WO2020026493A1 - 内視鏡装置、駆動方法およびプログラム - Google Patents

内視鏡装置、駆動方法およびプログラム Download PDF

Info

Publication number
WO2020026493A1
WO2020026493A1 PCT/JP2019/008243 JP2019008243W WO2020026493A1 WO 2020026493 A1 WO2020026493 A1 WO 2020026493A1 JP 2019008243 W JP2019008243 W JP 2019008243W WO 2020026493 A1 WO2020026493 A1 WO 2020026493A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
drive
circuit
controller
drive signal
Prior art date
Application number
PCT/JP2019/008243
Other languages
English (en)
French (fr)
Inventor
健悟 榎本
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2020026493A1 publication Critical patent/WO2020026493A1/ja
Priority to US17/158,074 priority Critical patent/US11980340B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00018Operational features of endoscopes characterised by signal transmission using electrical cables

Definitions

  • the present disclosure relates to an endoscope apparatus that generates image data by capturing an image of a subject, a driving method, and a program.
  • an endoscope apparatus there is known a technique in which an actuator for changing a focal length of an optical system and an image pickup element are provided at a distal end portion, and the focal length of the optical system is changed by driving the actuator (Patent Document 1). reference).
  • an image signal generated by an image sensor and a control signal for driving an actuator are transmitted from an endoscope apparatus to a processor via a common signal line, and are controlled during a blanking period of the image signal.
  • the actuator is driven by transmitting a signal to the endoscope device.
  • Patent Document 1 when a control signal that forms a pulse with a large current and a high voltage is sharply raised and transmitted at the time of driving the actuator, the edge component of the control signal is superimposed as noise on the image signal. There was a problem.
  • the present disclosure has been made in view of the above, and has as its object to provide an endoscope apparatus, a driving method, and a program that can prevent noise from being superimposed on an image signal.
  • an endoscope apparatus includes an optical system that forms an optical image, and an image signal that is generated according to a predetermined frame rate when the optical image is incident.
  • An image sensor an actuator that moves the optical system along the optical axis, an image sensor that controls the image sensor, an image pickup circuit that acquires the image signal, and a drive circuit that supplies a drive signal that drives the actuator,
  • a first transmission cable that electrically connects the image sensor and the imaging circuit, a second transmission cable that electrically connects the actuator and the drive circuit, and a first transmission cable that is supplied from the drive circuit to the actuator.
  • a controller for controlling the drive signal to adjust the position of the optical system along the optical axis, and an operation signal according to an external operation.
  • An operation switch for outputting to the controller, the controller is configured to, when the operation signal is input from the operation switch, perform a blanking period of the image signal based on the image signal acquired by the imaging circuit. Is detected, and the drive signal is changed stepwise in the blanking period to supply the drive signal.
  • the controller causes the drive circuit to end the stepwise change of the drive signal within the blanking period.
  • the controller changes the drive signal to the drive circuit in a stepwise manner for each of the blanking periods, and outputs the drive signal that changes in a stepwise manner. Let it be supplied.
  • the controller may complete one transition period of the stepwise change of the drive signal supplied by the drive circuit within the blanking period.
  • a driving circuit is supplied with the driving signal.
  • the controller when the controller increases the absolute value of the drive signal, the controller causes the drive circuit to change the drive signal in a stepwise manner.
  • the drive signal is supplied to reduce the absolute value of the drive signal, the drive circuit changes the drive signal to zero.
  • a driving method is a driving method executed by an endoscope apparatus, wherein the endoscope apparatus includes an optical system that forms an optical image, and an image signal when the optical image is incident.
  • An image sensor that generates according to a predetermined frame rate, an actuator that moves the optical system along the optical axis, an image sensor that controls the image sensor, and an image pickup circuit that acquires the image signal, and a drive signal that drives the actuator.
  • the program according to the present disclosure is a program to be executed by an endoscope apparatus, wherein the endoscope apparatus includes an optical system that forms an optical image and an image signal that is transmitted when the optical image is incident.
  • An image sensor that generates according to a frame rate, an actuator that moves the optical system along an optical axis, an image sensor that controls the image sensor, obtains the image signal, and supplies a drive signal that drives the actuator
  • a drive circuit a first transmission cable for electrically connecting the imaging element and the imaging circuit, a second transmission cable for electrically connecting the actuator and the drive circuit, and
  • a controller that controls the drive signal supplied to an actuator and adjusts a position of the optical system along the optical axis;
  • An operation switch that outputs an operation signal to the controller, and when the operation signal is input from the operation switch, a blanking period of the image signal based on the image signal acquired by the imaging circuit. And detecting the drive signal in a stepwise manner within the blanking period to supply the drive signal.
  • FIG. 1 is a block diagram illustrating a functional configuration of the endoscope apparatus according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a timing chart of an operation performed by the endoscope apparatus according to the first embodiment.
  • FIG. 3 is a flowchart illustrating an outline of a process executed by the endoscope apparatus according to the first embodiment.
  • FIG. 4 is a block diagram illustrating a functional configuration of the endoscope apparatus according to Embodiment 2.
  • FIG. 5 is a diagram showing a timing chart of an operation performed by the endoscope apparatus according to Embodiment 2.
  • FIG. 6 is a flowchart illustrating an outline of a process executed by the endoscope apparatus according to the second embodiment.
  • an endoscope provided with an endoscope having an imaging element at a distal end on a distal end side of an insertion portion to be inserted into a subject.
  • the device will be described. Further, the present disclosure is not limited by the embodiments. Further, in the description of the drawings, the same portions will be denoted by the same reference numerals and described. Furthermore, it should be noted that the drawings are schematic, and the relationship between the thickness and the width of each member, the ratio of each member, and the like are different from reality. In addition, the drawings include portions having different dimensions and ratios.
  • FIG. 1 is a block diagram illustrating a functional configuration of the endoscope apparatus according to Embodiment 1.
  • the endoscope apparatus 1 shown in FIG. 1 includes at least an endoscope 2 and a control device 3.
  • the endoscope apparatus 1 illustrated in FIG. 1 generates an image signal by capturing an image of the inside of a subject by inserting the endoscope 2 into a body cavity of the subject.
  • the control device 3 performs various kinds of signal processing on the image signal input from the endoscope 2 and outputs the processed image signal to a display device (not shown).
  • the endoscope 2 includes a distal end portion 20, an insertion portion 30, an operation portion 40, and a universal cord 50.
  • the endoscope 2 inserts the insertion portion 30 including the distal end portion 20 provided on the distal end side of the insertion portion 30 into the body cavity of the subject.
  • the endoscope 2 generates an image signal by imaging the inside of the subject.
  • the endoscope 2 outputs an image signal generated at the distal end portion 20 to the control device 3 via the insertion section 30 and the universal cord 50.
  • the distal end portion 20 has an optical system 21, an image sensor 22, an actuator 23, and a position detection sensor 24.
  • the optical system 21 is configured using one or a plurality of lenses.
  • the optical system 21 is disposed in the distal end portion 20 so as to be movable along the optical axis L1.
  • the optical system 21 changes the focal length under the driving of the actuator 23.
  • the imaging device 22 is imaged by the optical system 21 based on a control signal input from the control device 3 via the first transmission cable 51 wired to the insertion unit 30, the operation unit 40, and the universal cord 50.
  • CMOS complementary metal oxide semiconductor
  • CCD charge coupled device
  • the actuator 23 is driven based on a drive signal input from the control device 3 via the second transmission cable 52 wired to the insertion unit 30, the operation unit 40, and the universal cord 50.
  • the actuator 23 is configured using a cylindrical magnetic body or the like on which the coil and the optical system 21 are mounted.
  • the actuator 23 generates a magnetic field when the drive signal input from the control device 3 flows through the coil via the second transmission cable 52, and the magnetic substance knows in the direction of the optical axis by the magnetic field, and the actuator 23 generates a magnetic field on the wide side or on the telephoto side. Move to the side. Thereby, the focal length of the optical system 21 changes.
  • the actuator 23 may use a voice coil motor or may be formed using a shape memory alloy, and may change the shape by applying a drive signal.
  • the position detection sensor 24 detects the position of the optical system 21 on the optical axis, and outputs the detection result to the control device 3 via the third transmission cable 53.
  • the position detection sensor 24 is configured using, for example, a Hall element or an encoder.
  • the insertion section 30 has the distal end 20 connected to one end and the operating section 40 connected to the proximal end.
  • the insertion section 30 has at least a first transmission cable 51, a second transmission cable 52, a third transmission cable 53, and a light guide (not shown).
  • Each of the first transmission cable 51, the second transmission cable 52, the third transmission cable 53, and the light guide (not shown) is wired in the insertion portion 30 and the universal cord 50 in parallel with each other.
  • the first transmission cable 51 electrically connects the image sensor 22 to the controller 3, transmits a control signal from the controller 3 to the image sensor 22, and transmits an image signal from the image sensor 22 to the controller 3. I do.
  • the second transmission cable 52 electrically connects the actuator 23 to the control device 3 and transmits a drive signal from the control device 3 to the actuator 23 together with a grant.
  • the third transmission cable 53 electrically connects the position detection sensor 24 and the control device 3 and transmits a position signal indicating a detection result detected by the position detection sensor 24 from the position detection sensor 24 to the control device 3.
  • the operation unit 40 has various circuits mounted therein, and receives input of operation signals for various operations relating to the endoscope 2.
  • the operation unit 40 includes an operation switch 41 and a scope controller 42.
  • the operation unit 40 has one end connected to the insertion unit 30 and the other end connected to the universal cord 50.
  • the operation switch 41 includes various switches, toggle switches, buttons, and the like, and outputs an operation signal corresponding to an external operation to the control device 3.
  • the scope controller 42 controls each part of the endoscope 2 overall.
  • the scope controller 42 is configured using, for example, a CPU (Central Processing Unit) or an FPGA (Field Programmable Gate Array).
  • the scope controller 42 performs predetermined signal processing, for example, amplification processing, on the image signal input from the image sensor 22 and outputs the image signal to the control device 3.
  • the universal cord 50 has a first transmission cable 51, a second transmission cable 52, a third transmission cable 53, and a light guide (not shown).
  • the universal cord 50 is detachably attached to the control device 3.
  • the control device 3 includes a video signal processing circuit 31, a detection circuit 32, a drive circuit 33, and a controller 34.
  • the video signal processing circuit 31 performs various kinds of signal processing, for example, AD conversion processing and noise reduction processing on the image signal input from the scope controller 42 via the first transmission cable 51, and outputs the processed signal to the controller 34. I do.
  • the video signal processing circuit 31 also controls the vertical synchronization signal (hereinafter, simply referred to as “VD signal”) and the horizontal synchronization signal included in the image signal input from the scope controller 42 via the first transmission cable 51 to the controller. 34.
  • VD signal vertical synchronization signal
  • the video signal processing circuit 31 functions as an imaging circuit.
  • the detection circuit 32 performs an AD conversion process on the analog position signal input from the position detection sensor 24 via the third transmission cable 53 and outputs the signal to the controller 34.
  • the drive circuit 33 supplies a drive signal for driving the actuator 23 provided at the distal end portion 20 of the endoscope 2 under the control of the controller 34.
  • the drive circuit 33 drives the actuator 23 by supplying a drive signal.
  • the drive circuit 33 includes a drive voltage setting circuit 331, a regulator 332, and a driver circuit 333.
  • the drive voltage setting circuit 331 sets the drive voltage of the drive signal output from the regulator 332 under the control of the controller 34.
  • the drive voltage setting circuit 331 is configured using a D / A conversion circuit, a comparator circuit, and the like.
  • the regulator 332 outputs a drive signal in which the voltage of the DC power supply input from a DC power supply circuit (not shown) is adjusted to the drive voltage set by the drive voltage setting circuit 331 to the driver circuit 333.
  • the driver circuit 333 outputs the drive signal input from the regulator 332 to the second transmission cable 52 under the control of the controller 34.
  • the driver circuit 333 is configured using an H-bridge circuit or the like.
  • the controller 34 controls the components of the endoscope apparatus 1 overall.
  • the controller 34 controls a drive signal supplied from the drive circuit 33 to the actuator 23, and adjusts the position of the optical system 21 along the optical axis L1. Specifically, when an operation signal is input from the operation switch 41, the controller 34 causes the drive circuit 33 to change the drive signal value stepwise when outputting the drive circuit 33 drive signal.
  • the output of the driving signal is completed by causing the driving circuit 33 to change the driving signal in a stepwise manner and supplying the stepwise changing driving signal within the blanking period of the image frame of the image signal. Is performed.
  • FIG. 2 is a timing chart illustrating an outline of an operation performed by the endoscope apparatus 1.
  • 2A shows the timing at which the operation switch 41 is pressed
  • FIG. 2B shows the output timing of the operation signal
  • FIG. 2C shows the vertical synchronization signal (VD).
  • FIG. 2D shows a change in the drive signal of the actuator 23.
  • the horizontal axis indicates time.
  • the controller 34 when an operation signal is input from the operation switch 41 (time t1), the controller 34 supplies a drive signal to the drive circuit 33, and a blanking period (for example, time t2 to time t3).
  • the drive circuit 33 changes the voltage value of the drive signal stepwise, and supplies the drive signal that changes stepwise.
  • the controller 34 terminates the drive signal supplied by the drive circuit 33 within the blanking period. More specifically, the controller 34 changes the voltage value of the drive signal with a step-like pulse, and controls the drive signal supplied by the drive circuit 33 so that the step-like change falls within a blanking period. I do.
  • the controller 34 When increasing the absolute value of the drive signal supplied from the drive circuit 33, the controller 34 changes the drive signal in a stepwise manner and supplies the drive signal that changes in a stepwise manner.
  • the drive signal When reducing the absolute value of the drive signal supplied from the drive circuit 33, the drive signal may be instantaneously changed to zero by the drive circuit 33.
  • FIG. 3 is a flowchart illustrating an outline of a process executed by the endoscope apparatus 1.
  • step S101: Yes when an operation signal is received from the operation switch 41 of the endoscope apparatus 1 (step S101: Yes), the endoscope apparatus 1 proceeds to step S102 described later. On the other hand, when the operation signal has not been received from the operation switch 41 of the endoscope apparatus 1 (step S101: No), the operation waits until the operation signal is received from the operation switch 41 of the endoscope apparatus 1.
  • step S102 when the controller 34 detects a VD signal from the video signal processing circuit 31 (step S102: Yes), the endoscope apparatus 1 proceeds to step S103 described later.
  • step S102: No when the controller 34 has not detected the VD signal from the video signal processing circuit 31 (step S102: No), in the endoscope apparatus 1, the controller 34 detects the VD signal from the video signal processing circuit 31. Wait until.
  • step S103 the controller 34 gradually increases the drive voltage of the drive signal output from the drive circuit 33 during the VD signal detection period (blanking period).
  • step S104 determines whether the drive voltage of the drive signal has reached a predetermined voltage (step S104), and determines that the drive voltage of the drive signal has reached the predetermined voltage (step S104: Yes). Then, the drive voltage of the drive signal output from the drive circuit 33 is decreased stepwise (step S105), and the endoscope apparatus 1 proceeds to step S106 described below, and the drive voltage of the drive signal has reached the predetermined voltage. When it is determined that there is no (Step S104: No), the endoscope apparatus 1 proceeds to Step S106 described later.
  • the controller 34 determines whether or not the position of the optical system 21 has reached the target position based on the detection result input from the position detection sensor 24 (step S106).
  • the controller 34 determines that the position of the optical system 21 has reached the target position (step S106: Yes)
  • the endoscope apparatus 1 ends this processing.
  • the controller 34 determines that the position of the optical system 21 has not reached the target position (step S106: No)
  • the endoscope apparatus 1 returns to step S102 described above. In this case, the controller 34 repeats steps S102 to S104 until the position of the optical system 21 reaches the target position.
  • the controller 34 changes the voltage value of the drive signal supplied by the drive circuit 33 in a stepwise manner, and supplies the drive signal that changes in a stepwise manner. Overlap can be prevented.
  • the controller 34 changes the voltage value of the drive signal with a step-like pulse, and the drive circuit 33 supplies the drive signal so that the step-like change falls within a blanking period. Since the signal is controlled, it is possible to prevent the edge component from becoming a noise source and being superimposed on the image signal.
  • the controller 34 changes the voltage of the drive signal supplied to the drive circuit 33 in a stepwise manner.
  • the present invention is not limited to this, and the drive current may be changed in a stepwise manner. .
  • the endoscope apparatus according to the second embodiment differs from the control apparatus according to the first embodiment in the configuration and the processing to be executed. Specifically, in the above-described first embodiment, control is performed such that the voltage of the drive signal is changed stepwise during the vertical blanking period and output, and the output of the drive signal is completed during the vertical blanking period. However, in the second embodiment, control is performed to increase the voltage of the drive signal step by step in each vertical blanking period.
  • a process executed by the endoscope apparatus according to the second embodiment will be described. Note that the same components as those of the endoscope apparatus 1 according to Embodiment 1 described above are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 4 is a block diagram illustrating a functional configuration of the endoscope apparatus according to Embodiment 2.
  • the endoscope apparatus 1A shown in FIG. 4 includes a control device 3A instead of the control device 3 according to the first embodiment. Further, the control device 3A includes a drive circuit 33A instead of the drive circuit 33 described above.
  • the drive circuit 33A supplies a drive signal for driving the actuator 23 provided at the distal end portion 20 of the endoscope 2 under the control of the controller 34.
  • the drive circuit 33A includes a driver circuit 333, a drive current setting circuit 334, and a constant current setting circuit 335.
  • the drive current setting circuit 334 sets the drive current of the drive signal output from the constant current setting circuit 335 under the control of the controller 34.
  • the drive current setting circuit 334 is configured using a D / A conversion circuit, a comparator circuit, and the like.
  • the constant current setting circuit 335 outputs a drive signal in which the current of the DC power supply input from the DC power supply circuit (not shown) is adjusted to the drive current set by the drive current setting circuit 334 to the driver circuit 333.
  • FIG. 5 is a timing chart illustrating an outline of an operation performed by the endoscope apparatus 1A.
  • 5A shows the timing at which the operation switch 41 is pressed
  • FIG. 5B shows the output timing of the operation signal
  • FIG. 5C shows the vertical synchronization signal (VD).
  • VD vertical synchronization signal
  • 5 (d) shows a change in the drive signal of the actuator 23.
  • the controller 34 supplies a drive signal to the drive circuit 33A when a blanking period (for example, time t22 to time t23, Every time (time 24 to time 25, time 26 to time 27), the drive circuit 33A changes the voltage value of the drive signal in a stepwise manner, and supplies the drive signal that changes in a stepwise manner.
  • the controller 34 sets one transition period of the stepwise change of the drive signal supplied by the drive circuit 33A to a blanking period. And the driving signal is supplied to the driving circuit 33A.
  • a blanking period for example, time t22 to time t23, Every time (time 24 to time 25, time 26 to time 27)
  • the drive circuit 33A changes the voltage value of the drive signal in a stepwise manner, and supplies the drive signal that changes in a stepwise manner.
  • the controller 34 sets one transition period of the stepwise change of the drive signal supplied by the drive circuit 33A to a blanking period.
  • the driving signal is supplied to the driving circuit 33A.
  • the controller 34 raises the voltage value of the stepwise change of the drive signal supplied by the drive circuit 33A by a pulse, but, for example, linearly changes the voltage value of the drive signal every blanking period. You may make it raise.
  • the controller 34 changes the drive signal stepwise to the drive circuit 33A and supplies the drive signal that changes stepwise.
  • the absolute value of the drive signal supplied to the drive circuit 33A is reduced, the drive signal may be instantaneously changed to zero by the drive circuit 33A.
  • FIG. 6 is a flowchart illustrating an outline of a process executed by the endoscope apparatus 1A. 6, steps S201 and S202 correspond to steps S101 and S102 in FIG. 3 described above, respectively.
  • step S203 the controller 34 sets the drive voltage of the drive signal supplied by the drive circuit 33A higher by a predetermined voltage ( ⁇ v) and supplies the drive voltage to the drive signal in each detection period of the VD signal.
  • the controller 34 may lower the drive voltage of the drive signal by a predetermined voltage ( ⁇ v) when the position of the optical system 21 approaches the target position based on the detection result input from the position detection sensor 24. That is, the controller 34 gradually raises the drive voltage in synchronization with the detection period of the VD signal, and gradually reduces the drive voltage when the position of the optical system 21 approaches the target position, so that the optical system 21 reaches the target position. Let it. Accordingly, it is possible to prevent the position of the optical system 21 moved by the actuator 23 from exceeding the target position.
  • the controller 34 determines whether or not the position of the optical system 21 has reached the target position based on the detection result input from the position detection sensor 24 (Step S204). When the controller 34 determines that the position of the optical system 21 has reached the target position (Step S204: Yes), the endoscope apparatus 1 proceeds to Step S205 described later. On the other hand, when the controller 34 determines that the position of the optical system 21 has not reached the target position (Step S204: No), the endoscope apparatus 1 returns to Step S202 described above.
  • step S205 the controller 34 stops the drive signal supplied from the drive circuit 33A. After step S205, the endoscope apparatus 1A ends this processing.
  • the controller 34 when the controller 34 receives an operation signal from the operation switch 41 (time t21) and supplies a drive signal to the drive circuit 33A, a blanking period (for example, from time t22 to time t22). At each time t23, time 24 to time 25, and time 26 to time 27), the voltage of the drive signal is changed stepwise to supply the drive signal to the drive circuit 33A, so that noise is superimposed on the image signal. Can be prevented.
  • the controller 34 when the controller 34 changes the voltage value of the drive signal supplied to the drive circuit 33A stepwise, one transition period of the stepwise change of the drive signal supplied by the drive circuit 33A is blocked. Since the driving is completed within the ranking period and the driving circuit 33A is supplied with the driving signal, power consumption can be reduced.
  • the controller 34 changes the voltage of the drive signal supplied to the drive circuit 33A in a stepwise manner.
  • the present invention is not limited to this, and the drive current may be changed in a stepwise manner. .
  • Various inventions can be formed by appropriately combining a plurality of components disclosed in the endoscope apparatuses according to Embodiments 1 and 2 of the present disclosure described above. For example, some components may be deleted from all the components described in the endoscope apparatuses according to Embodiments 1 and 2 of the present disclosure described above. Furthermore, the components described in the endoscope apparatuses according to Embodiments 1 and 2 of the present disclosure described above may be appropriately combined.
  • the “unit” described above can be read as “means” or “circuit”.
  • the control unit can be read as a control unit or a control circuit.
  • the program to be executed by the endoscope apparatuses according to Embodiments 1 and 2 of the present disclosure is a file data in an installable format or an executable format in a CD-ROM, a flexible disk (FD), a CD-R,
  • the program is provided by being recorded on a computer-readable recording medium such as a DVD (Digital Versatile Disk), a USB medium, and a flash memory.
  • a program to be executed by the endoscope apparatus according to Embodiments 1 and 2 of the present disclosure is stored on a computer connected to a network such as the Internet, and provided by being downloaded via the network. You may.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

画像信号にノイズが重畳されることを防止することができる内視鏡装置、駆動方法およびプログラムを提供する。内視鏡装置(1)は、コントローラ(34)を備え、コントローラ(34)は、操作スイッチ(40)から操作信号が入力された場合、撮像回路(31)によって取得された画像信号に基づいて、画像信号のブランキング期間を検出し、かつ、ブランキング期間内において駆動回路(33)に駆動信号を段階的に変化させ、この駆動信号をアクチュエーター(23)へ供給させる。

Description

内視鏡装置、駆動方法およびプログラム
 本開示は、被検体を撮像することによって画像データを生成する内視鏡装置、駆動方法およびプログラムに関する。
 従来、内視鏡装置において、先端部に光学系の焦点距離を変更するアクチュエーターと撮像素子とを設け、このアクチュエーターの駆動によって光学系の焦点距離を変更する技術が知られている(特許文献1参照)。この技術では、撮像素子によって生成される画像信号とアクチュエーターを駆動する制御信号とを、共通の信号線を経由させて内視鏡装置からプロセッサへ送信し、かつ、画像信号のブランキング期間に制御信号を内視鏡装置へ送信することによってアクチュエーターを駆動する。
特開2008-68021号公報
 しかしながら、上述した特許文献1では、アクチュエーター駆動時に、大電流かつ高電圧でパルス状をなす制御信号を急峻に立ち上げて送信した場合、制御信号のエッジ成分が画像信号にノイズとして重畳されてしまうという問題点があった。
 本開示は、上記に鑑みてなされたものであって、画像信号にノイズが重畳されることを防止することができる内視鏡装置、駆動方法およびプログラムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本開示に係る内視鏡装置は、光学像を結像する光学系と、前記光学像が入射すると、画像信号を所定のフレームレートに従って生成する撮像素子と、前記光学系を光軸に沿って移動させるアクチュエーターと、前記撮像素子を制御し、前記画像信号を取得する撮像回路と、前記アクチュエーターを駆動する駆動信号を供給する駆動回路と、前記撮像素子と前記撮像回路とを電気的に接続する第1の伝送ケーブルと、前記アクチュエーターと前記駆動回路とを電気的に接続する第2の伝送ケーブルと、前記駆動回路から前記アクチュエーターへ供給される前記駆動信号を制御し、前記光軸上に沿った前記光学系の位置を調整するコントローラと、外部からの操作に応じた操作信号を前記コントローラへ出力する操作スイッチと、を備え、前記コントローラは、前記操作スイッチから前記操作信号が入力された場合、前記撮像回路によって取得された前記画像信号に基づいて、前記画像信号のブランキング期間を検出し、かつ、前記ブランキング期間内において前記駆動回路に前記駆動信号を段階的に変化させ、該駆動信号を供給させる。
 また、本開示に係る内視鏡装置は、上記開示において、前記コントローラは、前記駆動回路に、前記駆動信号の段階的な変化を前記ブランキング期間内で終了させる。
 また、本開示に係る内視鏡装置は、上記開示において、前記コントローラは、前記ブランキング期間毎に前記駆動回路に前記駆動信号を段階的に変化させ、該段階的に変化する前記駆動信号を供給させる。
 また、本開示に係る内視鏡装置は、上記開示において、前記コントローラは、前記駆動回路が供給する前記駆動信号の段階的な変化の一つの遷移期間を前記ブランキング期間内で完了させて前記駆動回路に前記駆動信号を供給させる。
 また、本開示に係る内視鏡装置は、上記開示において、前記コントローラは、前記駆動信号の絶対値を大きくする場合、前記駆動回路に前記駆動信号を段階的に変化させ、該段階的に変化する前記駆動信号を供給させ、前記駆動信号の絶対値を小さくする場合、前記駆動回路に前記駆動信号を0へ変化させる。
 また、本開示に係る駆動方法は、内視鏡装置が実行する駆動方法であって、前記内視鏡装置は、光学像を結像する光学系と、前記光学像が入射すると、画像信号を所定のフレームレートに従って生成する撮像素子と、前記光学系を光軸に沿って移動させるアクチュエーターと、前記撮像素子を制御し、前記画像信号を取得する撮像回路と、前記アクチュエーターを駆動する駆動信号を供給する駆動回路と、前記撮像素子と前記撮像回路とを電気的に接続する第1の伝送ケーブルと、前記アクチュエーターと前記駆動回路とを電気的に接続する第2の伝送ケーブルと、前記駆動回路から前記アクチュエーターへ供給される前記駆動信号を制御し、前記光軸上に沿った前記光学系の位置を調整するコントローラと、外部からの操作に応じた操作信号を前記コントローラへ出力する操作スイッチと、を備え、前記操作スイッチから前記操作信号が入力された場合、前記撮像回路によって取得された前記画像信号に基づいて、前記画像信号のブランキング期間を検出し、前記ブランキング期間内において前記駆動回路に前記駆動信号を段階的に変化させ、該駆動信号を供給させる。
 また、本開示に係るプログラムは、内視鏡装置に実行させるプログラムであって、前記内視鏡装置は、光学像を結像する光学系と、前記光学像が入射すると、画像信号を所定のフレームレートに従って生成する撮像素子と、前記光学系を光軸に沿って移動させるアクチュエーターと、前記撮像素子を制御し、前記画像信号を取得する撮像回路と、前記アクチュエーターを駆動する駆動信号を供給する駆動回路と、前記撮像素子と前記撮像回路とを電気的に接続する第1の伝送ケーブルと、前記アクチュエーターと前記駆動回路とを電気的に接続する第2の伝送ケーブルと、前記駆動回路から前記アクチュエーターへ供給される前記駆動信号を制御し、前記光軸上に沿った前記光学系の位置を調整するコントローラと、外部からの操作に応じた操作信号を前記コントローラへ出力する操作スイッチと、を備え、前記操作スイッチから前記操作信号が入力された場合、前記撮像回路によって取得された前記画像信号に基づいて、前記画像信号のブランキング期間を検出し、前記ブランキング期間内において前記駆動回路に前記駆動信号を段階的に変化させ、該駆動信号を供給させる。
 本開示によれば、画像信号にノイズが重畳されることを防止することができるという効果を奏する。
図1は、実施の形態1に係る内視鏡装置の機能構成を示すブロック図である。 図2は、実施の形態1に係る内視鏡装置が実行する動作のタイミングチャートを示す図である。 図3は、実施の形態1に係る内視鏡装置が実行する処理の概要を示すフローチャートである。 図4は、実施の形態2に係る内視鏡装置の機能構成を示すブロック図である。 図5は、実施の形態2に係る内視鏡装置が実行する動作のタイミングチャートを示す図である。 図6は、実施の形態2に係る内視鏡装置が実行する処理の概要を示すフローチャートである。
 以下、本開示を実施するための形態(以下、「実施の形態」という)として、被検体内に挿入する挿入部における先端側の先端部に撮像素子を有する内視鏡を備えた内視鏡装置について説明する。また、この実施の形態により、本開示が限定されるものでない。さらに、図面の記載において、同一の部分には同一の符号を付して説明する。さらにまた、図面は、模式的なものであり、各部材の厚みと幅との関係、各部材の比率等は、現実と異なることに留意する必要がある。また、図面の相互間において、互いの寸法や比率が異なる部分が含まれている。
(実施の形態1)
 〔内視鏡装置の構成〕
 図1は、実施の形態1に係る内視鏡装置の機能構成を示すブロック図である。図1に示す内視鏡装置1は、少なくとも、内視鏡2と、制御装置3と、を備える。図1に示す内視鏡装置1は、内視鏡2が被検体の体腔内に挿入されることによって被検体の体内を撮像することで画像信号を生成する。そして、内視鏡装置1は、制御装置3が内視鏡2から入力された画像信号に対して各種の信号処理を行って図示しない表示装置へ出力する。
 〔内視鏡の構成〕
 まず、内視鏡2の構成について説明する。
 内視鏡2は、先端部20と、挿入部30と、操作部40と、ユニバーサルコード50と、を備える。内視鏡2は、挿入部30の先端側に設けられた先端部20を含む挿入部30を被検体の体腔内に挿入する。内視鏡2は、被検体の体内を撮像することによって画像信号を生成する。内視鏡2は、挿入部30およびユニバーサルコード50を経由して先端部20で生成された画像信号を制御装置3へ出力する。
 先端部20は、光学系21と、撮像素子22と、アクチュエーター23と、位置検出センサ24と、を有する。
 光学系21は、1または複数のレンズ等を用いて構成される。光学系21は、光軸L1方向に沿って移動可能に先端部20内に配置される。光学系21は、アクチュエーター23の駆動のもと、焦点距離を変更する。
 撮像素子22は、挿入部30、操作部40およびユニバーサルコード50に配線された第1の伝送ケーブル51を経由して制御装置3から入力された制御信号に基づいて、光学系21によって結像された光学像が入力すると、所定のフレームレートに従って画像信号を生成する。撮像素子22は、第1の伝送ケーブル51を経由して画像信号を制御装置3へ出力する。撮像素子22は、CMOS(Complementary Metal Oxide Semiconductor)またはCCD(Charge Coupled Device)等のイメージセンサを用いて構成される。
 アクチュエーター23は、挿入部30、操作部40およびユニバーサルコード50に配線された第2の伝送ケーブル52を経由して制御装置3から入力された駆動信号に基づいて駆動する。アクチュエーター23は、コイルおよび光学系21を搭載した筒状をなす磁性体等を用いて構成される。アクチュエーター23は、第2の伝送ケーブル52を経由して制御装置3から入力された駆動信号がコイルに流れることによって磁界を発生し、この磁界によって磁性体が光軸方向に知ってワイド側またはテレ側へ移動する。これにより、光学系21の焦点距離は、変化する。なお、アクチュエーター23は、ボイスコイルモータを用いるものであってもよいし、形状記憶合金を用いて構成し、駆動信号を印加することによって形状を変化させるものであってもよい。
 位置検出センサ24は、光軸上における光学系21の位置を検出し、この検出結果を第3の伝送ケーブル53を経由して制御装置3へ出力する。位置検出センサ24は、例えばホール素子やエンコーダ等を用いて構成される。
 挿入部30は、一端側に先端部20が接続され、基端側に操作部40が接続される。挿入部30は、少なくとも、第1の伝送ケーブル51と、第2の伝送ケーブル52と、第3の伝送ケーブル53と、図示しないライトガイドと、を有する。第1の伝送ケーブル51、第2の伝送ケーブル52、第3の伝送ケーブル53および図示しないライトガイドの各々は、挿入部30およびユニバーサルコード50内において互いに並列した状態で配線される。
 第1の伝送ケーブル51は、撮像素子22と制御装置3とを電気的に接続し、制御装置3から撮像素子22へ制御信号を送信するとともに、撮像素子22から画像信号を制御装置3へ伝送する。
 第2の伝送ケーブル52は、アクチュエーター23と制御装置3とを電気的に接続し、制御装置3からアクチュエーター23へ駆動信号をグラントとともに伝送する。
 第3の伝送ケーブル53は、位置検出センサ24と制御装置3とを電気的に接続し、位置検出センサ24が検出した検出結果を示す位置信号を位置検出センサ24から制御装置3へ伝送する。
 操作部40は、内部に各種回路が実装され、内視鏡2に関する各種操作の操作信号の入力を受け付ける。操作部40は、操作スイッチ41と、スコープコントローラ42と、を有する。また、操作部40は、一端側が挿入部30と接続され、他端側がユニバーサルコード50と接続される。
 操作スイッチ41は、各種のスイッチ、トグルスイッチおよびボタン等を用いて構成され、外部からの操作に応じた操作信号を制御装置3へ出力する。
 スコープコントローラ42は、内視鏡2の各部を統括的に制御する。スコープコントローラ42は、例えばCPU(Central Processing Unit)やFPGA(Field Programmable Gate Array)等を用いて構成される。スコープコントローラ42は、撮像素子22から入力された画像信号に対して、所定の信号処理、例えば増幅処理等を行って制御装置3へ出力する。
 ユニバーサルコード50は、第1の伝送ケーブル51と、第2の伝送ケーブル52と、第3の伝送ケーブル53と、図示しないライトガイドと、を有する。ユニバーサルコード50は、制御装置3に着脱自在に装着される。
 〔制御装置の構成〕
 次に、制御装置3の構成について説明する。
 制御装置3は、映像信号処理回路31と、検出回路32と、駆動回路33と、コントローラ34と、を備える。
 映像信号処理回路31は、第1の伝送ケーブル51を経由してスコープコントローラ42から入力された画像信号に対して、各種の信号処理、例えばAD変換処理やノイズ低減処理を行ってコントローラ34へ出力する。また、映像信号処理回路31は、第1の伝送ケーブル51を経由してスコープコントローラ42から入力された画像信号に含まれる垂直同期信号(以下、単に「VD信号」という)および水平同期信号をコントローラ34へ出力する。なお、本実施の形態1では、映像信号処理回路31は、撮像回路として機能する。
 検出回路32は、第3の伝送ケーブル53を経由して位置検出センサ24から入力されたアナログの位置信号に対して、AD変換処理を行ってコントローラ34へ出力する。
 駆動回路33は、コントローラ34の制御のもと、内視鏡2の先端部20に設けられたアクチュエーター23を駆動する駆動信号を供給する。駆動回路33は、駆動信号を供給することによって、アクチュエーター23を駆動する。駆動回路33は、駆動電圧設定回路331と、レギュレータ332と、ドライバー回路333と、を有する。
 駆動電圧設定回路331は、コントローラ34の制御のもと、レギュレータ332が出力する駆動信号の駆動電圧を設定する。駆動電圧設定回路331は、D/A変換回路およびコンパレータ回路等を用いて構成される。
 レギュレータ332は、図示しないDC電源回路から入力されるDC電源の電圧を、駆動電圧設定回路331によって設定された駆動電圧に調整した駆動信号をドライバー回路333へ出力する。
 ドライバー回路333は、コントローラ34の制御のもと、レギュレータ332から入力された駆動信号を第2の伝送ケーブル52へ出力する。ドライバー回路333は、Hブリッジ回路等を用いて構成される。
 コントローラ34は、内視鏡装置1を構成する各部を統括的に制御する。また、コントローラ34は、駆動回路33からアクチュエーター23へ供給される駆動信号を制御し、光軸L1に沿った光学系21の位置を調整する。具体的には、コントローラ34は、操作スイッチ41から操作信号が入力された場合において、駆動回路33駆動信号を出力させるとき、駆動回路33に対して、駆動信号の値を段階的に変化させて出力させ、かつ、画像信号の画像フレームのブランキング期間内において、駆動回路33に駆動信号を段階的に変化させ、この段階的に変化する駆動信号を供給させることによって、駆動信号の出力を完了させる制御を行う。
 〔内視鏡装置の動作〕
 次に、内視鏡装置1の動作処理について説明する。図2は、内視鏡装置1が実行する動作の概要を示すタイミングチャートである。図2において、図2の(a)が操作スイッチ41の押下されたタイミングを示し、図2の(b)が操作信号の出力タイミングを示し、図2の(c)が垂直同期信号(VD)のタイミングを示し、図2の(d)がアクチュエーター23の駆動信号の変化を示す。また、図2において、横軸が時間を示す。
 図2に示すように、コントローラ34は、操作スイッチ41から操作信号が入力された場合(時刻t1)において、駆動回路33に駆動信号を供給させるとき、ブランキング期間(例えば時刻t2~時刻t3)内において駆動回路33に駆動信号の電圧値を段階的に変化させ、この段階的に変化する駆動信号を供給させる。具体的には、コントローラ34は、駆動回路33から供給する駆動信号の電圧値を段階的に変化させる場合、ブランキング期間内において駆動回路33が供給する駆動信号を終了させる。より具体的には、コントローラ34は、駆動信号の電圧値を階段状のパルスで変化させ、かつ、この階段状の変化がブランキング期間内で収まるように駆動回路33が供給する駆動信号を制御する。なお、コントローラ34は、駆動回路33から供給する駆動信号の絶対値を大きくする場合、駆動回路33に駆動信号を段階的に変化させ、この段階的に変化する駆動信号を供給させていたが、駆動回路33から供給する駆動信号の絶対値を小さくする場合、駆動回路33に駆動信号を瞬時に0へ変化させてもよい。
 〔内視鏡装置の処理〕
 次に、内視鏡装置1が実行する処理の概要について説明する。図3は、内視鏡装置1が実行する処理の概要を示すフローチャートである。
 図3に示すように、まず、内視鏡装置1の操作スイッチ41から操作信号を受信した場合(ステップS101:Yes)、内視鏡装置1は、後述するステップS102へ移行する。これに対して、内視鏡装置1の操作スイッチ41から操作信号を受信していない場合(ステップS101:No)、内視鏡装置1の操作スイッチ41から操作信号を受信するまで待機する。
 ステップS102において、コントローラ34が映像信号処理回路31からVD信号を検出した場合(ステップS102:Yes)、内視鏡装置1は、後述するステップS103へ移行する。これに対して、コントローラ34が映像信号処理回路31からVD信号を検出していない場合(ステップS102:No)、内視鏡装置1は、コントローラ34が映像信号処理回路31からVD信号を検出するまで待機する。
 ステップS103において、コントローラ34は、VD信号の検出期間中(ブランキング期間)に駆動回路33が出力する駆動信号の駆動電圧を段階的に上昇させる。
 続いて、コントローラ34は、駆動信号の駆動電圧が所定電圧に到達したか否かを判断し(ステップS104)、駆動信号の駆動電圧が所定電圧に到達したと判断した場合(ステップS104:Yes)、駆動回路33が出力する駆動信号の駆動電圧を段階的に下降させ(ステップS105)、内視鏡装置1は、後述するステップS106へ移行し、駆動信号の駆動電圧が所定電圧に到達していないと判断した場合(ステップS104:No)、内視鏡装置1は、後述するステップS106へ移行する。
 その後、コントローラ34は、位置検出センサ24から入力される検出結果に基づいて、光学系21の位置が目標位置に到達したか否かを判断する(ステップS106)。コントローラ34によって光学系21の位置が目標位置に到達したと判断された場合(ステップS106:Yes)、内視鏡装置1は、本処理を終了する。これに対して、コントローラ34によって光学系21の位置が目標位置に到達していないと判断された場合(ステップS106:No)、内視鏡装置1は、上述したステップS102へ戻る。この場合、コントローラ34は、光学系21の位置が目標位置に到達するまで、上述したステップS102~ステップS104を繰り返す。
 以上説明した実施の形態1によれば、コントローラ34が駆動回路33によって供給させる駆動信号の電圧値を段階的に変化させ、この段階的に変化する駆動信号を供給させるので、画像信号にノイズが重畳されることを防止することができる。
 また、実施の形態1によれば、コントローラ34が駆動信号の電圧値を階段状のパルスで変化させ、かつ、この階段状の変化がブランキング期間内で収まるように駆動回路33が供給する駆動信号を制御するので、エッジ成分がノイズ源となって画像信号に重畳されてしまうことを防止することができる。
 なお、実施の形態1では、コントローラ34が駆動回路33に供給させる駆動信号の電圧を段階的に変化させていたが、これに限定されることなく、駆動電流を段階的に変化させてもよい。
(実施の形態2)
 次に、本開示の実施の形態2について説明する。実施の形態2に係る内視鏡装置は、上述した実施の形態1に係る制御装置の構成が異なるうえ、実行する処理が異なる。具体的には、上述した実施の形態1では、垂直ブランキング期間において駆動信号の電圧を段階的に変化させて出力させ、かつ垂直ブランキング期間に駆動信号の出力を完了させる制御を行っていたが、実施の形態2では、垂直ブランキング期間毎に、駆動信号の電圧を段階的に上げる制御を行う。以下においては、実施の形態2に係る内視鏡装置の構成を説明後、実施の形態2に係る内視鏡装置が実行する処理について説明する。なお、上述した実施の形態1に係る内視鏡装置1と同一の構成には同一の符号を付して詳細な説明は省略する。
 〔内視鏡装置の構成〕
 図4は、実施の形態2に係る内視鏡装置の機能構成を示すブロック図である。図4に示す内視鏡装置1Aは、上述した実施の形態1に係る制御装置3に換えて、制御装置3Aを備える。また、制御装置3Aは、上述した駆動回路33に換えて、駆動回路33Aを有する。
 駆動回路33Aは、コントローラ34の制御のもと、内視鏡2の先端部20に設けられたアクチュエーター23を駆動する駆動信号を供給する。駆動回路33Aは、ドライバー回路333と、駆動電流設定回路334と、定電流設定回路335と、を有する。
 駆動電流設定回路334は、コントローラ34の制御のもと、定電流設定回路335が出力する駆動信号の駆動電流を設定する。駆動電流設定回路334は、D/A変換回路およびコンパレータ回路等を用いて構成される。
 定電流設定回路335は、図示しないDC電源回路から入力されるDC電源の電流を、駆動電流設定回路334によって設定された駆動電流に調整した駆動信号をドライバー回路333へ出力する。
 〔内視鏡装置の動作〕
 次に、内視鏡装置1Aが実行する処理について説明する。図5は、内視鏡装置1Aが実行する動作の概要を示すタイミングチャートである。図5において、図5の(a)が操作スイッチ41の押下されたタイミングを示し、図5の(b)が操作信号の出力タイミングを示し、図5の(c)が垂直同期信号(VD)のタイミングを示し、図5の(d)がアクチュエーター23の駆動信号の変化を示す。また、図5において、横軸が時間を示す。
 図5に示すように、コントローラ34は、操作スイッチ41から操作信号が入力された場合(時刻t21)において、駆動回路33Aに駆動信号を供給させるとき、ブランキング期間(例えば時刻t22~時刻t23,時刻24~時刻25,時刻26~時刻27)毎に、駆動回路33Aに駆動信号の電圧値を段階的に変化させて、この段階的に変化する駆動信号を供給させる。具体的には、コントローラ34は、駆動回路33Aが供給する駆動信号の電圧値を段階的に変化させる場合、駆動回路33Aが供給する駆動信号の段階的な変化の一つの遷移期間をブランキング期間内で完了させて駆動回路33Aに駆動信号を供給させる。なお、図5においては、コントローラ34は、駆動回路33Aが供給する駆動信号の段階的な変化をパルスによって電圧値を上げているが、例えばブランキング期間毎に直線的に駆動信号の電圧値を上げるようにしてもよい。なお、コントローラ34は、駆動回路33Aに供給させる駆動信号の絶対値を大きくする場合、駆動回路33Aに駆動信号を段階的に変化させ、この段階的に変化する駆動信号を供給させていたが、駆動回路33Aに供給させる駆動信号の絶対値を小さくする場合、駆動回路33Aに駆動信号を瞬時に0へ変化させてもよい。
 〔内視鏡装置の処理〕
 次に、内視鏡装置1Aが実行する処理の概要について説明する。図6は、内視鏡装置1Aが実行する処理の概要を示すフローチャートである。図6において、ステップS201およびステップS202は、上述した図3のステップS101およびステップS102それぞれに対応する。
 ステップS203において、コントローラ34は、VD信号の検出期間毎に、駆動回路33Aが供給する駆動信号の駆動電圧を所定電圧(Δv)高く設定して供給させる。この場合、コントローラ34は、位置検出センサ24から入力される検出結果に基づいて、光学系21の位置が目標位置に近づいたとき、駆動信号の駆動電圧を所定電圧(Δv)下げてもよい。即ち、コントローラ34は、VD信号の検出期間に同期して駆動電圧を徐々に上げ、光学系21の位置が目標位置に近づいたら徐々に駆動電圧を下げることによって、光学系21を目標位置に到達させる。これにより、アクチュエーター23によって移動する光学系21の位置が目標位置を超えてしまうことを防止することができる。
 コントローラ34は、位置検出センサ24から入力される検出結果に基づいて、光学系21の位置が目標位置に到達したか否かを判断する(ステップS204)。コントローラ34によって光学系21の位置が目標位置に到達したと判断された場合(ステップS204:Yes)、内視鏡装置1は、後述するステップS205へ移行する。これに対して、コントローラ34によって光学系21の位置が目標位置に到達していないと判断された場合(ステップS204:No)、内視鏡装置1は、上述したステップS202へ戻る。
 ステップS205において、コントローラ34は、駆動回路33Aが供給する駆動信号を停止させる。ステップS205の後、内視鏡装置1Aは、本処理を終了する。
 以上説明した実施の形態2によれば、コントローラ34が操作スイッチ41から操作信号が入力された場合(時刻t21)において、駆動回路33Aに駆動信号を供給させるとき、ブランキング期間(例えば時刻t22~時刻t23,時刻24~時刻25,時刻26~時刻27)毎に、駆動信号の電圧値を段階的に変化させて駆動回路33Aに駆動信号を供給させるので、画像信号にノイズが重畳されることを防止することができる。
 また、実施の形態2では、コントローラ34が駆動回路33Aに供給させる駆動信号の電圧値を段階的に変化させる場合、駆動回路33Aが供給する駆動信号の段階的な変化の一つの遷移期間をブランキング期間内で完了させて駆動回路33Aに駆動信号を供給させるので、消費電力を低減することができる。
 なお、実施の形態2では、コントローラ34が駆動回路33Aに供給させる駆動信号の電圧を段階的に変化させていたが、これに限定されることなく、駆動電流を段階的に変化させてもよい。
(その他の実施の形態)
 上述した本開示の実施の形態1,2に係る内視鏡装置に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、上述した本開示の実施の形態1,2に係る内視鏡装置に記載した全構成要素からいくつかの構成要素を削除してもよい。さらに、上述した本開示の実施の形態1,2に係る内視鏡装置で説明した構成要素を適宜組み合わせてもよい。
 また、本開示の実施の形態1,2に係る内視鏡装置では、上述してきた「部」は、「手段」や「回路」などに読み替えることができる。例えば、制御部は、制御手段や制御回路に読み替えることができる。
 また、本開示の実施の形態1,2に係る内視鏡装置に実行させるプログラムは、インストール可能な形式または実行可能な形式のファイルデータでCD-ROM、フレキシブルディスク(FD)、CD-R、DVD(Digital Versatile Disk)、USB媒体、フラッシュメモリ等のコンピュータで読み取り可能な記録媒体に記録されて提供される。
 また、本開示の実施の形態1,2に係る内視鏡装置に実行させるプログラムは、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。
 なお、本明細書におけるタイミングチャートの説明では、「まず」、「その後」、「続いて」等の表現を用いてステップ間の処理の前後関係を明示していたが、本発明を実施するために必要な処理の順序は、それらの表現によって一意的に定められるわけではない。即ち、本明細書で記載したタイミングチャートにおける処理の順序は、矛盾のない範囲で変更することができる。
 以上、本願の実施の形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、本発明の開示の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。
 1,1A 内視鏡装置
 2 内視鏡
 3,3A 制御装置
 20 先端部
 21 光学系
 22 撮像素子
 23 アクチュエーター
 24 位置検出センサ
 30 挿入部
 31 映像信号処理回路
 32 検出回路
 33,33A 駆動回路
 34 コントローラ
 40 操作部
 41 操作スイッチ
 42 スコープコントローラ
 50 ユニバーサルコード
 51 第1の伝送ケーブル
 52 第2の伝送ケーブル
 53 第3の伝送ケーブル
 331 駆動電圧設定回路
 332 レギュレータ
 333 ドライバー回路
 334 駆動電流設定回路
 335 定電流設定回路

Claims (7)

  1.  光学像を結像する光学系と、
     前記光学像が入射すると、画像信号を所定のフレームレートに従って生成する撮像素子と、
     前記光学系を光軸に沿って移動させるアクチュエーターと、
     前記撮像素子を制御し、前記画像信号を取得する撮像回路と、
     前記アクチュエーターを駆動する駆動信号を供給する駆動回路と、
     前記撮像素子と前記撮像回路とを電気的に接続する第1の伝送ケーブルと、
     前記アクチュエーターと前記駆動回路とを電気的に接続する第2の伝送ケーブルと、
     前記駆動回路から前記アクチュエーターへ供給される前記駆動信号を制御し、前記光軸上に沿った前記光学系の位置を調整するコントローラと、
     外部からの操作に応じた操作信号を前記コントローラへ出力する操作スイッチと、
     を備え、
     前記コントローラは、
     前記操作スイッチから前記操作信号が入力された場合、前記撮像回路によって取得された前記画像信号に基づいて、前記画像信号のブランキング期間を検出し、かつ、
     前記ブランキング期間内において前記駆動回路に前記駆動信号を段階的に変化させ、該駆動信号を供給させる
     内視鏡装置。
  2.  請求項1に記載の内視鏡装置であって、
     前記コントローラは、
     前記駆動回路に、前記駆動信号の段階的な変化を前記ブランキング期間内で終了させる
     内視鏡装置。
  3.  請求項1に記載の内視鏡装置であって、
     前記コントローラは、
     前記ブランキング期間毎に前記駆動回路に前記駆動信号を段階的に変化させ、該段階的に変化する前記駆動信号を供給させる
     内視鏡装置。
  4.  請求項1に記載の内視鏡装置であって、
     前記コントローラは、
     前記駆動回路が供給する前記駆動信号の段階的な変化の一つの遷移期間を前記ブランキング期間内で完了させて前記駆動回路に前記駆動信号を供給させる
     内視鏡装置。
  5.  請求項1に記載の内視鏡装置であって、
     前記コントローラは、
     前記駆動信号の絶対値を大きくする場合、前記駆動回路に前記駆動信号を段階的に変化させ、該段階的に変化する前記駆動信号を供給させ、
     前記駆動信号の絶対値を小さくする場合、前記駆動回路に前記駆動信号を0へ変化させる
     内視鏡装置。
  6.  内視鏡装置が実行する駆動方法であって、
     前記内視鏡装置は、
     光学像を結像する光学系と、
     前記光学像が入射すると、画像信号を所定のフレームレートに従って生成する撮像素子と、
     前記光学系を光軸に沿って移動させるアクチュエーターと、
     前記撮像素子を制御し、前記画像信号を取得する撮像回路と、
     前記アクチュエーターを駆動する駆動信号を供給する駆動回路と、
     前記撮像素子と前記撮像回路とを電気的に接続する第1の伝送ケーブルと、
     前記アクチュエーターと前記駆動回路とを電気的に接続する第2の伝送ケーブルと、
     前記駆動回路から前記アクチュエーターへ供給される前記駆動信号を制御し、前記光軸上に沿った前記光学系の位置を調整するコントローラと、
     外部からの操作に応じた操作信号を前記コントローラへ出力する操作スイッチと、
     を備え、
     前記操作スイッチから前記操作信号が入力された場合、前記撮像回路によって取得された前記画像信号に基づいて、前記画像信号のブランキング期間を検出し、
     前記ブランキング期間内において前記駆動回路に前記駆動信号を段階的に変化させ、
     該駆動信号を供給させる
     駆動方法。
  7.  内視鏡装置に実行させるプログラムであって、
     前記内視鏡装置は、
     光学像を結像する光学系と、
     前記光学像が入射すると、画像信号を所定のフレームレートに従って生成する撮像素子と、
     前記光学系を光軸に沿って移動させるアクチュエーターと、
     前記撮像素子を制御し、前記画像信号を取得する撮像回路と、
     前記アクチュエーターを駆動する駆動信号を供給する駆動回路と、
     前記撮像素子と前記撮像回路とを電気的に接続する第1の伝送ケーブルと、
     前記アクチュエーターと前記駆動回路とを電気的に接続する第2の伝送ケーブルと、
     前記駆動回路から前記アクチュエーターへ供給される前記駆動信号を制御し、前記光軸上に沿った前記光学系の位置を調整するコントローラと、
     外部からの操作に応じた操作信号を前記コントローラへ出力する操作スイッチと、
     を備え、
     前記操作スイッチから前記操作信号が入力された場合、前記撮像回路によって取得された前記画像信号に基づいて、前記画像信号のブランキング期間を検出し、
     前記ブランキング期間内において前記駆動回路に前記駆動信号を段階的に変化させ、
     該駆動信号を供給させる
     プログラム。
PCT/JP2019/008243 2018-07-30 2019-03-01 内視鏡装置、駆動方法およびプログラム WO2020026493A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/158,074 US11980340B2 (en) 2018-07-30 2021-01-26 Endoscope apparatus and method of controlling endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-142419 2018-07-30
JP2018142419 2018-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/158,074 Continuation US11980340B2 (en) 2018-07-30 2021-01-26 Endoscope apparatus and method of controlling endoscope

Publications (1)

Publication Number Publication Date
WO2020026493A1 true WO2020026493A1 (ja) 2020-02-06

Family

ID=69231533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008243 WO2020026493A1 (ja) 2018-07-30 2019-03-01 内視鏡装置、駆動方法およびプログラム

Country Status (2)

Country Link
US (1) US11980340B2 (ja)
WO (1) WO2020026493A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047090A (ja) * 1998-07-24 2000-02-18 Minolta Co Ltd 撮像装置
JP2008068021A (ja) * 2006-09-15 2008-03-27 Olympus Corp 電子内視鏡装置
JP2018031981A (ja) * 2016-08-26 2018-03-01 キヤノン株式会社 撮像装置及びその制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4905668A (en) * 1988-05-16 1990-03-06 Olympus Optical Co., Ltd. Endoscope apparatus
JP3429755B2 (ja) * 1990-04-27 2003-07-22 株式会社日立製作所 撮像装置の被写界深度制御装置
US20040097791A1 (en) * 2002-11-13 2004-05-20 Olympus Corporation Endoscope
WO2005107574A1 (ja) * 2004-05-10 2005-11-17 Olympus Corporation 送信装置、受信装置および被検体内導入システム
JP6137847B2 (ja) * 2013-01-28 2017-05-31 オリンパス株式会社 撮像装置及び撮像装置の制御方法
EP3067727A4 (en) * 2013-10-31 2017-11-22 Olympus Corporation Imaging system and imaging system operation method
EP3123919B1 (en) * 2014-03-28 2019-07-10 FUJIFILM Corporation Endoscope apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047090A (ja) * 1998-07-24 2000-02-18 Minolta Co Ltd 撮像装置
JP2008068021A (ja) * 2006-09-15 2008-03-27 Olympus Corp 電子内視鏡装置
JP2018031981A (ja) * 2016-08-26 2018-03-01 キヤノン株式会社 撮像装置及びその制御方法

Also Published As

Publication number Publication date
US11980340B2 (en) 2024-05-14
US20210145264A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
EP2088766B1 (en) Solid-state image pickup device
CN110891470B (zh) 内窥镜系统、内窥镜以及控制装置
US20170187195A1 (en) Load voltage control device, electronic endoscope and electronic endoscope system
JP2011206333A (ja) 内視鏡装置におけるcmos撮像素子の電源装置
CN106489091B (zh) 镜头驱动装置
TWI733992B (zh) 用於執行自動對焦之方法
JP2020081213A (ja) 内視鏡システム
TW202001321A (zh) 致動器控制電路及用於控制致動器之方法
US9069123B2 (en) Lens device, drive method, recording medium, and image-capturing device
US20160106303A1 (en) Focusable Camera Module For Endoscopes
WO2020026493A1 (ja) 内視鏡装置、駆動方法およびプログラム
JP2009025818A (ja) オートフォーカスのための圧電アクチュエータの駆動装置及び方法
JP6028135B1 (ja) 内視鏡および内視鏡システム
KR102029487B1 (ko) 자동 초점 조절 장치 및 그를 구비한 촬상 시스템
JP4787032B2 (ja) 内視鏡画像信号処理装置および電子内視鏡システム
WO2016027487A1 (ja) 撮像装置、内視鏡、内視鏡システムおよび撮像装置の駆動方法
WO2018220940A1 (ja) 撮像装置
US20150139634A1 (en) System for correcting hand-shake and controlling method thereof
WO2020026494A1 (ja) 処理装置、内視鏡システム、駆動方法およびプログラム
JP7248415B2 (ja) 内視鏡システム、プロセッサ
JP2005217504A (ja) 周辺光量補正機能付き撮像システム
JP5424752B2 (ja) 電子内視鏡のレンズ位置制御装置
JP5481176B2 (ja) 内視鏡のレンズ位置制御装置
JP6883469B2 (ja) 内視鏡
WO2023166740A1 (ja) 駆動装置、内視鏡システムおよび駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP