を、2質量%より多く100質量%未満含有し、有機溶剤(B)を、0質量%より多く98質量%以下含有し、
 前記第2溶液が、前記有機溶剤(B)を含有することを特徴とする表面処理剤キット。
 本発明のメッキ造形物の製造方法は、メッキ液処理の際、レジストパターンと基板との間にメッキ液の染み込みがなく、良好な形状のメッキ造形物を製造することができる。本発明の回路基板は、本発明のメッキ造形物の製造方法により製造するメッキ造形物を有することから、信頼性が高い。
 本発明の表面処理剤は、本発明のメッキ造形物の製造方法に好適に用いることができる。
 本発明の表面処理剤キットは、前記表面処理剤を製造するために好適に用いることができる。
図1は、本発明のメッキ造形物の製造方法の概略図である。 図2は、実施例1Bで形成したレジストパターンの電子顕微鏡の写真である。 図3は、比較例4Bで形成したレジストパターンの電子顕微鏡の写真である。
 以下、本発明の表面処理剤について説明した後、本発明のメッキ造形物の製造方法、回路基板および表面処理剤キットについて説明する。
 本明細書で例示する各成分、例えば表面処理剤中の各成分は、特に言及しない限り、それぞれ1種単独で用いてもよく、2種以上を併用してもよい。
<1>表面処理剤
 本発明の表面処理剤は、トリアゾール(A1)およびベンゾトリアゾール系化合物(A2)から選ばれる少なくとも1種のトリアゾール化合物(A)0.001~2質量%および有機溶剤(B)90~99.999質量%を含有する。また、本発明の表面処理剤の性能を失わない範囲で、必要に応じて、その他成分(C)を含有することができる。
 本発明の表面処理剤は、銅含有基板の表面の全面に均一にトリアゾール化合物(A)を曝露することができる。銅含有基板の表面に曝露されたトリアゾール化合物(A)は銅およびその誘導体と錯体を形成することができ、このことにより、銅含有基板の表面には、トリアゾール化合物(A)と銅またはその誘導体との錯体を含む非常に薄い皮膜(以下、「表面処理層」ともいう)が形成されると推定される。
<1-1>トリアゾール化合物(A)
 トリアゾール化合物(A)は、本発明のメッキ造形物の製造方法において、銅含有膜の銅と錯体を形成することで、基板の表面を疎水性にし、且つ、基板にレジストパターンとの接着性を向上させる効果を付与するものである。
 トリアゾール化合物(A)は、トリアゾール(A1)、およびベンゾトリアゾール系化合物(A2)から選ばれる少なくとも1種であり、トリアゾール(A1)は1,2,3-トリアゾールまたは1,2,4-トリアゾールであり、ベンゾトリアゾール系化合物(A2)はベンゾトリアゾール、およびベンゾトリアゾールのベンゼン環の水素原子の1~4個を疎水性基に置き換えた化合物を含む。
 前記疎水性基としては、例えば、メチル基、エチル基、n-ブチル基、tert-ブチル基、iso-ブチル基、n-ヘキシル基、2-エチルヘキシル基、およびn-ドデシル基等のアルキル基;シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロペンタニル基、およびイソボルニル基等のシクロアルキル基;シクロペンチルメチル基、およびシクロヘキシルメチル基等のアルキル置換シクロアルキル基;フェニル基、1-ナフチル基および2-ナフチル基等のアリール基;ベンジル基および2-フェニルエチル基等のアラルキル基;フッ素原子、パーフルオロメチル基、1-フルオロフェニル基、および2,2',2''-トリトリフルオロエチル基等のハロゲン含有炭化水素基;が挙げられる。
 ベンゾトリアゾール系化合物(A2)の複素環は異性体であってもよく、例えば、疎水性基を含まないベンゾトリアゾールの場合、1H-ベンゾトリアゾールおよび2H-ベンゾトリアゾールが含まれる。ベンゾトリアゾール系化合物(A2)としては、ベンゾトリアゾール、およびトリルトリアゾール等が挙げられる。
 本発明の表面処理剤中に含まれるトリアゾール化合物(A)の含有割合は、0.001~2質量%、好ましくは0.01~1.5質量%、さらに好ましくは0.05~1質量%である。トリアゾール化合物(A)の含有割合が前記範囲内であれば、基板上に本発明の表面処理剤をスピンコートした際に、銅含有基板の表面の全面に均一にトリアゾール化合物(A)の表面処理層を形成することができ、その結果、銅含有基板の表面の全面において、メッキ液の染み込みのないメッキ造形物を製造することができる。
<1-2>有機溶剤(B)
 有機溶剤(B)は、トリアゾール化合物(A)を均一に溶解するために用いられる成分であり、有機溶剤(B)を含有することで、銅含有基板の表面の全面に均一にトリアゾール化合物(A)を曝露することができる。
 有機溶剤(B)としては、トリアゾール化合物(A)を均一に溶解でき、且つ、銅含有膜に良好に濡れることができれば、どのような有機溶剤であってもよく、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、乳酸エチル、およびプロピレングリコールモノメチエーテル等のアルコール類;酢酸エチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、アセト酢酸メチル、およびエトキシ酢酸エチル等のエステル類;メチルアミルケトン、およびシクロヘキサノン等のケトン類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、およびジプロピレングリコールジメチルエーテル等のアルキレングリコールジアルキルエーテル;ならびにエチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、およびプロピレングリコールモノ-n-プロピルエーテルアセテート等のアルキレングリコールモノアルキルエーテルアセテートが挙げられる。
 これらの中でも、アルキレングリコールモノアルキルエーテルアセテートおよびアルコールが、トリアゾール化合物(A)への溶解性が高いこと、および表面処理剤が銅含有膜に良好に濡れるようになることから好ましい。表面処理剤が銅含有膜に良好に濡れることで、銅含有基板の表面の全面に均一にトリアゾール化合物(A)を曝露することができる。
 有機溶剤(B)の標準沸点は、通常、80~200℃、好ましくは100~180℃、より好ましくは120~160℃である。有機溶剤(B)は、基板に表面処理剤を曝露している間に揮発していくことから、その揮発速度が速すぎても遅すぎても、表面処理剤中に含まれるトリアゾール化合物(A)が銅含有基板の表面の全面に均一に曝露できない。有機溶剤(B)の標準沸点が前記範囲であれば、有機溶剤(B)は適切な揮発速度を有し、その結果、トリアゾール化合物(A)を銅含有基板の表面の全面に均一に曝露することができる。
 なお、本明細書における標準沸点とは1気圧における沸点である。
 有機溶剤(B)としては、プロピレングリコールモノメチルエーテルアセテート(標準沸点146℃)、プロピレングリコールモノメチルエーテル(標準沸点121℃)、および乳酸エチル(標準沸点154℃)が好ましい。
 本発明の表面処理剤中に含まれる有機溶剤(B)の含有割合は、90~99.999質量%、好ましくは95~99.999質量%、より好ましくは98~99.999質量%である。前記範囲内であれば、トリアゾール化合物(A)を銅含有基板の表面の全面に均一に薄く曝露することができることから、銅含有基板の表面の全面に均一にトリアゾール化合物(A)の表面処理層を形成することができ、その結果、メッキ液の染み込みのないメッキ造形物を製造することができる。
<1-3>その他成分(C)
 本発明の表面処理剤は、本発明の表面処理剤の効果を失わない範囲で、必要に応じて、界面活性剤および還元剤等のその他成分(C)を含有することができる。前記界面活性剤は、本発明の表面処理剤の基板への濡れ性を改良することで、銅含有基板の表面に均一に表面処理層が形成できるようにするために用いる成分である。
 前記界面活性剤としては、例えば、ポリオキシアルキレンフェニルエーテル、ポリオキシアルキレンメチルフェニルエーテル、ポリオキシアルキレンオクチルフェニルエーテル、ポリオキシアルキレンノニルフェニルエーテル等の非イオン系界面活性剤;ドデシルベンゼンスルホン酸ナトリウム等のアルキルアリールスルホン酸塩などのアニオン系界面活性剤が挙げられる。
 本発明の表面処理剤中に含まれるその他成分(C)の含有割合は、8質量%以下、好ましくは4質量%以下、より好ましくは1.999質量%以下、さらに好ましくは0質量%である。つまり、本発明の表面処理剤は、トリアゾール化合物(A)および有機溶剤(B)のみからなるのがさらに好ましい。
<1-4>表面処理剤の製造方法
 本発明の表面処理剤は、トリアゾール化合物(A)および必要に応じてその他成分(C)を有機溶剤(B)に均一に溶解することで製造することができる。
 溶解後の混合液を、例えば、微細孔のメンブランフィルター等のフィルターでろ過して、不純物を除去することができる。
<2>表面処理剤キット
 本発明の表面処理剤キットは、本発明の表面処理剤を製造するための表面処理剤キットであって、以下に説明する、少なくとも第1の溶液と、第2の溶液を有する。
 第1の溶液は、トリアゾール(A1)およびベンゾトリアゾール(A2)から選ばれる少なくとも1種のトリアゾール化合物(A)を、2質量%より多く100質量%未満、ならびに有機溶剤(B)を、0質量%をより多く98質量%以下を含有する。第1の溶液は、前記その他成分(C)を含有することができる。
 第1の溶液中に含まれる、トリアゾール化合物(A)、および有機溶剤(B)、ならびにその他成分(C)の詳細は、本発明の表面処理剤の説明に記載のトリアゾール化合物(A)、および有機溶剤(B)、ならびにその他成分(C)と同意である。
 前記第2の溶液は、有機溶剤(B)を含有する。第2の溶液中に含まれる有機溶剤(B)の含有割合は、通常、95質量%以上、好ましくは99質量%以上である。第2の溶液中に含まれる有機溶剤(B)以外の成分としては、前記その他成分(C)が挙げられる。
 第2の溶液中に含まれる有機溶剤(B)およびその他成分(C)の詳細は、本発明の表面処理剤の説明に記載の有機溶剤(B)、およびその他成分(C)と同意である。第2の溶液に含まれる有機溶剤(B)は、第1の溶液に含まれる有機溶剤(B)と同種であっても、異種であってもよいが、好ましくは第1の溶液に含まれる有機溶剤(B)と同種である。
 本発明の表面処理剤は、本発明の表面処理剤キットを用いて製造することができる。具体的には、第1の溶液と第2の溶液を、トリアゾール(A1)およびベンゾトリアゾール(A2)から選ばれる少なくとも1種のトリアゾール化合物(A)が0.001~2質量%、および有機溶剤(B)が90~99.999質量%となるよう、混合することで製造することができる。
<3>メッキ造形物の製造方法
 本発明のメッキ造形物の製造方法は、表面に銅含有膜を有する基板上に、トリアゾール(A1)およびベンゾトリアゾール(A2)から選ばれる少なくとも1種のトリアゾール化合物(A)0.001~2質量%および有機溶剤(B)90~99.999質量%を含有する表面処理剤を曝露し表面処理基板を形成する工程(1);前記表面処理基板上にレジスト組成物の塗膜を形成する工程(2);前記塗膜を露光・現像し、レジストパターンを形成する工程(3);ならびに前記レジストパターンをマスクにしてメッキ液処理を行う工程(4);を有する。
 本発明のメッキ造形物の製造方法は、さらに、前記工程(4)の後、前記レジストパターンを除去する工程(5)を有することができる。本発明のメッキ造形物の製造方法の工程の概略を図1に示す。
 本発明の表面処理剤は、銅含有基板上に曝露することにより、トリアゾール化合物(A)と銅またはその誘導体との錯体の非常に薄い皮膜が形成されると推定される。前記錯体は、疎水性のトリアゾール化合物(A)の錯体であることから疎水性であり、親水性のメッキ液とは親和性がない。本発明のメッキ造形物の製造方法では、このような疎水性の表面処理層がレジストパターンと銅含有基板との接触面に形成されることから、メッキ液の染み込みが起こるレジストパターンと銅含有基板との接触面において、メッキ液の染み込みを防ぐことができるものと推定される。
 さらに、トリアゾール化合物(A)はレジストパターンと銅含有膜との接着性を改善することができるため、メッキ液の染み込みが起っていたレジストパターンと銅含有基板との接触面、つまり、特に接着力が弱いところにおいて、メッキ液の染み込みを防ぐことができるものと推定される。
<3-1>工程(1)
 工程(1)は、銅含有基板上に、本発明の表面処理剤を曝露することで、銅含有基板の表面に表面処理層を有する表面処理基板を形成する。前記表面処理層は、触針式膜厚測定装置や分光エリプソメトリーのような通常の膜厚測定装置では測定できない層である。
 前記銅含有基板としては、シリコンウエハやガラス基板等の基板の表面に銅含有膜を設けた基板を挙げることができる。基板の平面形状としては、例えば、四角形および円形が挙げられる。基板表面の形状としては、平坦、およびTSV構造のような凹凸形状が挙げられる。
 前記銅含有膜ついては、銅、または酸化銅等の銅化合物を含有する膜が挙げられる。銅含有膜の厚さは、通常、10~100,000Åである。
 表面処理剤の曝露方法としては、ディップコート、スピンコート、スクリーンコート、グラビアコート、ワイヤーバーコート、スリットコートおよびインクジェット等による塗膜の形成方法が挙げられる。これらの中でも、スピンコートまたはスリットコートによる曝露が、銅含有基板の表面の全面に均一にトリアゾール化合物(A)を曝露することができ、且つ良好な表面処理層を形成でき、その結果、メッキ液処理の際、レジストパターンと基板との間にメッキ液の染み込みがなく、良好な形状のメッキ造形物を製造することができる観点から特に好ましい。
 スピンコートによる曝露は、銅含有基板を回転させながら表面処理剤を銅含有基板上に載置することで、回転による遠心力により表面処理剤を銅含有基板の表面の全面に均一に広がらせ、回転しながら表面処理剤中の有機溶剤などの揮発成分を揮発させて、銅含有基板に表面処理剤を曝露する方法である。
 スピンコートにおける表面処理剤の載置量は、銅含有基板の表面積により適宜選択することができ、通常、1~20cc、好ましくは2~10ccである。スピンコートにおける最高回転速度は、通常、400~4000rpm、好ましくは800~3000rpmである。スピンコートにおける最高回転速度を行う時間は、通常、10~3000秒間、好ましくは30~2000秒間である。
 スリットコートによる曝露は、表面処理剤を吐出する部分にスリット状の穴を有するスリットノズルを、銅含有基板に押し当てながら表面処理剤中の有機溶剤などの揮発成分を揮発させて、銅含有基板の表面に表面処理剤を曝露する方法である。
 スリットコートにおける表面処理剤の吐出速度は、銅含有基板の表面積により適宜選択することができ、通常、0.01~1.0cc/秒である。スリットコートにおけるスリットノズルの移動速度は、通常、1~50cm/秒である。
 本発明の表面処理剤を銅含有基板上に曝露後、銅含有基板を加熱することができる。加熱により、有機溶剤(B)を揮発することができ、銅含有基板の表面に良好な表面処理層を形成することができる。また、加熱により、トリアゾール化合物(A)と銅含有膜との錯体形成を促進することができるものと推定され、その結果、良好な表面処理層を形成することができると推定される。前記加熱温度は、通常、200℃以下、好ましくは70~150℃であり、前記加熱の時間は、通常、0.5~20分間、好ましくは1~10分間である。
<3-2>工程(2)
 工程(2)は、工程(1)で形成した表面処理基板上にレジスト組成物の塗膜を形成する。
 前記レジスト組成物としては、メッキ造形物の製造に用いられる公知のレジスト組成物が挙げられ、例えば、特開2004-309775号公報、特開2007-248727号公報、特開2015-194715号公報、および特開2009-169085号公報等に記載の、酸解離性アルカリ難溶性樹脂および光酸発生剤を含有するポジ型レジスト組成物;ならびに特開2000-039709号公報、特開2007-293306号公報、WO2018/114635、およびWO2013/084886等に記載の、アルカリ可溶性樹脂、アクリル化合物および光ラジカル重合開始剤を含有するネガ型レジスト組成物;が挙げられる。
 前記ネガ型レジスト組成物を露光した後、現像するときに、露光されたレジスト塗膜は膨潤後、収縮する。収縮するときレジスト塗膜と基板との接着性が弱いと、現像後のレジストパターンがアンダーカット形状になることがある。レジストパターンがアンダーカット形状になると、アンダーカット形状により生じる空間部分にメッキ液が侵入するため、よりメッキ液の染み込みが起こりやすい。よって、前記レジスト組成物として前記ネガ型レジスト組成物を用いると、本願発明のメッキ造形物の製造方法の効果が顕著に表れることから好ましい。
 前記ポジ型レジスト組成物は、露光、現像後に形成されるレジストパターンは未架橋の樹脂膜であるため、銅含有基板と接着性が弱いことから、メッキ液の染み込みが起こりやすい。よって、前記レジスト組成物として前記ポジ型レジスト組成物を用いても、本願発明のメッキ造形物の製造方法の効果が顕著に表れることから好ましい。
 前記レジスト組成物の塗膜は、例えば、スピンコート、ドライフィルムによる転写またはスリットコートにより形成することができ、その塗膜の形成する際の詳細な条件は、レジスト組成物の種類によって適宜選択する。例えば、前記レジスト組成物として前記ネガ型レジスト組成物を用いスピンコートにより塗膜を形成する場合、スピンコートの最高回転速度は、通常、800~4000rpmその時間は10~3000秒間であり、スピンコート後、通常、50~200℃で0.5~20分間加熱することにより塗膜を形成する。
 塗膜の膜厚は、通常、工程(3)で形成されるレジストパターンの膜厚と同じかまたは少し厚く、通常、レジストパターンの膜厚より0~10%厚い。
<3-3>工程(3)
 工程(3)では、工程(2)で形成した塗膜を露光・現像し、レジストパターンを形成する。
 前記露光は、通常、形成するレジストパターンに則した遮光パターンを有するマスク(例えば、レチクル)を介して、等倍投影露光または縮小投影露光により行う。露光光は、通常、波長190~500nmのレーザーを用いる。露光量は、レジスト組成物の種類や、塗膜の膜厚によって適宜選択する。例えば、前記レジスト組成物が前記ネガ型レジスト組成物で、露光光がi線(365nm)レーザーで、塗膜の膜厚が50μmの場合、露光量は、通常、100~10,000mJ/cm2である。
 露光後、現像前に加熱処理を行うこともできる。特にレジスト組成物が前記ポジ型レジスト組成物の場合、通常、加熱処理が行われ、その条件は、通常、70~180℃で1~10分間である。
 前記現像は、通常、現像液によって行う。選択的な露光により、塗膜の部位ごとに現像液に対する溶解度に差が付くため、塗膜に現像液が接触することにより、溶解度の高い塗膜部分が溶け、その結果、溶解しない塗膜部分がレジストパターンを形成する。
 前記現像液としては、通常、水酸化カリウム水溶液、およびテトラメチルアンモニウムハイドロオキサイド水溶液等のアルカリ性現像液を用いる。
 現像方法としては、例えば、液盛り法、ディッピング法、パドル法、スプレー法、およびシャワー法が挙げられる。現像時間は、通常、23℃で30~600秒である。
 現像後、レジストパターンを水等により洗浄することができる。その後、エアーガンまたはホットプレートにより乾燥することができる。
 レジストパターンの膜厚は、通常、0.8~300μmであり、メッキ造形物が配線である場合は、通常、0.8~50μm、メッキ造形物が、電極である場合は、1~300μmである。
 レジストパターンの形状はメッキ造形物の回路基板における適用部品の種類により、それに即した形状を選択する。
 例えば、適用部品が配線の場合、レジストパターンの形状は、ラインアンドスペースパターンであり、適用部品がバンプの場合、レジストパターンの形状は、立方体形状のホールパターンである。
<3-4>工程(4)
 工程(4)では、工程(3)で形成したレジストパターンをマスクにしてメッキ液処理を行い、メッキ造形物を製造する。
 つまり、レジストパターンを鋳型として、レジストパターンによって形成された開口部にメッキ液処理を行うことによりメッキ造形物が形成される。
 前記メッキ液処理は、通常、電解メッキ液処理である。電界メッキ液処理のシード層としては、通常、基板の表面にある銅含有膜が用いられるが、無電解メッキ液処理により、レジストパターンの内壁に形成するメッキ膜をシード層として用いることもできる。シード層を形成する前にバリア層を形成してもよく、シード層をバリア層として用いることができる。
 メッキ液処理を行う前に、レジストパターンの内壁とメッキ液との親和性を高めるため、銅含有膜の酸化膜を除去するため、およびレジストパターンの開口部のゴミを除去するために、例えば、アッシング処理、フラックス処理、およびデスミア処理を行うことができる。
 レジストパターンの開口部の底部には、本発明の表面処理剤により形成するトリアゾール化合物(A)の表面処理層があるが、メッキ液処理の前に前記表面処理層は除去しても除去しなくてもどちらでもよい。前記表面処理層は非常に薄いことから、メッキ液処理を阻害することはないため、表面処理層を除去せずにメッキ液処理を行うことができる。
 メッキ液処理としては、例えば、銅メッキ液処理、錫メッキ液処理、錫-銀メッキ処理液、はんだメッキ液処理、金メッキ液処理、ニッケルメッキ液処理、ニッケル-金メッキ液処理、およびクロムメッキ液処理が挙げられる。
 前記銅メッキ液処理としては、例えば、硫酸銅、またはピロリン酸銅等を含むメッキ浴を用いたメッキ液処理;前記金メッキ液処理としては、例えば、シアン化金カリウムを含むメッキ浴を用いたメッキ液処理;前記ニッケルメッキ液処理としては、例えば、硫酸ニッケルまたは炭酸ニッケルを含むメッキ浴を用いたメッキ液処理;が挙げられる。
 前記電界メッキ液処理の条件は、メッキ液の組成によって適宜選択すればよく、例えば、硫酸銅を含むメッキ液の場合、その条件は、通常、温度10~90℃、電流密度0.1~100A/dm2である。
 メッキ液処理は、異なるメッキ液処理を順次行うことができる。例えば、はじめに銅メッキ液処理を行った後、ニッケルメッキ液処理を行うことで、はんだ銅ピラーバンプにおける銅ピラーを形成することができる。
<3-5>工程(5)
 工程(5)では、工程(4)のメッキ液処理を行った後、さらに、レジストパターンを除去する。
 レジストパターンの除去は、例えば、レジスト剥離液に工程(4)の後の基板をディップする方法が挙げられる。前記レジスト剥離液としては、例えば、テトラメチルアンモニウム等の塩基性物質を含む有機溶液が用いられる。
 レジストパターンを除去したあとは、メッキ造形物を形成した領域以外の銅含有膜をウェットエッチング等により除去することができる。
 以上に示したとおり、少なくとも、工程(1)~(4)を行うことで、配線やバンプ等の目的に即したメッキ造形物を、レジストパターンと基板との間にメッキ液の染み込みによる形状不良のない、良好な形状を有するメッキ造形物を製造することができる。
<4>回路基板
 本発明の回路基板は、本発明のメッキ造形物の製造方法によって製造するメッキ造形物を有する。
 本発明のメッキ造形物の製造方法によって製造するメッキ造形物は、回路基板全面において、レジストパターンと基板との間にメッキ液の染み込みによる形状不良のない、良好な形状を有することから、近接する配線やバンプ間のショートがないため、信頼性の高い回路基板である。
 回路基板としては、配線またはバンプを有する回路基板を有するものであり、具体的に
は、半導体装置、表示装置、および産業用装置等が挙げられる。
 以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明はこれら実施例に限定されない。
[実施例1A~4A、比較例1A~3A]表面処理剤1A~7Aの製造
 下記表1に示す成分を下記表1に示す含有割合で均一に混合することで、表面処理剤1A~7Aを製造した。
Figure JPOXMLDOC01-appb-T000001
[実験例1A]表面処理基板1Aの形成および接触角の測定
 表面に銅箔(厚さ:3000Å)を有する12インチシリコンウェハ上に、表面処理剤1Aをスピンコート(表面処理剤1Aの載置量:5cc、最高回転数:1,000rpm、その時間:0.5分)し、ホットプレートにて90℃で1分間加熱し、表面処理基板1Aを形成した。
 表面処理基板1Aの12インチシリコンウェハの中心(位置1)、中心から4インチ周縁側の位置(位置2)、および中心から8インチ周縁の位置(位置3)の3点における水の接触角を「JISR 3257、1999」規格に即して測定した。評価結果を下記表2に示す。
[実験例2A~7A]表面処理基板2A~7Aの形成および接触角の測定
 実験例1Aにおいて、下記表2に示す表面処理剤を用いた以外は実験例1Aと同じ操作にて、表面処理基板2A~7Aを製造し、その接触角を測定した。評価結果を下記表2に示す。
[実験例8A]表面処理基板1Aの形成および接触角の測定
 表面に銅箔(厚さ:3000Å)を有するガラス・エポキシ基板(サイズ:縦50cm、横40cm)上に、表面処理剤1Aをスクリーンコート(スリットノズル:70umGAP、表面処理剤1Aの吐出速度0.1cc/秒:移動速度:2cm/秒)し、ホットプレートにて90℃で1分間加熱し、表面処理基板8Aを形成した。
 表面処理基板8Aのガラス・エポキシ基板の中心(位置1)、中心から10cm縦方向の周縁側の位置(位置2)、および中心から10cm横方向の周縁の位置(位置3)の3点における水の接触角を「JISR 3257、1999」規格に即して測定した。評価結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
[実施例1B]レジストパターンの形成およびメッキ造形物の製造
 表面処理基板1A上に、ネガ型レジスト組成物(商品名「THB-151N」、JSR(株)製、アルカリ可溶性樹脂、アクリル化合物、および光ラジカル重合開始剤を含有するレジスト組成物)をスピンコートし、ホットプレートにて、120℃で300秒間加熱し、レジスト組成物の塗膜を形成した。レジスト組成物の塗膜を、ステッパー(ニコン社製、型式「NSR-i10D」)を用い、パターンマスクを介して露光し、2.38質量%のテトラメチルアンモニウムハイドロオキサイド水溶液に200秒間浸漬して現像し、レジストパターン(縦20μm、横20μm、深さ50μmのホールパターン)を形成した。
 前記位置1における前記レジストパターンのボトムの状態を電子顕微鏡で観察し、下記評価基準にて評価した。評価結果を下記表3に示す。
  A:レジストパターンにアンダーカットなし。
  B:レジストパターンにアンダーカットあり。
 また、実施例1Bで形成したレジストパターンの電子顕微鏡の写真を図2に示す。
 前記レジストパターンをマスクにして、下記の方法で電解メッキ処理を行い、メッキ造形物を製造した。メッキの前処理として、酸素プラズマによるアッシング処理(出力100W、酸素流量100ミリリットル、処理時間60秒間)を行い、その後、硫酸処理(10質量%の硫酸水溶液を60秒間接触)、次いで、水洗を行った。前処理後の基板を銅メッキ液(製品名「MICROFAB SC-40」、Enthone社製)1L中に浸漬し、メッキ浴温度40℃、電流密度2A/dm2に設定して、15分間電界メッキ処理を行い、メッキ造形物を製造した。
 前記メッキ造形物の製造後の前記レジストパターンと表面処理基板1Aとの界面の状態(メッキ液の染み込みの有無)を光学顕微鏡で観察し、下記評価基準にて評価した。評価結果を下記表3に示す。
  A:メッキ液の染み込みなし。
  B:メッキ液の染み込みあり。
[実施例2B~4B、比較例1B~4B]レジストパターンの形成およびメッキ造形物の製造
 実施例1Bにおいて、下記表3に示す表面処理基板を用いた以外は実施例1Bと同じ操作にて、レジストパターンを形成し、メッキ造形物を製造し、実施例1Bと同様の評価をした。評価結果を下記表3に示す。
 なお、比較例4Bでは表面処理剤による表面処理を行っていない、表面に銅箔(厚さ:3000Å)を有する12インチシリコンウェハを基板として用いた。
 比較例4Bで形成したレジストパターンの電子顕微鏡の写真を図3に示す。
[実施例5B]レジストパターンの形成およびメッキ造形物の製造
 表面処理基板8A上に、ネガ型レジスト組成物(商品名「THB-151N」、JSR(株)製、アルカリ可溶性樹脂、アクリル化合物、および光ラジカル重合開始剤を含有するレジスト組成物)をスリットコートし、ホットプレートにて、120℃で300秒間加熱し、レジスト組成物の塗膜を形成した。レジスト組成物の塗膜を、アライナー(SussMicrotech社製、型式「MA150」)を用い、パターンマスクを介して露光し、2.38質量%のテトラメチルアンモニウムハイドロオキサイド水溶液に200秒間浸漬して現像し、レジストパターン(縦20μm、横20μm、深さ50μmのホールパターン)を形成した。
 前記レジストパターンを実施例1Bと同様に評価し、メッキ造形物を製造し、実施例1Bと同様の評価を行った。評価結果を下記表3に示す。
[実施例6B]レジストパターンの形成およびメッキ造形物の製造
 表面処理基板1A上に、ポジ型レジスト組成物(商品名「THB-820P」、JSR(株)製、酸解離性アルカリ難溶性樹脂、および光酸発生剤を含有するレジスト組成物)をスピンコートし、ホットプレートにて、120℃で300秒間加熱し、レジスト組成物の塗膜を形成した。レジスト組成物の塗膜を、ステッパー(ニコン社製、型式「NSR-i10D」)を用い、パターンマスクを介して露光し、ホットプレートにて、110℃で300秒間加熱し、2.38質量%のテトラメチルアンモニウムハイドロオキサイド水溶液に300秒間浸漬して現像し、レジストパターン(縦20μm、横20μm、深さ50μmのホールパターン)を形成した。
 前記レジストパターンを実施例1Bと同様に評価し、メッキ造形物を製造し、実施例1Bと同様の評価を行った。評価結果を下記表3に示す。
[比較例5B]レジストパターンの形成およびメッキ造形物の製造
 実施例6Bにおいて、表面処理剤による表面処理を行っていない、表面に銅箔(厚さ:3000Å)を有する12インチシリコンウェハを基板として用いた以外は実施例6Bと同じ操作にて、レジストパターンを形成し、メッキ造形物を製造し、実施例1Bと同様の評価をした。評価結果を下記表3に示す。
[実施例7B]レジストパターンの形成およびメッキ造形物の製造
 実施例1Bにおいて、レジストパターンとして、高さ30μm、ピッチ20μmの1L/1Sのラインアンドスペースパターンを形成した以外は実施例1Bと同様の評価をした。評価結果を下記表3に示す。
 下記表3中におけるレジスト組成物を表す用語、およびレジストパターン形状を表す文字の意味は以下のとおりである。
・レジスト組成物
 ネガ:商品名「THB-151N」、JSR(株)製、アルカリ可溶性樹脂、アクリル化合物、および光ラジカル重合開始剤を含有するレジスト組成物。
 ポジ:商品名「THB-820P」、JSR(株)製、酸解離性アルカリ難溶性樹脂、および光酸発生剤を含有するレジスト組成物。
・レジストパターン形状
A:縦20μm、横20μm、深さ50μmのホールパターン。
B:高さ30μm、ピッチ20μmの1L/1Sのラインアンドスペースパターン。
Figure JPOXMLDOC01-appb-T000003

Claims (11)

  1.  表面に銅含有膜を有する基板上に、トリアゾール(A1)およびベンゾトリアゾール系化合物(A2)から選ばれる少なくとも1種のトリアゾール化合物(A)0.001~2質量%および有機溶剤(B)90~99.999質量%を含有する表面処理剤を曝露し、表面処理基板を形成する工程(1);前記表面処理基板上にレジスト組成物の塗膜を形成する工程(2);前記塗膜を露光および現像し、レジストパターンを形成する工程(3);ならびに前記レジストパターンをマスクにしてメッキ液処理を行う工程(4);を有することを特徴とするメッキ造形物の製造方法。
  2.  前記レジスト組成物が、アルカリ可溶性樹脂、アクリル化合物、および光ラジカル重合開始剤を含有する、請求項1に記載のメッキ造形物の製造方法。
  3.  前記レジスト組成物が、酸解離性アルカリ難溶性樹脂、および光酸発生剤を含有する、請求項1に記載のメッキ造形物の製造方法。
  4.  前記レジストパターンの膜厚が0.8~300μmである、請求項1~3のいずれかに記載のメッキ造形物の製造方法。
  5.  前記工程(4)の後に、さらに、前記レジストパターンを除去する工程(5)を有する、請求項1~4のいずれかに記載のメッキ造形物の製造方法。
  6.  前記表面処理剤が、トリアゾール化合物(A)0.001~2質量%および有機溶剤(B)98~99.999質量%を含有する、請求項1~5のいずれかに記載のメッキ造形物の製造方法。
  7.  前記有機溶剤(B)が、アルキレングリコールモノアルキルエーテルアセテート、またはアルコールである請求項1~6のいずれかに記載のメッキ造形物の製造方法。
  8.  前記有機溶剤(B)の標準沸点が80~200℃である請求項1~7のいずれかに記載のメッキ造形物の製造方法。
  9.  請求項1~8のいずれかに記載のメッキ造形物の製造方法によって製造されたメッキ造形物を有する回路基板。
  10.  トリアゾール(A1)およびベンゾトリアゾール系化合物(A2)から選ばれる少なくとも1種のトリアゾール化合物(A)0.001~2質量%、および有機溶剤(B)90~99.999質量%を含有することを特徴とする表面処理剤。
  11.  請求項10に記載の表面処理剤を製造するための表面処理剤キットであって、
     少なくとも、第1の溶液と、第2の溶液を有し、
     前記第1の溶液が、トリアゾール(A1)およびベンゾトリアゾール系化合物(A2)から選ばれる少なくとも1種のトリアゾール化合物(A)を、2質量%より多く100質量%未満含有し、有機溶剤(B)を、0質量%より多く98質量%以下含有し、
     前記第2溶液が、前記有機溶剤(B)を含有することを特徴とする表面処理剤キット。
PCT/JP2019/023609 2018-07-31 2019-06-14 メッキ造形物の製造方法、回路基板、および表面処理剤、ならびに表面処理剤キット WO2020026607A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980044459.2A CN112368643A (zh) 2018-07-31 2019-06-14 镀敷造形物的制造方法、电路基板及表面处理剂以及表面处理剂套组
KR1020217002738A KR20210036350A (ko) 2018-07-31 2019-06-14 도금 조형물의 제조 방법, 회로 기판, 및 표면 처리제, 그리고 표면 처리제 키트
JP2020534090A JP7405079B2 (ja) 2018-07-31 2019-06-14 メッキ造形物の製造方法、回路基板、および表面処理剤、ならびに表面処理剤キット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-143581 2018-07-31
JP2018143581 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020026607A1 true WO2020026607A1 (ja) 2020-02-06

Family

ID=69231671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023609 WO2020026607A1 (ja) 2018-07-31 2019-06-14 メッキ造形物の製造方法、回路基板、および表面処理剤、ならびに表面処理剤キット

Country Status (5)

Country Link
JP (1) JP7405079B2 (ja)
KR (1) KR20210036350A (ja)
CN (1) CN112368643A (ja)
TW (1) TWI830743B (ja)
WO (1) WO2020026607A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015754A1 (fr) * 2006-08-04 2008-02-07 Chiyoda Chemical Co., Ltd. Composition de résine photosensible
JP2011049468A (ja) * 2009-08-28 2011-03-10 Tokyo Ohka Kogyo Co Ltd 表面処理剤及び表面処理方法
JP2011221084A (ja) * 2010-04-05 2011-11-04 Hitachi Chem Co Ltd 感光性樹脂組成物、感光性エレメント、及びプリント配線板の製造方法
JP2016018093A (ja) * 2014-07-09 2016-02-01 東レ株式会社 反射防止膜用樹脂組成物、それを用いた反射防止膜の製造方法およびパターンの製造方法、ならびに固体撮像素子
WO2016031928A1 (ja) * 2014-08-29 2016-03-03 東京応化工業株式会社 イミダゾール化合物、金属表面処理液、金属の表面処理方法、及び積層体の製造方法
JP2017063179A (ja) * 2015-09-24 2017-03-30 東京応化工業株式会社 表面処理剤及び表面処理方法
JP2018146686A (ja) * 2017-03-02 2018-09-20 東京応化工業株式会社 表面処理方法及び表面処理液

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4360242B2 (ja) 2004-03-24 2009-11-11 Jsr株式会社 ネガ型感放射線性樹脂組成物
JP4715671B2 (ja) 2005-08-03 2011-07-06 Jsr株式会社 メッキ造形物製造用ポジ型感放射線性樹脂組成物、転写フィルムおよびメッキ造形物の製造方法
TWI603222B (zh) * 2015-08-06 2017-10-21 Chunghwa Telecom Co Ltd Trusted service opening method, system, device and computer program product on the internet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015754A1 (fr) * 2006-08-04 2008-02-07 Chiyoda Chemical Co., Ltd. Composition de résine photosensible
JP2011049468A (ja) * 2009-08-28 2011-03-10 Tokyo Ohka Kogyo Co Ltd 表面処理剤及び表面処理方法
JP2011221084A (ja) * 2010-04-05 2011-11-04 Hitachi Chem Co Ltd 感光性樹脂組成物、感光性エレメント、及びプリント配線板の製造方法
JP2016018093A (ja) * 2014-07-09 2016-02-01 東レ株式会社 反射防止膜用樹脂組成物、それを用いた反射防止膜の製造方法およびパターンの製造方法、ならびに固体撮像素子
WO2016031928A1 (ja) * 2014-08-29 2016-03-03 東京応化工業株式会社 イミダゾール化合物、金属表面処理液、金属の表面処理方法、及び積層体の製造方法
JP2017063179A (ja) * 2015-09-24 2017-03-30 東京応化工業株式会社 表面処理剤及び表面処理方法
JP2018146686A (ja) * 2017-03-02 2018-09-20 東京応化工業株式会社 表面処理方法及び表面処理液

Also Published As

Publication number Publication date
CN112368643A (zh) 2021-02-12
KR20210036350A (ko) 2021-04-02
TWI830743B (zh) 2024-02-01
TW202007750A (zh) 2020-02-16
JPWO2020026607A1 (ja) 2021-08-05
JP7405079B2 (ja) 2023-12-26

Similar Documents

Publication Publication Date Title
JP6124372B2 (ja) ソルダーレジストパターンの形成方法
CN109313398B (zh) 冲洗组合物、形成抗蚀剂图案的方法以及半导体器件的制备方法
TWI721172B (zh) 用於使用光可成像層之半導體封裝體的系統與方法
TW201024933A (en) Substrate treating solution and method for treating resist substrate using the same
CN101657761A (zh) 光刻胶显影液
CN1842741B (zh) 化学放大型光致抗蚀剂组合物、光致抗蚀剂层层叠体、光致抗蚀剂组合物的制造方法、光致抗蚀图案的制造方法以及连接端子的制造方法
JPH09326361A (ja) レジスト現像処理方法
TWI556067B (zh) 微影用沖洗液及使用其之圖案形成方法
JP4669737B2 (ja) フォトレジスト除去用シンナー組成物及びそれを用いた半導体装置又は液晶表示装置の製造方法
WO2020026607A1 (ja) メッキ造形物の製造方法、回路基板、および表面処理剤、ならびに表面処理剤キット
JP7340891B2 (ja) 表面結合剤および基材表面の処理方法
JP7496825B2 (ja) フォトレジスト除去用組成物
WO2003083032A1 (en) Thinner composition for removing photosensitive resin
JP4875253B2 (ja) プリント配線板の製造方法
WO2022114110A1 (ja) 樹脂マスク剥離用洗浄剤組成物
JP2019117331A (ja) 樹脂マスク剥離用洗浄剤組成物
JP2023172703A (ja) 洗浄方法
TW202214831A (zh) 基板之洗淨方法
JP2017215384A (ja) レジスト残渣除去剤及びこれを利用した導体パターン形成方法並びに基板製造方法
JP2024085216A (ja) 洗浄方法
JPH03268384A (ja) スルーホール付配線板の製造方法
JP2002229219A (ja) バイアホール形成時に使用する現像液およびこの現像液を用いた多層プリント配線板の製造方法
JP2008071974A (ja) パターン形成方法およびこれを用いた半導体装置の製造方法
JP2020079858A (ja) 感光性組成物、レジストパターンの形成方法、およびメッキ造形物の製造方法
JPS6253349A (ja) フオトレジスト膜の剥離方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844430

Country of ref document: EP

Kind code of ref document: A1