WO2023141880A1 - 主动式传感器高效能光场投射的装置 - Google Patents

主动式传感器高效能光场投射的装置 Download PDF

Info

Publication number
WO2023141880A1
WO2023141880A1 PCT/CN2022/074321 CN2022074321W WO2023141880A1 WO 2023141880 A1 WO2023141880 A1 WO 2023141880A1 CN 2022074321 W CN2022074321 W CN 2022074321W WO 2023141880 A1 WO2023141880 A1 WO 2023141880A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
light emitting
convex lens
circuit board
Prior art date
Application number
PCT/CN2022/074321
Other languages
English (en)
French (fr)
Inventor
许俊甫
Original Assignee
许俊甫
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 许俊甫 filed Critical 许俊甫
Priority to PCT/CN2022/074321 priority Critical patent/WO2023141880A1/zh
Publication of WO2023141880A1 publication Critical patent/WO2023141880A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification

Definitions

  • the invention relates to a projection device capable of creating a high-efficiency light field, which can be applied to any sensor that needs to create a projected light field range.
  • the optical axes of the LEDs of the light emitting module respectively shoot to the mirror center of the emitting convex lens, and especially relate to a sensor for sensing the approach, entry or departure of people or objects, so that the light emitted by the light emitting LED of the sensor can be efficiently and uniformly projected onto the
  • the light field of the sensing range can increase the energy of the light field emitted by the sensor.
  • an infrared light sensor When it is necessary to create a projected (sensing) light field range, an infrared light sensor can be installed to sense the approach, entry or departure of people or objects.
  • the existing light sensor is projected onto the convex lens, it cannot ensure that the optical axis of the LED projected light is coaxial with the optical axis of the geometric optical projection angle of the convex lens, so it is difficult for the angle of the light emitted by the LED to cover the convex lens evenly. , so that the energy of the light field projected into the sensing range is uneven, which indirectly leads to the unevenness of the light intensity reflected back to the sensor within the light field range.
  • the technical problem to be solved by the present invention is to provide an active sensor high-efficiency light field projection device for the deficiencies of the prior art, including a light emitting part, the light emitting part includes at least one emitting convex lens sheet and at least one light emitting module .
  • the emitting lenticular lens sheet includes at least one emitting lenticular lens.
  • the light emitting module includes a multi-angle circuit board carrier and a multi-angle emitting bearing seat.
  • the multi-angle circuit board carrier includes a plurality of light emitting units and a multi-angle combined circuit board, the combined circuit board is electrically connected by a plurality of light emitting independent circuit boards, and the light emitting units are respectively electrically installed on the
  • the light emitting independent circuit board has a multi-angle circuit board carrier mounting surface on the back.
  • the multi-angle launch bearing seat has a launch seat body, and the launch seat body is provided with a multi-angle seat body mounting surface, and the multi-angle circuit board carrier mounting surface is correspondingly arranged on the seat body mounting surface, and the multi-angle mounting surfaces of the two are connected to each other.
  • the light emitting unit installed on the multi-angle circuit board carrier can individually face the emitting convex lens, and the corresponding angle between the light emitting unit and the emitting convex lens can allow the optical axis of the light emitting unit to be individually projected onto the The mirror center of the emitting convex lens, the light beams individually projected by the light emitting unit can individually and evenly cover the emitting convex lens, forming a high-efficiency projecting light field.
  • the active sensor high-efficiency light field projection device includes a plurality of light emitting units and at least one emitting convex lens sheet, the light emitting units can be arranged in multiple groups, and the light emitting The optical axis emitted by the unit is close to the same axis as the optical axis of the geometric optics of the emitting convex lens, and the projected light angle can evenly cover the emitting convex lens with the aperture, so the light energy projected by individual light emitting units at different angles can be projected to the sensor with high efficiency and uniformity A wide range of light fields to sense the approach, entry or departure of people or objects.
  • the light-emitting independent circuit boards face the emitting convex lens at different angles and are electrically connected to form a light-emitting combined circuit board
  • the light-emitting combined circuit board consists of a flat circuit board corresponding to the multi-angle
  • a plurality of V-shaped grooves and grooves are cut at the positions where the mounting surfaces of the seat body connect with each other, thereby splitting the circuit board of the flat panel, and the circuit board of the flat panel after the fracture forms an angle with the mounting surface of the seat body
  • the structure corresponding to each other is similar to the light-emitting combined circuit board formed by electrically connecting and combining the light-emitting independent circuit boards of a plurality of blocks.
  • the angle faces the mirror center of the emitting convex lens, and the back of the light-emitting combined circuit board is the mounting surface of the light-emitting combined circuit board, and is attached to the base body of the emitting base body at an angle corresponding to each other.
  • the optical axis of the light beam emitted by the light emission unit of the light emission combined circuit board of the electrical device can be projected to the mirror center of the emission convex lens in a relationship close to the optical coaxial relationship, so that the light beam can evenly cover the emission on the convex lens.
  • a light receiving part is further included, the light emitting unit is an infrared LED emitter, and the light receiving unit is an infrared receiving LED.
  • the visible light emitting part further includes a visible light emitting part, the light emitting part and the visible light emitting part are mutually isolated and project light beams in the same direction, the visible light emitting part includes at least one visible light emitting unit and a visible light emitting convex lens, the visible light emitting part The visible light beam projected by the emitting unit is projected and displayed at the front edge of the light field through the visible light emitting convex lens.
  • the visible light emitting unit is a visible light emitting LED and a visible light laser.
  • the light emitting units are combined into a row, and the light emitting units respectively project light beams to the emitting convex lens, and the emitting convex lens radiates the light beam to the range of passing light field required in the near range according to the optical principle .
  • the light emitting units are combined into multiple columns, and the light emitting units respectively project light beams to the emitting convex lenses, and the emitting convex lenses radiate the light beams to a wide range of passing light fields according to optical principles Inside.
  • FIG. 1 is a three-dimensional exploded view of a sensing lens and a casing of the present invention.
  • FIG. 2 is a schematic diagram of relative positions of light emitting parts inside the sensing lens of the present invention.
  • FIG. 3 is a schematic diagram of the relevant positions of the light emitting parts inside the device for high-efficiency light field projection of the active sensor of the present invention.
  • FIG. 4 is an exploded view of the light emitting module and the visible light emitting module inside the device for high-efficiency light field projection of the active sensor of the present invention.
  • Fig. 5 is a schematic diagram showing the coaxial relationship of individual optical angles of the active sensor high-efficiency light field projection device of the present invention.
  • FIG. 6 is a device for high-efficiency light field projection of an active sensor of the present invention, which is a schematic diagram of the range of light fields corresponding to individual radiation rays produced by extending the individual optical axes projected by the light emitting part in FIG. 5 .
  • Fig. 7 is a schematic diagram of the high-efficiency light field projection device of the active sensor of the present invention. Its multiple light emitting units in a wide range and the optical axes of visible light beams are projected to the center of the convex lens at different angles to form a schematic diagram of the coaxial relationship of individual optical angles.
  • FIG. 8 is a device for high-efficiency light field projection of an active sensor of the present invention, which is a schematic diagram of the range of light fields corresponding to individual radiation rays generated by extending the individual optical axes projected by light emitting and visible light parts in FIG. 7 .
  • Fig. 9 is a schematic diagram of the high-efficiency light field projection device of the active sensor of the present invention, the optical axis of multiple light emitting units and visible light beams in the near range, which are projected to the center of the convex lens at different angles to generate individual optical coaxial relationships.
  • FIG. 10 is a device for high-efficiency light field projection of an active sensor of the present invention, which is a schematic diagram of the range of light fields corresponding to individual radiation rays generated by extending the individual optical axes projected by light emission and visible light parts in FIG. 9 .
  • Fig. 11 is a schematic diagram of the high-efficiency light field projection device of the active sensor of the present invention, the light in the high-efficiency light field range is reflected to the wide-receiving and near-receiving convex lens groups and individually focused to the light receiving unit.
  • Fig. 12 is a schematic diagram of the high-efficiency light field projection device of the active sensor of the present invention, showing the reflection optical axis of the passing light field range, which is reflected to the wide light receiving part and the light near receiving part of Fig. 11.
  • the present invention provides a high-efficiency light field projection device for an active sensor, which is a sensor with a variable light field range, which can be installed in each A projected (sensing) light field is used to sense the approach, entry or departure of people or objects, which can ensure the high efficiency of projected light sources.
  • the active sensor high-efficiency light field projection device of the present invention includes at least one emitting convex lens sheet 510 , multiple multi-angle circuit board carriers 110 and a bearing seat 120 .
  • the emitting lenticular lens sheet 510 includes at least one emitting lenticular lens 501 and adjacently includes at least one light receiving portion, and the light receiving portion includes a light receiving lenticular lens sheet composed of a plurality of light receiving units 111 and a plurality of lenticular lenses.
  • the plurality of light emitting units 111 project a light emitting optical axis.
  • a plurality of light emitting units 111 are disposed on a photoelectric signal conversion carrier 03 .
  • the light field modulation circuit includes a plurality of light field switches 701 and a plurality of electronic switch components 702 , and the light field switches 701 are exposed in a light field switch hole 903 .
  • the light-receiving unit includes a light-receiving convex lens sheet.
  • the light-receiving convex lens sheet includes a near-receiving convex lens sheet 410 and a wide-receiving convex lens sheet 610 .
  • the wide-receiving convex lens sheet 610 includes a wide-receiving convex lens group 601 .
  • the light receiving unit also includes a wide light receiving unit 301 and a near light receiving unit 302 .
  • the light receiving unit 301 is electrically disposed on the photoelectric signal conversion carrier 03 .
  • the light receiving unit may be an infrared receiving LED.
  • the multi-angle circuit board carrier 110 includes a plurality of light emitting units 111 , a light emitting combined circuit board 112 , a V-shaped groove 113 , a light emitting combined circuit board mounting surface 114 and a groove 115 .
  • a plurality of light emitting units 111 are respectively disposed on a plurality of multi-angle circuit board carriers 110 , that is, one light emitting unit 111 is disposed on each multi-angle circuit board carrier 110 .
  • the multi-angle circuit board carrier 110 is flat, and a plurality of light emitting units 111 are respectively arranged on one side (front side) of the multi-angle circuit board carrier 110, and the plurality of light emitting units 111 are respectively electrically connected to a plurality of multi-angle circuits board carrier 110 .
  • Multiple multi-angle circuit board carriers 110 can be independent entities, and multiple multi-angle circuit board carriers 110 can also be connected to each other as a whole, and the mode of V-shaped grooves 113 is set between each other, so that multiple multi-angle circuit board carriers 110 can be bent and adjusted to different angles.
  • the back of the multi-angle circuit board carrier 110 is a plurality of multi-angle circuit board carrier mounting surfaces.
  • the multi-angle circuit board carrier 110 contains multiple light emitting individual circuit boards.
  • the light-emitting independent circuit boards face the emitting convex lens 501 at different angles and are electrically connected to form a light-emitting combined circuit board.
  • the light-emitting combined circuit board is cut with a plurality of V-shaped grooves 113 and grooves 115 on a flat circuit board corresponding to the joint positions of a plurality of base mounting surfaces 123 , thereby splitting the flat circuit board.
  • the circuit board of the flat board and the mounting surface 123 of the folded plate form a structure corresponding to each other in angles.
  • the front side of the light-emitting combined circuit board is electrically equipped with a plurality of light-emitting units 111, and then individually faces the mirror of the emitting convex lens 501 at different angles.
  • the back of the light-emitting combined circuit board is the mounting surface of the light-emitting combined circuit board, and they are attached to the base mounting surface 123 of the emitting base 122 at corresponding angles, and the electrical devices are on the light-emitting combined circuit board.
  • the optical axis of the light beam emitted by the light emitting unit 111 can project toward the mirror center of the emitting convex lens 501 in a relationship close to the optical coaxiality, so that the light beam can evenly cover the emitting convex lens 501 .
  • a plurality of light-emitting units 111 are respectively electrically disposed on the fronts of a plurality of light-emitting combined circuit boards 112 at different angles, and the back of the light-emitting combined circuit board 112 is a light-emitting combined circuit board mounting surface 114 .
  • the light-emitting combined circuit boards face the mounting surface 123 of the mirror base body of the emitting convex lens at different angles and the mounting surface 114 of the light-emitting combined circuit board respectively at the same angle and are combined together to form the light-emitting module 01 .
  • the light-emitting optical axis J1 of individual light-emitting unit 111 casts to the mirror center of emitting convex lens 501, the light beam will be able to evenly cover on the emitting convex lens 501, because the two are close to the optical coaxial relationship, so the emitting light beam can be efficiently Individually projected to the light field projection range G (as shown in Figure 6).
  • the plurality of light emitting units 111 can be used to emit light beams.
  • the plurality of light emitting units 111 can be infrared LED emitters and can be used to emit infrared rays, but not limited thereto.
  • the plurality of light emitting units 111 may be of SMD or DIP type.
  • a plurality of light emitting units 111 are provided, and the light emitting units 111 are arranged in an array, but not limited thereto.
  • Multiple light emitting units 111 are arranged in at least one row to form a near receiving sensor, and multiple light emitting units 111 can also be arranged in multiple rows such as two, three or four rows to form a wide receiving sensor.
  • the row contains multiple light emitting units 111.
  • each row has at least one light emitting unit 111, and each row can also contain There are two, three, four, etc. multiple light emitting units 111 .
  • a plurality of light emitting units 111 can be electrically disposed on the photoelectric signal conversion carrier 03, the photoelectric signal conversion carrier 03 can be a circuit board, and the plurality of light emitting units 111 pass through the photoelectric signal conversion carrier 03 through the circuit Or the link conductor 121 is electrically connected to the optical field modulation circuit, but not limited thereto.
  • the light field switch 701 individually controls a plurality of light emitting units 111 to project light emitting optical axes J1 at different angles, and the plurality of light emitting optical axes J1 can be infrared rays, but not limited thereto.
  • the light field modulation circuit can be switched on and off in different modes, and combined into various light fields with different depths and widths.
  • the opening and closing of the light field modulation circuit can use existing electronic technology or mechanical switches, etc. Controlled by means of switching, because the switching method is the prior art, so it will not be repeated and limited.
  • the sensing lens 08 may include a light near receiving part 04 , a light emitting part 05 , and a light wide receiving part 06 .
  • the light near receiving part 04 can include a near receiving convex lens sheet 410, a plurality of light near receiving units 302, a plurality of visible light emitting units 211 and a visible light emitting convex lens group 402;
  • the light emitting part 05 includes a emitting convex lens sheet 510 and a plurality of The light emitting unit 111 ;
  • the light receiving part 06 includes a wide receiving convex lens sheet 610 and a plurality of light receiving units 301 , and the light receiving part may include the light near receiving part 04 and the light receiving part 06 .
  • the light-receiving unit and the light-emitting unit 111 may be disposed on the photoelectric signal conversion carrier 03 , but not limited thereto.
  • the sensing lens 08 can also include a visible light emitting part.
  • the light emitting part 05 and the visible light emitting part can be separated from each other in the same direction.
  • the light emitting part includes a visible light emitting unit 211 and a visible light emitting convex lens.
  • the visible light beam projected by the visible light emitting unit 211 is radiated and displayed in front of the light field through the visible light emitting convex lens. edge position.
  • the light is focused on the light-receiving unit 301 in the sensing lens 08 according to optical principles. And convert it into a photoelectric signal and output it through the signal processing system to sense the approach, entry or departure of people or objects.
  • the sensing lens 08 includes a light emitting module 01 .
  • the light emitting module 01 includes a multi-angle emitting carrier 120 and a multi-angle circuit board carrier 110, and the multi-angle emitting carrier 120 includes a connecting conductor 121, an emitting seat 122, at least a seat mounting surface 123 and at least one positioning column 124.
  • the mounting surface 123 of the base body can be arranged in a variety of different angles and face the mirror center of the emitting convex lens 501 individually.
  • the connecting conductor 121 is made of a conductor, and the connecting conductor 121 is arranged on the seat body 122 at intervals, and the two ends of the connecting conductor 121 can pass through the seat body 122, that is, one end of the connecting conductor 121 can pass through multiple seat body mounting surfaces 123, and one end of the connecting conductor 121 can be threaded and electrically connected to a plurality of multi-angle circuit board carriers 110, so that the connecting conductor 121 can not only be used to position the multi-angle circuit board carriers 110, but also serve as a signal link position.
  • the other end of the connection conductor 121 can also be electrically connected to a photoelectric signal conversion carrier 03 with a multi-angle circuit board carrier 110 .
  • the positioning posts 124 can also be made of conductors, so that multiple positioning posts 124 can also be used as connecting conductors.
  • a plurality of base mounting surfaces 123 can be adjacent to each other.
  • the number of multiple base mounting surfaces 123 corresponds to the number of multiple light emitting units 111 and multiple multi-angle circuit board carriers 110.
  • the multiple base mounting surfaces 123 can be It is a plane, and the plurality of base mounting surfaces 123 should respectively correspond to the other side (the back side, that is, the mounting surface of the multi-angle circuit board carrier) of the multi-angle circuit board carrier 110 .
  • the mounting surface of the multi-angle circuit board carrier and the mounting surface of the seat body are attached to each other.
  • a plurality of multi-angle circuit board carriers 110 are respectively arranged on a plurality of seat body mounting surfaces 123, and a plurality of multi-angle circuit board carriers 110 can also be properly fixed on a plurality of seat body mounting surfaces 123 by means of glue, etc., so that the plurality of multi-angle circuit board carriers 110
  • Each light emitting unit 111 can be respectively electrically mounted on a plurality of multi-angle circuit board carriers 110 and correspondingly disposed on the bearing seat 120 . Since the optical axes of a plurality of individual light-emitting units 111 should face the mirror center of the emitting convex lens 501, the projected light angles can evenly cover the emitting convex lens 501 (as shown in FIGS. 5 to 7 ).
  • the light generated by the geometric optics can be efficiently projected into the light field projection range G (as shown in FIG. 8 ), which improves the light field energy emitted by the sensor and ensures high efficiency of the light source.
  • FIG. 5 and FIG. 6 respectively show the corresponding relationship between the light emitting optical axis J1 and the projected light field projection range G.
  • the positioning column 124 is used for positioning and outputting signals of a plurality of multi-angle circuit board carriers 110 as a whole.
  • the positioning column 124 can position the multiple multi-angle circuit board carriers 110 in a piercing manner, so that the multiple multi-angle circuit board carriers 110 can be accurately arranged on the multiple seat mounting surfaces 123 .
  • the light near receiving part 04, the light emitting part 05, and the light wide receiving part 06 emit and receive light in the same direction, and are separated and connected with each other to form a wide and near integrated sensing lens 08.
  • the light field projection range of light emission The light of G is reflected to form a near-receiving optical axis H1 (that is, the near-receiving light) and a wide-receiving optical axis I1 (that is, the wide-receiving light), wherein the light-emitting part 05, the light-near receiving part 04 and the light-wide receiving part 06
  • the sensing lens 08 can individually receive the wide-receiving optical axis I1 and the short-receiving optical axis H1.
  • the light-emitting part 05 and the light-receiving part 06 both of which can emit and receive light in the same direction and are separated and connected to each other to form a sensing lens 08, wherein the light-emitting part 05 and the light-receiving part 06 generate corresponding light emission and reception relationship, the sensor lens 08 will be able to receive light and receive light from the wide receiving optical axis I1 of the reflection range I (as shown in Figures 11 and 12).
  • FIG. 11 and FIG. 12 respectively represent the corresponding relationship between the wide-receiving optical axis I1 and the wide-receiving reflection range I.
  • the light-emitting part 05 and the light-near receiving part 04 both of which can emit and receive light in the same direction and are separated and connected to each other to form a sensing lens 08, wherein the light-emitting part 05 and the light-near receiving part 04 have a corresponding relationship between emission and reception , the sensing lens 08 can receive light near the receiving optical axis H1 of the reflecting range H.
  • the sensing lens 08 can also include at least one visible light emitting convex lens group 402 and a plurality of visible light emitting units 211.
  • the visible light emitting unit 211 and the visible light emitting convex lens group 402 project the visible light emitting optical axis K1 according to the optical principle (as shown in FIG. 7 ), displaying the visible light range K (as shown in FIG. 8 ), wherein the visible light emitting unit 211 can be a visible light LED or a visible light laser, but it is not limited thereto.
  • FIG. 7 and FIG. 8 respectively show the corresponding relationship between the visible light emitting optical axis K1 and the visible light range K.
  • the emitting convex lens 501 can be arranged in front of the light emitting unit 111 corresponding to the requirements of geometric optics.
  • the emitting convex lens 501 can be biconvex lens, plano-convex lens or Fresnel convex lens, etc.
  • the form of the emitting convex lens 501 is not limited.
  • the upper left LED projected light field LF-u-l refers to the light field projected by the left upper optical axis u-l
  • the left middle LED projected light field LF-m-1 refers to the left middle optical axis m-1 projected light field.
  • the light field, the lower left LED projected light field LF-d-1 refers to the light field projected by the lower left optical axis d-1.
  • the projected light field LF-u-c of the upper middle LED refers to the light field projected by the upper middle optical axis u-c
  • the projected light field LF-m-c of the central LED refers to the light field projected by the central optical axis m-c
  • the projected light field LF-d-c of the lower middle LED is Refers to the light field projected by the middle and lower optical axis d-c.
  • the upper right LED projected light field LF-u-r refers to the light field projected by the upper right optical axis u-r
  • the right middle LED projected light field LF-m-r refers to the right middle optical axis m-r projected light field
  • the lower right LED projected light field LF-d-r is Refers to the light field projected by the lower right optical axis d-r
  • the right optical axis s-r, the middle optical axis s-c, and the left optical axis s-l are respectively formed by three visible light emitting units 211 (right, middle, left) on the visible light combined circuit board 212 emitted light axis.
  • u stands for up
  • m stands for middle
  • d stands for down
  • l stands for left
  • c stands for center
  • r stands for right.
  • the photoelectric signal conversion carrier 03 can be a circuit board, and the optical wide receiving unit 301 and the optical near receiving unit 302 can be electrically disposed on the photoelectric signal conversion carrier 03 .
  • the light-wide receiving unit 301 and the light-near receiving unit 302 are not limitedly arranged at the intervals on both sides of the light-emitting unit 111, and the interval positions can be adjusted under the condition of the mechanism design requirements.
  • the wide receiving convex lens sheet 610 comprises a wide receiving convex lens group 601
  • the near receiving convex lens sheet 410 comprises a near receiving convex lens group 401
  • the two light receiving convex lens sheets are individually combined into one by a plurality of convex lenses.
  • the receiving convex lens groups are respectively focused on the light near receiving unit 302 and the light wide receiving unit 301 according to the requirements of geometric optics.
  • the light beams emitted by multiple light emitting units 111 are projected onto the emitting convex lens 501 according to the requirements of geometric optics, and are combined into a passing light field range according to the individual light radiation at different angles.
  • the light reflected in the light field range can pass through the wide receiving convex lens
  • the group 601 and the near receiving convex lens group 401 focus on the light wide receiving unit 301 and the light near receiving unit 302 respectively.
  • a visible light emitting convex lens group 402 can also be further disposed on the near receiving convex lens sheet 410 .
  • the traffic sensor 10 may also include a casing 09, a sensing lens 08 and a sensing signal processing carrier 07.
  • the casing 09 includes a bottom case 901, an upper case 902 and a light
  • the field switch hole 903 may also include a housing 905 and a filter lens 904 .
  • the induction signal processing carrier 07 can be provided with a light field switch 701 , the light field switch 701 is exposed corresponding to the position of the light field switch hole 903 and forms a modular design for adjusting the range of the light field.
  • the visible light emission module 02 includes a visible light circuit board carrier 210 and a visible light carrier 220 .
  • the visible light circuit board carrier 210 includes a plurality of visible light emitting units 211 and a plurality of visible light combined circuit boards 212 .
  • a plurality of visible light emitting units 211 are respectively arranged on a plurality of visible light combined circuit boards 212, and the plurality of visible light emitting units 211 are respectively electrically arranged on the front of the visible light combined circuit board 212, and the visible light emitting units 211 can be respectively electrically installed on a plurality of visible light combined circuit boards 212.
  • Visible light combined circuit board 212 is shown in FIG. 4 , the visible light emission module 02 .
  • the visible light bearing seat 220 has a plurality of visible light connecting conductors 221 and a visible light seat body 222.
  • the visible light seat body 222 is provided with a plurality of visible light light seat body mounting surfaces 223.
  • the visible light combined circuit board 212 is properly fixed on the multiple visible light base mounting surfaces 223 , and the multiple visible light emitting units 211 can be electrically disposed on the multiple visible light combined circuit boards 212 and on the visible light carrier 220 respectively.
  • the optical axis of the beam emitted by the visible light emitting unit 211 faces the mirror center of the visible light emitting convex lens group 402, so the angle of the projected visible light rays can evenly cover the visible light emitting convex lens group 402, due to the corresponding relationship between the two and the optical principle.
  • the visible light emitting optical axis K1 (as shown in FIG. 9 ) can efficiently project a visible light range K (as shown in FIG. 10 ).
  • FIG. 9 and FIG. 10 respectively show the corresponding relationship between the visible light emitting optical axis K1 and the visible light range K.
  • the multiple visible light combined circuit boards 212 can be multiple independent individual circuit boards and are electrically connected to each other, or the multiple visible light combined circuit boards 212 are an integral structure, and the back of the visible light combined circuit board 212 corresponds to the above-mentioned multiple independent individual circuits
  • a plurality of V-shaped grooves 113 are cut at the same position of the board, and the V-shaped grooves 113 make the visible light combined circuit board 212 of the overall structure and the visible light combined circuit board 212 assembled by a single independent body broken and electrically connected at the same position.
  • a plurality of light-emitting units 111 are arranged in upper, middle and lower three columns, each column has three light-emitting units 111, and the three light-emitting units 111 arranged on the upper column emit light from the upper right
  • the three light emitting units 111 arranged in the middle column emit the optical axis right middle m-r, the middle optical axis m-c, and the left middle optical axis m-l, which are arranged in the following three
  • the light emitting unit 111 emits the lower right optical axis d-r, middle lower optical axis d-c, left lower optical axis d-l, right upper optical axis u-r, middle upper optical axis u-c, left upper optical axis u-l, right middle optical axis m-r, light
  • a plurality of light-emitting units 111 project light-emitting optical axes J1 of different angles, and the light-emitting optical axes J1 of individual light-emitting units 111 project toward the mirror center of the emitting convex lens 501, and the light beam will evenly cover the emitting convex lens 501. Since the two are close to the optical coaxial relationship, the emitted light beams can be individually projected into the light field projection range with high efficiency.
  • the visible light emitting unit 211 and the visible light emitting convex lens group 402 project the visible light emitting optical axis K1 according to the optical principle to display the visible light range.
  • the light in the projected range of the light field emitted by the light is reflected to form a near-receiving optical axis H1 (near receiving light) and a wide-receiving optical axis I1 (i.e. wide-receiving light).
  • the sensing lens can individually receive the wide-receiving optical axis I1 , the near receiving optical axis H1, the wide receiving optical axis I1, and the near receiving optical axis H1 are each processed by a signal processing system before performing subsequent actions such as position display.
  • the active sensor high-efficiency light field projection device provided by the present invention includes a plurality of light emitting units and at least one emitting convex lens sheet.
  • the optical axis emitted by the unit is close to the same axis as the optical axis of the geometric optics of the emitting convex lens, and the projected light angle can evenly cover the emitting convex lens with the aperture, so the light energy projected by individual light emitting units at different angles can be projected to the sensor with high efficiency and uniformity

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)

Abstract

一种主动式传感器高效能光场投射的装置,包含多个光发射单元(111),其投射光束的光轴个别投向光发射凸透镜(501)镜心,该光发射单元(111)的光轴和该光发射凸透镜(501)的光轴产生接近光学同轴的关系,因此各个投射光束能够高效能辐射到所需的光场范围内。主动式传感器高效能光场投射的装置另外包含至少一发射凸透镜片(510),一多角度电路板载体(110)和一承载座(120);发射凸透镜片(510)包含发射凸透镜(501),承载座(120)具有一座体(122),座体(122)上设有多个座体安装面(123),多个座体安装面(123)分别面向该发射凸透镜(501)的镜心,多个光发射单元(111)分别电性连接于多角度电路板载体(110)再设置于承载座(120)的座体安装面(123)上;多个个别光发射单元(111)的光轴应对向发射凸透镜(501)的镜心,因此各个投射光束的光圈能够均匀覆盖该发射凸透镜(501)。

Description

主动式传感器高效能光场投射的装置 技术领域
本发明涉及一种可营造高效能光场的投射装置,能应用于任何需要营造投射光场范围的传感器。其中光发射模块LED的光轴分别射向发射凸透镜的镜心,尤其涉及一种用以感应人员或物体接近、进入或离开的传感器,可令传感器光发射LED发射的光线能够高效能均匀投射到感应范围的光场,可提高传感器发射的光场能量。
背景技术
现有的需要营造投射(感应)光场范围时,可通过设置红外光线传感器,用以感应人员或物体的接近、进入或者离开。然而现有的光线传感器,其发射出的光线投射到凸透镜时,并无法确保LED投射光线的光轴和凸透镜几何光学投射角度的光轴同轴,因此LED发射光线的角度难以均匀覆盖到凸透镜镜片,使得投射到感应范围的光场能量不均匀,间接导致光场范围内反射回传感器的光强度亦不均匀。
发明内容
本发明所要解决的技术问题在于,针对现有技术的不足提供一种主动式传感器高效能光场投射的装置,包括一光发射部位,光发射部位包含至少一发射凸透镜片以及至少一光发射模块。发射凸透镜片包含至少一发射凸透镜。光发射模块包含一多角度电路板载体以及一多角度发射承载座。其中多角度电路板载体包含多个光发射单元和一多角度的组合电路板,组合电路板由多个光发射独立电路板电性链接而成,所述光发射单元分别电性装置于所述光发射独立电路板,背面为多角度电路板载体安装面。其中多角度发射承载座具有一发射座体,发射座体上设有多角度的座体安装面,多角度电路板载体安装面对应设置于座体安装面,两者多角度的安装面相互对应贴合;多角度电路板载体所装置的所述光发射单元可个别面向发射凸透镜,所述光发射单元和发射凸透镜之间相对应的角度能让所述光发射单元的光轴个别投射到发射凸透镜的镜心,所述光发射单元个别投射的光束将能个别均匀覆盖在发射凸透镜,构成一高效能投射的光场。
本发明的有益效果在于,本发明所提供的主动式传感器高效能光场投射的装置,包括 多个光发射单元及至少一发射凸透镜片,所述光发射单元可多元数组排列,所述光发射单元发射的光轴个别和发射凸透镜几何光学的光轴接近同轴,投射的光线角度能够以光圈均匀覆盖发射凸透镜,因此个别光发射单元以不同角度所投射的光线能量能够高效能均匀投射到感应范围的光场,用以感应人员或物体的接近、进入或离开。
优选地,所述光发射独立电路板个别以不同角度面向所述发射凸透镜并电性连接为一光发射组合电路板,所述光发射组合电路板由一平板的电路板对应所述多角度的座体安装面相互衔接的位置切割多条V形槽及沟槽,由此将所述平板的电路板进行裂折,折裂后的所述平板的电路板和所述座体安装面形成角度相互对应的结构,类似由多个区块的光发射独立电路板电性连接组合成的光发射组合电路板,所述光发射组合电路板正面电性装置所述光发射单元,再个别以不同角度面向所述发射凸透镜的镜心,所述光发射组合电路板背面则为光发射组合电路板安装面,并各别以相互对应的角度贴合在所述发射座体的所述座体安装面,电性装置在光发射组合电路板的所述光发射单元所发射光束的光轴可以接近光学同轴的关系投射向所述发射凸透镜的镜心,让光束能够均匀地覆盖在所述发射凸透镜上。
优选地,进一步包含一光接收部位,所述光发射单元为红外线LED发射器,所述光接收单元为红外线接收LED。
优选地,进一步包含一可见光发射部位,所述光发射部位以及所述可见光发射部位互相隔离并朝同方向投射光束,所述可见光发射部位包括至少一可见光发射单元和一可见光发射凸透镜,所述可见光发射单元投射出的可见光束经由所述可见光发射凸透镜投射显示于光场前缘位置。
优选地,所述可见光发射单元为可见光发射LED和可见光激光激光器。
优选地,所述光发射单元组合成一列的形式,所述光发射单元分别投射光束到所述发射凸透镜,所述发射凸透镜再依光学原理将光束辐射到近范围所需要的通行光场范围内。
优选地,所述光发射单元组合成多列的形式,所述光发射单元分别投射光束到所述发射凸透镜,所述发射凸透镜再依光学原理将光束辐射到广范围所需要的通行光场范围内。
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所提供的附图仅用于提供参考与说明,并非用来对本发明加以限制。
附图说明
图1为本发明感应镜头与壳体的立体分解图。
图2为本发明感应镜头内部光发射部位的相关位置示意图。
图3为本发明主动式传感器高效能光场投射的装置内部光发射部位的相关位置示意图。
图4为本发明主动式传感器高效能光场投射的装置内部的光发射模块和可见光发射模块的分解图。
图5为本发明主动式传感器高效能光场投射的装置其广范围多个光发射单元光束的光轴,个别以不同角度投向凸透镜的镜心,产生个别光学角度同轴关系的示意图。
图6为本发明主动式传感器高效能光场投射的装置,为延伸图5光发射部位所投射的个别光轴,其产生相对应个别辐射光线的光场范围示意图。
图7为本发明主动式传感器高效能光场投射的装置,其广范围多个光发射单元以及可见光光束的光轴,个别以不同角度投向凸透镜的镜心产生个别光学角度同轴关系的示意图。
图8为本发明主动式传感器高效能光场投射的装置,为延伸图7光发射以及可见光部位所投射的个别光轴,其产生相对应个别辐射光线的光场范围示意图。
图9为本发明主动式传感器高效能光场投射的装置,其近范围多个光发射单元以及可见光光束的光轴,个别以不同角度投向凸透镜镜心产生个别光学同轴关系的示意图。
图10为本发明主动式传感器高效能光场投射的装置,为延伸图9光发射以及可见光部位所投射的个别光轴,其产生相对应个别辐射光线的光场范围示意图。
图11为本发明主动式传感器高效能光场投射的装置,其高效能光场范围的光线反射到广接收和近接收凸透镜组并且个别聚焦到光接收单元的示意图。
图12为本发明主动式传感器高效能光场投射的装置,显示通行光场范围的反射光轴,其反射到图11光广接收部位和光近接收部位的示意图。
具体实施方式
以下是通过特定的具体实施例来说明本发明所公开有关的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不背离本发明的构思下进行各种修改与变更。另外,本发明的附图仅为简单示意说明,并非依实际尺寸的 描绘,事先声明。以下的实施方式将进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的保护范围。另外,本文中所使用的术语“或”,应视实际情况可能包括相关联的列出项目中的任一个或者多个的组合。
请参阅图1至图5,本发明提供一种主动式传感器高效能光场投射的装置,该主动式传感器高效能光场投射的装置为一种可变光场范围的传感器,可设置于各种的投射(感应)光场,用以感应人员或物体的接近、进入或者离开,能确保投射光源高效率化。本发明的主动式传感器高效能光场投射的装置包括至少一发射凸透镜片510、多个多角度电路板载体110及一承载座120。发设凸透镜片510包含至少一发射凸透镜501以及相邻包括至少一光接收部位,该光接收部位包含多个光接收单元111和多个凸透镜组成的一光接收凸透镜片。多个光发射单元111投射出一光发射光轴。多个光发射单元111设置在一光电信号转换载体03。光场调变电路包含多个光场开关701、多个电子开关组件702,光场开关701显露于一光场开关孔903。光接收单元包括一光接收凸透镜片,光接收凸透镜片包含近接收凸透镜片410、广接收凸透镜片610,广接收凸透镜片610包含广接收凸透镜组601。光接收单元还包含一光广接收单元301、光近接收单元302。光广接收单元301电性设置在光电信号转换载体03。光接收单元可为红外线接收LED。
多角度电路板载体110包含多个光发射单元111、一光发射组合电路板112、一V形槽113、一光发射组合电路板安装面114以及一沟槽115。多个光发射单元111分别设置于多个多角度电路板载体110上,亦即每一个多角度电路板载体110上设置一个光发射单元111。多角度电路板载体110呈平板状,多个光发射单元111分别设置于多个多角度电路板载体110的一面(正面),且多个光发射单元111分别电性连接于多个多角度电路板载体110。多个多角度电路板载体110可为独立的个体,多个多角度电路板载体110也可相互连接为一体,且彼此之间以设置V型槽113的方式,使多个多角度电路板载体110之间能弯折调整成不同的角度。多角度电路板载体110的背面为多个多角度电路板载体安装面。多角度电路板载体110包含多个光发射独立电路板。光发射独立电路板个别以不同角度面向该发射凸透镜501并电性连接为一光发射组合电路板。
光发射组合电路板是由一平板的电路板对应多个座体安装面123相互衔接的位置切割多条V形槽113及沟槽115,由此将平板的电路板进行裂折。折裂后的平板的电路板和该座体安装面123形成角度相互对应的结构,该光发射组合电路板正面电性装置多个光发射单元111,再个别以不同角度面向发射凸透镜501的镜心,光发射组合电路板背面则为 光发射组合电路板安装面,并各别以相互对应的角度贴合在发射座体122的座体安装面123,电性装置在光发射组合电路板的光发射单元111所发射光束的光轴可以接近光学同轴的关系投射向发射凸透镜501的镜心,让光束能够均匀地覆盖在发射凸透镜501上。
多个光发射单元111分别电性设置于多个不同角度的光发射组合电路板112的正面,光发射组合电路板112的背面为一光发射组合电路板安装面114。光发射组合电路板并个别以不同角度面向发射凸透镜的镜心座体安装面123和光发射组合电路板安装面114分别以相同角度对应结合一体,形成为光发射模块01。其中个别的光发射单元111的光发射光轴J1投向发射凸透镜501的镜心,光束将能均匀地覆盖在发射凸透镜501上,由于两者接近于光学同轴关系,因此发射光束能高效能地个别投射到光场投射范围G(如图6)。
多个光发射单元111能用以发射光束,在本实施例中,多个光发射单元111可为红外线LED发射器,能用以发射红外线,但不予以限制。多个光发射单元111可为SMD或DIP类型。多个光发射单元111设置有多个,光发射单元111呈数组排列,但不予以限制。多个光发射单元111排列成至少一列,形成一近接收传感器,多个光发射单元111亦可排列成两列、三列或四列等多列,形成一广接收传感器。多个光发射单元111只有一列时,则该列包含多个光发射单元111、光发射单元111呈两列或两列以上时,则每一列至少具有一个光发射单元111,亦可每一列包含两个、三个、四个等多个等光发射单元111。
在本实施例中,多个光发射单元111可电性设置于光电信号转换载体03上,该光电信号转换载体03可为一电路板,多个光发射单元111通过光电信号转换载体03经由电路或链接导体121电性连接到光场调变电路,但不予以限制。其中光场开关701个别控制多个光发射单元111以投射出不同角度的光发射光轴J1,多个光发射光轴J1可为红外线,但不予限制。光场调变电路可选择不同模式的开与关,组合成各种不同深度和宽度的通行范围的光场,光场调变电路的开启及关闭可利用现有的电子技术或机械式开关等方式加以控制,由于开关方式为现有技术,故不予以赘述及限制。
请复参图1以及图2。感应镜头08可包括光近接收部位04、光发射部位05、光广接收部位06。光近接收部位04可同时包括一近接收凸透镜片410、多个光近接收单元302、多个可见光发射单元211以及一可见光发射凸透镜组402;光发射部位05包括一发射凸透镜片510及多个光发射单元111;光广接收部位06包括一广接收凸透镜片610及多个光广接收单元301,光接收部位可包括光近接收部位04与光广接收部位06。其中光接收单元和光发射单元111可设置于光电信号转换载体03,但不予以限制。感应镜头08亦可 包含一可见光发射部位。
光发射部位05以及可见光发射部位两者可朝同方向互相分隔,光发射部位包括可见光发射单元211和可见光发射凸透镜,该可见光发射单元211投射出的可见光束经由可见光发射凸透镜辐射显示于光场前缘位置。
通行范围内的光广接收反射范围I以及可见光范围K(如图12所示)因外来物体介入反射到广接收凸透镜组601时,光线依光学原理聚焦到感应镜头08内的光广接收单元301并转换成光电信号再经信号处理系统输出以感应人员或物体的接近、进入或离开。
感应镜头08包括一光发射模块01。光发射模块01包含一多角度发射承载座120以及一多角度电路板载体110,多角度发射承载座120包含一连接导体121、一发射座体122、至少一座体安装面123及至少一定位柱124。其中座体安装面123可设置成多种不同角度的形式并个别面向发射凸透镜501的镜心。
连接导体121以导体制成,连接导体121间隔的设置于座体122上,且连接导体121的两端可穿出座体122,亦即连接导体121的一端可穿出多个座体安装面123,且连接导体121的一端可穿设及电性连接于多个多角度电路板载体110,使连接导体121不仅可用于定位多角度电路板载体110,同时也可做为信号链接的位置。连接导体121的另一端亦可电性连接于一光电信号转换载体03多角度电路板载体110。另外,定位柱124(定位柱)也能以导体制成,使多个定位柱124也能做为连接导体使用。
多个座体安装面123可紧邻的设置,多个座体安装面123的数量与多个光发射单元111及多个多角度电路板载体110的数量相对应,多个座体安装面123可为平面,且多个座体安装面123应分别对应多角度电路板载体110的另一面(背面,即是多角度电路板载体安装面)。多角度电路板载体安装面与座体安装面两者相互贴合。多个多角度电路板载体110分别设置于多个座体安装面123上,多个多角度电路板载体110亦可利用胶黏等方式适当的固定于多个座体安装面123上,使多个光发射单元111能分别电装于多个多角度电路板载体110并对应设置于该承载座120上。由于多个个别光发射单元111的光轴应对向发射凸透镜501的镜心,因此投射的光线角度能够均匀覆盖于发射凸透镜501(如图5至图7所示),因镜片和LED两者相对应的关系,几何光学产生的光线能够高效能投射到光场投射范围G(如图8所示),提高传感器发射的光场能量,并确保光源高效率化。图5与图6分别表示为光发射光轴J1与投射到光场投射范围G的对应关系。
定位柱124用以定位和输出多个多角度电路板载体110整体的信号。定位柱124可利 用穿设方式定位多个多角度电路板载体110,使多个多角度电路板载体110可以准确的设置于多个座体安装面123上。
光近接收部位04、光发射部位05、光广接收部位06三者朝同一方向发射和接收光线,并互相分隔和连接形成一集广、近一体的感应镜头08,光发射的光场投射范围G的光线反射后形成一近接收光轴H1(即为近接收光线)与一广接收光轴I1(即为广接收光线),其中光发射部位05和光近接收部位04以及光广接收部位06产生光线发射和接收的对应关系,该感应镜头08能个别接收广接收光轴I1、近接收光轴H1。
光发射部位05及光广接收部位06,两者能朝同一方向发射和接收光线且彼此互相分隔和连接,形成感应镜头08,其中光发射部位05和光广接收部位06产生光线发射和接收的对应关系,该感应镜头08将能接收光广接收反射范围I的广接收光轴I1(如图11、图12)。图11与图12分别表示为广接收光轴I1与光广接收反射范围I的对应关系。
光发射部位05及光近接收部位04,两者能朝同一方向发射和接收光线且彼此互相分隔和连接,形成感应镜头08,其中光发射部位05和光近接收部位04产生发射和接收的对应关系,该感应镜头08将可接收光近接收反射范围H的近接收光轴H1。
感应镜头08还可包含至少一可见光发射凸透镜组402及多个可见光发射单元211,可见光发射单元211和可见光发射凸透镜组402依光学原理投射可见光发射光轴K1(如图7),显示可见光范围K(如图8),其中可见光发射单元211可为可见光LED亦或是可见光激光激光器,但不予以限制。图7与图8分别为可见光发射光轴K1与可见光范围K的对应关系。
该发射凸透镜501可对应几何光学的需要,设置于光发射单元111的前方处,发射凸透镜501可为双凸透镜、平凸透镜或菲涅尔凸透镜等,发射凸透镜501的形式并不限制。
如图5至图10所公开,左上LED投射光场LF-u-l是指左上光轴u-l投射的光场,左中LED投射光场LF-m-1是指左中光轴m-1投射的光场,左下LED投射光场LF-d-1是指左下光轴d-1投射的光场。中上LED投射光场LF-u-c是指中上光轴u-c投射的光场,正中LED投射光场LF-m-c是指正中光轴m-c投射的光场,中下LED投射光场LF-d-c是指中下光轴d-c投射的光场。右上LED投射光场LF-u-r是指右上光轴u-r投射的光场,右中LED投射光场LF-m-r是指右中光轴m-r投射的光场,右下LED投射光场LF-d-r是指右下光轴d-r投射的光场,右光轴s-r、中光轴s-c、左光轴s-l是分别由位于可见光组合电路板212上的三个可见光发射单元211(右、中、左)所发出的光轴。其中u代表up、m代表middle、 d代表down、l代表left、c代表center、r代表right。
如图2至图4所公开该光电信号转换载体03可为电路板,且光广接收单元301、光近接收单元302可电性设置于光电信号转换载体03。光广接收单元301、光近接收单元302不局限地设置在光发射单元111的两侧间隔处,在机构设计需求的条件下间隔位置可互调,上述所提供的附图和说明仅用于参考,并非用来对本发明加以限制。
光接收凸透镜片可设置一个或二个。广接收凸透镜片610包含广接收凸透镜组601,近接收凸透镜片410包含近接收凸透镜组401,该两光接收凸透镜片(近接收凸透镜片410、广接收凸透镜片610)个别由多个凸透镜组合成一接收凸透镜组(近接收凸透镜组401、广接收凸透镜组601),并个别依几何光学的需求相对应聚焦于光近接收单元302和光广接收单元301。多个光发射单元111射出的光束依几何光学的需求相对应投射到发射凸透镜501,并依个别不同角度的光线辐射组合成一通行光场范围,在光场范围内反射的光线能经由广接收凸透镜组601、近接收凸透镜组401分别聚焦在光广接收单元301、光近接收单元302。近接收凸透镜片410上亦可进一步设置一可见光发射凸透镜组402。
在本实施例中,如图1公开该通行传感器10还可包括一壳体09、一感应镜头08及一感应信号处理载体07,壳体09包括一底壳901、一上壳902及一光场开关孔903,亦可包括一外壳905及一滤光镜片904。感应信号处理载体07可设置一光场开关701,该光场开关701对应光场开关孔903位置外露并形成模块化设计以供调变光场的范围。
如图4所示,可见光发射模块02包含一可见光电路板载体210及一可见光承载座220。可见光电路板载体210包含多个可见光发射单元211及多个可见光组合电路板212。多个可见光发射单元211分别设置于多个可见光组合电路板212上,多个可见光发射单元211分别电性设置于可见光组合电路板212的正面,且可见光发射单元211能分别电性装置于多个可见光组合电路板212。可见光承载座220具有多个可见光连接导体221及一可见光座体222,该可见光座体222上设有多个可见光座体安装面223,可见光座体安装面223与可见光组合电路板212的背面相对应,可见光组合电路板212适当地固定于多个可见光座体安装面223上,多个可见光发射单元211能分别电性设置于多个可见光组合电路板212及设置于该可见光承载座220上。可见光发射单元211发射光束的光轴对向可见光发射凸透镜组402的镜心,因此投射的可见光线角度能够均匀地覆盖于可见光发射凸透镜组402,因两者相对应的关系以及依光学原理产生的可见光发射光轴K1(如图9)能够高效能投射一可见光范围K(如图10)。图9与图10分别为可见光发射光轴K1与可见光范围K 的对应关系。
多个可见光组合电路板212可为多个独立个体的电路板并彼此电性连接,或多个可见光组合电路板212为一整体结构,该可见光组合电路板212的背面对应上述多个独立个体电路板的相同位置具切割多条V形槽113,该V形槽113令整体结构可见光组合电路板212和单一独立个体组和的可见光组合电路板212相同的位置折裂并电性连接。
请参阅图12,在本实施例中,多个光发射单元111排列成上、中、下三列,每一列有三个光发射单元111,设置于上列的三个光发射单元111发射出右上光轴u-r、中上光轴u-c、左上光轴u-l,设置于中列的三个光发射单元111发射出光轴右中m-r、正中光轴m-c、左中光轴m-l,设置于下列的三个光发射单元111发射出右下光轴d-r、中下光轴d-c、左下光轴d-l,右上光轴u-r、中上光轴u-c、左上光轴u-l、右中光轴m-r、光正中轴m-c、左中光轴m-l、右下光轴d-r、中下光轴d-c及左下光轴d-l,和发射凸透镜501形成光学同轴的关系,因此多个光发射单元111发射的光束将能均匀地覆盖到发射凸透镜501的镜片上。光发射模块01内各个光发射单元111的发射光束以不同角度投向发射凸透镜501的镜心,并因光学原理投射组合成的通行感应光场范围。
多个光发射单元111以投射出不同角度的光发射光轴J1,个别的光发射单元111的光发射光轴J1投向发射凸透镜501的镜心,光束将能均匀地覆盖在发射凸透镜501上,由于两者接近于光学同轴关系,因此发射光束能高效能地个别投射到光场投射范围。可见光发射单元211可见光发射凸透镜组402依光学原理投射可见光发射光轴K1,用以显示可见光范围。光发射的光场投射范围的光线反射后形成一近接收光轴H1(即为近接收光线)与一广接收光轴I1(即为广接收光线),感应镜头能个别接收广接收光轴I1、近接收光轴H1,广接收光轴I1、近接收光轴H1个别经由一信号处理系统处理后再做后续的位置显示等动作。
实施例的有益效果
本发明的有益效果在于,本发明所提供的主动式传感器高效能光场投射的装置,包括多个光发射单元及至少一发射凸透镜片,多个光发射单元可多元数组排列,多个光发射单元发射的光轴个别和发射凸透镜几何光学的光轴接近同轴,投射的光线角度能够以光圈均匀覆盖发射凸透镜,因此个别光发射单元以不同角度所投射的光线能量能够高效能均匀投射到感应范围的光场,用以感应人员或物体的接近、进入或离开。
以上所公开的内容仅为本发明的优选可行实施例,并非因此局限本发明的权利要求, 所以凡是运用本发明说明书及附图内容所做的等效技术变化,均包含于本发明的权利要求内。

Claims (7)

  1. 一种主动式传感器高效能光场投射的装置,其特征在于,包括一光发射部位,所述光发射部位包含:
    至少一发射凸透镜片,所述发射凸透镜片包含至少一发射凸透镜;以及
    至少一光发射模块,所述光发射模块包含一多角度电路板载体以及一多角度发射承载座;
    其中所述多角度电路板载体包含多个光发射单元和一多角度的组合电路板,所述组合电路板由多个光发射独立电路板电性链接而成,所述光发射单元分别电性装置于所述光发射独立电路板,背面为多角度电路板载体安装面;
    其中所述多角度发射承载座具有一发射座体,所述发射座体上设有多角度的座体安装面,所述多角度电路板载体安装面对应设置于所述座体安装面,两者多角度的安装面相互对应贴合;所述多角度电路板载体所装置的所述光发射单元可个别面向所述发射凸透镜,所述光发射单元和所述发射凸透镜之间相对应的角度能让所述光发射单元的光轴个别投射到所述发射凸透镜的镜心,所述光发射单元个别投射的光束将能个别均匀覆盖在所述发射凸透镜,构成一高效能投射的光场。
  2. 如权利要求1所述的主动式传感器高效能光场投射的装置,其特征在于,所述光发射独立电路板个别以不同角度面向所述发射凸透镜并电性连接为一光发射组合电路板,所述光发射组合电路板由一平板的电路板对应所述多角度的座体安装面相互衔接的位置切割多条V形槽及沟槽,由此将所述平板的电路板进行裂折,折裂后的所述平板的电路板和所述座体安装面形成角度相互对应的结构,类似由多个区块的光发射独立电路板电性连接组合成的光发射组合电路板,所述光发射组合电路板正面电性装置所述光发射单元,再个别以不同角度面向所述发射凸透镜的镜心,所述光发射组合电路板背面则为光发射组合电路板安装面,并各别以相互对应的角度贴合在所述发射座体的所述座体安装面,电性装置在光发射组合电路板的所述光发射单元所发射光束的光轴可以接近光学同轴的关系投射向所述发射凸透镜的镜心,让光束能够均匀地覆盖在所述发射凸透镜上。
  3. 如权利要求1所述的主动式传感器高效能光场投射的装置,其特征在于,进一步包含一光接收部位,所述光发射单元为红外线LED发射器,所述光接收单元为红外线接收LED。
  4. 如权利要求1所述的主动式传感器高效能光场投射的装置,其特征在于,进一步包 含一可见光发射部位,所述光发射部位以及所述可见光发射部位互相隔离并朝同方向投射光束,所述可见光发射部位包括至少一可见光发射单元和一可见光发射凸透镜,所述可见光发射单元投射出的可见光束经由所述可见光发射凸透镜投射显示于光场前缘位置。
  5. 如权利要求4所述的主动式传感器高效能光场投射的装置,其特征在于,所述可见光发射单元为可见光发射LED和可见光激光激光器。
  6. 如权利要求1所述的主动式传感器高效能光场投射的装置,其特征在于,所述光发射单元组合成一列的形式,所述光发射单元分别投射光束到所述发射凸透镜,所述发射凸透镜再依光学原理将光束辐射到近范围所需要的通行光场范围内。
  7. 如权利要求1所述的主动式传感器高效能光场投射的装置,其特征在于,所述光发射单元组合成多列的形式,所述光发射单元分别投射光束到所述发射凸透镜,所述发射凸透镜再依光学原理将光束辐射到广范围所需要的通行光场范围内。
PCT/CN2022/074321 2022-01-27 2022-01-27 主动式传感器高效能光场投射的装置 WO2023141880A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074321 WO2023141880A1 (zh) 2022-01-27 2022-01-27 主动式传感器高效能光场投射的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074321 WO2023141880A1 (zh) 2022-01-27 2022-01-27 主动式传感器高效能光场投射的装置

Publications (1)

Publication Number Publication Date
WO2023141880A1 true WO2023141880A1 (zh) 2023-08-03

Family

ID=87469940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074321 WO2023141880A1 (zh) 2022-01-27 2022-01-27 主动式传感器高效能光场投射的装置

Country Status (1)

Country Link
WO (1) WO2023141880A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251795A (ja) * 2004-03-01 2005-09-15 Casio Comput Co Ltd 発光ダイオードを備えた光源及びそれを用いた測距装置
US20110199581A1 (en) * 2010-02-12 2011-08-18 Ruei-Bin Jhang Optical projection system and method for reducing unessential beams formed therein
CN103403573A (zh) * 2011-12-20 2013-11-20 赫普塔冈微光有限公司 光电模块及包含光电模块的装置
CN110392539A (zh) * 2017-03-02 2019-10-29 昕诺飞控股有限公司 照明系统和方法
CN110792985A (zh) * 2018-08-01 2020-02-14 深圳市绎立锐光科技开发有限公司 光源装置及前照灯系统
CN111381430A (zh) * 2018-12-25 2020-07-07 精工爱普生株式会社 光源装置以及投影仪
TW202210893A (zh) * 2020-09-07 2022-03-16 豐菱電機有限公司 可調變光場範圍和具備高效能發射的通行感測器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251795A (ja) * 2004-03-01 2005-09-15 Casio Comput Co Ltd 発光ダイオードを備えた光源及びそれを用いた測距装置
US20110199581A1 (en) * 2010-02-12 2011-08-18 Ruei-Bin Jhang Optical projection system and method for reducing unessential beams formed therein
CN103403573A (zh) * 2011-12-20 2013-11-20 赫普塔冈微光有限公司 光电模块及包含光电模块的装置
CN110392539A (zh) * 2017-03-02 2019-10-29 昕诺飞控股有限公司 照明系统和方法
CN110792985A (zh) * 2018-08-01 2020-02-14 深圳市绎立锐光科技开发有限公司 光源装置及前照灯系统
CN111381430A (zh) * 2018-12-25 2020-07-07 精工爱普生株式会社 光源装置以及投影仪
TW202210893A (zh) * 2020-09-07 2022-03-16 豐菱電機有限公司 可調變光場範圍和具備高效能發射的通行感測器

Similar Documents

Publication Publication Date Title
US8814384B2 (en) Light having LED modules
KR20120104282A (ko) 조명 모듈
US11047548B2 (en) Lens, light source module and lighting device
CN103206665A (zh) 透镜和具有该透镜的照明装置
TWI760253B (zh) 可調變光場範圍和具備高效能發射的通行感測器
US6916105B2 (en) Optical assembly for light emitting diode package
JPH02201396A (ja) 発光ストリップ
JP2015520915A (ja) アレイ照明システム
WO2023141880A1 (zh) 主动式传感器高效能光场投射的装置
US10969473B2 (en) Infrared range-measurement device and TIR lens
TWI781881B (zh) 主動式感測器高效能光場投射的裝置
US9625635B2 (en) Light source and backlight module
US20100118543A1 (en) Methodology of optical feedback for led lighting
US20200340631A1 (en) Holding Collimator Elements In A Lighting Arrangement
CN214069084U (zh) 一种高性能一字线激光器
CN208239782U (zh) 照射模组及其多功能成像器件
US20120081896A1 (en) Modular optical system for use with light emitting diodes in at least a wall wash configuration
CN203671317U (zh) Led环式棱镜光源
CN106164577B (zh) 光学透镜及用于背光的led灯模块
EP3404316B1 (en) A light distribution system of an led lamp
US20140313767A1 (en) Electronic incense assembly
WO2023060582A1 (zh) 可调制光场范围和具备高效能发射的通行传感器
WO2021217523A1 (zh) 电子设备
CN104197275A (zh) 一种用于光源的透镜
TWI797556B (zh) 感測器光學同軸的發射模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922726

Country of ref document: EP

Kind code of ref document: A1