WO2020024595A1 - 光源装置及前照灯系统 - Google Patents

光源装置及前照灯系统 Download PDF

Info

Publication number
WO2020024595A1
WO2020024595A1 PCT/CN2019/078079 CN2019078079W WO2020024595A1 WO 2020024595 A1 WO2020024595 A1 WO 2020024595A1 CN 2019078079 W CN2019078079 W CN 2019078079W WO 2020024595 A1 WO2020024595 A1 WO 2020024595A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
conversion element
wavelength conversion
led array
Prior art date
Application number
PCT/CN2019/078079
Other languages
English (en)
French (fr)
Inventor
张贤鹏
胡飞
常静
李屹
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2020024595A1 publication Critical patent/WO2020024595A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2102/00Exterior vehicle lighting devices for illuminating purposes
    • F21W2102/10Arrangement or contour of the emitted light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2107/00Use or application of lighting devices on or in particular types of vehicles
    • F21W2107/10Use or application of lighting devices on or in particular types of vehicles for land vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to the field of lighting technology, in particular to a light source device and a headlamp system.
  • LEDs Since the invention of blue LEDs, semiconductor light sources have gradually replaced traditional light sources and applied them to various fields of lighting with their ever-higher luminous brightness and luminous efficiency, the environmental protection characteristics of materials, and the luminous characteristics of cold light sources. With the increasing demand for lighting brightness, the industry has high expectations for semiconductor light sources. Existing LED lighting is gradually progressing towards a combination of high-power, multiple light-emitting elements. However, due to the characteristics of LEDs, the problem of heat dissipation is increasingly hindering the improvement of lighting brightness.
  • the total luminous flux can be improved by using a plurality of LED light emitting chips, the volume of the entire light source is increased, and the optical power density of the emitted light is not high, which makes it difficult to achieve a high-illumination illumination spot in a small area.
  • Laser diodes which also belong to the solid-state light source, have the advantages of high luminous brightness under large current and long irradiation distance. Usually, the laser diode is used to excite the phosphor to obtain white light.
  • the laser diode is used to excite the phosphor to obtain white light.
  • those skilled in the art can avoid the superposition of the heat generated by the laser light source and the fluorescent light-emitting material, so that the brightness of the entire light source is further improved, and it has become an industry-recognized technical solution. More and more R & D personnel try The technical solution of laser remotely exciting fluorescent materials is applied to the field of high-brightness lighting.
  • the technical solution of light source combined with reflector is usually used to achieve area lighting.
  • This technical solution inherits the traditional filament bulb lighting scheme (such as halogen lamps or gas discharge lamps), and simulates the filament with fluorescent light-emitting materials.
  • the current popular LED car lights also adopt a similar scheme, placing the LED lamp beads in the focal position of the reflector.
  • the light emitted by the fluorescent light-emitting material is similar to an LED or a filament lamp. It is approximately Lambertian light (ie, uniform light in all directions).
  • the light After being collected by a reflector, the light is emitted, or a parallel surface with uniform surface distribution is formed.
  • Light, or a point light source with a uniform angular distribution will illuminate the entire lighting area, rather than focusing on the central lighting area, which cannot truly form a high-illuminance area in the high beam center required for vehicle lighting.
  • Even if the outgoing light generated by the technical scheme of laser remotely exciting the fluorescent light emitting material is non-isotropic uniform light between the Gaussian distribution and the Lambertian distribution, the angular distribution of this outgoing light is uncontrollable, resulting in high far-field illumination The size of the area is uncontrollable, which leads to substandard lighting spots.
  • the present invention provides a novel light source device with controllable high illumination area, including a first light source module and a second light source module.
  • a light source module includes a laser light source and a wavelength conversion element that are separately disposed, and the laser light source is used to emit excitation light. After the excitation light is reflected by a micro-mirror, it enters the wavelength conversion element through the first lens.
  • the wavelength conversion element absorbs at least a part of the excitation light and emits a received laser light with a wavelength different from the excitation light toward the first lens, and the wavelength conversion element is disposed on an optical axis of the imaging lens group;
  • the second light source module includes an LED array disposed on the substrate, and the wavelength conversion element is disposed on the same side as the first lens, and is offset from an optical axis of the imaging lens group. Is set, the imaging lens group for the second light source module and the wavelength converting emitted light projecting element in the far field imaging.
  • the present invention includes the following beneficial effects: After the light emitted from the second light source module and the wavelength conversion element is collected and projected through the imaging lens group, a light distribution can be formed in a predetermined far-field imaging—set at The wavelength conversion element on the optical axis is excited by a laser and can emit high-brightness outgoing light. After projection imaging, a high-illumination spot is formed at a distant center position, and an LED array set off the optical axis is imaged around the high-illumination spot, forming Low light spot area. Since the optical path process is an imaging process, the arrangement and area relationship between the initial second light source module and the wavelength conversion element determine the final light distribution result, and the light distribution result obtained at a preset position is controllable.
  • the first light source module further includes an auxiliary LED disposed on a side of the wavelength conversion element remote from the first lens, and the auxiliary LED is disposed on an optical axis of the imaging lens group.
  • the LED array is a white light LED array
  • the auxiliary LED is a blue light LED
  • the laser receiving light is a combination of red and green light or yellow light
  • the wavelength conversion element is located in the LED array.
  • the plane projection does not coincide with the LED array.
  • the substrate includes a groove
  • the auxiliary LED is disposed in the groove
  • the LED array is disposed in a non-groove portion of the substrate
  • a light emitting surface of the wavelength conversion element and the The light emitting surfaces of the LED array are on the same plane.
  • the wavelength conversion element can be To emit a laser beam with sufficient brightness, on the one hand, by making the wavelength conversion element and the LED array emit on the same plane, the imaging quality of the two is consistent and the light distribution is controllable.
  • the light-emitting surface of the wavelength conversion element and the light-emitting surface of the LED array are located at the same focal plane of the imaging lens group, and this position facilitates the optimal distribution of the emitted light beam.
  • the LED array is a blue light LED array
  • the auxiliary LED is a blue light LED
  • the laser light is a combination of red light and green light or yellow light
  • the wavelength conversion element is located in the LED array.
  • a planar projection covers the LED array.
  • a controller is further included to independently control the switching of the laser light source and the auxiliary LED.
  • the controller controls the Auxiliary LED is on.
  • the wavelength conversion element is disposed on the substrate, and a light emitting surface of the wavelength conversion element is on the same plane as the light emitting surface of the LED array.
  • a spectroscopic sheet is provided, and the spectroscopic sheet is disposed on a light emitting surface of the wavelength conversion element, and the spectroscopic sheet reflects the laser receiving light with an incident angle larger than a preset angle. Due to the limitation of the lens size, it is impossible for the imaging lens group to collect all the light emitted from 180 °, which will inevitably lead to light loss.
  • This technical solution limits the exit angle of the light emitted by the wavelength conversion element to a certain angle by setting a beam splitter ( (The light that fails to be emitted is reflected by the wavelength conversion element and then re-emitted after being scattered by the material), which improves the utilization rate of the light, allows more light to be projected to the imaging position, and further increases the illuminance in the high-illuminance area.
  • the spectroscopic sheet may be a sheet or a film layer, which is not limited in the present invention.
  • the beam splitter reflects light having an incident angle greater than 60 ° and transmits other light.
  • a diffusion sheet between the LED array and the first lens is further included, the diffusion sheet is spaced from the LED array, and the diffusion sheet is located on a plane where the LED array is located.
  • the projection covers the LED array. Because it is impossible to seamlessly connect the LEDs of the LED array, dark lines will appear after imaging.
  • This technical solution makes the light emitted by the LED array by providing a diffusion sheet spaced from the LED array between the LED array and the first lens. Forming a light spot array without dark slits on the diffusion sheet is equivalent to making the diffusion sheet a new "object light source", and the imaging lens group projects the "object light source” in the far-field imaging to obtain a dark-free light distribution at a remote location.
  • the diffusion sheet is located at the focal plane of the imaging lens group, so that the spot distribution of the diffusion sheet is optimally imaged in the far field, which improves the imaging quality and control of the light distribution area.
  • a light-shielding sheet is further included, and is movably disposed between the wavelength conversion element and the first lens. When the light-shielding sheet is located at the first position, a part of the wavelength conversion element is blocked. Radiate light so that the light source device forms first distributed light; when the light shielding sheet is located at the second position, the light emitted from the wavelength conversion element is not blocked so that the light source device forms second distributed light.
  • the light source device includes the above-mentioned diffusion sheet and the light-shielding sheet, and the diffusion sheet and the light-shielding sheet are disposed in close proximity, both of which are near the focal plane of the imaging lens group, so that the area distribution of the emitted light is controllable, and the outline of the light-shielding sheet Clear, conducive to the consistency of quality after industrialization of light source devices.
  • the micro-mirror is a reflective prism, and the reflective prism is adhered to a light incident surface of the second lens.
  • the structure is simple and easy to process. On the one hand, it facilitates the fixing of the micro-mirror without the need for an additional fixing structure; on the other hand, it avoids the complicated process of the integrated molding solution of the micro-mirror and the second lens.
  • the present invention also claims a headlamp system including the light source device as described above.
  • the light distribution obtained by this type of headlamp system is controllable in the area distribution, so the area of the high-illuminance area can be controlled under the condition that the central high-illuminance is guaranteed, so that the emitted light can meet various regulatory requirements.
  • FIG. 1 is a schematic structural diagram of a light source device according to a first embodiment of the present invention
  • FIG. 1A is a front view of a substrate of the light source device shown in FIG. 1;
  • FIG. 1B is a simulation diagram of the light source device shown in FIG. 1 in far-field imaging
  • FIG. 2 is a schematic structural diagram of a light source device according to a second embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a light source device according to a third embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a light source device according to a fourth embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a light source device according to a fifth embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a light source device according to a sixth embodiment of the present invention.
  • the invention starts from the ADB vehicle lamp regionalized lighting in the field of vehicle lighting.
  • the laser remotely excited fluorescent light-emitting material is combined with LED array lighting. Combined with the characteristics of the imaging lighting system, a technical solution for controlling the area of the central high illumination area is obtained.
  • the light source device of the present invention is not limited to automobile headlight lighting, but can also be applied to other fields requiring high-illumination lighting at the center, such as stage lighting and searchlights.
  • FIG. 1 is a schematic structural diagram of a light source device according to a first embodiment of the present invention.
  • the structural diagram is a side view.
  • the light source device includes a first light source module, a second light source module, an imaging lens group 130, and a micro-mirror. 140 ⁇ Substrate 150.
  • the first light source module includes a laser light source 111, a wavelength conversion element 112, and an auxiliary LED 113.
  • the second light source module includes an LED array composed of LEDs 121 and the like disposed on the substrate 150.
  • the imaging lens group 130 includes a first lens 131 and ⁇ ⁇ 132 ⁇ The second lens 132.
  • the laser light source 111 of the first light source module is separately provided from the wavelength conversion element 112.
  • the laser light source 111 is used to emit excitation light. After the reflection light is reflected by the micro-mirror 140, it enters the wavelength conversion element 112 through the first lens 131.
  • the wavelength conversion element 112 absorbs at least a part of the excitation light, and emits a received laser light having a wavelength different from that of the excitation light toward the first lens 131.
  • the second light source module and the wavelength conversion element 112 are disposed on one side of the first lens 131 (left side in FIG. 1), and both of them emit light toward the first lens 131, so that the imaging lens group 130 converts the second light source module
  • the outgoing light with the wavelength conversion element is projected in the far-field imaging.
  • the wavelength conversion element 112 is disposed on the optical axis of the imaging lens group 130, and the second light source module is disposed away from the optical axis of the imaging lens group 130.
  • FIG. 1A and FIG. 1B FIG. 1A is a front view of the substrate 150 of the light source device shown in FIG. 1
  • FIG. 1B is a simulation diagram of the light source device shown in FIG. 1 in a far field imaging.
  • the LED array of the second light source module is distributed around the wavelength conversion element 112.
  • the wavelength conversion element 112 is arranged on the optical axis and is located at the center of the light source. After the projection imaging of the imaging lens group 130, a LED array in the far field is formed. A light spot that is aligned with the wavelength conversion element.
  • the first light source module further includes an auxiliary LED 113.
  • the auxiliary LED 113 is disposed on a side of the wavelength conversion element 112 away from the first lens 131, and the auxiliary LED 113 and the wavelength conversion element 112 are located on the optical axis of the imaging lens group. .
  • the LED array of the second light source module is all white LEDs
  • the auxiliary LED 113 is a blue LED
  • the wavelength conversion element 112 includes a YAG yellow light phosphor
  • the laser light source 111 is a blue light laser light source
  • the auxiliary LED 113 emits blue light.
  • the blue laser light emitted from the laser light source 111 is incident on both sides of the wavelength conversion element 112 for excitation, and the generated yellow light is combined with the remaining blue light to form white light, which is emitted from the side close to the first lens 131.
  • the surface of the LED array of the second light source module is not covered with a wavelength conversion element.
  • the projection of the wavelength conversion element 112 on the plane where the LED array is located does not overlap with the LED array, so that the white light emitted by the LED array can be directly emitted without changing the wavelength range.
  • the wavelength conversion element 112 includes a yellow light phosphor. It can be understood that, in other modified embodiments, the wavelength conversion element may also include a red light phosphor and a green light phosphor, which emit red and green light. laser.
  • the wavelength conversion element may be an organic fluorescent layer in which phosphors are bonded into layers by an organic binder such as silica gel, resin, or a fluorescent glass in which the powder is bonded into layers after the glass powder is softened, or it may include ceramic bonding. Material of fluorescent ceramic or fluorescent single crystal. The invention does not specifically limit the material composition of the wavelength conversion element.
  • the substrate 150 further includes a groove 151, and the auxiliary LED is disposed in the groove 151, and the LED array of the second light source module is disposed in a non-groove portion of the substrate 150, so that the wavelength conversion element 112
  • the light emitting surface is on the same plane as the light emitting surface of the LED array. In order to enable the wavelength conversion element to emit high-brightness light, it is necessary to thicken the wavelength conversion element 112 and increase the output light power of the laser light source 111.
  • the auxiliary LED 113 by arranging the auxiliary LED 113 in the substrate groove 151, there is a sufficient distance from the light emitting surface of the auxiliary LED 113 to the plane where the light emitting surface of the LED array is located to accommodate a sufficiently thick wavelength conversion element.
  • the wavelength conversion element is made It can emit laser light with sufficient brightness.
  • the wavelength conversion element and the LED array emit on the same plane, the imaging quality of the two is consistent and the light distribution is controllable.
  • the light emitting surface of the wavelength conversion element 112 is disposed on a focal plane of the imaging lens group 130 to achieve clear far-field imaging.
  • the micro-mirror 140 is a reflective prism (as shown in the figure, a 45 ° reflective prism).
  • One side of the reflective prism is bonded to the light-incident surface of the second lens 132 (which is a plano-convex lens).
  • the light source device further includes a controller, which independently controls the switches of the laser light source 111 and the auxiliary LED 113.
  • the controller controls the auxiliary LED to turn on and cooperate with the second light source module to form the emitted light. At this time, the emitted light will not have a central dark spot because the laser light source is not turned on.
  • the controller can be connected with the sensor, and after receiving the sensor signal, it can control the switch of the laser light source and the auxiliary LED.
  • the speed sensor sends a sensing signal according to the speed of the car to control After receiving the signal, the laser light source is turned off, and the auxiliary LED is turned on.
  • the excitation light cannot be irradiated to the wavelength conversion element, and the relevant sensor (such as a light sensor disposed near the auxiliary LED) cannot receive the excitation light signal, and then sends a signal to the controller. Instruct the controller to turn off the laser light source and turn on the auxiliary LED.
  • the sensor can also be a sensor that detects smoke and fog, so that when the vehicle is in a smoke environment, the laser light source is turned off to avoid self-glare after high-brightness light scattering.
  • the auxiliary LED is turned on with a small current so that the light source device emits orange / yellow light To increase the penetrating power of the beam. They are not listed here one by one.
  • the light source device includes a first light source module, a second light source module, an imaging lens group 230, a micro-mirror 240, and a substrate 250.
  • the first light source module includes a laser light source 211, a wavelength conversion element 212, and an auxiliary LED 213;
  • the second light source module includes an LED array composed of LEDs 221 and the like disposed on a substrate 250;
  • the imaging lens group 230 includes a first lens 231 and Second lens 232.
  • the substrate 250 has no groove, and the projection of the wavelength conversion element 212 on the plane where the LED array of the second light source module is located covers the LED array.
  • the wavelength conversion element may also be a fluorescent layer that emits yellow light and receives laser light, or a fluorescent layer that emits red and green light and receives laser light, and details are not described herein again.
  • the wavelength conversion element covers the exit surface of the LED array, the light emitted from the LED array is also partially absorbed by the wavelength conversion element. Therefore, the LED array of the second light source module is a blue LED array, and the auxiliary LED is still a blue LED.
  • the exit surface close to the first lens 231 is the “object plane” relative to the imaging lens group, and naturally lies on the same plane, which is beneficial to the imaging quality optimization.
  • the light source device includes a first light source module, a second light source module, an imaging lens group 330, a micro-mirror 340, and a substrate 350.
  • the first light source module includes a laser light source 311 and a wavelength conversion element 312;
  • the second light source module includes an LED array composed of LEDs 321 and the like disposed on the substrate 350;
  • the imaging lens group 330 includes a first lens 331 and a second lens 332.
  • the first light source module has no auxiliary LED, and the wavelength conversion element 312 is directly disposed on the substrate 350.
  • the light emitting surface of the wavelength conversion element 312 is on the same plane as the light emitting surface of the LED array.
  • the light emitting surface of the wavelength conversion element 312 is disposed on a focal plane of the imaging lens group 330 to achieve clear far-field imaging.
  • the light source device includes a first light source module, a second light source module, an imaging lens group 430, a micro-mirror 440, and a substrate 450.
  • the first light source module includes a laser light source 411, a wavelength conversion element 412, and an auxiliary LED 413.
  • the second light source module includes an LED array composed of LEDs 421 and the like disposed on the substrate 450.
  • the imaging lens group 430 includes a first lens 431 and The second lens 432; the substrate 450 includes a groove 451.
  • the fourth embodiment further includes a beam splitter 460, which is disposed on the light exit surface of the wavelength conversion element 412, and the beam splitter reflects the laser beam with an incident angle greater than a preset angle.
  • a light splitter 460 is provided to reflect the light emitted from the wavelength conversion element 412 into the light splitter 460 at a large angle of incidence and return to the wavelength conversion element 412.
  • the spectroscopic sheet may be a sheet or a film layer, which is not limited in the present invention.
  • the invention does not limit the reflection and transmission characteristics of the beam splitter, as long as the beam splitter can reflect a part of the large-angle light, the utilization ratio of the emitted light of the wavelength conversion element can be improved. More specifically, the beam splitter reflects light having an incident angle greater than 60 ° and transmits other light, that is, the preset angle is 60 °.
  • the light emitting surface of the LED array of the second light source module does not need to be provided with an incident angle beam splitter, and large-angle light emitted by the LED needs to be used to achieve uniform and large-area irradiation.
  • a second beam splitter with different incident angle selection characteristics from the beam splitter 460 can also be set on the light emitting surface of the LED array, or a first beam splitting region covering the wavelength conversion element can be set on one beam splitter And covering the second light splitting area of the LED array, so that the light reflection critical angle of the second light splitting plate or the second light splitting area is larger than the light reflection critical angle of the first light splitting plate or the first light splitting area, so that the light emitted by the wavelength conversion element emits light
  • the divergence angle is smaller than the light divergence angle of the light emitted from the LED array.
  • the critical angle of light reflection is the minimum incident angle at which the reflectance of the incident light reflected by the beam splitter reaches 95%.
  • the laser light source 411 in the fourth embodiment is disposed on the substrate 450, is reflected by the second micro-mirror 441 and the micro-mirror 440, and enters the first lens 431.
  • This technical solution enables the laser light source 411 to co-radiate with the LED array, improves the integration degree of the heat-dissipating system, and is beneficial to the improvement of the heat-dissipating effect and the compact structure.
  • the second micro-mirror 441 is also adhered to the light incident surface of the second lens 432.
  • the laser light source is disposed on the side of the imaging lens group.
  • the laser light does not directly pass through the second lens, but The exiting light path perpendicular to the light source device is incident on the side of the light source device, which avoids harm to human eyes and the like.
  • the light source device includes a first light source module, a second light source module, an imaging lens group 530, a micro-mirror 540, and a substrate 550.
  • the first light source module includes a laser light source 511, a wavelength conversion element 512, and an auxiliary LED 513;
  • the second light source module includes an LED array composed of LEDs 521 and the like disposed on a substrate 550;
  • the imaging lens group 530 includes a first lens 531 and The second lens 532;
  • the substrate 550 includes a groove 551.
  • the fifth embodiment further includes a diffusion sheet 570, which is disposed between the LED array and the first lens 531, and the diffusion sheet 570 and the LED array are spaced apart from each other and diffused.
  • the projection of the sheet 570 on the screen where the LED array is located covers the LED array.
  • a diffusion sheet 570 spaced from the LED array is provided between the LED array and the first lens, so that The light emitted by the LED array forms a light spot array without dark slits on the diffusion sheet 570, which is equivalent to making the diffusion sheet 570 a new "object light source", and the imaging lens group 530 projects the "object light source” in the far-field imaging. Remotely obtain dark-free light distribution.
  • the diffusion sheet is located at the focal plane of the imaging lens group, so that the spot distribution of the diffusion sheet is optimally imaged in the far field, and the imaging quality and control of the light distribution area are improved.
  • the diffusion sheet covers the outgoing light of the LED array, and is at least partially hollowed out in the outgoing direction of the wavelength conversion element.
  • the light source device includes a first light source module, a second light source module, an imaging lens group 630, a micro-mirror 640, and a substrate 650.
  • the first light source module includes a laser light source 611, a wavelength conversion element 612, and an auxiliary LED 613.
  • the second light source module includes an LED array composed of LEDs 621 and the like disposed on a substrate 650.
  • the imaging lens group 630 includes a first lens 631 and The second lens 632; the substrate 650 includes a groove 651.
  • the sixth embodiment further includes a light shielding sheet 680 movably disposed between the wavelength conversion element 612 and the first lens 631.
  • the light shielding sheet 680 When the light shielding sheet 680 is located at the first position ( (Ie, the position shown in the figure), the light-shielding sheet 680 blocks part of the light emitted by the wavelength conversion element 612, so that the light source device forms a first distributed light; when the light-shielding sheet 680 is in the second position (not shown in the figure, see FIG. (1 scheme without a light-shielding sheet), the light-shielding sheet 680 does not block the light emitted from the wavelength conversion element 612, so that the light source device forms a second distributed light.
  • the diffusion sheet and the light shielding sheet may be disposed in close proximity, both of which are located near the focal plane of the imaging lens group, so that the area distribution of the emitted light is controllable.
  • the outline of the light shielding sheet is clear, which is conducive to the consistency of quality of the light source device after industrialization.
  • the light source device of the present invention can be applied to a headlamp system, especially a high beam lighting system.
  • the headlamp system may also be a remote headlight system.
  • the embodiments in this specification are described in a progressive manner. Each embodiment focuses on the differences from other embodiments. For the same and similar parts between the embodiments, refer to each other. The differences in the embodiments can be combined with each other without conflict.
  • the beam splitter in the fourth embodiment, the diffusion sheet in the fifth embodiment, and the light-shielding sheet in the sixth embodiment can be applied to other embodiments, respectively, the position of the laser light source in the fourth embodiment and the position of the second micromirror.
  • the settings can also be applied to other embodiments, which are not listed here one by one.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光源装置,包括第一光源模组、第二光源模组、成像透镜组(130,230,……,630)、微反射镜(140,240,……,640)和基板(150,250,……,650);成像透镜组(130,230,……,630)至少包括第一透镜(131,231,……,631)和第二透镜(132,232,……,632),微反射镜(140,240,……,640)设置于第一透镜(131,231,……,631)与第二透镜(132,232,……,632)之间;第一光源模组包括分离设置的激光光源(111,211,……,611)和波长转换元件(112,212,……,612),激光光源(111,211,……,611)出射激发光,激发光经微反射镜(140,240,……,640)反射后,经第一透镜(131,231,……,631)入射至波长转换元件(112,212,……,612),波长转换元件(112,212,……,612)吸收至少部分激发光,并朝向第一透镜(131,231,……,631)出射受激光,波长转换元件(112,212,……,612)设置在成像透镜组(130,230,……,630)的光轴上;第二光源模组包括设置于基板(150,250,……,650)上的LED阵列,与波长转换元件(112,212,……,612)设置于第一透镜(131,231,……,631)的同侧,且偏离成像透镜组(130,230,……,630)的光轴设置,成像透镜组(130,230,……,630)用于将第二光源模组与波长转换元件(112,212,……,612)出射的光投射在远场成像。通过成像系统,实现了出射光分布可控。

Description

光源装置及前照灯系统 技术领域
本发明涉及照明技术领域,特别是涉及一种光源装置及前照灯系统。
背景技术
自蓝光LED发明以来,半导体光源凭借其越来越高的发光亮度和发光效率,材料的环保特性,以及冷光源的发光特性,逐渐取代了传统光源,应用到照明的各个领域中。随着对照明亮度的需求不断提高,业界对半导体光源寄予厚望。现有的LED照明朝着大功率、复数发光元件组合的方向逐渐进步。然而,由于LED本身的特点,散热问题越来越阻碍照明亮度的提高。虽然能够通过利用复数颗LED发光芯片实现总光通量的提高,但是导致整个光源体积增大,而且出射光的光功率密度不高,难以实现小区域的高照度照明光斑。
同属于固态光源的激光二极管具有大电流下的高发光亮度、照射距离远等优点,通常通过激光二极管激发荧光粉获得白光。本领域技术人员通过将激光光源与荧光发光材料分离,避免了激光光源和荧光发光材料产热的叠加,使得整个光源的亮度进一步提高,成为业内认可的技术方案,越来越多的研发人员尝试将激光远程激发荧光发光材料的技术方案应用于高亮度照明领域。
在车灯照明领域,通常采用光源结合反光杯的技术方案实现区域照明,有技术方案将荧光发光材料设置在反光杯的焦点位置,通过远程激发荧光发光材料产生荧光,进而由反光杯收集荧光后出射,形成车灯照明光束。该技术方案继承了传统的灯丝灯泡照明方案(如卤素灯或气体放电灯),以荧光发光材料模拟灯丝,现今流行的LED车灯也采用类似方案,将LED灯珠置于反光杯的焦点位置。然而,该技术方案中,荧光发光材料发出的光如同LED或灯丝灯一样,为近似朗伯分布的光(即各向均匀的光),经反光杯收集后出射,要么形成面分布均匀的平行光, 要么形成角分布均匀的点光源,将照射到整个照明区域,而非集中于中心照明区域,无法真正形成车灯照明所需的远光中心的高照度区域。即使激光远程激发荧光发光材料的技术方案产生的出射光为介于高斯分布与朗伯分布之间的非各向均匀的光,这种出射光的角分布也是不可控的,导致远场高照度区域的大小不可控,进而导致照明光斑不达标。
而且,在反射杯的技术方案中,一旦荧光发光材料脱落,激光将直接出射,极易造成光安全问题。
发明内容
针对上述现有技术无法形成照度非均匀分布的、可控的照明光斑的缺陷,本发明提供一种新型的、高照度区域可控的光源装置,包括第一光源模组、第二光源模组、成像透镜组、微反射镜和基板;所述成像透镜组至少包括第一透镜和第二透镜,所述微反射镜设置于所述第一透镜与所述第二透镜之间;所述第一光源模组包括分离设置的激光光源和波长转换元件,所述激光光源用于出射激发光,所述激发光经微反射镜反射后,经所述第一透镜入射至所述波长转换元件,所述波长转换元件吸收至少部分所述激发光,并朝向所述第一透镜出射波长不同于所述激发光的受激光,所述波长转换元件设置在所述成像透镜组的光轴上;所述第二光源模组包括设置于所述基板上的LED阵列,与所述波长转换元件设置于所述第一透镜的同侧,且偏离所述成像透镜组的光轴设置,所述成像透镜组用于将所述第二光源模组与所述波长转换元件出射的光投射在远场成像。
与现有技术相比,本发明包括如下有益效果:通过成像透镜组将第二光源模组与波长转换元件的出射光收集后投射出去,能够在预定的远场成像形成光分布——设置在光轴上的波长转换元件由激光激发,能够发出高亮度的出射光,经投射成像后在远处的中心位置形成高照度光斑,而偏离光轴设置的LED阵列成像在高照度光斑周围,形成低照度光斑区域。由于该光路过程为成像过程,因此初始的第二光源模组与波长转换元件的排列分布和面积关系决定了最终光分布的结果,在预设位置得到的光分布结果是可控的。
在一个实施方式中,所述第一光源模组还包括辅助LED,设置于所 述波长转换元件远离所述第一透镜的一侧,所述辅助LED设置在所述成像透镜组的光轴上。该技术方案使得波长转换元件在前后两侧都可有入射光,即使在不开启激光光源的情况下,也能够通过辅助LED的发光,避免成像透镜组的光轴位置的暗斑。
在一个实施方式中,所述LED阵列为白光LED阵列,所述辅助LED为蓝光LED,所述受激光为红光与绿光的组合或者黄光,所述波长转换元件在所述LED阵列所在平面的投影与所述LED阵列无重合。该技术方案使得第一光源模组与第二光源模组都出射白光,保证了出射光的颜色均匀一致。进一步的,可通过独立控制辅助LED的电路大小,改变其出射的蓝光与波长转换元件出射的受激光的比例,实现颜色调节一致。
在一个实施方式中,所述基板包括一凹槽,所述辅助LED设置于所述凹槽内,所述LED阵列设置于基板的非凹槽部分,所述波长转换元件的出光面与所述LED阵列的出光面处于同一平面。在该技术方案中,通过将辅助LED设置于基板凹槽内,使得从辅助LED的出光面到LED阵列出光面所在平面具有足够的距离容纳足够厚的波长转换元件,一方面使得波长转换元件能够出射足够亮度的受激光,一方面通过使得波长转换元件与LED阵列共面出射,实现两者成像质量一致、光分布可控。
进一步地,波长转换元件的出光面与LED阵列的出光面同处于成像透镜组的焦平面,该位置利于出射光束最优分布。
在一个实施方式中,所述LED阵列为蓝光LED阵列,所述辅助LED为蓝光LED,所述受激光为红光与绿光的组合或者黄光,所述波长转换元件在所述LED阵列所在平面的投影覆盖所述LED阵列。
在一个实施方式中,还包括控制器,独立控制所述激光光源与所述辅助LED的开关,当光源装置处于工作状态且所述激光光源为关闭或故障状态时,所述控制器控制所述辅助LED开启。该技术方案避免了激光光源不工作的情况下,光源装置出射光分布中心为暗斑的情况。
在一个实施方式中,所述波长转换元件设置于所述基板上,且所述波长转换元件的出光面与所述LED阵列的出光面处于同一平面。
在一个实施方式中,包括分光片,设置于所述波长转换元件的出光面,所述分光片反射入射角大于预设角度的所述受激光。由于透镜尺寸 的限制,成像透镜组不可能将180°出射的光全部收集,必然会导致光损失,本技术方案通过设置分光片,将波长转换元件的出射光的出射角限制在一定角度内(未能出射的光被反射会波长转换元件后,经材料散射重新出射),提高了该光的利用率,使得更多的光被投射到成像位置,也进一步提高了高照度区域的照度。分光片可以是片或者膜层,本发明不做限制。
进一步具体地,分光片反射入射角大于60°的光而透射其他光。
在一个实施方式中,还包括位于所述LED阵列与所述第一透镜之间的扩散片,所述扩散片与所述LED阵列间隔设置,且所述扩散片在所述LED阵列所在平面的投影覆盖所述LED阵列。由于LED阵列的各个LED之间不可能无缝连接,成像后会导致出现暗纹,本技术方案通过在LED阵列与第一透镜之间设置与LED阵列间隔的扩散片,使得LED阵列发出的光在扩散片上形成无暗缝的光斑阵列,相当于使得扩散片成为新的“物光源”,而后成像透镜组将该“物光源”投射在远场成像,在远程得到无暗纹的光分布。
在一个实施方式汇总,上述扩散片位于成像透镜组的焦平面,使得扩散片的光斑分布最优的在远场成像,提高了成像质量和光分布区域的控制。
在一个实施方式中,还包括遮光片,可活动的设置于所述波长转换元件与所述第一透镜之间,当所述遮光片位于第一位置时,遮挡部分所述波长转换元件的出射光,以使所述光源装置形成第一分布光;当所述遮光片位于第二位置时,不遮挡所述波长转换元件的出射光,以使所述光源装置形成第二分布的光。
在一个实施方式中,光源装置包括上述扩散片和遮光片,且扩散片与遮光片紧邻设置,两者都处于成像透镜组的焦平面附近,使得出射光的区域分布可控,且遮光片轮廓清晰,有利于光源装置产业化后的质量一致性。
在一个实施方式中,所述微反射镜为一反射棱镜,该反射棱镜粘接在所述第二透镜的入光面上。该结构简单、易加工,一方面有利于微反射镜的固定,无需借助额外的固定结构;另一方面避免了微反射镜与第 二透镜一体成型方案的工艺复杂。
本发明还要求保护一种前照灯系统,包括如上所述的光源装置。该类前照灯系统得到的光分布为区域分布可控的,因此能够在保证中心高照度的情况下,高照度区域面积可控,使得出射光满足各种法规要求。
附图说明
图1为本发明实施例一的光源装置的结构示意图;
图1A为图1所示的光源装置的基板的正视图;
图1B为图1所示的光源装置在远场成像的模拟图;
图2为本发明实施例二的光源装置的结构示意图;
图3为本发明实施例三的光源装置的结构示意图;
图4为本发明实施例四的光源装置的结构示意图;
图5为本发明实施例五的光源装置的结构示意图;
图6为本发明实施例六的光源装置的结构示意图。
具体实施方式
本发明从车灯照明领域的ADB车灯区域化照明出发,为解决远光灯中心照明区域的照度不足和区域尺寸难以控制的问题,将激光远程激发荧光发光材料与LED阵列化照明进行组合,并结合成像照明系统的特点,得到中心高照度区域面积可控的技术方案。但本发明的光源装置并不仅限于汽车车灯照明,还可以应用到其他需要中心高照度照明的领域,如舞台照明、探照灯等。
下面结合附图和实施方式对本发明实施例进行详细说明。
请参见图1,图1为本发明实施例一的光源装置的结构示意图,该结构示意图为侧视图,光源装置包括第一光源模组、第二光源模组、成像透镜组130、微反射镜140和基板150。其中,第一光源模组包括激光光源111、波长转换元件112和辅助LED113;第二光源模组包括设置在基板150上的由LED121等组成的LED阵列;成像透镜组130包括第一透镜131和第二透镜132。
第一光源模组的激光光源111与波长转换元件112分离设置,激光 光源111用于出射激发光,该激发光经微反射镜140反射后,经第一透镜131入射至波长转换元件112。波长转换元件112吸收至少部分激发光,并朝向第一透镜131出射波长不同于激发光的受激光。
第二光源模组与波长转换元件112同设于第一透镜131的一侧(图1中左侧),两者都朝向第一透镜131出射光,使得成像透镜组130将第二光源模组与波长转换元件的出射光投射在远场成像。
其中,波长转换元件112设置在成像透镜组130的光轴上,而第二光源模组则偏离成像透镜组130的光轴设置。请结合图1、图1A与图1B,图1A为图1所示光源装置的基板150的正视图,图1B为图1所示的光源装置在远场成像的模拟图。第二光源模组的LED阵列分布在波长转换元件112的四周,波长转换元件112设置在光轴上,处于光源的中心位置,经成像透镜组130的投射成像,在远场形成近似于LED阵列与波长转换元件排列分布的光斑。
在本实施例中,第一光源模组还包括辅助LED113,辅助LED113设置于波长转换元件112远离第一透镜131的一侧,且辅助LED113与波长转换元件112同处于成像透镜组的光轴上。
在本实施例中,第二光源模组的LED阵列全部为白光LED,而辅助LED113为蓝光LED,波长转换元件112包括YAG黄光荧光粉,激光光源111为蓝光激光光源,辅助LED113发出的蓝光和激光光源111发出的蓝色激光分别从两面入射到波长转换元件112进行激发,产生的黄色受激光与剩余的蓝光合光后形成白光,从靠近第一透镜131一侧出射。第二光源模组的LED阵列表面没有覆盖波长转换元件,波长转换元件112在LED阵列所在平面的投影与LED阵列无重合,使得LED阵列出射的白光能够直接出射,不会被改变波长范围。
在本实施例中,波长转换元件112包括黄光荧光粉,可以理解,在其他变形实施例中,波长转换元件也可以包括红光荧光粉和绿光荧光粉,出射红光和绿光的受激光。波长转换元件可以为硅胶、树脂等有机粘结剂将荧光粉粘结成层的有机荧光层,也可以为玻璃粉软化后将荧光粉粘结成层的荧光玻璃,还可以为包括陶瓷粘接材料的荧光陶瓷或者荧光单晶。本发明对波长转换元件的材料组成不做具体限定。
由图1可以看出,基板150还包括一凹槽151,辅助LED设置在凹槽151内,而第二光源模组的LED阵列设置于基板150的非凹槽部分,使得波长转换元件112的出光面与LED阵列的出光面处于同一平面。为了使得波长转换元件能够出射高亮度的光,需要将波长转换元件112加厚并提高激光光源111的出射光功率。在该技术方案中,通过将辅助LED113设置于基板凹槽151内,使得从辅助LED113的出光面到LED阵列出光面所在平面具有足够的距离容纳足够厚的波长转换元件,一方面使得波长转换元件能够出射足够亮度的受激光,一方面通过使得波长转换元件与LED阵列共面出射,实现两者成像质量一致、光分布可控。优选地,波长转换元件112的出光面设置在成像透镜组130的焦平面上,以实现清晰的远场成像。
在本实施例中,微反射镜140为一反射棱镜(如图为45°反射棱镜),该反射棱镜的一个面粘接在第二透镜132(为一平凸透镜)的入光面上,该结构简单、易加工,一方面有利于位置固定,无需借助额外的固定结构;另一方面避免了微反射镜与第二透镜一体成型方案的工艺复杂。
在本实施例的一个变形实施例中,光源装置进一步还包括控制器,独立控制激光光源111与辅助LED113的开关。当光源装置处于工作状态,且激光光源为关闭状态时,控制器控制辅助LED开启,与第二光源模组配合形成出射光,此时出射光不会因为激光光源未开启而出现中心暗斑。
该控制器可以与传感器连接,接收传感器信号后,对激光光源和辅助LED的开关进行控制。例如,当该光源装置应用于汽车前照灯的情况下,当汽车处于低速运动(如<60km/h)时,无需照亮过远的道路,速度传感器根据汽车的速度发出传感信号,控制器接收信号后,使激光光源处于关闭状态,使辅助LED处于开启状态。再如,当激光光源故障或微反射镜脱落,导致激发光无法照射到波长转换元件,相关传感器(例如设置在辅助LED附近的光传感器)接收不到激发光信号,则向控制器发出信号,指示控制器将激光光源关闭,开启辅助LED。传感器还可以为探测烟、雾的传感器,使得当车辆处于烟雾环境下,关闭激光光源,避免高亮度光散射后产生自炫目,同时,以小电流开启辅助LED,使得 光源装置发出橙/黄光,提高光束的穿透力。此处不再一一列举。
请参见图2,光源装置包括第一光源模组、第二光源模组、成像透镜组230、微反射镜240和基板250。其中,第一光源模组包括激光光源211、波长转换元件212和辅助LED213;第二光源模组包括设置在基板250上的由LED221等组成的LED阵列;成像透镜组230包括第一透镜231和第二透镜232。
与实施例一不同之处在于,实施例二中,基板250没有凹槽,波长转换元件212在第二光源模组的LED阵列所在平面的投影覆盖LED阵列。
在本实施例中,波长转换元件同样可以为出射黄光受激光的荧光层,或者出射红光与绿光受激光的荧光层,此处不再赘述。
与实施例一另外的不同之处在于,由于波长转换元件覆盖了LED阵列的出射面,使得LED阵列的出射光也会被波长转换元件部分吸收。因此第二光源模组的LED阵列为蓝光LED阵列,辅助LED仍然为蓝光LED。
在该实施例中,由于波长转换元件对所有LED进行了覆盖,其靠近第一透镜231的出射面即为相对于成像透镜组的“物面”,自然处于同一平面上,有利于成像质量的优化。
本实施例的其他光学器件的描述请参照上述实施例,此处不再赘述。
请参见图3,光源装置包括第一光源模组、第二光源模组、成像透镜组330、微反射镜340和基板350。其中,第一光源模组包括激光光源311和波长转换元件312;第二光源模组包括设置在基板350上的由LED321等组成的LED阵列;成像透镜组330包括第一透镜331和第二透镜332。
与上述实施例一和实施例二不同的是,本实施例中第一光源模组没有辅助LED,波长转换元件312直接设置于基板350上。
波长转换元件312的出光面与LED阵列的出光面处于同一平面上。优选地,波长转换元件312的出光面设置在成像透镜组330的焦平面上,以实现清晰的远场成像。
本实施例的其他光学器件的描述请参照上述实施例,此处不再赘述。
请参见图4,光源装置包括第一光源模组、第二光源模组、成像透镜组430、微反射镜440和基板450。其中,第一光源模组包括激光光源411、波长转换元件412和辅助LED413;第二光源模组包括设置在基板450上的由LED421等组成的LED阵列;成像透镜组430包括第一透镜431和第二透镜432;基板450包括一凹槽451。
与图1所示的实施例一不同的首先是,实施例四进一步包括了分光片460,设置于波长转换元件412的出光面,该分光片反射入射角大于预设角度的受激光。
由于第一透镜431尺寸的限制,成像透镜组不可能将180°出射的光全部收集,必然会存在从基板450到第一透镜431之间的光损失。本技术方案通过设置分光片460,将波长转换元件412的出射光中,以大角度入射角入射到分光片460的光反射回波长转换元件412,经其散射后再次入射到分光片460,直至所有光都以小入射角入射到分光片460而透射(也即最终小出射角从分光片460出射),有利于第一透镜431对分光片460出射光的收集,提高了该光的利用率,使得更多的光被投射到成像位置,也进一步提高了高照度区域的照度。分光片可以是片或者膜层,本发明不做限制。本发明对分光片的反射透射特征不做限定,只要分光片能够反射一部分大角度光,就能够提高波长转换元件的出射光利用率。进一步具体地,分光片反射入射角大于60°的光而透射其他光,即预设角度为60°。
在本实施例中,第二光源模组的LED阵列的出光面无需设置入射角度分光片,需要利用LED出射的大角度光实现大面积均匀照射。可以理解,也可以在LED阵列的出光面设置入射角度选择特性与分光片460(或称第一分光片)不同的第二分光片,或者在一个分光片上设置覆盖波长转换元件的第一分光区域与覆盖LED阵列的第二分光区域,使得第二分光片或第二分光区域的光反射临界角大于第一分光片或第一分光区域的光反射临界角,从而使得波长转换元件出射光的光发散角小于LED阵列出射光的光发散角。其中,光反射临界角为入射光被分光片反射的反射率达到95%的最小入射角度。
与图1所示的实施例一不同的还在于,实施例四中的激光光源411 设置于基板450上,经第二微反射镜441和微反射镜440反射后,入射到第一透镜431。该技术方案使得激光光源411能够与LED阵列共散热,提高了散热系统的集成度,有利于散热效果的改善和结构的紧凑。
其中,第二微反射镜441也粘接设置在第二透镜432的入光面上。
当然,在图1~3的实施例中,激光光源设置在成像透镜组的侧面也具有技术优点,当微反射镜从第二透镜上脱落时,激光不会直接经第二透镜出射,而是垂直于光源装置的出射光路入射到光源装置的侧面,避免了对人眼等造成伤害。
本实施例的其他光学器件的描述请参照上述实施例,此处不再赘述。
请参见图5,光源装置包括第一光源模组、第二光源模组、成像透镜组530、微反射镜540和基板550。其中,第一光源模组包括激光光源511、波长转换元件512和辅助LED513;第二光源模组包括设置在基板550上的由LED521等组成的LED阵列;成像透镜组530包括第一透镜531和第二透镜532;基板550包括一凹槽551。
与图1所示的实施例一不同的是,实施例五还包括一扩散片570,该扩散片570设置于LED阵列与第一透镜531之间,且扩散片570与LED阵列间隔设置,扩散片570在LED阵列所在屏幕的投影覆盖LED阵列。
由于LED阵列的各个LED之间不可能无缝连接,成像后会因填充率问题导致出现暗纹,本实施例通过在LED阵列与第一透镜之间设置与LED阵列间隔的扩散片570,使得LED阵列发出的光在扩散片570上形成无暗缝的光斑阵列,相当于使得扩散片570成为新的“物光源”,而后成像透镜组530将该“物光源”投射在远场成像,在远程得到无暗纹的光分布。
在本实施例的一个优选变形实施例中,扩散片位于成像透镜组的焦平面,使得扩散片的光斑分布最优的在远场成像,提高了成像质量和光分布区域的控制。
在本实施例五的另一个变形实施例中,扩散片覆盖LED阵列的出射光,而在波长转换元件的出射方向上至少部分镂空。
本实施例的其他光学器件的描述请参照上述实施例,此处不再赘述。
请参见图6,光源装置包括第一光源模组、第二光源模组、成像透镜组630、微反射镜640和基板650。其中,第一光源模组包括激光光源611、波长转换元件612和辅助LED613;第二光源模组包括设置在基板650上的由LED621等组成的LED阵列;成像透镜组630包括第一透镜631和第二透镜632;基板650包括一凹槽651。
与图1所示的实施例一不同的是,本实施例六还包括遮光片680,可活动的设置于波长转换元件612与第一透镜631之间,当遮光片680位于第一位置时(即图中所示位置),遮光片680遮挡部分波长转换元件612的出射光,以使光源装置形成第一分布光;当遮光片680位于第二位置时(图中未示出,可参见图1无遮光片的方案),遮光片680不遮挡波长转换元件612的出射光,以使光源装置形成第二分布的光。
结合图5与图6,当光源装置同时具有扩散片与遮光片时,可将扩散片与遮光片紧邻设置,两者都处于成像透镜组的焦平面附近,使得出射光的区域分布可控,且遮光片轮廓清晰,有利于光源装置产业化后的质量一致性。
本发明的光源装置可应用于前照灯系统,尤其是远光照明系统。在包含遮光片的技术方案中,该前照灯系统还可以为远近一体的前照灯系统。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。各实施例中的不同之处在不冲突的情况下可相互结合。例如实施例四中的分光片、实施例五中的扩散片和实施例六中的遮光片,可分别应用到其他各实施例中,实施例四中的激光光源位置和第二微反射镜的设置也可应用到其他实施例中,此处不再一一列举。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

  1. 一种光源装置,其特征在于,包括第一光源模组、第二光源模组、成像透镜组、微反射镜和基板;
    所述成像透镜组至少包括第一透镜和第二透镜,所述微反射镜设置于所述第一透镜与所述第二透镜之间;
    所述第一光源模组包括分离设置的激光光源和波长转换元件,所述激光光源用于出射激发光,所述激发光经微反射镜反射后,经所述第一透镜入射至所述波长转换元件,所述波长转换元件吸收至少部分所述激发光,并朝向所述第一透镜出射波长不同于所述激发光的受激光,所述波长转换元件设置在所述成像透镜组的光轴上;
    所述第二光源模组包括设置于所述基板上的LED阵列,与所述波长转换元件设置于所述第一透镜的同侧,且偏离所述成像透镜组的光轴设置,所述成像透镜组用于将所述第二光源模组与所述波长转换元件出射的光投射在远场成像。
  2. 根据权利要求1所述的光源装置,其特征在于,所述第一光源模组还包括辅助LED,设置于所述波长转换元件远离所述第一透镜的一侧,所述辅助LED设置在所述成像透镜组的光轴上。
  3. 根据权利要求2所述的光源装置,其特征在于,所述LED阵列为白光LED阵列,所述辅助LED为蓝光LED,所述受激光为红光与绿光的组合或者黄光,所述波长转换元件在所述LED阵列所在平面的投影与所述LED阵列无重合。
  4. 根据权利要求2所述的光源装置,其特征在于,所述基板包括一凹槽,所述辅助LED设置于所述凹槽内,所述LED阵列设置于基板的非凹槽部分,所述波长转换元件的出光面与所述LED阵列的出光面处于同一平面。
  5. 根据权利要求2所述的光源装置,其特征在于,所述LED阵列为蓝光LED阵列,所述辅助LED为蓝光LED,所述受激光为红光与绿光的组合或者黄光,所述波长转换元件在所述LED阵列所在平面的投影覆盖所述LED阵列。
  6. 根据权利要求2所述的光源装置,其特征在于,还包括控制器,独立控制所述激光光源与所述辅助LED的开关,当光源装置处于工作状态且所述激光光源为关闭或故障状态时,所述控制器控制所述辅助LED开启。
  7. 根据权利要求1所述的光源装置,其特征在于,所述波长转换元件设置于所述基板上,且所述波长转换元件的出光面与所述LED阵列的出光面处于同一平面。
  8. 根据权利要求1-7中任一项所述的光源装置,其特征在于,包括分光片,设置于所述波长转换元件的出光面,所述分光片反射入射角大于预设角度的所述受激光。
  9. 根据权利要求1-7中任一项所述的光源装置,其特征在于,还包括位于所述LED阵列与所述第一透镜之间的扩散片,所述扩散片与所述LED阵列间隔设置,且所述扩散片在所述LED阵列所在平面的投影覆盖所述LED阵列。
  10. 根据权利要求1-7中任一项所述的光源装置,其特征在于,还包括遮光片,可活动的设置于所述波长转换元件与所述第一透镜之间,当所述遮光片位于第一位置时,遮挡部分所述波长转换元件的出射光,以使所述光源装置形成第一分布光;当所述遮光片位于第二位置时,不遮挡所述波长转换元件的出射光,以使所述光源装置形成第二分布的光。
  11. 根据权利要求1-7中任一项所述的光源装置,其特征在于,所述微反射镜为一反射棱镜,该反射棱镜粘接在所述第二透镜的入光面上。
  12. 一种前照灯系统,包括如权利要求1-11中任一项所述的光源装置。
PCT/CN2019/078079 2018-08-01 2019-03-14 光源装置及前照灯系统 WO2020024595A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810862183 2018-08-01
CN201810862183.6 2018-08-01

Publications (1)

Publication Number Publication Date
WO2020024595A1 true WO2020024595A1 (zh) 2020-02-06

Family

ID=69231023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078079 WO2020024595A1 (zh) 2018-08-01 2019-03-14 光源装置及前照灯系统

Country Status (2)

Country Link
CN (1) CN110792985B (zh)
WO (1) WO2020024595A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113495412A (zh) * 2020-03-19 2021-10-12 深圳光峰科技股份有限公司 光源系统和投影设备
WO2023141880A1 (zh) * 2022-01-27 2023-08-03 许俊甫 主动式传感器高效能光场投射的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969934A (zh) * 2013-02-05 2014-08-06 深圳市光峰光电技术有限公司 一种结构紧凑的光源系统
CN105308385A (zh) * 2013-06-25 2016-02-03 齐扎拉光系统有限责任公司 用于车辆的大灯
EP3168527A1 (de) * 2015-11-11 2017-05-17 Automotive Lighting Reutlingen GmbH Lichtmodul für ein fahrzeugscheinwerfer und kraftfahrzeugscheinwerfer mit einem solchen lichtmodul
WO2017097504A1 (de) * 2015-12-09 2017-06-15 Osram Gmbh Lichterzeugung mit leuchtdiode und laser
JP2018041723A (ja) * 2016-09-06 2018-03-15 株式会社小糸製作所 発光モジュールおよび車両用前照灯
CN108266696A (zh) * 2017-01-02 2018-07-10 法雷奥照明公司 组合两个光源的、用于车辆的照明装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104865783B (zh) * 2012-04-24 2017-05-17 深圳市光峰光电技术有限公司 光源系统及相关投影系统
JP2015138735A (ja) * 2014-01-24 2015-07-30 スタンレー電気株式会社 車両用灯具
CN107606573A (zh) * 2016-07-08 2018-01-19 深圳市绎立锐光科技开发有限公司 一种光源系统及舞台灯

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969934A (zh) * 2013-02-05 2014-08-06 深圳市光峰光电技术有限公司 一种结构紧凑的光源系统
CN105308385A (zh) * 2013-06-25 2016-02-03 齐扎拉光系统有限责任公司 用于车辆的大灯
EP3168527A1 (de) * 2015-11-11 2017-05-17 Automotive Lighting Reutlingen GmbH Lichtmodul für ein fahrzeugscheinwerfer und kraftfahrzeugscheinwerfer mit einem solchen lichtmodul
WO2017097504A1 (de) * 2015-12-09 2017-06-15 Osram Gmbh Lichterzeugung mit leuchtdiode und laser
JP2018041723A (ja) * 2016-09-06 2018-03-15 株式会社小糸製作所 発光モジュールおよび車両用前照灯
CN108266696A (zh) * 2017-01-02 2018-07-10 法雷奥照明公司 组合两个光源的、用于车辆的照明装置

Also Published As

Publication number Publication date
CN110792985A (zh) 2020-02-14
CN110792985B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
EP2534411B1 (en) Lamp comprising a phosphor, radiation source, optical system and heatsink
US8550677B2 (en) Light emitting module and vehicle lamp
WO2009131126A1 (ja) 車両用灯具
US11215909B2 (en) Light source system and projection device
KR102428356B1 (ko) 광원 장치
KR101804310B1 (ko) 높은 리사이클링 효율 고체 광원 장치
JP2012185939A (ja) 発光装置、照明装置、及び車両用前照灯
JP2015005439A (ja) 車両用前照灯及び車両用前照灯に用いられる光ファイババンドル
JP2015146396A (ja) 発光装置、車両用灯具、及び、車両用照明装置
WO2020024595A1 (zh) 光源装置及前照灯系统
WO2021068408A1 (zh) 一种远近光一体的照明灯
US10139067B2 (en) Laser car lamp
TWI487864B (zh) 輻射發光裝置及其用途
US10371337B2 (en) Light-emitting apparatus and lighting apparatus for vehicles including the same
US20220333757A1 (en) Hybrid led/laser light source for smart headlight applications
WO2021012883A1 (zh) 一种照明装置及汽车大灯
JP2015005393A (ja) 車両用前照灯及び車両用前照灯に用いられる光ファイバ
JPWO2018179477A1 (ja) 光源ユニット及び照明装置
JP2019028120A (ja) 照明装置及びプロジェクター
JP2017228390A (ja) 照明装置
JP2017195061A (ja) 照明装置及び車両用前照灯
JP2021028907A (ja) 光変換装置および照明装置
CN101625075A (zh) Led封装结构及具有该led封装结构的车灯
JP2015028948A (ja) 発光装置
KR101360331B1 (ko) 엘이디 조명 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844656

Country of ref document: EP

Kind code of ref document: A1