WO2020024318A1 - Eu3+离子激活的荧光材料及其制备和应用 - Google Patents

Eu3+离子激活的荧光材料及其制备和应用 Download PDF

Info

Publication number
WO2020024318A1
WO2020024318A1 PCT/CN2018/099497 CN2018099497W WO2020024318A1 WO 2020024318 A1 WO2020024318 A1 WO 2020024318A1 CN 2018099497 W CN2018099497 W CN 2018099497W WO 2020024318 A1 WO2020024318 A1 WO 2020024318A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
ions
fluorescent material
ultraviolet
light
Prior art date
Application number
PCT/CN2018/099497
Other languages
English (en)
French (fr)
Inventor
黄彦林
刘宣宣
秦杰
米龙庆
魏东磊
Original Assignee
苏州大学张家港工业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院, 苏州大学 filed Critical 苏州大学张家港工业技术研究院
Publication of WO2020024318A1 publication Critical patent/WO2020024318A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/779Halogenides
    • C09K11/7791Halogenides with alkali or alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the invention relates to the field of inorganic light-emitting devices, in particular to a Eu 3+ ion-activated fluorescent material, and preparation and application thereof.
  • rare earth ion-activated phosphors play an important role in the field of lighting and display, and are essential basic materials; especially in recent years, rare earth ion-activated phosphors have White light-emitting diode-based solid-state lighting products play an important role.
  • Such devices require the phosphors to be well excited at near-ultraviolet wavelengths (350 to 420 nm).
  • the LED device prepared by this method has a higher CRI value and better color stability. Therefore, finding a red light-emitting device with higher luminous efficiency and good thermal stability is particularly important for near-ultraviolet LED-excited lighting devices.
  • Eu 3+ has a wide absorption and emission spectrum, because the 5d energy level of Eu 3+ is sensitive to the crystal field and covalence. This makes it possible to design a special compound oxide to accommodate Eu 3+ with a special Color phosphor.
  • an object of the present invention is to provide an Eu 3+ ion-activated fluorescent material and preparation and application thereof.
  • the material has strong excitation efficiency, pure chromaticity, high luminous efficiency and high thermal stability.
  • the method is simple.
  • the present invention provides a Eu 3+ ion-activated fluorescent material, the chemical formula of which is LaGd 1-x Eu x YTiO 4 Cl 5 , where 0.001 ⁇ x ⁇ 1.0.
  • the Eu 3+ ion-activated fluorescent material It emits red fluorescence when excited by ultraviolet and / or near-ultraviolet light.
  • X in the formula represents the number of moles of Eu 3+ substituted yttrium Y 3+ ions.
  • the chemical formula of the Eu 3+ ion-activated fluorescent material is LaGd 0.55 Eu 0.45 YTiO 4 Cl 5 , LaGd 0.999 Eu 0.001 YTiO 4 Cl 5 , LaEuYTiO 4 Cl 5 , LaGd 0.7 Eu 0.3 YTiO 4 Cl 5 , LaGd 0.4 Eu 0.6 YTiO 4 Cl 5 or LaGd 0.2 Eu 0.8 YTiO 4 Cl 5 .
  • the wavelength of ultraviolet and / or near-ultraviolet light is 200-500 nm.
  • the wavelength of red fluorescence is 570-720 nm (preferably, the wavelength of red fluorescence is 610-620 nm).
  • the fluorescent material of the present invention emits a sharp red spectrum with a main wavelength of 615 nm.
  • the present invention also discloses the application of the Eu 3+ ion-activated fluorescent material in the preparation of a light emitting device, and the excitation source of the light emitting device is ultraviolet and / or near-ultraviolet light.
  • the light emitting device is a light emitting diode, a display material, a three-primary color fluorescent lamp, or a field emission display.
  • the material of the present invention can be used as a fluorescent material for an illumination or display device using ultraviolet and / or near-ultraviolet light as an excitation light source.
  • the present invention also provides a method for preparing the Eu 3+ ion-activated fluorescent material, which is prepared by a high-temperature solid-phase method, including the following steps:
  • the molar ratio of the compound containing Gd 3+ ion, the chloride containing La 3+ ion, the chloride containing Y 3+ ion, the compound containing Eu 3+ ion, and the compound containing Ti 4+ ion is 0.2-0.999. : 1: 1: 0.001-0.8: 1.
  • the chloride containing La 3+ ions is lanthanum chloride (LaCl 3 ), and the chloride containing Y 3+ ions is yttrium chloride (YCl 3 ).
  • the compound containing a Gd 3+ ion is gadolinium oxide (Gd 2 O 3 ), gadolinium nitrate (Gd (NO 3 ) 3 .6H 2 O), or gadolinium chloride (GaCl 3 ).
  • the compound containing Eu 3+ ions is europium oxide (Eu 2 O 3 ) or europium nitrate (Eu (NO 3 ) 3 .6H 2 O).
  • the compound containing Ti 4+ ions is titanium dioxide (TiO 2 ).
  • the grinding method is adopted to mix and dry, the grinding method is a wet grinding method, and the auxiliary agent used is an organic solvent.
  • a step of briquetting the mixture is further included.
  • the calcination temperature is 1250-1350 ° C, and the calcination time is 4-6 hours.
  • the present invention has at least the following advantages:
  • the present invention provides a LaGd 1-x Eu x YTiO 4 Cl 5 matrix material containing rare earth ions, which achieves Eu 3+ doping and effective light emission.
  • the rare earth cations have a very good dopant that accepts Eu 3+ ions.
  • La, Gd, and Y occupy the same crystallographic position, and the cation lattice position has sufficient perturbation, which completely breaks the forbidden transition of Eu 3+ ions.
  • the pure chromaticity of red light is obtained, and it has good luminous efficiency.
  • the LaGd 1-x Eu x YTiO 4 Cl 5 fluorescent material of the present invention has a matrix lattice composed of an octahedron composed of anions O, Cl and Ti, and the lattice rigidity is larger than that of the oxide lattice, and has good Thermal stability is a potential new type of phosphor.
  • the present invention uses a high-temperature solid-phase method to obtain a pure red with excellent luminous performance.
  • Fluorescent materials have strong excitation efficiency under ultraviolet and / or near-ultraviolet light. This region is the radiation wavelength of near-ultraviolet LED chips, which is more suitable for preparing white LED lighting equipment according to near-ultraviolet LED diode chips.
  • Example 1 is an X-ray powder diffraction pattern of LaGd 0.55 Eu 0.45 YTiO 4 Cl 5 prepared in Example 1 of the present invention
  • Example 2 is an electron scanning electron microscope image of LaGd 0.55 Eu 0.45 YTiO 4 Cl 5 prepared in Example 1 of the present invention
  • Example 3 is an excitation spectrum of LaGd 0.55 Eu 0.45 YTiO 4 Cl 5 prepared in Example 1 of the present invention under 615 nm light monitoring;
  • Example 4 is a light emission spectrum diagram of LaGd 0.55 Eu 0.45 YTiO 4 Cl 5 prepared in Example 1 of the present invention under 395 nm light excitation;
  • FIG. 5 is a luminescence attenuation curve of LaGd 0.55 Eu 0.45 YTiO 4 Cl 5 prepared in Example 1 of the present invention.
  • This embodiment provides a Eu 3+ ion-activated phosphor with a chemical formula of LaGd 0.55 Eu 0.45 YTiO 4 Cl 5 .
  • lanthanum chloride LaCl 3 2.45 g
  • gadolinium chloride GdCl 3 2.636 g
  • gadolinium Eu 2 O 3 0.792 g
  • yttrium chloride YCl 3 1.95 g
  • Titanium dioxide TiO 2 0.8 g.
  • the above Eu 3+ ion-activated phosphor was prepared as follows:
  • the weighed raw materials are wet-milled with acetone as a grinding aid, dried, and then the obtained mixture is pressed into pieces.
  • the obtained compact was calcined in an air atmosphere, the calcination temperature was 1250 ° C., and the calcination time was 6 hours, and Eu 3+ ion-activated phosphor LaGd 0.55 Eu 0.45 YTiO 4 Cl 5 was obtained .
  • FIG. 1 is an X-ray powder diffraction pattern of the above product.
  • the XRD test results show that the prepared material is a single-phase material without heterogeneous phases.
  • FIG. 2 is a SEM image of the above product, and FIG. 2 shows that the material has good crystallization performance and uniform particle size.
  • Figure 3 is the excitation spectrum of the above product under the monitored emission light of 615 nanometers. It can be seen that the excitation source of red light is mainly in the ultraviolet to blue light region between 200-500 nanometers, which can well match the ultraviolet to blue LED. The chip excites.
  • FIG. 4 is an emission spectrum chart obtained by exciting the above product with near-ultraviolet light at 395 nanometers. It can be seen from the figure that the main central emission wavelength of the material is red emission at 615 nanometers.
  • FIG. 5 is the luminescence attenuation curve of the above product at 615 nanometers. It can be seen from the figure that the luminescence lifetime of the material is 0.98 milliseconds, which is suitable for the application of luminous lighting.
  • This embodiment provides a Eu 3+ ion-activated phosphor with a chemical formula of LaGd 0.999 Eu 0.001 YTiO 4 Cl 5 .
  • lanthanum chloride LaCl 3 7.35 g
  • gadolinium oxide Gd 2 O 3 5.437 g
  • chlorine Yttrium YCl 3 5.85 g
  • titanium dioxide TiO 2 2.401 g.
  • the above Eu 3+ ion-activated phosphor was prepared as follows:
  • the weighed raw materials are wet-milled in an agate mortar with acetone as a grinding aid, and dried, and the resulting mixture is pressed into a block.
  • the obtained compact was calcined in an air atmosphere at a calcination temperature of 1350 ° C. and a calcination time of 4 hours to obtain Eu 3+ ion-activated phosphor LaGd 0.999 Eu 0.001 YTiO 4 Cl 5 . Its main structural properties, excitation spectrum, and emission spectrum are similar to those of Example 1.
  • This embodiment provides a Eu 3+ ion-activated phosphor with a chemical formula of LaEuYTiO 4 Cl 5 .
  • lanthanum chloride LaCl 3 4.9 g
  • hafnium oxide Eu 2 O 3 3.52 g
  • yttrium chloride YCl 3 3.9 g
  • titanium dioxide TiO 2 1.6 g were weighed respectively.
  • the above Eu 3+ ion-activated phosphor was prepared as follows:
  • the weighed raw materials are wet-milled with acetone as a grinding aid, and dried, and the resulting mixture is pressed into pieces.
  • the obtained compact was calcined in an air atmosphere, the calcination temperature was 1400 ° C, and the calcination time was 1 hour, and Eu 3+ ion-activated phosphor LaEuYTiO 4 Cl 5 was obtained . Its main structural properties, excitation spectrum, and emission spectrum are similar to those of Example 1.
  • This embodiment provides a Eu 3+ ion-activated phosphor with a chemical formula of LaGd 0.7 Eu 0.3 YTiO 4 Cl 5 .
  • lanthanum chloride LaCl 3 was weighed: 3.675 g, gadolinium nitrate Gd (NO 3 ) 3 ⁇ 6H 2 O: 3.602 g, gadolinium nitrate Eu (NO 3 ) 3 ⁇ 6H 2 O: 2.007 g, yttrium chloride YCl 3 : 2.925 g, titanium dioxide TiO 2 : 1.2 g.
  • the above Eu 3+ ion-activated phosphor was prepared as follows:
  • the weighed raw materials are wet-milled in an agate mortar with acetone as a grinding aid, and dried, and the resulting mixture is pressed into a block.
  • the obtained compact was calcined in an air atmosphere, the calcination temperature was 1200 ° C., and the calcination time was 10 hours, to obtain Eu 3+ ion-activated phosphor LaEuYTiO 4 Cl 5 . Its main structural properties, excitation spectrum, and emission spectrum are similar to those of Example 1.
  • This embodiment provides a Eu 3+ ion-activated phosphor with a chemical formula of LaGd 0.4 Eu 0.6 YTiO 4 Cl 5 .
  • lanthanum chloride LaCl 3 3.063 g
  • gadolinium chloride GdCl 3 1.318 g
  • gadolinium nitrate Eu (NO 3 ) 3 ⁇ 6H 2 O 1.673 g
  • titanium dioxide TiO 2 1 g.
  • the above Eu 3+ ion-activated phosphor was prepared as follows:
  • the weighed raw materials are wet-milled in an agate mortar with acetone as a grinding aid, and dried, and the resulting mixture is pressed into a block.
  • the obtained compact was calcined in an air atmosphere at a calcination temperature of 1300 ° C. and a calcination time of 7 hours to obtain Eu 3+ ion-activated phosphor LaGd 0.4 Eu 0.6 YTiO 4 Cl 5 . Its main structural properties, excitation spectrum, and emission spectrum are similar to those of Example 1.
  • This embodiment provides a Eu 3+ ion-activated phosphor with a chemical formula of LaGd 0.2 Eu 0.8 YTiO 4 Cl 5 .
  • lanthanum chloride LaCl 3 2.695 g
  • gadolinium oxide Gd 2 O 3 0.398 g
  • gadolinium Eu 2 O 3 1.55 g
  • yttrium chloride YCl 3 2.145 g
  • titanium dioxide TiO 2 0.88 g.
  • the above Eu 3+ ion-activated phosphor was prepared as follows:
  • the weighed raw materials are wet-milled in an agate mortar with acetone as a grinding aid, and dried, and the resulting mixture is pressed into a block.
  • the obtained compact was calcined in an air atmosphere, the calcination temperature was 1230 ° C., and the calcination time was 8 hours to obtain Eu 3+ ion-activated phosphor LaGd 0.2 Eu 0.8 YTiO 4 Cl 5 . Its main structural properties, excitation spectrum, and emission spectrum are similar to those of Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种Eu3+离子激活的荧光材料,其化学式为LaGd1-xEuxYTiO4Cl5,其中0.001≤x≤1.0,所述Eu3+离子激活的荧光材料在紫外和/或近紫外光的激发下发出红色荧光。本发明采用高温固相法获得了纯相的、发光性能优异的红色荧光粉,在紫外、近紫外光的具有很强的激发效率,与近紫外LED芯片发射波长非常吻合,发射光是以615纳米红光为主的尖锐光谱。

Description

Eu 3+离子激活的荧光材料及其制备和应用 技术领域
本发明涉及无机发光器件领域,尤其涉及一种Eu 3+离子激活的荧光材料及其制备和应用。
背景技术
在照明材料的研究和发展过程中,稀土离子激活的荧光粉在照明和显示领域起着重要的作用,是必不可少的基本材料;特别是在最近的几年,稀土离子激活的荧光粉在基于白光发光二极管的固态照明产品中发挥了重要的作用。
与传统的日光灯和其他光源相比,快速发展的新一代照明光源白光发光二极管照明,具有环保、功耗低、安全和高亮度的诸多优点。当今主流的商品化白光LED照明器件,是由InGaN蓝光半导体芯片和黄色Y 3Al 5O 12:Ce 3+(YAG:Ce 3+)荧光粉联合应用的,然而,这种照明器件在可见光区域的红光发射不足,因此具有高相关色温(CCT>4500K)和显色指数差(Ra<80)等缺点,这些缺点这在很大程度上限制了它在照明领域中的应用。另外,当今的LED照明用具中,还有一种使用红、绿、蓝三基色荧光粉制备的器件,这种器件要求荧光粉在近紫外波长(350~420纳米)有很好的激发。这种方法制备的LED器件具有更高CRI值和更好的色彩稳定性,因此,寻找一种具有较高发光效率和良好热稳定性的红发光器件对于近紫外LED激发的照明器件尤其重要。
作为一种最重要的红色发光的激活剂稀土离子,Eu 3+的特征发射来源于 5D 0,1,2- 7F J(J=4,...,0)的跃迁。Eu 3+具有较宽的吸收和发射光谱,因为Eu 3+的5d能级对晶体场和共价性敏感,这就有可能通过寻找合适的复合氧化物容纳Eu 3+设计出一种具有特殊颜色的荧光粉。
发明内容
为解决上述技术问题,本发明的目的是提供一种Eu 3+离子激活的荧光材料及其制备和应用,该材料具有很强的激发效率,色度纯正,发光效率和热稳定性高,制备方法简单。
在一方面,本发明提供了一种Eu 3+离子激活的荧光材料,其化学式为LaGd 1-xEu xYTiO 4Cl 5,其中0.001≤x≤1.0,所述Eu 3+离子激活的荧光材料在紫外和/或近紫外光的激发下发出红色荧光。式中的x表示Eu 3+取代钇Y 3+离子的摩尔数。
优选地,Eu 3+离子激活的荧光材料的化学式为LaGd 0.55Eu 0.45YTiO 4Cl 5、 LaGd 0.999Eu 0.001YTiO 4Cl 5、LaEuYTiO 4Cl 5、LaGd 0.7Eu 0.3YTiO 4Cl 5、LaGd 0.4Eu 0.6YTiO 4Cl 5或LaGd 0.2Eu 0.8YTiO 4Cl 5
进一步地,紫外和/或近紫外光的波长为200-500nm。
进一步地,红色荧光的波长为570-720nm(优选地,红色荧光的波长为610-620nm)。本发明的荧光材料在紫外和/或近紫外光激发下,发出主波长在615nm的红色尖锐光谱。
在另一方面,本发明还公开了上述Eu 3+离子激活的荧光材料在制备发光器件中的应用,所述发光器件的激发源为紫外和/或近紫外光。
进一步地,发光器件为发光二极管、显示材料、三基色荧光灯或场发射显示器。本发明的应该材料可作为以紫外和/或近紫外光为激发光源的照明或显示器件的荧光材料。
在又一方面,本发明还提供了一种上述Eu 3+离子激活的荧光材料的制备方法,采用高温固相法制备,包括以下步骤:
按摩尔比为0.001-0.999:1:1:0.001-0.999:1,将含有Gd 3+离子的化合物、含有La 3+离子的氯化物、含有Y 3+离子的氯化物、含有Eu 3+离子的化合物、含有Ti 4+离子的化合物混合均匀,然后在空气气氛中煅烧,煅烧温度为1200-1400℃,煅烧时间为1-10小时,得到Eu 3+离子激活的荧光材料;或者
按摩尔比为1:1:1:1,将含有La 3+离子的氯化物、含有Y 3+离子的氯化物、含有Eu 3+离子的化合物、含有Ti 4+离子的化合物混合均匀,然后在空气气氛中煅烧,煅烧温度为1200-1400℃,煅烧时间为1-10小时,得到Eu 3+离子激活的荧光材料。
优选地,含有Gd 3+离子的化合物、含有La 3+离子的氯化物、含有Y 3+离子的氯化物、含有Eu 3+离子的化合物、含有Ti 4+离子的化合物摩尔比为0.2-0.999:1:1:0.001-0.8:1。
进一步地,含有La 3+离子的氯化物为氯化镧(LaCl 3),含有Y 3+离子的氯化物为氯化钇(YCl 3)。
进一步地,含有Gd 3+离子的化合物为氧化钆(Gd 2O 3)、硝酸钆(Gd(NO 3) 3·6H 2O)或氯化钆(GaCl 3)。
进一步地,含有Eu 3+离子的化合物为氧化铕(Eu 2O 3)或硝酸铕(Eu(NO 3) 3·6H 2O)。
进一步地,含有Ti 4+离子的化合物为二氧化钛(TiO 2)。
进一步地,采用研磨法混匀后烘干,研磨法为湿磨法,所用助剂为有机溶剂。
进一步地,在煅烧前,还包括将混合物压块的步骤。
优选地,煅烧温度为1250-1350℃,煅烧时间为4-6小时。
借由上述方案,本发明至少具有以下优点:
1、本发明提供了一种含有稀土离子的LaGd 1-xEu xYTiO 4Cl 5基质材料,实现了Eu 3+掺杂和有效的发光,稀土阳离子具有非常好的接纳Eu 3+离子的掺杂的特性,该基质中有三种不同性质的稀土离子,La、Gd和Y占据同一个晶体学位置,阳离子晶格位置具有充分的扰动,实现了Eu 3+离子的禁戒跃迁被彻底打破,得到了色度纯正的红发光,并具有很好的发光效率。
2、本发明的LaGd 1-xEu xYTiO 4Cl 5荧光材料,基质晶格是由阴离子O和Cl和Ti组成的八面体组成,晶格刚性要比氧化物晶格大,具有很好的热稳定性,是一种潜在的新型荧光粉。
3、与现有的红色荧光粉,例如Y 2O 2S:Eu 3+,Y 2O 3:Eu 3+相比,本发明采用高温固相法获得了纯相的、发光性能优异的红色荧光材料,在紫外和/或近紫外光下有很强的激发效率,该区域为近紫外LED芯片的辐射波长,更适宜于制备按照近紫外LED二极管芯片制备白光LED照明设备。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是本发明实施例1所制备的LaGd 0.55Eu 0.45YTiO 4Cl 5的X射线粉末衍射图谱;
图2是本发明实施例1所制备的LaGd 0.55Eu 0.45YTiO 4Cl 5的电子扫描电镜图;
图3是本发明实施例1所制备的LaGd 0.55Eu 0.45YTiO 4Cl 5在615nm光监测下的激发光谱图;
图4是本发明实施例1所制备的LaGd 0.55Eu 0.45YTiO 4Cl 5在395nm光激发下的发光光谱图;
图5是本发明实施例1所制备的LaGd 0.55Eu 0.45YTiO 4Cl 5的发光衰减曲线。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
实施例1:
本实施例提供了一种Eu 3+离子激活的荧光粉,其化学式为LaGd 0.55Eu 0.45YTiO 4Cl 5。根据化学式中各阳离子元素的化学计量比,分别称取氯化镧LaCl 3:2.45克,氯化钆GdCl 3:2.636克,氧化铕Eu 2O 3:0.792克,氯化钇YCl 3:1.95克,二氧化钛TiO 2:0.8克。按照以下方法制备上述Eu 3+离子激活的荧光粉:
将称取的原料用丙酮作为研磨助剂进行湿磨,烘干,然后将得到的混合物压制成块。将得到的压块在空气气氛中煅烧,煅烧温度为1250℃,煅烧时间为6小时,即可得到Eu 3+离子激活的荧光粉LaGd 0.55Eu 0.45YTiO 4Cl 5
图1是上述产物的X射线粉末衍射图谱,XRD测试结果表明,所制备的材料为单相材料,没有杂相。
图2是上述产物的SEM图,图2表明,该材料结晶性能良好,粒径均匀。
图3是上述产物在监测发射光615纳米下得到的激发光谱图,从中可以看出,红色发光的激发来源主要在200-500纳米间的紫外至蓝光区域,可以很好地匹配紫外至蓝光LED芯片激发。
图4是上述产物以近紫外光395纳米激发得到的发光光谱图,从图中可看出,该材料主要的中心发光波长为615纳米的红发光。
图5是上述产物615纳米的发光衰减曲线,从图中可看出,该材料发光的寿命是0.98毫秒,适宜于发光照明的应用。
实施例2:
本实施例提供了一种Eu 3+离子激活的荧光粉,其化学式为LaGd 0.999Eu 0.001YTiO 4Cl 5。根据化学式中各阳离子元素的化学计量比,分别称取氯化镧LaCl 3:7.35克,氧化钆Gd 2O 3:5.437克,硝酸铕Eu(NO 3) 3·6H 2O:0.0134克,氯化钇YCl 3:5.85克,二氧化钛TiO 2:2.401克。按照以下方法制备上述Eu 3+离子激活的荧光粉:
将称取的原料用丙酮作为研磨助剂在玛瑙研钵中进行湿磨,烘干,得到的混合物压制成块。将得到的压块在空气气氛中煅烧,煅烧温度为1350℃,煅烧时间为4小时,即可得到Eu 3+离子激活的荧光粉LaGd 0.999Eu 0.001YTiO 4Cl 5。其主要的结构性能、激发光谱、发光光谱与实施例1相似。
实施例3:
本实施例提供了一种Eu 3+离子激活的荧光粉,其化学式为LaEuYTiO 4Cl 5。根据化学式中各阳离子元素的化学计量比,分别称取氯化镧LaCl 3:4.9克,氧化铕Eu 2O 3:3.52克,氯化钇YCl 3:3.9克,二氧化钛TiO 2:1.6克。按照以下方法制备上述Eu 3+离子激活的荧光粉:
将称取的原料用丙酮作为研磨助剂进行湿磨,烘干,得到的混合物压制成块。将得到的压块在空气气氛中煅烧,煅烧温度为1400℃,煅烧时间为1小时,即可得到Eu 3+离子激活的荧光粉LaEuYTiO 4Cl 5。其主要的结构性能、激发光谱、发光光谱与实施例1相似。
实施例4:
本实施例提供了一种Eu 3+离子激活的荧光粉,其化学式为LaGd 0.7Eu 0.3YTiO 4Cl 5。根据化学式中各阳离子元素的化学计量比,分别称取氯化镧LaCl 3:3.675克,硝酸钆Gd(NO 3) 3·6H 2O:3.602克,硝酸铕Eu(NO 3) 3·6H 2O:2.007克,氯化钇YCl 3:2.925克,二氧化钛TiO 2:1.2克。 按照以下方法制备上述Eu 3+离子激活的荧光粉:
将称取的原料用丙酮作为研磨助剂在玛瑙研钵中进行湿磨,烘干,得到的混合物压制成块。将得到的压块在空气气氛中煅烧,煅烧温度为1200℃,煅烧时间为10小时,即可得到Eu 3+离子激活的荧光粉LaEuYTiO 4Cl 5。其主要的结构性能、激发光谱、发光光谱与实施例1相似。
实施例5:
本实施例提供了一种Eu 3+离子激活的荧光粉,其化学式为LaGd 0.4Eu 0.6YTiO 4Cl 5。根据化学式中各阳离子元素的化学计量比,分别称取:氯化镧LaCl 3:3.063克,氯化钆GdCl 3:1.318克,硝酸铕Eu(NO 3) 3·6H 2O:1.673克,氯化钇YCl 3:2.437克,二氧化钛TiO 2:1克。按照以下方法制备上述Eu 3+离子激活的荧光粉:
将称取的原料用丙酮作为研磨助剂在玛瑙研钵中进行湿磨,烘干,得到的混合物压制成块。将得到的压块在空气气氛中煅烧,煅烧温度为1300℃,煅烧时间为7小时,即可得到Eu 3+离子激活的荧光粉LaGd 0.4Eu 0.6YTiO 4Cl 5。其主要的结构性能、激发光谱、发光光谱与实施例1相似。
实施例6:
本实施例提供了一种Eu 3+离子激活的荧光粉,其化学式为LaGd 0.2Eu 0.8YTiO 4Cl 5。根据化学式中各阳离子元素的化学计量比,分别称取:氯化镧LaCl 3:2.695克,氧化钆Gd 2O 3:0.398克,氧化铕Eu 2O 3:1.55克,氯化钇YCl 3:2.145克,二氧化钛TiO 2:0.88克。按照以下方法制备上述Eu 3+离子激活的荧光粉:
将称取的原料用丙酮作为研磨助剂在玛瑙研钵中进行湿磨,烘干,得到的混合物压制成块。将得到的压块在空气气氛中煅烧,煅烧温度为1230℃,煅烧时间为8小时,即可得到Eu 3+离子激活的荧光粉LaGd 0.2Eu 0.8YTiO 4Cl 5。其主要的结构性能、激发光谱、发光光谱与实施例1相似。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 一种Eu 3+离子激活的荧光材料,其特征在于:其化学式为LaGd 1-xEu xYTiO 4Cl 5,其中0.001≤x≤1.0,所述Eu 3+离子激活的荧光材料在紫外和/或近紫外光的激发下发出红色荧光。
  2. 根据权利要求1所述的Eu 3+离子激活的荧光材料,其特征在于:所述紫外和/或近紫外光的波长为200-500nm。
  3. 根据权利要求1所述的Eu 3+离子激活的荧光材料,其特征在于:所述红色荧光的波长为570-720nm。
  4. 权利要求1-3中任一项所述的Eu 3+离子激活的荧光材料在制备发光器件中的应用,所述发光器件的激发源为紫外和/或近紫外光。
  5. 根据权利要求4所述的应用,其特征在于:所述发光器件为发光二极管、显示材料、三基色荧光灯或场发射显示器。
  6. 一种权利要求1-3中任一项所述的Eu 3+离子激活的荧光材料的制备方法,其特征在于,包括以下步骤:
    以摩尔比为0-0.999:1:1:0.001-1:1,将含有Gd 3+离子的化合物、含有La 3+离子的氯化物、含有Y 3+离子的氯化物、含有Eu 3+离子的化合物、含有Ti 4+离子的化合物混合均匀,然后在空气气氛中煅烧,煅烧温度为1200-1400℃,得到所述Eu 3+离子激活的荧光材料。
  7. 根据权利要求6所述的制备方法,其特征在于:所述含有Gd 3+离子的化合物为氧化钆、硝酸钆或氯化钆。
  8. 根据权利要求6所述的制备方法,其特征在于:所述含有La 3+离子的氯化物为氯化镧,所述含有Y 3+离子的氯化物为氯化钇。
  9. 根据权利要求6所述的制备方法,其特征在于:所述含有Eu 3+离子的化合物为氧化铕或硝酸铕。
  10. 根据权利要求6所述的制备方法,其特征在于:所述含有Ti 4+离子的化合物为二氧化钛。
PCT/CN2018/099497 2018-08-01 2018-08-09 Eu3+离子激活的荧光材料及其制备和应用 WO2020024318A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810874909.8 2018-08-01
CN201810874909.8A CN108913141B (zh) 2018-08-01 2018-08-01 Eu3+离子激活的荧光材料及其制备和应用

Publications (1)

Publication Number Publication Date
WO2020024318A1 true WO2020024318A1 (zh) 2020-02-06

Family

ID=64394027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099497 WO2020024318A1 (zh) 2018-08-01 2018-08-09 Eu3+离子激活的荧光材料及其制备和应用

Country Status (2)

Country Link
CN (1) CN108913141B (zh)
WO (1) WO2020024318A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824320A (zh) * 2010-05-19 2010-09-08 北京大学 一种红色荧光粉及其制备方法和应用
CN102604638A (zh) * 2012-01-19 2012-07-25 苏州大学 一种Eu3+激活的磷酸盐红色荧光粉、制备方法及应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103450898A (zh) * 2013-08-16 2013-12-18 陕西科技大学 一种白光led用钛酸盐基红色荧光粉及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824320A (zh) * 2010-05-19 2010-09-08 北京大学 一种红色荧光粉及其制备方法和应用
CN102604638A (zh) * 2012-01-19 2012-07-25 苏州大学 一种Eu3+激活的磷酸盐红色荧光粉、制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUBNER, N. ET AL.: "Preparation and Crystal Structure of Lanthanide Titanium Chloride Oxide (Ln3Ti04C15) (Ln = La-Nd) - the First Oxochlorotitanates of Rare Earths", Z. ANORG. ALLG. CHEM., 31 December 1990 (1990-12-31), pages 107, ISSN: 0044-2313 *

Also Published As

Publication number Publication date
CN108913141B (zh) 2021-04-20
CN108913141A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
Hakeem et al. Structural and photoluminescence properties of La1-xNaCaGa3PZrO12 doped with Ce3+, Eu3+, and Tb3+
Wang et al. Synthesis, crystal structure, and photoluminescence of a novel blue-green emitting phosphor: BaHfSi 3 O 9: Eu 2+
CN103627392B (zh) 一种锑酸盐基红色荧光粉及其制备方法和应用
CN109777404B (zh) 一种铕离子Eu3+激活的铝酸盐红色荧光粉及其制备方法
JP2009503183A (ja) 黄色蛍光体及びこれを含む白色発光装置
CN105694886A (zh) 一种Eu2+掺杂的氟酸盐基发光材料的制备方法和应用
CN107629794B (zh) 一种铕离子Eu3+激活的铋基发光材料、制备方法及应用
CN109957403B (zh) 一种Eu3+激活氟硼酸锶钡红色荧光粉及其制备与应用
Huang et al. Luminescence properties of a single-host phosphor Ba1. 8–wSrwLi0. 4SiO4: Ce3+, Eu2+, Mn2+ for WLED
Xiong et al. Novel red emitting LnTaO4: Eu3+ (Ln= La, Y) phosphors for warm white LEDs
TWI577782B (zh) A phosphor and a light-emitting device containing the same
CN110003901B (zh) 一种Eu3+和Ti4+离子共掺杂的铌钽酸盐红色荧光粉、制备方法及其应用
CN103396800B (zh) 一种硼铝酸盐基蓝色荧光粉、制备方法及应用
CN102373062B (zh) 一种适于白光led应用的氟硅酸盐红色荧光粉及其制备方法
KR102041889B1 (ko) 가넷 구조 산화물 형광체, 이의 제조방법, 및 이의 발광 특성
CN107099291B (zh) 一种可被近紫外光激发的红色荧光材料、制备方法及应用
CN110184055B (zh) 一种Eu3+激活的铌钽酸盐红发光荧光粉及其制备与应用
WO2020024318A1 (zh) Eu3+离子激活的荧光材料及其制备和应用
CN109957397B (zh) 一种Tb3+激活氟硼酸锶钡绿色荧光粉及其制备与应用
CN109825296B (zh) 一种铕离子Eu3+激活的氟锑酸盐橙红色荧光粉及其制备方法
CN110079316B (zh) 一种Eu3+掺杂的氟铌钽酸盐荧光粉及其合成与应用
CN109971475B (zh) 一种铕离子Eu3+激活的铌铟酸钙红发光荧光粉、制备方法及其应用
KR100537725B1 (ko) Ce3+이온이 첨가된 A3B2C3O12 구조의 황색 형광체
Zhang et al. Luminescence of emission-tunable Na15. 6Ca3. 84Si12O36: Ce3+, Tb3+, Na+ phosphors for near-ultraviolet light-emitting diodes
KR102086821B1 (ko) Led용 지르콘네이트 형광체, 이의 제조방법, 및 이의 발광 특성

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928781

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)EPC DATED 30.06.2021(EPO FORM 1205A)