WO2020024346A1 - 一种图案化金属薄膜的制备方法 - Google Patents

一种图案化金属薄膜的制备方法 Download PDF

Info

Publication number
WO2020024346A1
WO2020024346A1 PCT/CN2018/102253 CN2018102253W WO2020024346A1 WO 2020024346 A1 WO2020024346 A1 WO 2020024346A1 CN 2018102253 W CN2018102253 W CN 2018102253W WO 2020024346 A1 WO2020024346 A1 WO 2020024346A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal film
vacuum
silicon substrate
metal
evaporation
Prior art date
Application number
PCT/CN2018/102253
Other languages
English (en)
French (fr)
Inventor
王清
郑旭
栾金津
王宁
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Publication of WO2020024346A1 publication Critical patent/WO2020024346A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00523Etching material
    • B81C1/00539Wet etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/0038Processes for creating layers of materials not provided for in groups B81C1/00357 - B81C1/00373
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00388Etch mask forming
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material

Definitions

  • the invention relates to the field of strain sensing materials, in particular to a method for preparing a patterned metal film.
  • Strain sensors have been applied to many industrial systems, such as touch screens, barometric pressure monitors for vacuum instruments, and atmospheric pressure monitors for airplanes, all of which need to be able to sense pressure to generate strain and convert it into electrical signals.
  • strain sensors have been extended to wearable electronic devices and biomedical devices, advancing the development of wearable, biocompatible and implantable devices.
  • inelastic strain sensing materials are mostly used. Even if a high pressure is applied to the surface of the sensing material, the strain of the material is very small and the sensitivity of the sensing system is insufficient.
  • the use of interlayer stacked adhesive materials makes the thickness of the strained material larger, which further reduces the sensitivity of the sensing.
  • patterned metal films are gradually used for strain sensing materials.
  • the existing method for preparing a patterned metal thin film is a wet etching method, and this method requires two wet etchings to complete the patterning of the metal thin film.
  • the preparation process is not only cumbersome, the controllability is low, and pattern defects are prone to occur. Moreover, generating more chemical waste is not good for environmental protection.
  • the following is a systematic description of the process steps of the existing wet etching method and its problems.
  • chromium etchant chemical reagent, acidic solution
  • a patterned metallic silver film is obtained by the transfer.
  • the chromium metal etchant chemical reagent, acidic solution
  • the chromium metal etchant is used to etch away the bare metal silver film and the cured ultraviolet light glue
  • the films are simultaneously etched, but the same etchant has different etch rates for different materials.
  • the thickness of the two layers of film also has a great impact on whether it can be successfully etched.
  • the etchants need to be strictly controlled during the etching process. Solubility and reaction time. Therefore, the controllability of the patterning process of the metal thin film is low, the accuracy of the pattern is difficult to control, and pattern defects are prone to occur. Moreover, as the feature size decreases, the error will become larger and larger, so it is extremely easy to generate pattern defects.
  • pattern defects can be divided into the following four cases: Case 1 ( Figure 1a): the UV adhesive is completely etched, and the metal film is not completely etched. After the metal film is transferred, the surface film is not connected to form a pattern; Second ( Figure 1b): The ultraviolet light adhesive is not completely etched, and the metal film is completely etched. After the metal film is transferred, there will be a residual photoresist between the substrate and the metal film, which affects its performance; Case 3 ( Figure 1c): Excessive etching. If the metal film and the ultraviolet light glue are completely etched, the etching will continue, and the etchant will diffuse like two sides, causing the pattern to be damaged. Case 4 ( Figure 1d): If the ultraviolet light glue is completely etched If you stop the etching directly, the metal film may not be completely etched, which will also affect the pattern quality.
  • the present invention provides a method for preparing a patterned metal thin film.
  • a method for preparing a patterned metal thin film includes the following steps:
  • This step replaces the existing chemical reagent spin coating method with vacuum evaporation technology, so that the metal coating process is completed in a closed environment without using chemical reagents. Therefore, the preparation process is more green and environmentally friendly, and the experimenter's operating environment is healthier. Moreover, the introduction of vacuum evaporation into the process of preparing a patterned metal thin film is also conducive to improving the quality of the coating and making the coating process more controllable.
  • the spin-coated sample into the lithography machine, select a suitable pattern for photolithography at an exposure intensity of 200-220mJ / cm 2 , and use a developing solution to develop after the photolithography is completed to remove the uncured ultraviolet light.
  • Light glue then rinse the surface of the silicon substrate with deionized water, and finally dry the sample surface with nitrogen to expose the metal pattern under the uncured ultraviolet light glue;
  • Polydimethylsiloxane (PDMS base material) and curing agent are mixed at a mass ratio of 10: 1, and then placed in a vacuum box, and placed under a pressure of -0.04MPa to -0.08MPa for 30 minutes to remove air bubbles , Pour the defoamed PDMS prepolymer on the patterned silicon substrate, then put it in a vacuum drying box, and heat it at 90 ° C for 3h to cure the PDMS prepolymer, while applying a pressure of -0.04MPa A negative pressure of -0.08 MPa makes the PDMS prepolymer tightly bonded to the exposed metal film;
  • the metal film is vertically peeled from the silicon substrate, and the patterned metal film is directly transferred from the surface of the silicon substrate to the surface of the PDMS film, thereby obtaining a pattern Metal film.
  • the main innovation of this method is to directly transfer the exposed metal pattern by physical bonding after photolithography. Compared with the existing wet etching process, the preparation process is simpler, and the controllability of the preparation process is improved. The accuracy of the pattern; without the use of an etchant, and the introduction of vacuum evaporation metal film technology, the overall preparation process can be more green and environmentally friendly, and the operating environment of the experimenter is healthier.
  • the above metal target materials can be selected from gold, silver, aluminum, copper, iron, nickel, chromium or magnesium, and the target material purity must reach 99.99%.
  • the above-mentioned UV glue is preferably SU-8 or AZ-5214.
  • a certain type of UV glue corresponds to a developing solution.
  • the developing solution used with SU-8 is PGMEA
  • the developing solution used with AZ-5214 is AZ 300MIF.
  • the rotation speed is preferably controlled to 4000 rpm, and the AZ-5214 type ultraviolet light adhesive is spin-coated on the surface of the metal thin film for 40 seconds. This rotation speed and spin coating time can ensure that the AZ-5214 UV photoresist achieves the best lithographic thickness.
  • the exposure intensity is controlled to 210 mJ / cm 2 .
  • the exposure intensity value is the best condition for AZ-5214 UV adhesive.
  • the PDMS base material and the curing agent are the two components that make up the PDMS prepolymer, which are also commonly referred to as prepolymer A and crosslinker B. Both can be purchased directly from the market, and then Prepared in proportion.
  • the components of prepolymer A are mainly poly (dimethyl-methylvinylsiloxane) prepolymers, as well as trace platinum catalysts.
  • the component of crosslinker B is prepolymer with vinyl side chains and crosslinker poly (dimethyl-methylhydrogenosiloxane). . By mixing the two, the vinyl group can undergo a hydrosilylation reaction with a silicon-hydrogen bond, thereby forming a three-dimensional network structure.
  • the mechanical properties of PDMS can be controlled.
  • step (4) two steps of applying negative pressure conditions were also performed.
  • the first time the negative pressure was applied was after the PDMS base was mixed with the curing agent, the purpose was to remove as much air bubbles as possible from the PDMS prepolymer.
  • the second application of negative pressure is during the PDMS prepolymer curing process, the purpose is to extract the gas in the gap between the PDMS prepolymer and the silicon substrate sample (that is, to avoid the gap between the PDMS prepolymer and the silicon substrate) ), Make the PDMS prepolymer adhere to the exposed metal film as closely as possible.
  • the curing temperature of the PDMS prepolymer can also be adjusted accordingly.
  • the higher the temperature the faster the curing speed.
  • it can be heated at 60 ° C for 4h, or 120 ° C for 2h, etc., but The maximum temperature cannot exceed 180 ° C.
  • the invention adopts a physical bonding method and relies on the interfacial adhesion between the polymer and the patterned metal film to vertically peel the metal film from the silicon substrate, so that the patterned metal film is transferred from the surface of the silicon substrate to the surface of the polymer film.
  • This pattern transfer process does not require chemical etching, and the process of pattern transfer relying on physical bonding is highly controllable, which improves the accuracy of the pattern and makes the preparation process simpler.
  • the present invention replaces the existing chemical reagent spin coating method with a vacuum evaporation technology, so that the metal plating process is completed in a closed environment without using chemical reagents; and the present invention does not require the use of a engraving process during the patterning and pattern transfer of the metal thin film Etchant. Therefore, the preparation process is more green.
  • pattern transfer using wet etching is to simultaneously etch a cured ultraviolet light glue and a metallic silver film, but the same etchant has different etching rates for different materials.
  • Two layers The thickness of the film also has a great influence on whether it can be successfully etched, and the solubility and reaction time of the etchant need to be strictly controlled during the etching process. Therefore, the controllability of the patterning process of the metal thin film is low, the accuracy of the pattern is difficult to control, and pattern defects are prone to occur. Moreover, as the feature size decreases, the error will become larger and larger, so it is extremely easy to generate pattern defects.
  • the physical bonding method of the present invention relies on the interfacial adhesion between the polymer and the patterned metal film to vertically peel the metal film from the silicon substrate, so that the patterned metal film is transferred from the surface of the silicon substrate to the polymer film. surface.
  • This pattern transfer process does not require chemical etching, and the process of pattern transfer relying on physical bonding is highly controllable, which improves the accuracy of the pattern and makes the preparation process simpler.
  • the present invention replaces the existing chemical reagent spin coating method with a vacuum evaporation technology, so that the metal coating process is completed in a closed environment without using chemical reagents; and the present invention patterns the metal thin film No etchant is required during pattern transfer. Therefore, the preparation process is more green and environmentally friendly, making the experimenter's operating environment healthier, and because the use of chemical reagents is reduced, the preparation cost of metal thin film patterning is reduced.
  • Figure 1 is a schematic diagram of several defects prone to wet etching
  • FIG. 2 is a flowchart of a method of the present invention
  • FIG. 3 is a schematic diagram of a structure of a vacuum coating device.
  • a method for preparing a patterned metal thin film includes the following steps:
  • the cold water circulation system 21 of the vacuum evaporation device was opened, the silicon substrate was fixed downward on the sample table 22, the metallic silver target was placed in the evaporation boat 23, and the vacuum cover 24 was closed to form a closed chamber.
  • the closed chamber is evacuated until the vacuum degree is less than 5 ⁇ 10 -4 Pa.
  • the evaporation boat 23 is heated and evaporated, and the evaporation current is 120A.
  • the metal silver film The thickness is 11 nm and 10 nm.
  • the vacuum valve is closed, the gas is evacuated into the vacuum cover 24 through the air release valve, and then the vacuum cover is opened, and the sample of the vapor-deposited metal silver film is taken out.
  • the above-mentioned vacuum evaporation device can use existing conventional equipment.
  • the silicon substrate can be fixed by an insertion method. That is, opposite ends of the sample stage 22 are provided with opposite L-shaped racks, and the two L-shaped racks form slots. The silicon substrate can be directly inserted into the slot, and the front side is exposed downward, which is convenient for coating.
  • the detailed structure of the vacuum evaporation device will not be described in more detail here.
  • the present invention replaces the existing chemical reagent spin coating method with a vacuum evaporation technology, so that the metal coating process is completed in a closed environment without using chemical reagents. Therefore, the preparation process is more green and environmentally friendly. The operating environment is healthier.
  • the AZ5214-E type ultraviolet light adhesive was spin-coated on the surface of the metal silver film at a speed of 4000 rpm for 40 seconds to form an ultraviolet light adhesive layer 13.
  • the UV-coated sample was spin-coated into a lithography machine, and a suitable pattern was selected to perform lithography at an exposure intensity of 210 mJ / cm 2 .
  • the solution is developed using a developing solution (AZ 300MIF) to remove the uncured UV glue, and then the surface of the silicon substrate is rinsed with deionized water. Finally, the surface of the sample is blown dry with nitrogen to make the uncured UV light The metal pattern under the glue is exposed.
  • AZ 300MIF developing solution
  • the PDMS base material polydimethylsiloxane
  • the curing agent were mixed at a mass ratio of 10: 1, and then placed in a vacuum box, and left for 30 minutes under a pressure of -0.08 MPa to remove air bubbles.
  • the defoamed PDMS prepolymer was poured onto the patterned silicon substrate, and then placed in a vacuum drying box.
  • the PDMS prepolymer 14 was cured by heating at 90 ° C for 3 hours, and the applied pressure was -0.08MPa.
  • the negative pressure makes the PDMS prepolymer tightly adhere to the exposed metallic silver film. This step does not require the use of an etchant, making the preparation process more green and environmentally friendly, and making the experimenter's operating environment healthier
  • the metal film is vertically peeled from the silicon substrate, so that the patterned metal film is directly transferred from the surface of the silicon substrate to the surface of the PDMS film, and then patterned.
  • This step uses a physical bonding method instead of wet etching to perform pattern transfer, which not only makes the preparation process simpler, but also improves the controllability of the preparation process and the accuracy of the pattern.
  • the above metal targets can also be selected from gold, aluminum, copper, iron, nickel, chromium, or magnesium, and the purity of the targets must be 99.99%.
  • the above-mentioned UV glue can also be selected from SU-8, and the corresponding developing solution is PGMEA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)
  • Chemically Coating (AREA)

Abstract

一种图案化金属薄膜的制备方法,包括以下步骤:(1)真空蒸镀金属薄膜,打开真空蒸镀装置的冷水循环系统(21),将硅基片(12)正面向下固定于样品台(22),将金属靶材置于蒸发舟(23)内,闭合真空罩(24),形成密闭腔室;对密闭腔室进行抽气,直至真空度小于5×10 -4Pa;待真空罩(24)内压强达到所需的数值后,便对蒸发舟(23)加热进行蒸镀,蒸镀电流120A-180A,金属薄膜(11)厚度1nm-100μm;蒸镀完毕后,关闭抽真空阀门,通过放气阀向真空罩(24)内放气,然后打开真空罩(24),取出蒸镀好金属薄膜(11)的样品;(2)旋涂紫外光胶(13),在金属薄膜(11)的表面旋涂紫外光胶(13);(3)光刻图案,将旋涂上紫外光胶(13)的样品放入光刻机中,选择合适的图案在曝光强度为200-220mJ/cm 2下进行光刻,光刻完成后使用显影液显影,以去掉未固化的紫外光胶(13),然后用去离子水对硅基片(12)表面进行冲洗,最后用氮气将样品表面吹干,使未固化的紫外光胶(13)下面的金属图案暴露出来;(4)采用物理粘结法直接转移暴露出来的金属图案,将聚二甲基硅氧烷与固化剂按质量比为10:1混合,然后放入真空箱中,在压力为-0.04MPa至-0.08MPa的条件下放置30分钟去除气泡,将去气泡后的PDMS预聚物(14)倒在光刻出图案的硅基片(12)上,之后放入真空干燥箱中,在90℃条件下加热3h使PDMS预聚物(14)固化,同时施加压力为-0.04MPa至-0.08MPa的负压,使PDMS预聚物(14)与暴露出的金属薄膜(11)紧密的粘结在一起;然后,依靠PDMS预聚物(14)与裸露的金属薄膜(11)的界面粘结力,将金属薄膜(11)从硅基片(12)上垂直剥离,使图案化的金属薄膜(11)从硅基片(12)表面直接转移到PDMS薄膜表面,进而得到图案化金属薄膜(11)。

Description

一种图案化金属薄膜的制备方法 技术领域
本发明涉及应变传感材料领域,具体地说是涉及一种图案化金属薄膜的制备方法。
背景技术
应变传感器已应用到许多工业系统中,如触摸屏、真空仪器的气压监视器和飞机的大气压监视器等,所有这些都需要能够感知压力产生应变并将其转换成电信号。并且,应变传感器已扩展应用到可穿戴电子设备和生物医学设备,推进了可穿戴、生物相容和可植入设备的发展。
而在这些应用中,大都采用无弹性的应变传感材料,这种传感材料即使在其表面施加很高的压力,材料的应变也很小进而使传感系统敏感度不足。此外,使用层间堆叠粘合材料使应变材料厚度较大,进一步降低了传感的灵敏度。为了提高传感系统敏感度,目前,应变传感材料逐渐采用图案化金属薄膜。
现有的图案化金属薄膜的制备方法为湿法刻蚀法,而这种方法需要进行两次湿法刻蚀完成金属薄膜的图案化,制备过程不仅繁琐可控性低,容易出现图案缺陷,而且产生较多化学废料不利于环保。下面对现有湿法刻蚀法的工艺步骤以及其存在的问题进行较为系统的说明。
现有湿法刻蚀法制备图案化金属薄膜的步骤如下:
(1)在聚酰亚胺薄膜(PI)旋涂银纳米线,然后加热处理使溶液蒸发,在PI表面留下一层金属银薄膜;
(2)在金属银薄膜表面旋涂一层紫外光胶(AZ GX-601);
(3)使用光刻系统,导入要制备的图案作为掩模板,然后在紫外光的照射下使紫外光胶固化,之后使用显影液(化学试剂,弱碱溶液)洗掉未固化的紫外胶,得到与掩模板相同的图案(即固化紫外胶的图案);
(4)使用铬刻蚀剂(化学试剂,酸性溶液)刻蚀掉裸露的金属银薄膜和固化的紫外光胶,得到图案化的金属银薄膜;
(5)在表面旋涂一层聚合物薄膜(这里选择性很多,如PDMS、PVA),并使之固化;
(6)通过转移,得到图案化的金属银薄膜。
显然,这是一个纯化学法制备图案化金属薄膜的方法,需要进行两次湿法刻蚀,得到图案化的金属银薄膜。
该方法所存在的缺点系统阐述如下:
(1)在湿法刻蚀过程中,“使用铬刻蚀剂(化学试剂,酸性溶液)刻蚀掉裸露的金属银 薄膜和固化的紫外光胶”,是对固化的紫外光胶和金属银薄膜进行同步刻蚀,但是同种刻蚀剂对不同材料的刻蚀速率是不同的,两层薄膜的厚度对是否能够成功刻蚀也有很大影响,在刻蚀过程需要严格控制刻蚀剂的溶度和反应时间。因此使金属薄膜的图案化过程可控性低,图案精度难以控制,容易产生图案缺陷,而且随着特征尺寸的减小,误差会越来越大,因此极容易产生图案缺陷。
如图1所示,图案缺陷可以分成以下四种情况:情况一(图1a):紫外光胶被完全刻蚀,金属薄膜未完全刻蚀,转移金属薄膜后,表面薄膜相连无法形成图案;情况二(图1b):紫外光胶未被完全刻蚀,金属薄膜被完全刻蚀,转移金属薄膜后,基底和金属薄膜之间会有光胶残留,影响其性能;情况三(图1c):过度刻蚀,如果金属薄膜和紫外光胶被刻蚀完全后,继续进行刻蚀,刻蚀剂会像两边扩散,使图案破坏;情况四(图1d):如果紫外光胶被刻蚀完全后,直接停止刻蚀,可能金属薄膜会出现未完全刻蚀现象,同样会影响图案质量。
(2)现有技术制备过程需使用两次湿法刻蚀法,即使用碱性和酸性溶液分别进行刻蚀,不仅会产生较多的实验废液,造成环境污染,而且会提高材料的制备成本。
(3)湿法刻蚀法过程时长较久,并且需要严格控制刻蚀时间,因此制备过程复杂。
(4)实验人员长时间使用化学试剂,不利于实验者身体健康。
发明内容
基于上述技术问题,本发明提供一种图案化金属薄膜的制备方法。
本发明所采用的技术解决方案是:
一种图案化金属薄膜的制备方法,包括以下步骤:
(1)真空蒸镀金属薄膜
打开真空蒸镀装置的冷水循环系统,将硅基片正面向下固定于样品台,将金属靶材置于蒸发舟内,闭合真空罩,形成密闭腔室;对密闭腔室进行抽气,直至真空度小于5×10 -4Pa;待真空罩内压强达到所需的数值后,便对蒸发舟加热进行蒸镀,蒸镀电流120A-180A,金属薄膜厚度1nm-100μm;蒸镀完毕后,关闭抽真空阀门,通过放气阀向真空罩内放气,然后打开真空罩,取出蒸镀好金属薄膜的样品;
该步骤以真空蒸镀技术代替现有的化学试剂旋涂法,使金属镀膜过程在密闭环境内完成,无需使用化学试剂,因此制备过程更加绿色环保,使实验者的操作环境更加健康。而且将真空蒸镀引入到制备图案化金属薄膜的过程中,还有利于提升镀膜质量,且使得镀膜过程可控性强。
(2)旋涂紫外光胶
在金属薄膜的表面旋涂紫外光胶;
(3)光刻图案
将旋涂上紫外光胶的样品放入光刻机中,选择合适的图案在曝光强度为200-220mJ/cm 2下进行光刻,光刻完成后使用显影液显影,以去掉未固化的紫外光胶,然后用去离子水对硅基片表面进行冲洗,最后用氮气将样品表面吹干,使未固化的紫外光胶下面的金属图案暴露出来;
(4)采用物理粘结法直接转移暴露出来的金属图案
将聚二甲基硅氧烷(PDMS基料)与固化剂按质量比为10:1混合,然后放入真空箱中,在压力为-0.04MPa至-0.08MPa的条件下放置30分钟去除气泡,将去气泡后的PDMS预聚物倒在光刻出图案的硅基片上,之后放入真空干燥箱中,在90℃条件下加热3h使PDMS预聚物固化,同时施加压力为-0.04MPa至-0.08MPa的负压,使PDMS预聚物与暴露出的金属薄膜紧密的粘结在一起;
然后,依靠PDMS预聚物与裸露的金属薄膜的界面粘结力,将金属薄膜从硅基片上垂直剥离,使图案化的金属薄膜从硅基片表面直接转移到PDMS薄膜表面,进而得到图案化金属薄膜。
该方法的主要创新点就在于光刻后采用物理粘结法直接转移暴露出来的金属图案,相比于现有湿法刻蚀工艺,制备过程更加简单,同时提高制备过程的可控性,提高图案的精度;而且无需使用刻蚀剂,再加上真空蒸镀金属薄膜技术的引入,可使得整体制备过程更加绿色环保,使实验者的操作环境更加健康。
上述金属靶材选用金、银、铝、铜、铁、镍、铬或镁均可,靶材纯度需达到99.99%。
上述紫外光胶优选SU-8或AZ-5214,一般某种型号的紫外光胶对应一种显影液,其中与SU-8所配合使用的显影液为PGMEA,与AZ-5214所配合使用的显影液为AZ 300MIF。
上述步骤(2)中:优选控制转速为4000rpm,在金属薄膜表面上对AZ-5214型紫外光胶旋涂40s。该转速及旋涂时间可确保AZ-5214型紫外光胶实现最佳光刻厚度。
上述步骤中:当金属薄膜表面旋涂AZ-5214型紫外光胶时,控制曝光强度为210mJ/cm 2。该曝光强度值对于AZ-5214型紫外光胶为最佳条件。
上述步骤(4)中:PDMS基料和固化剂为组成PDMS预聚物的两个组分,也常称为预聚物A和交联剂B,二者可从市场上直接购买得到,然后按比例配制。预聚物A的成分主要是poly(dimethyl-methylvinylsiloxane)预聚物,还有微量铂催化剂,交联剂B的成分是带乙烯基侧链的预聚物及交联剂poly(dimethyl-methylhydrogenosiloxane)。通过混合两者,乙烯基可与硅氢键发生氢化硅烷化反应,从而形成三维网络结构。通过控制预聚物A和交联剂B的组分比例(预聚物A和交联剂B的质量比例10:1是经验值,也是最佳配比),可以控制PDMS的力学性能。
另外,其他能够在特定条件下固化,黏度较大的聚合物,也可以作为转移衬底,如PVA。
在步骤(4)中,还进行了两次施加负压条件的步骤,第一次施加负压是在PDMS基料与固化剂混合后,目的是尽可能去除PDMS预聚物中的气泡,第二次施加负压是在PDMS预聚物固化过程中,目的是抽出PDMS预聚物与硅基片样品之间缝隙中的气体(也就是说避免PDMS预聚物与硅基片之间存在缝隙),尽可能使PDMS预聚物与暴露出的金属薄膜紧密的粘结在一起。
步骤(4)中,PDMS预聚物固化的温度也可进行相应调节,一般温度越高,固化速度越快,如可在60℃下加热4h,也可在120℃下加热2h等等,但温度最高不能超过180℃。
本发明采用物理粘结法,依靠聚合物与图案化金属薄膜的界面粘结力,将金属薄膜从硅基片上垂直剥离,使图案化的金属薄膜从硅基片表面转移到聚合物薄膜表面。这一图案转移过程,无需进行化学刻蚀,并且依靠物理粘结进行图案转移的过程可控性高,提高了图案的精度同时使制备过程更加简单。
另外,本发明以真空蒸镀技术代替现有的化学试剂旋涂法,使金属镀膜过程在密闭环境内完成,无需使用化学试剂;并且本发明在金属薄膜图案化和图案转移过程中无需使用刻蚀剂。因此制备过程更加绿色环保。
总结来说,本发明的有益技术效果如下:
(1)提高制备过程的可控性,提高图案化的精度,使制备过程简单易行;
(2)减少化学试剂的使用,减少化学废料的产生,使制备过程更加环保,实验人员操作环境更加健康;
(3)减少制备所需的试剂,使成本降低。
下面结合原理方面内容对本发明的效果进行详细阐述:
(1)现有技术使用湿法刻蚀进行图案的转移是对固化的紫外光胶和金属银薄膜进行同步刻蚀,但是同种刻蚀剂对不同材料的刻蚀速率是不同的,两层薄膜的厚度对是否能够成功刻蚀也有很大影响,在刻蚀过程中需要严格控制刻蚀剂的溶度和反应时间。因此使金属薄膜的图案化过程可控性低,图案精度难以控制,容易产生图案缺陷,而且随着特征尺寸的减小,误差会越来越大,因此极容易产生图案缺陷。而本发明的物理粘结法,是依靠聚合物与图案化金属薄膜的界面粘结力,将金属薄膜从硅基片上垂直剥离,使图案化的金属薄膜从硅基片表面转移到聚合物薄膜表面。这一图案转移过程,无需进行化学刻蚀,并且依靠物理粘结进行图案转移的过程可控性高,提高了图案的精度同时使制备过程更加简单。
(2)与现有方法相比,本发明以真空蒸镀技术代替现有的化学试剂旋涂法,使金属镀膜过程在密闭环境内完成,无需使用化学试剂;并且本发明在金属薄膜图案化和图案转移过程 中无需使用刻蚀剂。因此制备过程更加绿色环保,使实验者的操作环境更加健康,而且由于减少了化学试剂的使用,降低了金属薄膜图案化的制备成本。
附图说明
下面结合附图与具体实施方式对本发明作进一步说明:
图1为湿法刻蚀易出现的几种缺陷示意图;
图2为本发明方法的流程图;
图3为真空镀膜装置的结构简图。
图中:11-金属银薄膜,12-硅基板,13-紫外光胶层,14-PDMS预聚物,21-冷水循环系统,22-样品台,23-蒸发舟,24-真空罩。
具体实施方式
结合附图,一种图案化金属薄膜的制备方法,包括以下步骤:
(1)真空蒸镀金属银薄膜
打开真空蒸镀装置的冷水循环系统21,将硅基片正面向下固定于样品台22,将金属银靶材置于蒸发舟23内,闭合真空罩24,形成密闭腔室。对密闭腔室进行抽气,直至真空度小于5×10 -4Pa;待真空罩24内压强达到所需的数值后,便对蒸发舟23加热进行蒸镀,蒸镀电流120A,金属银薄膜11厚度10nm;蒸镀完毕后,关闭抽真空阀门,通过放气阀向真空罩24内放气,然后打开真空罩,取出蒸镀好金属银薄膜的样品。
上述真空蒸镀装置可采用现有常规设备,比如硅基片的固定可采用插入方式,即在样品台22的底面两端设置有相对峙的L形架,该两个L形架形成插槽,硅基片可直接插入插槽中,正面向下裸露,方便镀膜。关于真空蒸镀装置的详细结构在此不再进行更为具体的说明。
与现有方法相比,本发明以真空蒸镀技术代替现有的化学试剂旋涂法,使金属镀膜过程在密闭环境内完成,无需使用化学试剂,因此制备过程更加绿色环保,使实验者的操作环境更加健康。
(2)旋涂紫外光胶
以转速4000rpm在金属银薄膜表面上对AZ 5214-E型紫外光胶旋涂40s,形成紫外光胶层13。
(3)光刻图案
将旋涂上紫外光胶的样品放入光刻机中,选择合适的图案在曝光强度为,210mJ/cm 2下进行光刻。光刻完成后使用显影液(AZ 300MIF)显影,以去掉未固化的紫外光胶,然后用去离子水对硅基片表面进行冲洗,最后用氮气将样品表面吹干,使未固化的紫外光胶下面的金属图案暴露出来。
(4)采用物理粘结法直接转移暴露出来的金属图案
将PDMS基料(聚二甲基硅氧烷)与固化剂按质量比为10:1混合,然后放入真空箱中,在压力为-0.08MPa的条件下放置30分钟去除气泡。将去气泡后的PDMS预聚物倒在光刻出图案的硅基片上,之后放入真空干燥箱中,在90℃条件下加热3h使PDMS预聚物14固化,同时施加压力为-0.08MPa的负压,使PDMS预聚物与暴露出的金属银薄膜紧密的粘结在一起。该步骤无需使用刻蚀剂,使制备过程更加绿色环保,使实验者的操作环境更加健康
然后,依靠PDMS预聚物与裸露的金属薄膜的界面粘结力,将金属薄膜从硅基片上垂直剥离,使图案化的金属薄膜从硅基片表面直接转移到PDMS薄膜表面,进而得到图案化金属薄膜。该步骤以物理粘结法代替湿法刻蚀来进行图案的转移,不仅使制备过程更加简单,同时提高制备过程的可控性,提高图案的精度。
上述金属靶材还可选用金、铝、铜、铁、镍、铬或镁等,靶材纯度均需达到99.99%。
上述紫外光胶也可选用SU-8,相应的所配合使用的显影液为PGMEA。
上述方式中未述及的部分采取或借鉴已有技术即可实现。
需要说明的是,上述实施例只是为了说明本发明的技术思路及特点,其目的是让技术人员能够了解本发明的内容和方法并能够顺利实施,并不限制本发明的保护范围。凡是根据本发明内容做出的等效变化或修饰,都涵盖在本发明的保护范围内。

Claims (5)

  1. 一种图案化金属薄膜的制备方法,其特征在于包括以下步骤:
    (1)真空蒸镀金属薄膜
    打开真空蒸镀装置的冷水循环系统,将硅基片正面向下固定于样品台,将金属靶材置于蒸发舟内,闭合真空罩,形成密闭腔室;对密闭腔室进行抽气,直至真空度小于5×10 -4Pa;待真空罩内压强达到所需的数值后,便对蒸发舟加热进行蒸镀,蒸镀电流120A-180A,金属薄膜厚度1nm-100μm;蒸镀完毕后,关闭抽真空阀门,通过放气阀向真空罩内放气,然后打开真空罩,取出蒸镀好金属薄膜的样品;
    (2)旋涂紫外光胶
    在金属薄膜的表面旋涂紫外光胶;
    (3)光刻图案
    将旋涂上紫外光胶的样品放入光刻机中,选择合适的图案在曝光强度为200-220mJ/cm 2下进行光刻,光刻完成后使用显影液显影,以去掉未固化的紫外光胶,然后用去离子水对硅基片表面进行冲洗,最后用氮气将样品表面吹干,使未固化的紫外光胶下面的金属图案暴露出来;
    (4)采用物理粘结法直接转移暴露出来的金属图案
    将聚二甲基硅氧烷与固化剂按质量比为10:1混合,然后放入真空箱中,在压力为-0.04MPa至-0.08MPa的条件下放置30分钟去除气泡,将去气泡后的PDMS预聚物倒在光刻出图案的硅基片上,之后放入真空干燥箱中,在90℃条件下加热3h使PDMS预聚物固化,同时施加压力为-0.04MPa至-0.08MPa的负压,使PDMS预聚物与暴露出的金属薄膜紧密的粘结在一起;
    然后,依靠PDMS预聚物与裸露的金属薄膜的界面粘结力,将金属薄膜从硅基片上垂直剥离,使图案化的金属薄膜从硅基片表面直接转移到PDMS薄膜表面,进而得到图案化金属薄膜。
  2. 根据权利要求1所述的一种图案化金属薄膜的制备方法,其特征在于:所述金属靶材选用金、银、铝、铜、铁、镍、铬或镁,靶材纯度需达到99.99%。
  3. 根据权利要求1所述的一种图案化金属薄膜的制备方法,其特征在于:所述紫外光胶为SU-8或AZ-5214,其中与SU-8所配合使用的显影液为PGMEA,与AZ-5214所配合使用的显影液为AZ 300MIF。
  4. 根据权利要求1所述的一种图案化金属薄膜的制备方法,其特征在于,步骤(2)中:控制转速为4000rpm,在金属薄膜表面上对AZ-5214型紫外光胶旋涂40s。
  5. 根据权利要求1所述的一种图案化金属薄膜的制备方法,其特征在于:当金属薄膜表面旋涂AZ-5214型紫外光胶时,控制曝光强度为210mJ/cm 2
PCT/CN2018/102253 2018-08-03 2018-08-24 一种图案化金属薄膜的制备方法 WO2020024346A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810874210.1 2018-08-03
CN201810874210.1A CN109179312B (zh) 2018-08-03 2018-08-03 一种图案化金属薄膜的制备方法

Publications (1)

Publication Number Publication Date
WO2020024346A1 true WO2020024346A1 (zh) 2020-02-06

Family

ID=64919972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102253 WO2020024346A1 (zh) 2018-08-03 2018-08-24 一种图案化金属薄膜的制备方法

Country Status (2)

Country Link
CN (1) CN109179312B (zh)
WO (1) WO2020024346A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564556A (zh) * 2020-04-28 2021-10-29 合肥市辉耀真空材料有限责任公司 一种正面呈蓝色的幻彩反光膜制作方法
CN114620675A (zh) * 2022-03-18 2022-06-14 北京航空航天大学 一种多维度图案化硅基纳米草制备方法及其应用
CN114620675B (zh) * 2022-03-18 2024-06-04 北京航空航天大学 一种多维度图案化硅基纳米草制备方法及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113675129B (zh) * 2021-07-24 2023-07-28 福州大学 粘附力可调控衬底及其在转移方面的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126896A (zh) * 2007-08-31 2008-02-20 中国科学院光电技术研究所 一种基于pdms模板和银板材料的超分辨光刻方法
CN101382442A (zh) * 2007-09-03 2009-03-11 赖云龙 胶质码盘/码尺的制作方法
KR20110129364A (ko) * 2010-05-25 2011-12-01 아주대학교산학협력단 탄소나노튜브 랑뮈에-블라제 박막을 사용한 패턴 형성 방법 및 이를 이용한 줄기세포의 성장 및 분화 조절
CN103682372A (zh) * 2013-11-29 2014-03-26 武汉工程大学 一种含碳纳米管立体电极的微型无膜燃料电池及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO311797B1 (no) * 1999-05-12 2002-01-28 Thin Film Electronics Asa Fremgangsmåter til mönstring av polymerfilmer og anvendelse av fremgangsmåtene
US9108880B2 (en) * 2008-08-18 2015-08-18 The Regents Of The University Of California Nanostructured superhydrophobic, superoleophobic and/or superomniphobic coatings, methods for fabrication, and applications thereof
CN102375333A (zh) * 2010-08-24 2012-03-14 华锦光电科技股份有限公司 纹路结构、具有纹路的滚轮及其形成方法
CN102923639B (zh) * 2012-08-08 2015-05-13 西安交通大学 一种基于植物叶脉的仿生微流道系统精确成形方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101126896A (zh) * 2007-08-31 2008-02-20 中国科学院光电技术研究所 一种基于pdms模板和银板材料的超分辨光刻方法
CN101382442A (zh) * 2007-09-03 2009-03-11 赖云龙 胶质码盘/码尺的制作方法
KR20110129364A (ko) * 2010-05-25 2011-12-01 아주대학교산학협력단 탄소나노튜브 랑뮈에-블라제 박막을 사용한 패턴 형성 방법 및 이를 이용한 줄기세포의 성장 및 분화 조절
CN103682372A (zh) * 2013-11-29 2014-03-26 武汉工程大学 一种含碳纳米管立体电极的微型无膜燃料电池及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO, XIAOLI: "Research of Microstructures Fabricated by Self-assembly and Transfer Printing Based on PDMS", CHINESE DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, ENGINEERING SCIENCE & TECHNOLOGY 1, 15 January 2019 (2019-01-15), pages 64, ISSN: 1674-022X *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564556A (zh) * 2020-04-28 2021-10-29 合肥市辉耀真空材料有限责任公司 一种正面呈蓝色的幻彩反光膜制作方法
CN114620675A (zh) * 2022-03-18 2022-06-14 北京航空航天大学 一种多维度图案化硅基纳米草制备方法及其应用
CN114620675B (zh) * 2022-03-18 2024-06-04 北京航空航天大学 一种多维度图案化硅基纳米草制备方法及其应用

Also Published As

Publication number Publication date
CN109179312B (zh) 2019-09-24
CN109179312A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
US20030062334A1 (en) Method for forming a micro-pattern on a substrate by using capillary force
US7955545B2 (en) Nano-imprinting process
CN102243435B (zh) 一种通过正负光刻胶复合显影制备微纳米流体系统的方法
JP2004304097A (ja) パターン形成方法および半導体装置の製造方法
US9893286B2 (en) Organic single crystal field effect circuit and preparing method thereof
CN104134749B (zh) 多层柔性平面内嵌迭片电极及其制备方法与在有机场单晶场效应晶体管中的应用
WO2020024346A1 (zh) 一种图案化金属薄膜的制备方法
TW201236063A (en) Method of manufacturing semiconductor device
TW201524747A (zh) 利用壓印法之聚醯亞胺之微細圖案形成方法
US7588710B2 (en) Mold made of amorphous fluorine resin and fabrication method thereof
CN109609907B (zh) 自吸纳米压印制备金属纳米结构的方法
CN105807557B (zh) 一种用于光学曝光的高分辨率柔性复合掩模板及其制备方法
WO2009086184A1 (en) Organo-metallic hybrid materials for micro- and nanofabrication
CN106505148B (zh) 一种基于迭片电极的有机薄膜场效应晶体管及其制备方法
CN101654217B (zh) 一种制作微元件的方法
CN115373215A (zh) 一种采用光刻方法制备薄膜掩模版的方法及其应用
CN116313762A (zh) 一种金属电极的转移方法
CN112320752A (zh) 负性光刻胶图形化膜层的制备方法
CN101332650A (zh) 用于制备具有三维结构的弹性塑料铸件的浇铸模具
WO2021000851A1 (zh) 制备图案化聚合物的方法
CN112010259A (zh) 一种用于转移器官芯片中多孔pdms薄膜的方法
JPH0334053B2 (zh)
KR101647975B1 (ko) 신축성 디바이스용 기능성 물질 패턴 필름의 제조 방법
JP2012061599A (ja) ベンゾシクロブテン樹脂のインプリント技術への適用及び当該技術によるパターン形成方法
TWI234194B (en) Reverse photo-sensing imprint pattern-transferring process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928756

Country of ref document: EP

Kind code of ref document: A1