WO2020024426A1 - 一种碳纤维表面上浆剂及其应用 - Google Patents

一种碳纤维表面上浆剂及其应用 Download PDF

Info

Publication number
WO2020024426A1
WO2020024426A1 PCT/CN2018/109379 CN2018109379W WO2020024426A1 WO 2020024426 A1 WO2020024426 A1 WO 2020024426A1 CN 2018109379 W CN2018109379 W CN 2018109379W WO 2020024426 A1 WO2020024426 A1 WO 2020024426A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
sizing agent
furan
polyester
fiber surface
Prior art date
Application number
PCT/CN2018/109379
Other languages
English (en)
French (fr)
Inventor
严兵
赵清新
施刘生
郎鸣华
何定军
张林强
刘腾达
刘圣强
张可可
钱馨馨
Original Assignee
江苏澳盛复合材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏澳盛复合材料科技有限公司 filed Critical 江苏澳盛复合材料科技有限公司
Publication of WO2020024426A1 publication Critical patent/WO2020024426A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/45Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic Table; Aluminates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/47Oxides or hydroxides of elements of Groups 5 or 15 of the Periodic Table; Vanadates; Niobates; Tantalates; Arsenates; Antimonates; Bismuthates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/402Amides imides, sulfamic acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/40Reduced friction resistance, lubricant properties; Sizing compositions

Definitions

  • the invention relates to the field of carbon fibers, in particular to a carbon fiber surface sizing agent and application thereof.
  • Carbon fiber is an inorganic fiber material with a carbon content of more than 90%. It has the advantages of high strength, high specific modulus, high temperature corrosion resistance, good electrical and thermal conductivity, and is widely used in various industries such as aerospace, transportation and other industries.
  • carbon fiber is a brittle material, and it is easy to fuzz and break during processing, which results in the decline of the mechanical properties of carbon fiber products. Therefore, in order to solve this problem, in the production process of carbon fiber, the surface of the carbon fiber must be sizing treated, and the surface of the carbon fiber should be wrapped with an organic film material. After the sizing, the wettability of the resin to the carbon fiber will be improved, the interface adhesion will be enhanced, and the mechanical properties of the carbon fiber composite material will be improved, especially the interlaminar shear strength.
  • sizing agents for sizing carbon fibers are all organic. And these sizing agents must improve the sizing effect through sizing aids such as surfactants. They all need to be dissolved and dispersed in volatile organic solvents.
  • the sizing can be accomplished by soaking carbon fibers in these solutions and then removing the organic solvents at high temperature.
  • the volatile removal of organic solvents will cause pollution of volatile organic compounds in the air.
  • patent CN102691211A provides a water-soluble sizing agent composed of water-soluble konjac oligosaccharide hydrosol and oxidized starch hydrosol.
  • the solvent is water, which can eliminate volatile organic pollution, but this water-soluble sizing agent is easy to absorb water in the air. , Reduce carbon fiber storage time, and affect the mechanical properties of carbon fiber materials.
  • an aqueous emulsion sizing agent that is, a certain method is used to uniformly disperse a water-insoluble sizing agent in water to form a water-soluble emulsion.
  • One method is to form a water-soluble emulsion by adding an emulsifier and stirring thoroughly.
  • the patent CN102828416A provides an emulsion carbon fiber sizing agent. By adding a surfactant and an inorganic ammonium salt, the emulsification effect and stability of epoxy resin in water are improved.
  • the composite water-based carbon fiber sizing agent proposed by the patent CN107022901A is composed of an emulsifier, an epoxy resin, an organic solvent, an aqueous polyamide-imide slurry, and water. It also contains an emulsifier and an organic solvent, and cannot solve the organic solvent.
  • Environmental pollution Although the aqueous emulsion sizing agent can reduce the environmental pollution of organic solvents, after all, organic sizing agents cannot be completely dissolved in water, and they will agglomerate or even precipitate when the storage time reaches a certain time, which affects the sizing effect.
  • the object of the present invention is to propose a carbon fiber surface sizing agent and its application, without using organic solvents or water, reducing environmental pollution and saving costs.
  • a carbon fiber surface sizing agent is provided.
  • the raw materials of the carbon fiber surface sizing agent include 100 parts by weight of a furan group-containing polyester and 5-20 parts of a furan group-containing epoxy compound. .
  • the carbon fiber surface sizing agent provided by the present invention uses a furan group-containing polyester and a furan group-containing epoxy compound as raw materials.
  • the furan group-containing polyester is liquid at normal temperature and can dissolve the furan group-containing epoxy compound. It can fully wet carbon fiber, can enhance the adhesion between carbon fiber and sizing agent, and improve the mechanical properties of carbon fiber composites.
  • furan group can provide excellent properties such as high temperature resistance, corrosion resistance and solvent resistance of polyester;
  • furan-containing Furan groups in epoxy compounds can enhance the adhesion of carbon fibers to sizing agents and compatibility with furan-containing polyesters, while epoxy groups in furan-based epoxy compounds can be at a certain temperature It reacts with polyester to crosslink and solidify, which improves the mechanical strength of the sizing agent.
  • the addition amount of the furan group-containing epoxy compound is 5 to 20 parts by weight, which can ensure that the mechanical properties of the polyester after curing are sufficient without wasting raw materials.
  • the furan group-containing polyester refers to a polyester prepared by polycondensation of at least one furan group-containing polyol, polyphenol, or polyacid with other polyols, polyphenols, or polyacid.
  • the furan-group-containing polyester specifically includes a polyester of furan dicarboxylic acid, a polyester of furan tricarboxylic acid, a polyester of furan tetracarboxylic acid, a polyester of furan diacetic acid, a polyester of furan triacetic acid, and a polymer of furan tetraacetic acid.
  • the furan group-containing polyester includes a furan dicarboxylic acid polyester.
  • the polyester of furandicarboxylic acid is specifically a polyester obtained by polymerizing furandicarboxylic acid and a polyol containing 2 to 10 carbon atoms, or a furan dicarboxylic acid and other polybasic acids and a polyol containing 2 to 10 carbon atoms Copolyester.
  • polymers of furandicarboxylic acid and ethylene glycol polymers of furandicarboxylic acid and propylene glycol, homopolymers or copolymers of furandicarboxylic acid and glycerol polymers or their copolymers with other polyacids and polyols .
  • the furan group-containing polyester includes a dimethylolfuran polyester.
  • the polyester of dimethylolfuran is specifically a polyester obtained by polymerizing dimethylolfuran with a polybasic acid containing 2 to 10 carbon atoms.
  • polymers of dimethylolfuran and oxalic acid are examples of polymers of dimethylolfuran and oxalic acid.
  • the furan group-containing epoxy compound refers to a compound containing a furan group and an epoxy group, and the content of the furan group-containing epoxy compound is preferably 8-15 parts.
  • the furan group-containing epoxy compound includes a compound represented by Formula I,
  • the raw material of the carbon fiber surface sizing agent further comprises 5-25 parts by weight of one or a combination of polyethylene glycol diglycidyl ether and polypropylene glycol diglycidyl ether. More preferably, the weight parts of polyethylene glycol diglycidyl ether or polypropylene glycol diglycidyl ether or a combination of both are 8-15 parts.
  • the raw material of the carbon fiber surface sizing agent further comprises 5-20 parts by weight of metal oxide powder with a particle size of less than 100 nm, and the thermal conductivity of the carbon fiber sizing agent is increased by adding the metal oxide powder to obtain thermal conductivity.
  • the metal oxide powder is a combination of one or more of magnesium oxide, calcium oxide, aluminum oxide, bismuth oxide, zinc oxide, and copper oxide. More preferably, the diameter of the metal oxide powder is less than 80 nm, and the weight part thereof is 8-15 parts.
  • the metal oxide powder is a combination of one or more of alumina, bismuth oxide, and zinc oxide. Further, the metal oxide powder is a mixture of alumina and bismuth oxide, and a weight ratio of the alumina and bismuth oxide is 3: 1-1: 3, and preferably 1: 1: 1: 2.
  • the viscosity of the carbon fiber surface sizing agent at 25 ° C. is greater than 1000 mPa ⁇ s and less than 10,000 mPa ⁇ s.
  • the viscosity of the carbon fiber surface sizing agent at 25 ° C. is 3000-8000 mPa ⁇ s.
  • the sizing agent provided by the invention can not only affect the performance of carbon fiber after sizing, but also has better processing performance and reduces processing cost.
  • a method for preparing the above-mentioned carbon fiber surface sizing agent includes the following steps:
  • the preferred polyester prepolymer has a viscosity of 3,000 to 8000 mPa ⁇ s at 25 ° C.
  • the furan-group-containing polyester prepolymer and the furan-group-containing epoxy compound are mixed with diglycidyl ether and / or metal oxide powders to obtain a carbon fiber surface sizing agent.
  • an application of the carbon fiber surface sizing agent to carbon fibers is also provided.
  • the carbon fibers are dipped and threaded in the sizing agent, and then the sizing carbon fibers are obtained through a first heat treatment process and a second heat treatment process.
  • the temperature range of the first heat treatment process is 100 to 150 ° C
  • the temperature range of the second heat treatment process is 150 to 180 ° C.
  • the polyester is further polymerized, the molecular chain length is increased, and the furan group-containing polyester is reacted with the epoxy compound to be cross-linked and cured, thereby improving its excellent properties of high temperature corrosion resistance and solvent resistance, thereby improving carbon fiber Performance.
  • the heat treatment times of the first heat treatment process and the second heat treatment process are each greater than 20 minutes, and preferably, the heat treatment times are each greater than 30 minutes.
  • the weight of the sizing agent in the sizing carbon fiber is 5-20% of the total weight of the sizing carbon fiber. Beyond this range, the overall performance of carbon fibers will deteriorate. More preferably, the mass of the sizing agent is 8-15% of the total mass of the carbon fiber after sizing. Preferably, the wetting time of the carbon fiber in the sizing agent is 0.5-20 min.
  • the present invention adopts the above solution, and has at least one of the following advantages compared with the prior art:
  • the sizing agent provided by the present invention contains a furan-group-containing polyester that is liquid at normal temperature, and does not require the use of an organic solvent or water, which reduces the treatment of organic solvents or wastewater and environmental pollution, and saves costs.
  • the furan group in the sizing agent provided by the present invention can improve the thermal conductivity of the resin; more preferably, a metal oxide powder is added to the sizing agent, and the metal oxide powder is evenly distributed therein, which further improves the sizing agent.
  • Thermal conductivity The sizinged carbon fiber still has good thermal conductivity and can be used as a thermally conductive material.
  • the carbon fiber material treated by the sizing agent of the present invention has better toughness, has good interface compatibility with the resin matrix, and improves the mechanical properties of the composite material.
  • the carbon fiber sized by the sizing agent provided by the present invention is suitable for thermosetting resin composite materials such as epoxy resins, unsaturated resins, and phenolic resins, and is particularly suitable for composite materials of epoxy resins and unsaturated resins.
  • Number average particle size measured with a laser particle size analyzer.
  • Viscosity Measured with a rotational viscometer.
  • Sizing agent mass fraction after carbon fiber sizing It is characterized by measuring the ratio of the difference between carbon fiber sizing before and after sizing and the mass of carbon fiber after sizing.
  • Tensile strength determined according to GB / T1447-2005, the sample was cut into a type II pattern with a length of 250mm and a length of the carbon fiber filaments in the direction of the arrangement. Stretching rate is 5mm / min.
  • Thermal conductivity measured according to GB / T3139-2005, the sample is cut to a length of 100mm and a width of 100mm.
  • A1 Polyethylene glycol-2,5-difuran methyl ester, which is specifically prepared from oxalic acid and 2,5-dimethylolfuran according to the method described in the examples, and has a viscosity of 2500 mPa ⁇ s at 25 ° C.
  • A2 Polyethylene 2,5-furandicarboxylate, which is specifically prepared from 2,5-furandicarboxylic acid and ethylene glycol according to the method described in the examples, and has a viscosity of 4000 mPa ⁇ s at 25 ° C.
  • A2 Polyglyceryl 2,5-furandicarboxylate, which is specifically prepared from 2,5-furandicarboxylic acid and glycerol according to the method described in the examples, and has a viscosity of 6000 mPa ⁇ s at 25 ° C.
  • B1 a compound represented by the general formula I, wherein R is n-decyl; prepared according to Example 3 in the patent CN 05906644A, and the epoxy value is 0.40.
  • B2 a compound represented by the general formula I, wherein R is hydroxyethyloxyethyl; prepared according to Example 5 in the patent CN105906644A, and the epoxy value is 0.45.
  • C2 polypropylene glycol diglycidyl ether; produced by Wuhan Yuancheng Gongchuang Technology Co., Ltd., epoxy value is 0.3.
  • D1 Alumina, sold by Nanjing Apure Nano Materials Co., Ltd., with a particle size of 50 nm and a specific surface of 60 m 2 / g.
  • D2 Bismuth oxide, sold by Nanjing Apure Nano Materials Co., Ltd., with a particle size of 40 nm and a specific surface of 25.8 m 2 / g.
  • the carbon fiber sizing agent of the present invention is prepared according to the following steps:
  • the furan-group-containing polyester prepolymer is mixed with the furan-group-containing epoxy compound, diglycidyl ether, and metal oxide powder at 25 ° C, and the mixture is uniformly mixed to obtain a thermally conductive carbon fiber surface sizing agent.
  • the polyethylene glycol prepolymer and polyethylene glycol diglycidyl ether are mixed and stirred at 25 ° C to obtain a carbon fiber surface sizing agent.
  • the polybasic acid and polyol for synthesizing the furan group-containing polyester are mixed uniformly with the catalyst Sb 2 O 3 and heated to 100 ° C. to obtain a polyester prepolymer having a viscosity of 2500 mPa ⁇ s at 25 ° C.
  • the furan group-containing polyester prepolymer and polyethylene glycol diglycidyl ether are mixed and stirred at 25 ° C to obtain a carbon fiber surface sizing agent.
  • the carbon fiber surface sizing agent prepared in the examples and comparative examples was impregnated with carbon fiber filaments (T300-12000 manufactured by Toray Corporation of Japan, with a fineness of 800 g / 1000 m and a diameter of 0.76 mm) for 10 minutes, and then heat-treated at 130 ° C for 30 minutes and then at 160 ° C The carbon fiber after sizing was obtained by heat treatment for 30 min, and the content of the sizing agent was determined.
  • Non-sizing carbon fiber yarn (T300-12000 manufactured by Toray Corporation, Japan, fineness of 800g / 1000m, diameter of 0.76mm).
  • the prepared epoxy resin boards were tested for tensile strength in the direction of fiber filaments and thermal conductivity in the thickness direction.
  • the sizing agent content and test results are shown in Table 2.
  • the carbon fiber sizing agent of the present invention has stronger adhesion to carbon fibers, which can better protect the carbon fibers and improve the mechanical properties of the carbon fiber composite material.
  • the sizing agent has good thermal conductivity, which helps to improve the thermal conductivity of the carbon fiber and its composite material after the sizing agent, which is more widely used.
  • the sizing agent of the present invention does not need to use an organic liquid or water as a solvent, avoids environmental pollution by the solvent, and saves raw material costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本发明公开了一种碳纤维表面上浆剂及其在碳纤维上的应用。所述碳纤维表面上浆剂的原料包括100重量份的含呋喃基的聚酯及5-20份的含呋喃基的环氧化合物。所述碳纤维表面上浆剂的原料还包括5-25重量份的聚乙二醇二缩水甘油醚、聚丙二醇二缩水甘油醚中的一种或两种的组合。所述碳纤维表面上浆剂的原料还包括5-20重量份的粒径小于100nm的金属氧化物粉末。本发明提供的上浆剂中含有常温下为液体的含呋喃基的聚酯,不需要使用有机溶剂或水,减少有机溶剂或废水的处理和对环境的污染,且节约成本。本发明提供的上浆剂中的呋喃基团可以提高树脂的导热性,上浆后的碳纤维仍然具有良好的导热性能,可以用作导热材料。

Description

一种碳纤维表面上浆剂及其应用
相关申请的交叉引用
本申请要求2018年7月30日提交的申请号为CN 201810852568.4的中国专利申请的优先权,其全部内容通过引用的方式并入本发明中。
技术领域
本发明涉及碳纤维领域,特别涉及一种碳纤维表面上浆剂及其应用。
背景技术
碳纤维是含碳质量分数在90%以上的无机纤维材料,具有高强度、高比模量、耐高温腐蚀、导电导热性能好等优点,广泛运用于航空航天、交通运输等各行各业。但是,碳纤维是脆性材料,在加工过程中容易起毛和断裂,导致碳纤维产品力学性能的下降。因此,为了解决这一问题,在碳纤维的生产工艺中都要对碳纤维进行表面上浆处理,在碳纤维的表面包裹一层有机薄膜材料,这样可以提高碳纤维的集束性和耐磨性,减少起毛和断裂的情况发生,同时上浆后也会提高树脂对碳纤维的浸润性,增强界面粘附力,提高碳纤维复合材料的力学性能,特别是层间剪切强度。
现阶段,给碳纤维上浆的上浆剂都是有机物。并且这些上浆剂必须通过上浆助剂如表面活性剂等材料提高上浆效果。它们都需要溶解分散在易挥发的有机溶剂中,通过将碳纤维浸泡在这些溶液中,再经过高温除去有机溶剂才能完成上浆。但是有机溶剂的挥发去除会造成空气中挥发性有机物的污染。为此,人们想到运用水溶性高分子溶于水形成水溶性上浆剂,来解决有机溶剂对环境的污染。如专利CN102691211A提供了一种由水溶性魔芋低聚糖水溶胶和氧化淀粉水溶胶组成的水溶性上浆剂,溶剂为水,可以消除挥发性有机污染,但是这种水溶性上浆剂在空气中易吸水,降低碳纤维储存时间,并影响碳纤维材料的力学性能。
为了应对上述的问题,人们又有发明出水性乳液性上浆剂,即通过一定的手段将不溶于水的上浆剂均匀地分散在水中形成水溶性乳液。其中一种手段是通过加入乳化剂并充分搅拌形成水溶性乳液。比如专利CN102828416A提供了乳液性碳纤维上浆剂,通过加入表面活性剂和无机铵盐来提高环氧树脂在水中的乳化效果和稳定性。专利CN107022901A提出来的复合型 水基碳纤维上浆剂,由乳化剂、环氧树脂、有机溶剂、聚酰胺酰亚胺水性浆料和水组成,其中还是含有乳化剂和有机溶剂,并不能解决有机溶剂对环境的污染。虽然水性乳液性上浆剂可以减少有机溶剂对环境的污染,但是有机上浆剂毕竟不能完全溶于水,在储存时间达到一定时间就会团聚甚至沉淀,影响上浆效果。
发明内容
针对上述现有技术中存在的不足和问题,本发明的目的在于提出一种碳纤维表面上浆剂及其应用,不需使用有机溶剂或水,减少环境污染且节约成本。
根据本发明的第一个方面,提供了一种碳纤维表面上浆剂,所述碳纤维表面上浆剂的原料包括100重量份的含呋喃基的聚酯及5-20份的含呋喃基的环氧化合物。本发明提供的碳纤维表面上浆剂,原料采用含呋喃基的聚酯以及含呋喃基的环氧化合物,其中含呋喃基的聚酯在常温下为液体,可以溶解含呋喃基的环氧化合物,并能充分浸润碳纤维,可以增强碳纤维与上浆剂的粘附力,提高碳纤维复合材料的力学性能,同时,呋喃基可以提供聚酯耐高温、耐腐蚀性和耐溶剂性等优良性能;此外,含呋喃基的环氧化合物中的呋喃基可以增强碳纤维与上浆剂的粘附力以及和含呋喃基的聚酯的相容性,而呋喃基的环氧化合物中的环氧基团可以在一定温度下与聚酯反应而交联固化,提高上浆剂的力学强度。而且含呋喃基的环氧化合物的添加量为5~20重量份,既能保证聚酯固化后的力学性能足够,又不会浪费原料。
具体地,含呋喃基的聚酯是指由至少一种含有呋喃基的多元醇、多元酚或多元酸与其他多元醇、多元酚或多元酸缩聚制得的聚酯。所述含呋喃基的聚酯具体包括呋喃二甲酸的聚酯、呋喃三甲酸的聚酯、呋喃四甲酸的聚酯、呋喃二乙酸的聚酯、呋喃三乙酸的聚酯、呋喃四乙酸的聚酯、呋喃二甲醇的聚酯、呋喃二乙醇的聚酯、呋喃三甲醇的聚酯、呋喃四甲醇的聚酯、呋喃三乙醇的聚酯、呋喃四乙醇的聚酯中的一种或一种以上。
优选地,所述含呋喃基的聚酯包括呋喃二甲酸的聚酯。所述呋喃二甲酸的聚酯具体为呋喃二甲酸与含有2-10个碳原子的多元醇聚合得到的聚酯,或为呋喃二甲酸与其它多元酸和含有2-10个碳原子的多元醇的共聚酯。如,呋喃二甲酸和乙二醇的聚合物、呋喃二甲酸和丙二醇的聚合物、呋喃二甲酸和丙三醇聚合物的均聚物或共聚物或它们与其它多元酸、多元醇的共聚物。
优选地,所述含呋喃基的聚酯包括二羟甲基呋喃的聚酯。所述二羟甲基呋喃的聚酯具体 为二羟甲基呋喃与含有2-10个碳原子的多元酸聚合得到的聚酯。如,二羟甲基呋喃和乙二酸的聚合物。
具体地,所述含呋喃基的环氧化合物是指含有呋喃基和环氧基团的化合物,所述含呋喃基的环氧化合物的含量优选为8-15份。
优选地,所述含呋喃基的环氧化合物包括通式I所示的化合物,
Figure PCTCN2018109379-appb-000001
通式I中,R为C1-C12的烷基或为
Figure PCTCN2018109379-appb-000002
n=1-20,R 1为H、甲基或乙基。
更优选地,所述含呋喃基的环氧化合物为通式I所示的化合物,且通式I中,R为
Figure PCTCN2018109379-appb-000003
n=5-10,R 1为H。
在一优选的实施例中,所述碳纤维表面上浆剂的原料还包括5-25重量份的聚乙二醇二缩水甘油醚、聚丙二醇二缩水甘油醚中的一种或两种的组合。更优选地,聚乙二醇二缩水甘油醚或聚丙二醇二缩水甘油醚或二者的组合的重量份数为8-15份。通过在原料中添加2-25重量份的聚乙二醇二缩水甘油醚和/或聚丙二醇二缩水甘油醚,其能够与原料中的含呋喃基的聚酯反应,在上浆后增加碳纤维的韧性,并提高碳纤维与有机物基体的界面相容性,提高碳纤维材料的力学性能。
在一优选的实施例中,所述碳纤维表面上浆剂的原料还包括5-20重量份的粒径小于100nm的金属氧化物粉末,通过添加金属氧化物粉末提高碳纤维上浆剂的导热性来获得导热型碳纤维表面上浆剂。所述金属氧化物粉末为氧化镁、氧化钙、氧化铝、氧化铋、氧化锌、氧化铜中的一种或多种的组合。更优选地,所述金属氧化物粉末的直径小于80nm,其重量份数为8-15份。进一步地,所述金属氧化物粉末为氧化铝、氧化铋、氧化锌中的一种或多种的组合。更进一步地,所述金属氧化物粉末为氧化铝和氧化铋的混合物,且氧化铝和氧化 铋的重量比为3:1-1:3,优选为1:1-1:2。
具体地,所述碳纤维表面上浆剂在25℃下的粘度大于1000mPa·s且小于10000mPa·s。优选地,所述碳纤维表面上浆剂在25℃下的粘度为3000-8000mPa·s。本发明提供的上浆剂既能够在上浆后不影响碳纤维的性能,又具有较好的加工性能,减少加工成本。
根据本发明的第二个方面,还提供了一种上述碳纤维表面上浆剂的制备方法,该制备方法包括如下步骤:
A、将合成所述含呋喃基的聚酯的多元酸和多元醇与催化剂Sb 2O 3混合均匀并升温到80℃~120℃反应得到在25℃时粘度在1000~10000mPa·s的聚酯预聚物。优选的聚酯预聚物在25℃时粘度在3000~8000mPa·s。
B、将含呋喃基的聚酯预聚物与含呋喃基的环氧化合物混合搅拌均匀,即得到碳纤维表面上浆剂。
优选地,所述步骤B中,将含呋喃基的聚酯预聚物及含呋喃基的环氧化合物与二缩水甘油醚和/或金属氧化物粉末混合搅拌均匀,即得到碳纤维表面上浆剂。
根据本发明的第三个方面,还提供了一种所述碳纤维表面上浆剂在碳纤维中的应用。其中,将碳纤维在所述上浆剂中浸渍走丝后,经过第一热处理过程、第二热处理过程得到上浆后的碳纤维。第一热处理过程的温度范围为100~150℃,第二热处理过程的温度范围为150~180℃。通过热处理,促进聚酯进一步聚合,提高分子链的长度,并且让含呋喃基的聚酯与环氧化合物反应交联固化,提高其具有耐高温腐蚀和耐溶剂性的优良性能,从而可以提高碳纤维的性能。第一热处理过程、第二热处理过程的热处理时间分别大于20min,优选的,热处理时间分别大于30min。
优选地,上浆后的碳纤维中上浆剂的重量为上浆后的碳纤维总重量的5-20%。超过这个范围,碳纤维的综合性能都会变差。更优选地,上浆剂的质量为上浆后的碳纤维总质量的8-15%。优选地,碳纤维在上浆剂中的浸润时间为0.5-20min。
本发明采用以上方案,相比现有技术至少具有如下优点之一:
1、本发明提供的上浆剂中含有常温下为液体的含呋喃基的聚酯,不需要使用有机溶剂 或水,减少有机溶剂或废水的处理和对环境的污染,且节约成本。
2、本发明提供的上浆剂中的呋喃基团可以提高树脂的导热性;更优地,在上浆剂中还添加金属氧化物粉末,金属氧化物粉末均匀地分布其中,进一步地提高上浆剂的导热性能,上浆后的碳纤维仍然具有良好的导热性能,可以用作导热材料。
3、本发明的上浆剂处理后的碳纤维材料具有更好的韧性,并且与树脂基体有很好的界面相容性,提高了复合材料的力学性能。通过本发明提供的上浆剂上浆后的碳纤维适用于环氧树脂、不饱和树脂、酚醛树脂等的热固性树脂复合材料,尤其适用于环氧树脂、不饱和树脂的复合材料。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域的技术人员理解。
本发明涉及的性能评价及其评价方法
数均粒径:用激光粒度仪测定。
粘度:用旋转粘度仪测定。
碳纤维上浆后上浆剂质量分数:以测量碳纤维上浆前后差值与上浆后碳纤维的质量的比值表征。
拉伸强度:按GB/T1447-2005测定,将样品裁成Ⅱ型式样,长度为250mm,长度为碳纤维长丝的排列方向。拉伸速率5mm/min。
导热系数:按GB/T3139-2005测定,将样品裁成长100mm、宽100mm的试样。
本发明实施例和对比例所需原料
A、含呋喃基的聚酯
A1:聚乙二酸-2,5-二呋喃甲酯,具体由乙二酸和2,5-二羟甲基呋喃按照实施例所述的方法制得,25℃时粘度为2500mPa·s。
A2:聚2,5-呋喃二甲酸乙二酯,具体由2,5-呋喃二甲酸和乙二醇按照实施例所述的方法制得,25℃时粘度为4000mPa·s。
A2:聚2,5-呋喃二甲酸丙三酯,具体由2,5-呋喃二甲酸和丙三醇按照实施例所述的方法制 得,25℃时粘度为6000mPa·s。
B、含呋喃基的环氧化合物
B1:通式I所示化合物,其中R是正癸基;按照专利CN 05906644A中实施例3制备得到,环氧值为0.40。
B2:通式I所示化合物,其中R是羟乙基氧乙基;按照专利CN105906644A中实施例5制备得到,环氧值为0.45。
B3:通式I所示化合物,其中R 1是H,n=8;先以聚合度n=8的聚乙二醇和邻苯二甲酸酰胺混合溶于四氢呋喃中,在偶氮二甲酸乙二酯的作用下制备得到聚乙二醇单端邻苯二甲酰亚胺;再将聚乙二醇单端邻苯二甲酰亚胺与无水乙醇中与水合肼反应制备出单端基氨基聚乙二醇。参照专利CN105906644A中实施例5的制备方法,用单端基氨基聚乙二醇代替(2-氨基乙氧基)乙醇,得到产物,环氧值为0.27。
C、二缩水甘油醚
C1:聚乙二醇二缩水甘油醚;武汉远成共创科技有限公司产,环氧值0.5。
C2:聚丙二醇二缩水甘油醚;武汉远成共创科技有限公司产,环氧值0.3。
D、金属氧化物
D1:氧化铝,南京爱普瑞纳米材料有限公司售,粒径为50nm,比表面为60m 2/g。
D2:氧化铋,南京爱普瑞纳米材料有限公司售,粒径为40nm,比表面为25.8m 2/g。
实施例1-10
分别按照表1中原料和配方按照如下步骤制备得到本发明碳纤维上浆剂:
1、将合成含呋喃基的聚酯的多元酸和多元醇(等mol比)与催化剂Sb 2O 3(含量为多元酸的0.2mol%)混合均匀并升温到105℃反应一定时间,得到在25℃时粘度在1000~10000mPa·s的聚酯预聚物。
2、将含呋喃基的聚酯预聚物与含呋喃基的环氧化合物、二缩水甘油醚和金属氧化物粉末在25℃混合搅拌均匀,即得到导热型碳纤维表面上浆剂。
表1(以含呋喃基的聚酯为100重量份为标准)
Figure PCTCN2018109379-appb-000004
Figure PCTCN2018109379-appb-000005
对比例1
1、将乙二酸和乙二醇与催化剂Sb 2O 3混合均匀并升温到100℃反应得到在25℃时粘度在2500mPa·s的聚酯预聚物。
2、将聚乙二酸乙二醇酯预聚物与聚乙二醇二缩水甘油醚在25℃混合搅拌均匀,即得到碳纤维表面上浆剂。
对比例2
1、将合成含呋喃基的聚酯的多元酸和多元醇与催化剂Sb 2O 3混合均匀并升温到100℃反应得到在25℃时粘度在2500mPa·s的聚酯预聚物。
2、将含呋喃基的聚酯预聚物与聚乙二醇二缩水甘油醚在25℃混合搅拌均匀,即得到碳纤维表面上浆剂。
将实施例和对比例制备的碳纤维表面上浆剂浸润碳纤维长丝(日本东丽株式会社产T300-12000,纤度为800g/1000m,直径0.76mm)10min,然后在130℃热处理30min、再在160℃热处理30min得到上浆后的碳纤维,并测定其中上浆剂的含量。
对比例3
不上浆的碳纤维丝(日本东丽株式会社产T300-12000,纤度为800g/1000m,直径0.76mm)。
碳纤维增强环氧树脂的制作和性能测试
1、将混合均匀的双酚A型环氧树脂E-51和固化剂乙二胺(约为10g/KG环氧树脂)注入4mm厚模具中,并于80℃预固化1h形成1.5mm预固化环氧树脂层。
2、在预固化环氧树脂层上按一个方向均匀紧密铺设一层上述实施例和对比例得到的碳纤维长丝,并加压使其粘连其上。
3、混合均匀的双酚A型环氧树脂E-51和固化剂乙二胺(约为10g/KG环氧树脂)注入并填满模具中,于80℃固化8h,得到碳纤维增强环氧树脂复合板。
对制备的环氧树脂板进行纤维长丝方向拉伸强度和厚度方向导热系数的测试。上浆剂含量以及测试结果如表2所示。
表2
Figure PCTCN2018109379-appb-000006
从表2中可以看出,与对比例相比本发明的碳纤维上浆剂与碳纤维的粘附力强,可以更好的保护碳纤维并提高碳纤维复合材料的力学性能。并且上浆剂有很好的导热性能,有助于提高上浆剂后碳纤维及其复合材料的导热性能,运用更加广泛。此外,本发明的上浆剂不需要使用有机液体或水作为溶剂,避免溶剂对环境的污染,并节约原料成本。
上述实施例只为说明本发明的技术构思及特点,是一种优选的实施例,其目的在于熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限定本发明的保护范围。凡根据本发所作的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种碳纤维表面上浆剂,其特征在于,所述碳纤维表面上浆剂的原料包括100重量份的含呋喃基的聚酯及5-20份的含呋喃基的环氧化合物。
  2. 根据权利要求1所述的碳纤维表面上浆剂,其特征在于,所述含呋喃基的聚酯包括呋喃二甲酸的聚酯、呋喃三甲酸的聚酯、呋喃四甲酸的聚酯、呋喃二乙酸的聚酯、呋喃三乙酸的聚酯、呋喃四乙酸的聚酯、呋喃二甲醇的聚酯、呋喃二乙醇的聚酯、呋喃三甲醇的聚酯、呋喃四甲醇的聚酯、呋喃三乙醇的聚酯、呋喃四乙醇的聚酯中的一种或一种以上。
  3. 根据权利要求2所述的碳纤维表面上浆剂,其特征在于,所述含呋喃基的聚酯包括呋喃二甲酸的聚酯或二羟甲基呋喃的聚酯;其中,所述呋喃二甲酸的聚酯为呋喃二甲酸与含有2-10个碳原子的多元醇聚合得到的聚酯,或为呋喃二甲酸与其它多元酸和含有2-10个碳原子的多元醇的共聚酯;所述二羟甲基呋喃的聚酯为二羟甲基呋喃与含有2-10个碳原子的多元酸聚合得到的聚酯。
  4. 根据权利要求1所述的碳纤维表面上浆剂,其特征在于,所述含呋喃基的环氧化合物包括通式I所示的化合物,
    Figure PCTCN2018109379-appb-100001
    通式I中,R为C1-C12的烷基或为
    Figure PCTCN2018109379-appb-100002
    n=1-20,R 1为H、甲基或乙基。
  5. 根据权利要求1所述的碳纤维表面上浆剂,其特征在于,所述碳纤维表面上浆剂的原料还包括5-25重量份的聚乙二醇二缩水甘油醚、聚丙二醇二缩水甘油醚中的一种或两种的组合。
  6. 根据权利要求1所述的碳纤维表面上浆剂,其特征在于,所述碳纤维表面上浆剂的原料还包括5-20重量份的粒径小于100nm的金属氧化物粉末。
  7. 根据权利要求6所述的碳纤维表面上浆剂,其特征在于,所述金属氧化物粉末为氧化镁、氧化钙、氧化铝、氧化铋、氧化锌、氧化铜中的一种或多种的组合。
  8. 根据权利要求1所述的碳纤维表面上浆剂,其特征在于,所述碳纤维表面上浆剂在25℃下的粘度大于1000mPa·s且小于10000mPa·s。
  9. 如权利要求1-8任一项所述的碳纤维表面上浆剂在碳纤维中的应用,其中将碳纤维在所述上浆剂中浸渍走丝,经过第一热处理过程、第二热处理过程得到上浆后的碳纤维,所述第一热处理过程的温度为100-150℃,所述第二热处理过程的温度为150-180℃。
  10. 根据权利要求9所述的碳纤维表面上浆剂在碳纤维中的应用,其特征在于,所述上浆后的碳纤维中所述上浆剂的重量为所述上浆后的碳纤维总重量的5-20%。
PCT/CN2018/109379 2018-07-30 2018-10-09 一种碳纤维表面上浆剂及其应用 WO2020024426A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810852568.4A CN109252373B (zh) 2018-07-30 2018-07-30 一种碳纤维表面上浆剂及其应用
CN201810852568.4 2018-07-30

Publications (1)

Publication Number Publication Date
WO2020024426A1 true WO2020024426A1 (zh) 2020-02-06

Family

ID=65049033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109379 WO2020024426A1 (zh) 2018-07-30 2018-10-09 一种碳纤维表面上浆剂及其应用

Country Status (2)

Country Link
CN (1) CN109252373B (zh)
WO (1) WO2020024426A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110438589A (zh) * 2019-08-15 2019-11-12 南京林业大学 一种高导热纳米碳纤维制备方法
CN114736028B (zh) * 2022-02-07 2023-07-28 中钢集团鞍山热能研究院有限公司 一种氧化镁陶瓷复合碳纤维及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058200A1 (ja) * 2011-10-21 2013-04-25 松本油脂製薬株式会社 炭素繊維用サイジング剤、炭素繊維ストランドおよび繊維強化複合材料
JP5692945B1 (ja) * 2014-10-29 2015-04-01 竹本油脂株式会社 炭素繊維用サイジング剤、炭素繊維用サイジング剤の調製方法及び炭素繊維ストランド
JP6048235B2 (ja) * 2013-03-13 2016-12-21 東レ株式会社 サイジング剤塗布炭素繊維およびサイジング剤塗布炭素繊維の製造方法
KR20170089473A (ko) * 2016-01-26 2017-08-04 주식회사 효성 탄소섬유 다발의 사이징제 부여방법
CN105906644B (zh) * 2016-05-24 2018-02-23 中国科学院宁波材料技术与工程研究所 一种呋喃基缩水甘油醚及其合成方法和应用
CN107840946A (zh) * 2016-09-19 2018-03-27 中国科学院宁波材料技术与工程研究所 一种生物基高分子化合物及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320641A (ja) * 2004-05-06 2005-11-17 Toray Ind Inc サイジング剤、炭素繊維および炭素繊維強化複合材料
CN101845755B (zh) * 2010-03-16 2012-06-27 天津碧海蓝天水性高分子材料有限公司 自乳化型碳纤维用聚氨酯类环氧上浆剂及其制备方法
CN101858037B (zh) * 2010-06-18 2011-11-23 济南大学 一种乳液型碳纤维上浆剂及其制备方法和应用
CN101941956A (zh) * 2010-07-23 2011-01-12 中国科学院上海有机化学研究所 一种具有碳碳双键的缩水甘油醚酯、合成方法及其用途
CN104389177A (zh) * 2014-11-06 2015-03-04 江苏航科复合材料科技有限公司 一种碳纤维上浆剂及其上浆方法
CN105484041A (zh) * 2016-01-21 2016-04-13 中复神鹰碳纤维有限责任公司 一种碳纤维用复合型水性乳液上浆剂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058200A1 (ja) * 2011-10-21 2013-04-25 松本油脂製薬株式会社 炭素繊維用サイジング剤、炭素繊維ストランドおよび繊維強化複合材料
JP6048235B2 (ja) * 2013-03-13 2016-12-21 東レ株式会社 サイジング剤塗布炭素繊維およびサイジング剤塗布炭素繊維の製造方法
JP5692945B1 (ja) * 2014-10-29 2015-04-01 竹本油脂株式会社 炭素繊維用サイジング剤、炭素繊維用サイジング剤の調製方法及び炭素繊維ストランド
KR20170089473A (ko) * 2016-01-26 2017-08-04 주식회사 효성 탄소섬유 다발의 사이징제 부여방법
CN105906644B (zh) * 2016-05-24 2018-02-23 中国科学院宁波材料技术与工程研究所 一种呋喃基缩水甘油醚及其合成方法和应用
CN107840946A (zh) * 2016-09-19 2018-03-27 中国科学院宁波材料技术与工程研究所 一种生物基高分子化合物及其制备方法

Also Published As

Publication number Publication date
CN109252373A (zh) 2019-01-22
CN109252373B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
CN1083850C (zh) 微胶囊型固化剂和热固性树脂组合物
EP2300517B1 (en) Method for the preparation of a reinforced thermoset polymer composite
Yang et al. Effect of fiber surface modification on water absorption and hydrothermal aging behaviors of GF/pCBT composites
Vu et al. Effect of micro/nano white bamboo fibrils on physical characteristics of epoxy resin reinforced composites
Zhou et al. Preparation of KH570-SiO 2 and their modification on the MF/PVA composite membrane
JP2002538278A (ja) 水性ポリアミド−アミド酸組成物
WO2020024426A1 (zh) 一种碳纤维表面上浆剂及其应用
Zhao et al. Si-Al hybrid effect of waterborne polyurethane hybrid sizing agent for carbon fiber/PA6 composites
Dehghan et al. Investigation of CNT modification of epoxy resin in CFRP strengthening systems
CN110358194B (zh) 一种抗静电聚丙烯复合材料及其制备方法
CN106835326B (zh) 高性能的石墨烯复合聚乙烯醇纤维及其制备方法、应用
Reddy Paluvai et al. Effect of cloisite 30B clay and sisal fiber on dynamic mechanical and fracture behavior of unsaturated polyester toughened epoxy network
EP3175980B1 (en) Continuous fiber composite and method for preparing continuous fiber composite
CN108004781B (zh) 一种碳纤维用聚酰胺树脂基悬浮液上浆剂及其制备方法
CN109183416B (zh) 一种水性碳纤维上浆剂及其制备方法和应用
Hari Sankar et al. Polyester/vinylester polymer hybrid blended nanocomposites: Effect of nano on mechanical and thermal properties
Satia et al. Properties of treated calcium copper titanate filled epoxy thin film composites for electronic applications
CN112029375B (zh) 一种无机有机杂化聚合物防腐涂料及其制备方法
CN109575562B (zh) 一种耐污的pc/abs合金及其制备方法
KR20220016051A (ko) 토우프레그
JP2010031198A (ja) 共重合ポリアミド微粒子、および炭素繊維強化複合材料
Zhang et al. A novel eco-friendly strategy on the interfacial modification of a carbon-fiber-reinforced polymer composite via chitosan encapsulation
CN109680368A (zh) 一种改性聚酯纤维丝的制备方法
TWI764575B (zh) 熱固化性樹脂組合物及纖維強化樹脂
Hu et al. Preparation of Inorganic Filler Modified Epoxy Resin Adhesive and Study on Its Compatibility with UDMH

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928557

Country of ref document: EP

Kind code of ref document: A1