WO2020021704A1 - 管用ねじ継手及びその製造方法 - Google Patents

管用ねじ継手及びその製造方法 Download PDF

Info

Publication number
WO2020021704A1
WO2020021704A1 PCT/JP2018/028268 JP2018028268W WO2020021704A1 WO 2020021704 A1 WO2020021704 A1 WO 2020021704A1 JP 2018028268 W JP2018028268 W JP 2018028268W WO 2020021704 A1 WO2020021704 A1 WO 2020021704A1
Authority
WO
WIPO (PCT)
Prior art keywords
box
pin
plating layer
alloy plating
contact surface
Prior art date
Application number
PCT/JP2018/028268
Other languages
English (en)
French (fr)
Inventor
石井 一也
後藤 邦夫
雅也 木本
Original Assignee
日本製鉄株式会社
バローレック・オイル・アンド・ガス・フランス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社, バローレック・オイル・アンド・ガス・フランス filed Critical 日本製鉄株式会社
Priority to PCT/JP2018/028268 priority Critical patent/WO2020021704A1/ja
Publication of WO2020021704A1 publication Critical patent/WO2020021704A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/04Screw-threaded joints; Forms of screw-threads for such joints with additional sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L15/00Screw-threaded joints; Forms of screw-threads for such joints
    • F16L15/08Screw-threaded joints; Forms of screw-threads for such joints with supplementary elements

Definitions

  • the present invention relates to a threaded joint for pipes and a method for producing the same, and more particularly, to a threaded joint for oil country tubular goods and a method for producing the same.
  • Oil well pipes are used for mining oil fields and natural gas fields.
  • An oil country tubular good is formed by connecting a plurality of steel pipes according to the depth of the well.
  • the connection of the steel pipes is performed by screwing together pipe threaded joints formed at the ends of the steel pipes.
  • the oil country tubular goods are pulled up for inspection or the like, unscrewed, inspected, screwed again, and used again.
  • Pipe threaded joints include pins and boxes.
  • the pin includes a male screw portion formed on the outer peripheral surface of the tip of the steel pipe.
  • the box includes a female screw portion formed on the inner peripheral surface of the distal end portion of the steel pipe.
  • Pins and boxes may also have unthreaded metal contacts. The threaded portion of the pin and the box and the threadless metal contact portion repeatedly receive strong friction when screwing and unscrewing the steel pipe. If these parts do not have sufficient durability against friction, galling (irreparable seizure) occurs when the screwing and unscrewing are repeated. Therefore, threaded joints for pipes are required to have sufficient durability against friction, that is, excellent seizure resistance.
  • compound grease containing a heavy metal called a dope has been used to improve seizure resistance.
  • the seizure resistance of the pipe threaded joint can be improved.
  • heavy metals such as Pb, Zn, and Cu contained in the compound grease may affect the environment. Therefore, development of a threaded joint for pipes that does not use compound grease is desired.
  • Patent Document 1 proposes a threaded pipe joint having excellent seizure resistance even without compound grease.
  • the pipe threaded joint described in Patent Document 1 includes a pin and a box each having a contact surface having a threaded portion and a threadless metal contact portion.
  • the contact surface of the box has as its top layer a solid lubricating coating having a plastic or viscoplastic rheological behavior.
  • the contact surface of the pin has, as the uppermost layer, a solid anticorrosive coating mainly composed of an ultraviolet curable resin.
  • the pipe threaded joint described in Patent Document 2 includes a pin portion and a coupling. At both ends of the coupling, a box portion having a female screw and a metal-metal seal portion is provided. A Cu—Sn alloy layer is disposed on the surface of the female screw and the metal-metal seal portion of the coupling.
  • Patent Document 2 describes that the use of this threaded joint for pipes has a better sealing property and can significantly suppress galling even if a green dope (lubricant containing no Pb) is used. I have.
  • Patent Document 3 includes a pin and a box. At least one contact surface of the pin and the box has a first plating layer made of a Cu—Zn alloy.
  • Patent Literature 3 describes that the threaded joint for pipe shows sufficient leakage resistance and seizure resistance even when a green dope is applied or even when it is not doped.
  • OCTG oil well pipes are manufactured, transported by ships, etc., and stored for a certain period of time until they are used.
  • the transportation and storage of the OCTG may take a long time.
  • storage of OCTG may be done outdoors. When stored outdoors for a long period of time, rust may occur in the pipe threaded joint, and the airtightness and seizure resistance of the threaded pipe joint may be reduced. Therefore, the pipe threaded joint is required to have excellent corrosion resistance in addition to the above-mentioned seizure resistance.
  • An object of the present invention is to provide a threaded pipe joint having excellent seizure resistance and corrosion resistance, and a method of manufacturing the same.
  • the pipe threaded joint of the present embodiment includes a pin, a box, and a Zn—Co alloy plating layer.
  • the pin has a pin-side contact surface that includes a pin-side thread.
  • the box has a box side contact surface that includes a box side thread.
  • the Zn—Co alloy plating layer is disposed on at least one of the pin-side contact surface and the box-side contact surface.
  • the Zn—Co alloy plating layer is composed of 5.0 to 25.0% by mass of cobalt, 0.10 to 5.00% by mass of dextrin, and the balance is zinc and impurities.
  • the method for manufacturing a pipe threaded joint of the present embodiment is a method of forming a Zn—Co alloy plating layer on a pipe threaded joint including a pin and a box.
  • the pin has a pin-side contact surface that includes a pin-side thread.
  • the box has a box side contact surface that includes a box side thread.
  • First, at least one of the pin-side contact surface and the box-side contact surface is immersed in a plating solution.
  • the plating solution contains zinc ions, cobalt ions and dextrin.
  • Next, at least one of the pin-side contact surface and the box-side contact surface immersed in the plating solution is energized.
  • a Zn—Co alloy plating layer is formed on at least one of the pin-side contact surface and the box-side contact surface.
  • the Zn—Co alloy plating layer is composed of 5.0 to 25.0% by mass of cobalt, 0.10 to 5.00% by mass of dextrin, and the balance is zinc and impurities.
  • the threaded joint for pipes of the present embodiment is excellent in seizure resistance and corrosion resistance.
  • FIG. 1 is a view showing a configuration of a coupling type pipe threaded joint according to the present embodiment.
  • FIG. 2 is a diagram showing a configuration of an integral type pipe threaded joint according to the present embodiment.
  • FIG. 3 is a cross-sectional view of an example of a pipe threaded joint.
  • FIG. 4 is a diagram showing a configuration of the pipe threaded joint according to the present embodiment in the case where the pipe has no metal seal portion and no shoulder portion.
  • FIG. 5 is a sectional view of an example of the threaded pipe joint according to the present embodiment.
  • FIG. 6 is a sectional view of an example of a pipe threaded joint according to another embodiment different from FIG.
  • FIG. 7 is a cross-sectional view of an example of a pipe threaded joint according to another embodiment different from FIGS. 5 and 6.
  • FIG. 8 is a cross-sectional view of a pipe threaded joint provided with a solid lubricating film.
  • a plating layer having high hardness and a high melting point on the threaded portion and the threadless metal contact portion (hereinafter referred to as a contact surface). If the hardness of the plating layer is high, the plating layer is less likely to be damaged during screwing and unscrewing of the pipe threaded joint. Furthermore, if the melting point of the plating layer is high, the plating layer is less likely to melt even when the temperature is locally high when screwing and unscrewing the threaded joint for pipes.
  • a Zn—Co alloy plating layer containing zinc and cobalt is formed on the contact surface.
  • the hardness and melting point of a Zn—Co alloy containing zinc and cobalt are high. Therefore, seizure resistance of the pipe threaded joint can be improved.
  • zinc (Zn) has a lower hardness and a lower melting point than copper (Cu) which has been conventionally used for plating.
  • the plating layer has sufficient hardness and melting point, and can improve seizure resistance.
  • the corrosion resistance of threaded joints for pipes can be further improved by using an alloy containing zinc.
  • Zinc (Zn) is a base metal compared to iron (Fe), nickel (Ni) and chromium (Cr). Therefore, if an alloy plating layer containing zinc (Zn) is formed on the contact surface, the alloy plating layer is corroded preferentially over steel (sacrificial corrosion protection). Thereby, the corrosion resistance of the threaded pipe joint is increased.
  • the Zn—Co alloy plating layer of the present embodiment further contains dextrin. If the Zn—Co alloy plating layer contains dextrin, the corrosion products become dense.
  • the corrosion product is a general term for a substance generated by corrosion of a Zn—Co alloy plating layer, and includes a zinc oxide.
  • corrosion products cover the surface of the Zn—Co alloy plating layer at an initial stage. If the corrosion product is dense, contact of corrosion factors such as oxygen and water on the surface of the Zn—Co alloy plating layer and the surface of the steel material is suppressed. Thereby, further progress of corrosion is suppressed. As a result, the corrosion resistance of the pipe threaded joint is further improved.
  • the pipe threaded joint of the present embodiment completed based on the above findings includes a pin, a box, and a Zn-Co alloy plating layer.
  • the pin has a pin-side contact surface that includes a pin-side thread.
  • the box has a box side contact surface that includes a box side thread.
  • the Zn—Co alloy plating layer is disposed on at least one of the pin-side contact surface and the box-side contact surface.
  • the Zn—Co alloy plating layer is composed of 5.0 to 25.0% by mass of cobalt, 0.10 to 5.00% by mass of dextrin, and the balance is zinc and impurities.
  • the pipe threaded joint of the present embodiment includes a Zn—Co alloy plating layer containing zinc, cobalt, and dextrin. Therefore, it is excellent in seizure resistance and corrosion resistance.
  • the thickness of the Zn—Co alloy plating layer is 1 to 20 ⁇ m.
  • the pipe threaded joint further includes a solid lubricating coating on the Zn—Co alloy plating layer.
  • the pin-side contact surface of the pipe threaded joint may further include a pin-side metal seal portion and a pin-side shoulder portion.
  • the box side contact surface may further include a box side metal seal and a box side shoulder.
  • the method for manufacturing a pipe threaded joint of the present embodiment is a method of forming a Zn—Co alloy plating layer on a pipe threaded joint including a pin and a box.
  • the pin has a pin-side contact surface that includes a pin-side thread.
  • the box has a box side contact surface that includes a box side thread.
  • First, at least one of the pin-side contact surface and the box-side contact surface is immersed in a plating solution.
  • the plating solution contains zinc ions, cobalt ions and dextrin.
  • Next, at least one of the pin-side contact surface and the box-side contact surface immersed in the plating solution is energized.
  • a Zn—Co alloy plating layer is formed on at least one of the pin-side contact surface and the box-side contact surface.
  • the Zn—Co alloy plating layer is composed of 5.0 to 25.0% by mass of cobalt, 0.10 to 5.00% by mass of dextrin, and the balance is zinc and impurities.
  • the manufacturing method further includes a step of forming a solid lubricating film on the Zn—Co alloy plating layer.
  • the pin-side contact surface may further include a pin-side metal seal portion and a pin-side shoulder portion.
  • the box side contact surface may further include a box side metal seal and a box side shoulder.
  • FIG. 1 is a diagram showing a configuration of a pipe threaded joint 1 according to the present embodiment.
  • a pipe threaded joint 1 includes a steel pipe 2 and a coupling 3.
  • Pins 4 each having an external thread portion on the outer surface are formed at both ends of the steel pipe 2.
  • Boxes 5 each having a female screw portion on the inner surface are formed at both ends of the coupling 3.
  • the coupling 3 is attached to the end of the steel pipe 2 by screwing the pin 4 and the box 5 together.
  • a protector may be attached to the pin 4 of the steel pipe 2 and the box 5 of the coupling 3 to which the mating member is not attached in order to protect the respective screw portions.
  • FIG. 2 is a diagram showing the configuration of the integral type pipe threaded joint 1 according to the present embodiment.
  • the threaded pipe joint 1 includes a steel pipe 2. At one end of the steel pipe 2, a pin 4 having an external thread portion on the outer surface is formed. At the other end of the steel pipe 2, a box 5 having a female screw portion on the inner surface is formed.
  • the steel pipes 2 can be connected to each other by screwing the pins 4 and the box 5 together.
  • the pipe threaded joint 1 of the present embodiment can be used for both coupling type and integral type pipe threaded joints 1.
  • FIG. 3 is a sectional view of an example of the threaded pipe joint 1.
  • the pin 4 includes a pin-side screw part 41, a pin-side metal seal part 42, and a pin-side shoulder part 43.
  • the box 5 includes a box-side screw portion 51, a box-side metal seal portion 52, and a box-side shoulder portion 53. The portions that come into contact when the pin 4 and the box 5 are screwed together are referred to as contact surfaces 40 and 50.
  • the screw portions (the pin-side screw portion 41 and the box-side screw portion 51) and the metal seal portions (the pin-side metal seal portion 42 and the box-side metal seal portion) 52) and the shoulder portions (the pin-side shoulder portion 43 and the box-side shoulder portion 53) come into contact with each other.
  • the pin-side contact surface 40 includes a pin-side screw portion 41, a pin-side metal seal portion 42, and a pin-side shoulder portion 43.
  • the box-side contact surface 50 includes a box-side screw portion 51, a box-side metal seal portion 52, and a box-side shoulder portion 53.
  • the pins 4 are arranged in the order of the pin-side shoulder 43, the pin-side metal seal 42, and the pin-side screw 41 from the end of the steel pipe 2.
  • the box-side screw portion 51, the box-side metal seal portion 52, and the box-side shoulder portion 53 are arranged in this order.
  • the arrangement of the pin side screw portion 41 and the box side screw portion 51, the pin side metal seal portion 42 and the box side metal seal portion 52, and the arrangement of the pin side shoulder portion 43 and the box side shoulder portion 53 are limited to the arrangement of FIG. However, it can be changed as appropriate. For example, as shown in FIG.
  • 43, the pin-side metal seal part 42 and the pin-side screw part 41 may be arranged in this order.
  • the seal portion 52 and the box-side shoulder portion 53 may be arranged in this order.
  • FIGS. 1 and 2 illustrate a so-called premium joint including a metal seal portion (the pin-side metal seal portion 42 and the box-side metal seal portion 52) and a shoulder portion (the pin-side shoulder portion 43 and the box-side shoulder portion 53).
  • the metal seal portion (the pin-side metal seal portion 42 and the box-side metal seal portion 52) and the shoulder portion (the pin-side shoulder portion 43 and the box-side shoulder portion 53) may not be provided.
  • FIG. 4 illustrates the pipe threaded joint 1 without the metal seal portions 42 and 52 and the shoulder portions 43 and 53.
  • the pipe threaded joint 1 of the present embodiment can be suitably applied to the pipe threaded joint 1 without the metal seal portions 42 and 52 and the shoulder portions 43 and 53.
  • the pin-side contact surface 40 includes a pin-side thread 41 and the box-side contact surface 50 includes a box-side thread 51.
  • FIG. 5 is a sectional view of an example of the pipe threaded joint 1 of the present embodiment.
  • the threaded joint for pipe 1 includes a Zn—Co alloy plating layer 6 on at least one of the pin-side contact surface 40 and the box-side contact surface 50.
  • the threaded pipe joint 1 includes a Zn—Co alloy plating layer 6 on both the pin-side contact surface 40 and the box-side contact surface 50.
  • the threaded pipe joint 1 may include the Zn—Co alloy plating layer 6 only on the pin-side contact surface 40 as shown in FIG.
  • the pipe threaded joint 1 may include the Zn—Co alloy plating layer 6 only on the box-side contact surface 50.
  • the Zn—Co alloy plating layer 6 may be disposed on the entirety of the pin-side contact surface 40 or the box-side contact surface 50, or may be disposed only on a part thereof.
  • the Zn—Co alloy plating layer 6 may be disposed only on the pin-side screw portion 41.
  • the Zn—Co alloy plating layer 6 may be disposed only on the box-side screw portion 51.
  • the pin-side contact surface 40 has the pin-side metal seal portion 42 and the pin-side shoulder portion 43
  • the Zn—Co alloy plating layer 6 may be disposed only on the pin-side metal seal portion 42, You may arrange
  • the Zn—Co alloy plating layer 6 may be disposed only on the box-side metal seal portion 52, or may be provided on the box-side shoulder. You may arrange
  • the pipe threaded joint 1 includes a Zn—Co alloy plating layer 6 on at least one of the pin-side contact surface 40 and the box-side contact surface 50.
  • the Zn—Co alloy plating layer 6 is composed of 5.0 to 25.0% by mass of cobalt, 0.10 to 5.00% by mass of dextrin, and the balance is zinc and impurities.
  • the impurities are substances other than zinc, cobalt and dextrin, and are contained in the Zn—Co alloy plating layer 6 during the production of the pipe threaded joint 1 and are contained in a content that does not affect the effects of the present invention. Containing substances.
  • the hardness and melting point of the Zn—Co alloy plating layer 6 are high.
  • Zinc contained in the Zn—Co alloy plating layer 6 is a base metal compared to iron. Therefore, the corrosion resistance of the pipe threaded joint 1 is increased.
  • the Zn—Co alloy plating layer 6 contains dextrin. Therefore, the corrosion resistance of the threaded pipe joint 1 is further enhanced.
  • Zn—Co alloy plating layer 6 contains 5.0 to 25.0% by mass of cobalt.
  • the structure of the Zn—Co alloy plating layer 6 is a structure containing a large amount of ⁇ phase, which is an intermetallic compound of zinc and cobalt. Therefore, the hardness of the Zn—Co alloy plating layer 6 increases. If the hardness of the Zn—Co alloy plating layer 6 is high, the Zn—Co alloy plating layer 6 is hardly damaged at the time of screwing and unscrewing of the pipe threaded joint 1. Therefore, the seizure resistance of the pipe threaded joint 1 is enhanced.
  • the structure of the Zn—Co alloy plating layer 6 becomes a structure containing a large amount of ⁇ phase. In this case, the hardness of the Zn—Co alloy plating layer 6 is low. If the hardness of the Zn—Co alloy plating layer 6 is low, the seizure resistance of the threaded pipe joint 1 is reduced. When the structure of the Zn—Co alloy plating layer 6 is a structure containing a large amount of ⁇ phase, corrosion resistance is reduced due to short-circuit between different phases. On the other hand, if the content of cobalt is more than 25.0% by mass, the structure of the Zn—Co alloy plating layer 6 becomes a structure containing a large amount of ⁇ phase.
  • the hardness of the Zn—Co alloy plating layer 6 is low. If the hardness of the Zn—Co alloy plating layer 6 is low, the seizure resistance of the threaded pipe joint 1 is reduced. When the structure of the Zn—Co alloy plating layer 6 is a structure containing a large amount of ⁇ phase, corrosion resistance is reduced due to short-circuit between different phases. Therefore, the cobalt content of the Zn—Co alloy plating layer 6 is 5.0 to 25.0% by mass.
  • the lower limit of the cobalt content of the Zn—Co alloy plating layer 6 is more than 5.0% by mass, more preferably 10.0% by mass, and still more preferably 12.0% by mass.
  • the upper limit of the cobalt content of the Zn—Co alloy plating layer 6 is 20.0% by mass, more preferably 18.0% by mass.
  • the cobalt content of the Zn—Co alloy plating layer 6 is measured by the following method.
  • the measurement is performed using a scanning electron microscope (SEM) with an energy dispersive X-ray analyzer (EDS) (EDS: Pegasus manufactured by Ametech Co., Ltd., SEM: ERA-8900FE manufactured by Elionix Inc.).
  • SEM scanning electron microscope
  • EDS energy dispersive X-ray analyzer
  • Arbitrary three points on the surface of the alloy plating layer are observed with a scanning electron microscope to analyze the composition.
  • the average value of the three points is adopted as the Co content.
  • the Zn—Co alloy plating layer 6 contains dextrin. If the Zn—Co alloy plating layer 6 contains dextrin, the corrosion products of the Zn—Co alloy plating layer 6 become dense. When the Zn—Co alloy plating layer 6 is corroded, a dense corrosion product covers the surface of the Zn—Co alloy plating layer 6 in the initial stage. Thereby, further progress of corrosion is suppressed. For this reason, the corrosion resistance of the threaded pipe joint 1 is further enhanced.
  • Dextrin is a general term for polysaccharides in which glucose (C 6 H 10 O 5 ) is linked by glycosidic bonds.
  • the above-mentioned polysaccharide having a weight average molecular weight of 10 2 to 10 7 is dextrin.
  • Dextrin contains ⁇ -1,4 glycosidic bonds and ⁇ -1,6 glycosidic bonds. The ratio of these bonds is not particularly limited.
  • the weight average molecular weight of dextrin is measured using a liquid chromatograph.
  • a liquid chromatograph Specifically, an L-7100 type reaction liquid chromatograph (detector: UV / VIS detector (365 nm), column: GC) having a flow system of two flow paths of a mobile phase and a reaction solution, manufactured by Hitachi, Ltd. -W530).
  • the measurement conditions were as follows: mobile phase: 0.1 M NaCl, column temperature: 30 ° C., mobile phase flow rate: 0.5 mL / min, reaction liquid: phenylhydrazine phosphate, reaction liquid flow rate: 0.5 mL / min, reaction temperature: 150 ° C.
  • the molecular weight calibration curve is created using glucose, maltotriose, and pullulan as standard substances. Adjustment of the analysis sample is performed as follows. After adding 1 M sodium carbonate to the solution containing the dextrin to be measured, centrifugation (10,000 rpm for 10 minutes) is performed. 1M hydrochloric acid is added to the obtained supernatant to prepare an analysis sample.
  • Dextrin contained in the Zn—Co alloy plating layer 6 is extracted by the following method.
  • the threaded pipe joint 1 is immersed in 0.8 M sulfuric acid at room temperature (25 ° C.) for 5 minutes. Thereafter, the temperature of the sulfuric acid is increased, and immersion is performed at 75 ° C. ⁇ 5 ° C. for another 5 minutes. This dissolves the Zn—Co alloy plating layer 6.
  • the weight average molecular weight of dextrin is measured by the above-described method.
  • the dextrin content of the Zn—Co alloy plating layer 6 is 0.10 to 5.00% by mass. If the dextrin content is less than 0.10% by mass, the effect of improving the corrosion resistance of the threaded pipe joint 1 cannot be obtained. On the other hand, if the dextrin content is more than 5.00% by mass, the hardness of the Zn—Co alloy plating layer 6 decreases. In this case, the seizure resistance of the pipe threaded joint 1 decreases. Therefore, the content of dextrin is 0.10 to 5.00% by mass.
  • the lower limit of the dextrin content of the Zn—Co alloy plating layer 6 is 0.50% by mass, more preferably 1.00% by mass.
  • the upper limit of the dextrin content of Zn—Co alloy plating layer 6 is 3.00% by mass.
  • the dextrin content of the Zn—Co alloy plating layer 6 is measured by the following method.
  • the Zn—Co alloy plating layer 6 is dissolved, and dextrin contained in the Zn—Co alloy plating layer 6 is extracted.
  • 1 mL of a solution containing dextrin 1 mL of a 5% phenol solution is added and mixed.
  • 5 mL of concentrated sulfuric acid is added and mixed. The reaction is performed for 10 minutes to decompose dextrin into glucose. After cooling the liquid containing glucose in a water bath at room temperature for 10 minutes or more, the absorbance at 490 nm is measured.
  • the thickness of the Zn—Co alloy plating layer 6 is preferably 1 to 20 ⁇ m. When the thickness of the Zn—Co alloy plating layer 6 is 1 ⁇ m or more, the seizure resistance and corrosion resistance of the threaded pipe joint 1 can be stably enhanced. If the thickness of the Zn—Co alloy plating layer 6 is 20 ⁇ m or less, the adhesion of plating is stable. Therefore, the thickness of the alloy plating layer is preferably 1 to 20 ⁇ m.
  • the lower limit of the thickness of the Zn—Co alloy plating layer 6 is more preferably 5 ⁇ m, and further preferably 8 ⁇ m.
  • the upper limit of the thickness of the Zn—Co alloy plating layer 6 is more preferably 15 ⁇ m, and further preferably 12 ⁇ m.
  • the thickness of the Zn—Co alloy plating layer 6 is measured by the following method.
  • the threaded pipe joint 1 on which the Zn—Co alloy plating layer 6 is formed is cut at right angles to the longitudinal direction of the threaded pipe joint 1 to obtain cut pieces.
  • the cut piece is embedded in the resin so that the cut surface becomes the observation surface.
  • the observation surface is polished to prepare an observation sample.
  • a section of the Zn—Co alloy plating layer 6 is observed by a scanning electron microscope (SEM), and the thickness of the Zn—Co alloy plating layer 6 is measured.
  • FIG. 8 is a cross-sectional view of a pipe threaded joint provided with the solid lubricating coating 7.
  • threaded joint for pipe 1 further includes a solid lubricating coating 7 on Zn—Co alloy plating layer 6.
  • the lubricity of the threaded pipe joint 1 is enhanced.
  • the solid lubricating coating 7 includes, for example, lubricating particles and a binder.
  • the solid lubricating coating 7 may contain a solvent and other components as needed.
  • the lubricating particles reduce the coefficient of friction of the surface of the solid lubricating coating 7.
  • the lubricating particles are not particularly limited as long as they have lubricating properties.
  • the lubricating particles are, for example, graphite, MoS 2 (molybdenum disulfide), WS 2 (tungsten disulfide), BN (boron nitride), PTFE (polytetrafluoroethylene), CF x (fluorinated graphite) and CaCO 3 (carbonate Calcium) or one or more selected from the group consisting of:
  • lubricating particles are graphite, one or more members selected from the group consisting of graphite fluoride, MoS 2 and PTFE.
  • the content of the lubricating particles is, for example, 1 to 50% by mass, preferably 5 to 30% by mass, when the total of components other than the solvent is 100% by mass.
  • the binder binds the lubricating particles into the solid lubricating coating 7.
  • the binder is, for example, one or two selected from the group consisting of an organic resin and an inorganic resin.
  • an organic resin one selected from the group consisting of a thermosetting resin and a thermoplastic resin can be used.
  • the thermosetting resin is, for example, one or two selected from the group consisting of an epoxy resin, a polyimide resin, a polycarbodiimide resin, a polyethersulfone, a polyetheretherketone resin, a phenol resin, a furan resin, a urea resin, and an acrylic resin. More than a species.
  • the thermoplastic resin is, for example, one or more selected from the group consisting of a polyamideimide resin, a polyethylene resin, a polypropylene resin, a polystyrene resin, and an ethylene vinyl acetate resin.
  • polymetalloxane refers to a polymer compound in which a repeating metal-oxygen bond is a main chain skeleton.
  • polytitanoxane (Ti—O) and polysiloxane (Si—O) are used.
  • These inorganic resins are obtained by hydrolyzing and condensing a metal alkoxide.
  • the alkoxy group of the metal alkoxide is, for example, a lower alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an isobutoxy group, a butoxy group and a tert-butoxy group.
  • the content of the binder is, for example, 10 to 80% by mass, preferably 20 to 70% by mass, when the total of components other than the solvent is 100% by mass.
  • the solvent is not particularly limited as long as the components contained in the solid lubricating coating 7 can be dispersed or dissolved.
  • the solvent one or two kinds selected from the group consisting of an organic solvent and water can be used.
  • the organic solvent is, for example, one or two selected from the group consisting of toluene and isopropyl alcohol.
  • the solid lubricating coating 7 can contain other components as needed.
  • Other components are, for example, rust inhibitors, corrosion inhibitors, surfactants, waxes, friction modifiers and pigments.
  • the content of other components is, for example, 3 to 45% by mass, preferably 10 to 40% by mass, when the total of components other than the solvent is 100% by mass.
  • the content of each of the lubricating particles, the binder, the solvent, and other components is appropriately set.
  • the composition of the base material of the pipe threaded joint 1 is not particularly limited.
  • the base material is, for example, carbon steel, stainless steel, alloy steel, or the like.
  • alloy steels Ni-based alloys and high alloy steels such as duplex stainless steels containing alloying elements such as Cr, Ni and Mo have high corrosion resistance. Therefore, if these high alloy steels are used as a base material, excellent corrosion resistance can be obtained in a corrosive environment containing hydrogen sulfide, carbon dioxide, and the like.
  • the method for manufacturing the pipe threaded joint 1 according to the present embodiment includes an immersion step and an energization step.
  • the pin 4 has a pin-side contact surface 40 that includes a pin-side thread 41 as described above.
  • the box 5 has a box-side contact surface 50 including a box-side screw portion 51.
  • the plating solution contains zinc ions, cobalt ions and dextrin.
  • the plating solution further contains a solvent.
  • the solvent is water.
  • Zinc ions are contained in the plating solution by dissolving a salt of zinc ions and anions (eg, zinc sulfate) in a solvent.
  • cobalt ions are contained in the plating solution by dissolving a salt of cobalt ions and anions (for example, cobalt sulfate) in a solvent.
  • the anion is, for example, one or more selected from the group consisting of sulfate ions, chloride ions, and pyrophosphate ions.
  • the lower limit of the content of zinc ions in the plating solution is preferably 10 g / L, more preferably 20 g / L, in terms of zinc.
  • the upper limit of the content of zinc ions in the plating solution is preferably 55 g / L, more preferably 30 g / L, in terms of zinc.
  • the lower limit of the content of cobalt ions in the plating solution is preferably 10 g / L, more preferably 30 g / L, in terms of cobalt.
  • the upper limit of the content of cobalt ions in the plating solution is preferably 50 g / L, more preferably 45 g / L, in terms of cobalt.
  • Plating solution contains dextrin.
  • the lower limit of the content of dextrin in the plating solution is preferably 0.5 g / L, more preferably 1.0 g / L.
  • the upper limit of the content of dextrin in the plating solution is preferably 15 g / L, more preferably 10 g / L.
  • the plating solution is, if necessary, one or two selected from the group consisting of a conductive salt, an anode dissolution accelerator, a complexing agent, a pH buffer, a surfactant, a reducing agent, a stabilizer and other additives. It may contain more than one species.
  • Electroplating conditions can be set as appropriate.
  • the electroplating conditions are, for example, plating solution pH: 1 to 10, plating solution temperature: 10 to 60 ° C., current density: 1 to 100 A / dm 2 , and processing time: 0.1 to 30 minutes.
  • the manufacturing method includes a step of forming a solid lubricating coating 7 on the Zn—Co alloy plating layer 6 (solid lubricating coating forming step).
  • solid lubricating coating forming step first, a composition for a solid lubricating film (hereinafter, also referred to as a composition) is prepared.
  • the composition is formed by mixing the lubricating particles and the binder described above.
  • the composition may further contain the above-mentioned solvents and other components.
  • the obtained composition is applied on the Zn—Co alloy plating layer 6.
  • the method of application is not particularly limited.
  • the composition is sprayed on the Zn—Co alloy plating layer 6 using a spray gun.
  • the pin 4 or the box 5 to which the composition has been applied is dried by heating.
  • the composition is cured, and a solid lubricating film 7 is formed on the Zn—Co alloy plating layer 6.
  • the conditions for the heating and drying can be appropriately set in consideration of the boiling point and melting point of each component contained in the composition.
  • a hot melt method can be used. In the hot melt method, the composition is heated to a fluid state.
  • the composition in a fluidized state is sprayed using, for example, a spray gun having a temperature maintaining function.
  • the pin 4 or the box 5 to which the composition has been applied is cooled by air cooling or the like.
  • the composition is cured, and a solid lubricating film 7 is formed on the Zn—Co alloy plating layer 6.
  • the manufacturing process may further include a pretreatment process before the dipping process, if necessary.
  • Pretreatment steps are, for example, pickling and alkaline degreasing.
  • oil and the like adhering on the contact surfaces 40 and 50 are removed.
  • the pretreatment step may further include a grinding process such as a mechanical grinding finish.
  • the above manufacturing process may further include a phosphate film forming step, if necessary.
  • a phosphate film is formed between the Zn—Co alloy plating layer 6 and the solid lubricant film 7.
  • the adhesion of the solid lubricating coating can be enhanced by the phosphate coating.
  • the phosphate is, for example, one or two selected from the group consisting of zinc phosphate and manganese phosphate.
  • the phosphate film forming step can be performed by a known method.
  • the contact surface of the pin is called the pin surface
  • the contact surface of the box is called the box surface.
  • % in the examples means mass%.
  • the base material is a 13% Cr steel (C: 0.18%, Si: 0.23%, Mn: 0.8%, P: 0.02%, S: 0.01) which is a kind of high alloy steel. %, Cu: 0.04%, Ni: 0.1%, Cr: 13%, Mo: 0.04%, balance: Fe and impurities).
  • a seamless steel pipe and a coupling were manufactured.
  • the size of the seamless steel pipe was 244.5 mm in outer diameter, 13.84 mm in wall thickness, and 1200 mm in length.
  • Pins having pin-side threaded portions and screwless metal contact portions (pin-side metal seal portions and pin-side shoulder portions) were formed on the outer surfaces of both ends of the seamless steel pipe by cutting. Boxes having a box-side screw portion and a screwless metal contact portion (box-side metal seal portion and box-side shoulder portion) were formed on the inner surfaces of both ends of the coupling by cutting.
  • a plating solution containing zinc ions, cobalt ions and dextrin was prepared.
  • the plating solution is commercially available special grade zinc sulfate heptahydrate, cobalt sulfate heptahydrate, commercially available special grade dextrin (manufactured by Kishida Chemical Co., weight average molecular weight: 10 2 to 10 7 ), ammonium chloride: 0.5 mol / L and Boric acid: prepared by dissolving 0.5 mol / L in pure water.
  • Several types of plating solutions were prepared by changing the zinc ion concentration, the cobalt ion concentration and the dextrin concentration, respectively. Subsequently, the coupling was immersed in the plating solution of each test number.
  • a Zn—Co alloy plating layer was formed on the box surfaces of Test Nos. 1 to 13. Specifically, a current was applied to the coupling of each test number immersed in the plating solution to form a Zn—Co alloy plating layer.
  • the plating conditions were as follows: plating solution pH: 3.5, plating solution temperature: 35 ° C., current density: 2 to 20 A / dm 2 (constant current electrolytic method).
  • CuA Cu—Sn—Zn alloy plating layer was formed on the box surface of Test No. 14. Specifically, a Cu—Sn—Zn alloy plating layer was formed on the box surface by electroplating using a cyan bath containing copper ions, tin ions, and zinc ions. The Cu—Sn—Zn alloy plating layer contained about 7% of Zn, about 40% of Sn, and about 53% of Cu.
  • Solid lubrication film forming process A solid lubricating film was further formed on the box surfaces of Test Nos. 1 to 14.
  • the composition for forming a solid lubricating film contained polyamideimide resin: 12% by mass, dimethyl sulfoxide: 45% by mass, PTFE particles: 5% by mass, and pure water: balance. After spray-coating this composition on the alloy plating layer, preliminary drying (85 ° C., 10 minutes) and main heating (280 ° C., 30 minutes) were performed to form a solid lubricating film having an average film thickness of 30 ⁇ m.
  • the pin surface was subjected to a mechanical grinding finish (surface roughness 3 ⁇ m), and then a solid anticorrosion film was formed.
  • the composition for forming a solid anticorrosive film contained an acrylic resin-based ultraviolet-curable resin, aluminum phosphite, and polyethylene wax. The contents of aluminum phosphite and polyethylene wax were 0.05 and 0.01 with respect to the acrylic resin-based ultraviolet-curable resin 1, respectively.
  • the composition was cured by irradiating the composition with ultraviolet rays using a UV lamp (air-cooled mercury lamp, output 4 kW, ultraviolet wavelength: 260 nm).
  • the thickness of the solid anticorrosion coating was 25 ⁇ m.
  • Salt spray test A salt spray test was performed using a test piece having the same composition as the above coupling.
  • the test piece was provided with a Zn—Co alloy plating layer and a solid lubricating coating similar to the box surface of each test number.
  • the size of the test piece was width: 70 mm, length: 50 mm, and thickness: 1 mm.
  • the salt spray test was performed based on the method described in JIS Z2371 (2000).
  • the test time was up to 4500 hours.
  • the time when rust was generated on the surface of the test piece of each test number was measured by visual observation. Table 1 shows the results. In Table 1, ">4500" indicates that rusting was not observed even after 4500 hours.
  • the threaded joints for pipes of Test Nos. 1 to 5 were provided with an appropriate Zn—Co alloy plating layer on at least one of the pin-side contact surface and the box-side contact surface.
  • the threaded joints for pipes of Test Nos. 1 to 5 were made of Zn—Co composed of 5.0 to 25.0% by mass of cobalt, 0.10 to 5.00% by mass of dextrin, and the balance of zinc.
  • An alloy plating layer was provided. Therefore, the threaded pipe joints of Test Nos. 1 to 5 exhibited excellent seizure resistance and corrosion resistance. Specifically, in the pipe threaded joints of Test Nos. 1 to 5, seizure did not occur even if screwing and unscrewing were repeated 10 times. Further, in the threaded joints for pipes of Test Nos. 1 to 5, no rust was observed even after elapse of 4500 hours in the salt spray test.
  • the cobalt content of the alloy plating layer was 4.5% by mass. Furthermore, the alloy plating layer of the pipe threaded joint of Test No. 6 did not contain dextrin. Therefore, in the pipe threaded joint of Test No. 6, seizure occurred when screwing and unscrewing were repeated eight times. Further, in the pipe threaded joint of test number 6, rusting was confirmed after 500 hours in the salt spray test.
  • the cobalt content of the alloy plating layer was 4.5% by mass. Furthermore, in the threaded joint for pipes of Test No. 7, the dextrin content of the alloy plating layer was 0.01% by mass. Therefore, seizure occurred in the pipe threaded joint of Test No. 7 when screwing and unscrewing were repeated eight times. Further, rusting of the pipe threaded joint of Test No. 7 was confirmed after 500 hours in the salt spray test.
  • the cobalt content of the alloy plating layer was 28.0% by mass. Furthermore, in the pipe threaded joint of Test No. 11, the dextrin content of the alloy plating layer was 0.02% by mass. Therefore, in the pipe threaded joint of test number 11, seizure occurred when screwing and unscrewing were repeated eight times. Further, rusting was confirmed on the pipe threaded joint of test number 11 after 1200 hours in the salt spray test.
  • the cobalt content of the alloy plating layer was 28.0% by mass. Furthermore, in the pipe threaded joint of Test No. 13, the dextrin content of the alloy plating layer was 5.50% by mass. Therefore, seizure occurred in the pipe threaded joint of test number 13 when the screw tightening and unscrewing were repeated seven times. Further, in the pipe threaded joint of test number 13, rusting was confirmed after lapse of 2,000 hours in the salt spray test.
  • the pipe threaded joint of Test No. 14 was provided with a conventional Cu-Sn-Zn alloy plating layer. Therefore, seizure occurred in the pipe threaded joint of Test No. 14 when screwing and unscrewing were repeated eight times. Further, in the pipe threaded joint of test number 14, rusting was confirmed after 750 hours in the salt spray test.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)

Abstract

本発明は耐焼付き性及び耐食性に優れる管用ねじ継手(1)及び管用ねじ継手(1)の製造方法を提供する。本実施形態の管用ねじ継手(1)は、ピン(4)と、ボックス(5)と、Zn-Co合金めっき層(6)とを備える。ピン(4)は、ピン側ねじ部(41)を含むピン側接触表面(40)を有する。ボックス(5)は、ボックス側ねじ部(51)を含むボックス側接触表面(50)を有する。Zn-Co合金めっき層(6)は、ピン側接触表面(40)及びボックス側接触表面(50)の少なくとも一方の上に配置される。Zn-Co合金めっき層(6)は、5.0~25.0質量%のコバルト、0.10~5.00質量%のデキストリン、及び、残部は亜鉛及び不純物からなる。

Description

管用ねじ継手及びその製造方法
 本発明は、管用ねじ継手及びその製造方法に関し、さらに詳しくは、油井管用ねじ継手及びその製造方法に関する。
 油田や天然ガス田の採掘のために、油井管が使用される。油井管は、井戸の深さに応じて、複数の鋼管を連結して形成される。鋼管の連結は、鋼管の端部に形成された管用ねじ継手同士をねじ締めすることによって行われる。油井管は、検査等のために引き上げられ、ねじ戻しされ、検査された後、再びねじ締めされて、再度使用される。
 管用ねじ継手は、ピン及びボックスを備える。ピンは、鋼管の先端部の外周面に形成された雄ねじ部を含む。ボックスは、鋼管の先端部の内周面に形成された雌ねじ部を含む。ピン及びボックスはさらに、ねじ無し金属接触部を有する場合がある。ピン及びボックスのねじ部及びねじ無し金属接触部は、鋼管のねじ締め及びねじ戻し時に強い摩擦を繰り返し受ける。これらの部位に摩擦に対する十分な耐久性がなければ、ねじ締め及びねじ戻しを繰り返した時にゴーリング(修復不可能な焼付き)が発生する。したがって、管用ねじ継手には、摩擦に対する十分な耐久性、すなわち、優れた耐焼付き性が要求される。
 従来、耐焼付き性を向上するために、ドープと呼ばれる重金属入りのコンパウンドグリースが使用されてきた。管用ねじ継手の表面にコンパウンドグリースを塗布することで、管用ねじ継手の耐焼付き性を改善できる。しかしながら、コンパウンドグリースに含まれるPb、Zn及びCu等の重金属は環境に影響を与える可能性がある。このため、コンパウンドグリースを使用しない管用ねじ継手の開発が望まれている。
 国際公開第2009/072486号(特許文献1)は、コンパウンドグリース無しでも耐焼付き性に優れる管用ねじ継手を提案する。
 特許文献1に記載されている管用ねじ継手は、ねじ部とねじ無し金属接触部とを有する接触表面をそれぞれ備えたピンとボックスとを備える。ボックスの接触表面は、最上層として、塑性もしくは粘塑性型レオロジー挙動を有する固体潤滑被膜を有する。ピンの接触表面は、最上層として、紫外線硬化樹脂を主成分とする固体防食被膜を有する。これにより、コンパウンドグリースを使用せずに、錆の発生を抑制し、優れた耐焼付き性と気密性とを示し、かつ表面にべたつきがなく、外観や検査性に優れた管用ねじ継手が得られる、と特許文献1に記載されている。
 管用ねじ継手の焼付きを抑制するには、硬度及び融点が高い金属を含むめっき層を形成することが有効である。そのため、従来、銅(Cu)めっき又はCu合金めっきが用いられてきた。Cuの硬度及び融点は高い。そのため、Cuがめっき層に含まれることによって、めっき層全体の硬度及び融点が高まる。したがって、管用ねじ継手の耐焼付き性が高まる。
 Cu合金めっきによって管用ねじ継手の耐焼付き性を改善する技術が、特開2003-074763号公報(特許文献2)及び特開2008-215473号公報(特許文献3)に記載されている。
 特許文献2に記載されている管用ねじ継手は、ピン部とカップリングとを含む。カップリングの両端には、雌ネジ及びメタル-メタルシール部を有するボックス部が設けられている。カップリングの雌ネジ及びメタル-メタルシール部の表面には、Cu-Sn合金層が一層配置されている。この管用ねじ継手を用いれば、グリーンドープ(Pbを含有しない潤滑剤)を使用しても従来よりシール性が良好で、且つゴーリングを格段に抑制することができる、と特許文献2に記載されている。
 特許文献3に記載されている管用ねじ継手は、ピン及びボックスを含む。ピン及びボックスの少なくとも一方の接触表面は、Cu-Zn合金からなる第1のめっき層を有する。これにより、管用ねじ継手は、グリーンドープを塗布する場合、さらには無ドープの場合でも、十分な耐漏れ性と耐焼付き性とを示す、と特許文献3には記載されている。
国際公開第2009/072486号 特開2003-074763号公報 特開2008-215473号公報
 ところで、油井管は、製造された後、船舶等により輸送され、使用されるまで一定期間保管される。油井管の輸送及び保管は、長期間に渡る場合がある。さらに、油井管の保管は屋外で行われる場合がある。屋外で長期に保管された場合、管用ねじ継手に錆が発生し、管用ねじ継手の気密性や耐焼付き性が低下する場合がある。したがって、管用ねじ継手には、上述の耐焼付き性に加え、優れた耐食性が要求される。
 しかしながら、上述の特許文献1~3に開示された技術を用いても、管用ねじ継手の耐焼付き性及び耐食性を両立しにくい場合がある。
 本発明の目的は、耐焼付き性及び耐食性に優れる管用ねじ継手及びその製造方法を提供することである。
 本実施形態の管用ねじ継手は、ピンと、ボックスと、Zn-Co合金めっき層とを備える。ピンは、ピン側ねじ部を含むピン側接触表面を有する。ボックスは、ボックス側ねじ部を含むボックス側接触表面を有する。Zn-Co合金めっき層は、ピン側接触表面及びボックス側接触表面の少なくとも一方の上に配置される。Zn-Co合金めっき層は、5.0~25.0質量%のコバルト、0.10~5.00質量%のデキストリン、及び、残部は亜鉛及び不純物からなる。
 本実施形態の管用ねじ継手の製造方法は、ピン及びボックスを備える管用ねじ継手にZn-Co合金めっき層を形成する製造方法である。ピンは、ピン側ねじ部を含むピン側接触表面を有する。ボックスは、ボックス側ねじ部を含むボックス側接触表面を有する。はじめに、ピン側接触表面及びボックス側接触表面の少なくとも一方をめっき液に浸漬する。めっき液は亜鉛イオン、コバルトイオン及びデキストリンを含有する。次に、めっき液に浸漬させたピン側接触表面及びボックス側接触表面の少なくとも一方に通電する。これにより、ピン側接触表面及びボックス側接触表面の少なくとも一方の上にZn-Co合金めっき層を形成する。Zn-Co合金めっき層は5.0~25.0質量%のコバルト、0.10~5.00質量%のデキストリン、及び、残部は亜鉛及び不純物からなる。
 本実施形態の管用ねじ継手は、耐焼付き性及び耐食性に優れる。
図1は、本実施形態によるカップリング型の管用ねじ継手の構成を示す図である。 図2は、本実施形態によるインテグラル型の管用ねじ継手の構成を示す図である。 図3は、管用ねじ継手の一例の断面図である。 図4は、金属シール部及びショルダー部を有さない場合の本実施形態による管用ねじ継手の構成を示す図である。 図5は、本実施形態による管用ねじ継手の一例の断面図である。 図6は、図5とは異なる他の実施形態による管用ねじ継手の一例の断面図である。 図7は、図5及び図6とは異なる他の実施形態による管用ねじ継手の一例の断面図である。 図8は、固体潤滑被膜を備える場合の管用ねじ継手の断面図である。
 以下、図面を参照して、本実施形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。
 本発明者らは、管用ねじ継手の耐焼付き性及び耐食性について種々検討を行った。その結果、以下の知見を得た。
 管用ねじ継手の耐焼付き性を高めるには、高硬度及び高融点を有するめっき層をねじ部及びねじ無し金属接触部(以下、接触表面という。)に形成することが有効である。めっき層の硬度が高ければ、管用ねじ継手のねじ締め及びねじ戻しの際にめっき層が損傷を受けにくい。さらに、めっき層の融点が高ければ、管用ねじ継手のねじ締め及びねじ戻しの際、局所的に高温になった場合でもめっき層が溶け出しにくい。
 そこで、本実施形態では、亜鉛及びコバルトを含有するZn-Co合金めっき層を接触表面上に形成する。亜鉛及びコバルトを含有するZn-Co合金の硬度及び融点は高い。したがって、管用ねじ継手の耐焼付き性を高めることができる。純金属の場合、亜鉛(Zn)は、従来めっきに用いられてきた銅(Cu)と比較して硬度及び融点が低い。しかしながら、亜鉛及びコバルトを含有する合金であれば、めっき層は十分な硬度及び融点を有し、耐焼付き性を高めることができる。
 亜鉛を含有する合金を用いればさらに、管用ねじ継手の耐食性を高めることができる。亜鉛(Zn)は鉄(Fe)、ニッケル(Ni)及びクロム(Cr)と比較して卑な金属である。したがって、亜鉛(Zn)を含有する合金めっき層を接触表面に形成すれば、鋼材よりも優先的に合金めっき層が腐食される(犠牲防食)。これにより、管用ねじ継手の耐食性が高まる。
 本実施形態のZn-Co合金めっき層はさらに、デキストリンを含有する。Zn-Co合金めっき層がデキストリンを含有すれば腐食生成物が緻密になる。腐食生成物は、Zn-Co合金めっき層が腐食されて生成する物質の総称であり、亜鉛の酸化物を含む。Zn-Co合金めっき層が腐食される際、その初期段階で腐食生成物がZn-Co合金めっき層表面を覆う。腐食生成物が緻密であれば、Zn-Co合金めっき層表面及び鋼材表面への酸素及び水等の腐食因子の接触が抑制される。これにより、腐食のさらなる進行が抑制される。この結果、管用ねじ継手の耐食性がさらに向上する。
 以上の知見に基づいて完成した本実施形態の管用ねじ継手は、ピンと、ボックスと、Zn-Co合金めっき層とを備える。ピンは、ピン側ねじ部を含むピン側接触表面を有する。ボックスは、ボックス側ねじ部を含むボックス側接触表面を有する。Zn-Co合金めっき層は、ピン側接触表面及びボックス側接触表面の少なくとも一方の上に配置される。Zn-Co合金めっき層は、5.0~25.0質量%のコバルト、0.10~5.00質量%のデキストリン、及び、残部は亜鉛及び不純物からなる。
 本実施形態の管用ねじ継手は、亜鉛、コバルト及びデキストリンを含有するZn-Co合金めっき層を備える。そのため、耐焼付き性及び耐食性に優れる。
 好ましくは、Zn-Co合金めっき層の厚さは、1~20μmである。
 この場合、管用ねじ継手の耐焼付き性及び耐食性と、Zn-Co合金めっき層の密着性とを両立しやすい。
 好ましくは、上記管用ねじ継手はさらに、Zn-Co合金めっき層上に固体潤滑被膜を備える。
 この場合、管用ねじ継手の潤滑性が高まる。
 上記管用ねじ継手のピン側接触表面はさらに、ピン側金属シール部及びピン側ショルダー部を含んでもよい。ボックス側接触表面はさらに、ボックス側金属シール部及びボックス側ショルダー部を含んでもよい。
 本実施形態の管用ねじ継手の製造方法は、ピン及びボックスを備える管用ねじ継手にZn-Co合金めっき層を形成する製造方法である。ピンは、ピン側ねじ部を含むピン側接触表面を有する。ボックスは、ボックス側ねじ部を含むボックス側接触表面を有する。はじめに、ピン側接触表面及びボックス側接触表面の少なくとも一方をめっき液に浸漬する。めっき液は亜鉛イオン、コバルトイオン及びデキストリンを含有する。次に、めっき液に浸漬させたピン側接触表面及びボックス側接触表面の少なくとも一方に通電する。これにより、ピン側接触表面及びボックス側接触表面の少なくとも一方の上にZn-Co合金めっき層を形成する。Zn-Co合金めっき層は5.0~25.0質量%のコバルト、0.10~5.00質量%のデキストリン、及び、残部は亜鉛及び不純物からなる。
 好ましくは、上記製造方法はさらに、Zn-Co合金めっき層上に固体潤滑被膜を形成する工程を備える。
 上記管用ねじ継手の製造方法においては、ピン側接触表面はさらに、ピン側金属シール部及びピン側ショルダー部を含んでもよい。ボックス側接触表面はさらに、ボックス側金属シール部及びボックス側ショルダー部を含んでもよい。
 以下、本実施形態による管用ねじ継手及びその製造方法について詳述する。
 [管用ねじ継手1]
 管用ねじ継手は、ピン及びボックスを備える。図1は、本実施形態による管用ねじ継手1の構成を示す図である。図1を参照して、管用ねじ継手1は、鋼管2とカップリング3とを備える。鋼管2の両端には、外面に雄ねじ部を有するピン4が形成される。カップリング3の両端には、内面に雌ねじ部を有するボックス5が形成される。ピン4とボックス5とをねじ締めすることによって、鋼管2の端に、カップリング3が取り付けられる。図示していないが、相手部材が装着されていない鋼管2のピン4及びカップリング3のボックス5には、それぞれのねじ部を保護するため、プロテクターが装着される場合がある。
 一方で、カップリング3を使用せず、鋼管2の一方の端をピン4とし、他方の端をボックス5とした、インテグラル形式の管用ねじ継手1を用いてもよい。図2は、本実施形態によるインテグラル型の管用ねじ継手1の構成を示す図である。図2を参照して、管用ねじ継手1は、鋼管2を備える。鋼管2の一方の端には、外面に雄ねじ部を有するピン4が形成される。鋼管2の他方の端には、内面に雌ねじ部を有するボックス5が形成される。ピン4とボックス5とをねじ締めすることによって、鋼管2同士を連結できる。本実施形態の管用ねじ継手1は、カップリング方式及びインテグラル形式の両方の管用ねじ継手1に使用できる。
 図3は、管用ねじ継手1の一例の断面図である。図3では、ピン4は、ピン側ねじ部41、ピン側金属シール部42及びピン側ショルダー部43を備える。図3では、ボックス5は、ボックス側ねじ部51、ボックス側金属シール部52及びボックス側ショルダー部53を備える。ピン4とボックス5とをねじ締めした時に接触する部分を、接触表面40,50という。具体的には、ピン4とボックス5とをねじ締めすると、ねじ部同士(ピン側ねじ部41及びボックス側ねじ部51)、金属シール部同士(ピン側金属シール部42及びボックス側金属シール部52)、及び、ショルダー部同士(ピン側ショルダー部43及びボックス側ショルダー部53)が互いに接触する。図3では、ピン側接触表面40は、ピン側ねじ部41、ピン側金属シール部42及びピン側ショルダー部43を含む。図3では、ボックス側接触表面50は、ボックス側ねじ部51、ボックス側金属シール部52及びボックス側ショルダー部53を含む。
 図3では、ピン4においては、鋼管2の端から、ピン側ショルダー部43、ピン側金属シール部42及びピン側ねじ部41の順で配置される。また、ボックス5においては、鋼管2又はカップリング3の端から、ボックス側ねじ部51、ボックス側金属シール部52及びボックス側ショルダー部53の順で配置される。しかしながら、ピン側ねじ部41及びボックス側ねじ部51、ピン側金属シール部42及びボックス側金属シール部52、及び、ピン側ショルダー部43及びボックス側ショルダー部53の配置は図3の配置に限定されず、適宜変更できる。たとえば、図2において示す様に、ピン4においては、鋼管2の端から、ピン側ショルダー部43、ピン側金属シール部42、ピン側ねじ部41、ピン側金属シール部42、ピン側ショルダー部43、ピン側金属シール部42及びピン側ねじ部41の順で配置されてもよい。ボックス5においては、鋼管2又はカップリング3の端から、ボックス側ねじ部51、ボックス側金属シール部52、ボックス側ショルダー部53、ボックス側金属シール部52、ボックス側ねじ部51、ボックス側金属シール部52及びボックス側ショルダー部53の順に配置されてもよい。
 図1及び図2では、金属シール部(ピン側金属シール部42及びボックス側金属シール部52)及びショルダー部(ピン側ショルダー部43及びボックス側ショルダー部53)を備える、いわゆるプレミアムジョイントを図示した。しかしながら、金属シール部(ピン側金属シール部42及びボックス側金属シール部52)及びショルダー部(ピン側ショルダー部43及びボックス側ショルダー部53)は無くてもよい。金属シール部42,52及びショルダー部43,53を有さない管用ねじ継手1を図4に例示する。本実施形態の管用ねじ継手1は、金属シール部42,52及びショルダー部43,53が無い管用ねじ継手1にも好適に適用可能である。金属シール部42,52及びショルダー部43,53無しの場合、ピン側接触表面40は、ピン側ねじ部41を含み、ボックス側接触表面50は、ボックス側ねじ部51を含む。
 図5は、本実施形態の管用ねじ継手1の一例の断面図である。図5を参照して、管用ねじ継手1は、ピン側接触表面40及びボックス側接触表面50の少なくとも一方の上に、Zn-Co合金めっき層6を備える。図5では、管用ねじ継手1は、ピン側接触表面40及びボックス側接触表面50の両方の上にZn-Co合金めっき層6を備える。しかしながら、管用ねじ継手1は、図6に示すように、ピン側接触表面40上のみに、Zn-Co合金めっき層6を備えてもよい。また、管用ねじ継手1は、図7に示すように、ボックス側接触表面50上のみに、Zn-Co合金めっき層6を備えてもよい。
 また、Zn-Co合金めっき層6は、ピン側接触表面40又はボックス側接触表面50上の全体に配置されてもよいし、一部にのみ配置されてもよい。Zn-Co合金めっき層6を、ピン側ねじ部41上にのみ配置してもよい。Zn-Co合金めっき層6を、ボックス側ねじ部51上にのみ配置してもよい。ピン側接触表面40がピン側金属シール部42及びピン側ショルダー部43を有する場合、Zn-Co合金めっき層6を、ピン側金属シール部42上にのみ配置してもよいし、ピン側ショルダー部43上のみに配置してもよい。ボックス側接触表面50がボックス側金属シール部52及びボックス側ショルダー部53を有する場合、Zn-Co合金めっき層6を、ボックス側金属シール部52上にのみ配置してもよいし、ボックス側ショルダー部53上のみに配置してもよい。
 [Zn-Co合金めっき層6]
 管用ねじ継手1は、ピン側接触表面40及びボックス側接触表面50の少なくとも一方の上にZn-Co合金めっき層6を備える。Zn-Co合金めっき層6は、5.0~25.0質量%のコバルト、0.10~5.00質量%のデキストリン、残部は亜鉛及び不純物からなる。ここで、不純物とは亜鉛、コバルト及びデキストリン以外の物質で、管用ねじ継手1の製造中にZn-Co合金めっき層6に含有され、本発明の効果に影響を与えない範囲の含有量で含まれる物質を含む。Zn-Co合金めっき層6の硬度及び融点は高い。そのため、管用ねじ継手1の耐焼付き性が高まる。Zn-Co合金めっき層6に含まれる亜鉛は、鉄と比較して卑な金属である。そのため、管用ねじ継手1の耐食性が高まる。Zn-Co合金めっき層6はデキストリンを含む。そのため、管用ねじ継手1の耐食性がさらに高まる。
 [コバルト含有量]
 Zn-Co合金めっき層6は、5.0~25.0質量%のコバルトを含有する。この場合、Zn-Co合金めっき層6の組織は亜鉛とコバルトとの金属間化合物であるγ相を多く含む組織である。そのため、Zn-Co合金めっき層6の硬度が高まる。Zn-Co合金めっき層6の硬度が高ければ、管用ねじ継手1のねじ締め及びねじ戻し時にZn-Co合金めっき層6が損傷を受けにくい。そのため、管用ねじ継手1の耐焼付き性が高まる。コバルトの含有量が5.0質量%未満であれば、Zn-Co合金めっき層6の組織がη相を多く含む組織になる。この場合、Zn-Co合金めっき層6の硬度は低い。Zn-Co合金めっき層6の硬度が低ければ、管用ねじ継手1の耐焼付き性が低下する。Zn-Co合金めっき層6の組織がη相を多く含む組織である場合、異相間短絡により耐食性が低下する。一方、コバルトの含有量が25.0質量%より多ければ、Zn-Co合金めっき層6の組織がα相を多く含む組織になる。この場合も、Zn-Co合金めっき層6の硬度は低い。Zn-Co合金めっき層6の硬度が低ければ、管用ねじ継手1の耐焼付き性が低下する。Zn-Co合金めっき層6の組織がα相を多く含む組織である場合、異相間短絡により耐食性が低下する。したがって、Zn-Co合金めっき層6のコバルト含有量は5.0~25.0質量%である。
 好ましくは、Zn-Co合金めっき層6のコバルト含有量の下限は5.0質量%超であり、より好ましくは10.0質量%であり、さらに好ましくは12.0質量%である。好ましくは、Zn-Co合金めっき層6のコバルト含有量の上限は20.0質量%であり、より好ましくは18.0質量%である。
 Zn-Co合金めっき層6のコバルト含有量は次の方法で測定する。測定は、エネルギー分散形X線分析装置(EDS)付き走査型電子顕微鏡(SEM)(EDS:アメテック株式会社製Pegasus、SEM:株式会社エリオニクス製ERA-8900FE)を用いて行う。合金めっき層表面の任意の3箇所を走査型電子顕微鏡にて観察し、組成分析する。測定倍率:1000倍、加速電圧:15kV、照射電流:最大1nAの電子ビームを照射し、Co-kα線の強度を測定し、Coの含有量(質量%)を算出する。3箇所の平均値を採用し、Co含有量とする。
 [デキストリン]
 Zn-Co合金めっき層6はデキストリンを含有する。Zn-Co合金めっき層6がデキストリンを含有すれば、Zn-Co合金めっき層6の腐食生成物が緻密になる。Zn-Co合金めっき層6が腐食される際、その初期段階において、緻密な腐食生成物がZn-Co合金めっき層6表面を覆う。これにより、腐食のさらなる進行が抑制される。このため、管用ねじ継手1の耐食性がさらに高まる。
 デキストリンとはグルコース(C10)がグリコシド結合で結合した多糖類の総称である。本実施形態では、重量平均分子量が10~10の上記多糖類をデキストリンとする。デキストリンは、α‐1、4グリコシド結合及びα‐1、6グリコシド結合を含む。これらの結合の割合は特に限定されない。
 デキストリンの重量平均分子量は液体クロマトグラフを用いて測定する。具体的には、移動相と反応液との2流路のフローシステムを持つ、株式会社日立製作所製L-7100型反応液体クロマトグラフ(検出器:UV/VIS検出器(365nm)、カラム:GC-W530)により測定する。測定条件は、移動相:0.1M NaCl、カラム温度:30℃、移動相流速:0.5mL/分、反応液:リン酸フェニルヒドラジン、反応液流速:0.5mL/分、反応温度:150℃とする。分子量校正曲線は、標準物質としてグルコース、マルトトリオース、プルランを用いて作成する。分析試料の調整は次のとおりに行う。測定対象のデキストリンを含む溶液に、1M炭酸ナトリウムを添加後、遠心分離(10000rpmで10分間)する。得られた上澄み液に1M塩酸を加えて分析試料とする。
 Zn-Co合金めっき層6に含まれるデキストリンは次の方法で抽出する。初めに、Zn-Co合金めっき層6を形成した管用ねじ継手1を準備する。管用ねじ継手1を0.8M、常温(25℃)の硫酸に5分間浸漬する。その後硫酸の温度を上昇させ、75℃±5℃でさらに5分間浸漬する。これによりZn-Co合金めっき層6を溶解する。次に、Zn-Co合金めっき層6を溶解した溶液を用いて、上述の方法により、デキストリンの重量平均分子量を測定する。
 [デキストリン含有量]
 Zn-Co合金めっき層6のデキストリン含有量は0.10~5.00質量%である。デキストリン含有量が0.10質量%未満であれば、管用ねじ継手1の耐食性向上効果が得られない。一方、デキストリン含有量が5.00質量%より多ければ、Zn-Co合金めっき層6の硬度が低下する。この場合、管用ねじ継手1の耐焼付き性が低下する。したがって、デキストリンの含有量は0.10~5.00質量%である。
 好ましくは、Zn-Co合金めっき層6のデキストリン含有量の下限は0.50質量%であり、より好ましくは1.00質量%である。好ましくは、Zn-Co合金めっき層6のデキストリン含有量の上限は3.00質量%である。
 Zn-Co合金めっき層6のデキストリン含有量は次の方法で測定する。上述の方法により、Zn-Co合金めっき層6を溶解し、Zn-Co合金めっき層6に含まれるデキストリンを抽出する。デキストリンを含む溶解液1mLに、5%フェノール液を1mL加えて混合する。次に、濃硫酸5mLを加えて混合する。10分間反応させて、デキストリンをグルコースに分解する。グルコースを含む液を、常温の水浴中で10分以上冷却した後、490nmでの吸光度を測定する。
 Zn-Co合金めっき層6の厚さは、1~20μmであることが好ましい。Zn-Co合金めっき層6の厚さが1μm以上であれば、管用ねじ継手1の耐焼付き性及び耐食性を安定して高めることができる。Zn-Co合金めっき層6の厚さが20μm以下であれば、めっきの密着性が安定する。したがって、合金めっき層の厚さは1~20μmであることが好ましい。Zn-Co合金めっき層6の厚さの下限は、より好ましくは5μmであり、さらに好ましくは8μmである。Zn-Co合金めっき層6の厚さの上限は、より好ましくは15μmであり、さらに好ましくは12μmである。
 Zn-Co合金めっき層6の厚さは次の方法で測定する。Zn-Co合金めっき層6を形成した管用ねじ継手1を、管用ねじ継手1の長手方向に対して直角に切断し、切断片を得る。切断面が観察面となるように切断片を樹脂に埋め込む。観察面を研磨し、観察試料を作製する。走査型電子顕微鏡(SEM)によりZn-Co合金めっき層6の断面観察をして、Zn-Co合金めっき層6の厚さを測定する。
 [固体潤滑被膜7]
 図8は、固体潤滑被膜7を備える場合の管用ねじ継手の断面図である。図8を参照して、好ましくは、管用ねじ継手1はさらに、Zn-Co合金めっき層6上に固体潤滑被膜7を備える。この場合、管用ねじ継手1の潤滑性が高まる。固体潤滑被膜7は周知のものを使用できる。固体潤滑被膜7はたとえば、潤滑性粒子及び結合剤を含む。固体潤滑被膜7は、必要に応じて、溶媒及び他の成分を含有してもよい。
 潤滑性粒子は、固体潤滑被膜7の表面の摩擦係数を低下させる。潤滑性粒子は、潤滑性を有する粒子であれば特に限定されない。潤滑性粒子はたとえば、黒鉛、MoS(二硫化モリブデン)、WS(二硫化タングステン)、BN(窒化ホウ素)、PTFE(ポリテトラフルオロエチレン)、CF(フッ化黒鉛)及びCaCO(炭酸カルシウム)からなる群から選択される1種又は2種以上である。好ましくは、潤滑性粒子は黒鉛、フッ化黒鉛、MoS及びPTFEからなる群から選択される1種又は2種以上である。潤滑性粒子の含有量はたとえば、溶媒以外の成分の合計を100質量%とした場合に1~50質量%であり、好ましくは5~30質量%である。
 結合剤は、潤滑性粒子を固体潤滑被膜7中に結合させる。結合剤はたとえば、有機系樹脂及び無機系樹脂からなる群から選択される1種又は2種である。有機系樹脂を用いる場合は、熱硬化性樹脂及び熱可塑性樹脂からなる群から選択される1種を用いることができる。熱硬化性樹脂はたとえば、エポキシ樹脂、ポリイミド樹脂、ポリカルボジイミド樹脂、ポリエーテルサルホン、ポリエーテルエーテルケトン樹脂、フェノール樹脂、フラン樹脂、ウレア樹脂及びアクリル樹脂からなる群から選択される1種又は2種以上である。熱可塑性樹脂はたとえば、ポリアミドイミド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂及びエチレン酢酸ビニル樹脂からなる群から選択される1種又は2種以上である。
 無機系樹脂を用いる場合は、ポリメタロキサンを用いることができる。ポリメタロキサンとは、金属-酸素結合の繰り返しが主鎖骨格である高分子化合物のことをいう。好ましくは、ポリチタノキサン(Ti-O)及びポリシロキサン(Si-O)が用いられる。これらの無機系樹脂は、金属アルコキシドを加水分解及び縮合させることで得られる。金属アルコキシドのアルコキシ基はたとえば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、イソブトキシ基、ブトキシ基及びtert-ブトキシ基等の低級アルコキシ基である。結合剤の含有量はたとえば、溶媒以外の成分の合計を100質量%とした場合に10~80質量%であり、好ましくは20~70質量%である。
 潤滑性粒子及び結合剤を溶解又は分散させる必要がある場合は、溶媒を用いる。溶媒は、固体潤滑被膜7に含まれる成分を分散又は溶解できるものであれば、特に限定されない。溶媒は、有機溶媒及び水からなる群から選択される1種又は2種を用いることができる。有機溶媒はたとえば、トルエン及びイソプロピルアルコールからなる群から選択される1種又は2種である。
 固体潤滑被膜7は、必要に応じて、他の成分を含有できる。他の成分はたとえば、防錆剤、腐食抑制剤、界面活性剤、ワックス、摩擦調整剤及び顔料等である。他の成分の含有量はたとえば、溶媒以外の成分の合計を100質量%とした場合に合計で3~45質量%であり、好ましくは10~40質量%である。潤滑性粒子、結合剤、溶媒及びその他の成分のそれぞれの含有量は、適宜設定される。
 [管用ねじ継手1の母材]
 管用ねじ継手1の母材の組成は、特に限定されない。母材はたとえば、炭素鋼、ステンレス鋼及び合金鋼等である。合金鋼の中でも、Ni基合金及びCr、Ni及びMo等の合金元素を含んだ二相ステンレス鋼等の高合金鋼は耐食性が高い。そのため、これらの高合金鋼を母材に使用すれば、硫化水素や二酸化炭素等を含有する腐食環境において、優れた耐食性が得られる。
 [製造方法]
 本実施形態による管用ねじ継手1の製造方法は、浸漬工程と、通電工程とを備える。
 [浸漬工程]
 浸漬工程では、初めにピン4、ボックス5及びめっき液を準備する。ピン4は上述のとおりピン側ねじ部41を含むピン側接触表面40を有する。ボックス5は、ボックス側ねじ部51を含むボックス側接触表面50を有する。めっき液は、亜鉛イオン、コバルトイオン及びデキストリンを含有する。めっき液はさらに、溶媒を含有する。溶媒は水であることが好ましい。亜鉛イオン及びアニオンの塩(たとえば硫酸亜鉛)を溶媒に溶かすことによって、めっき液中に亜鉛イオンを含有させる。同様に、コバルトイオン及びアニオンの塩(たとえば硫酸コバルト)を溶媒に溶かすことによって、めっき液中にコバルトイオンを含有させる。アニオンはたとえば、硫酸イオン、塩化物イオン及びピロリン酸イオンからなる群から選択される1種又は2種以上である。
 めっき液中における亜鉛イオンの含有量の下限は亜鉛換算で、好ましくは10g/L、より好ましくは20g/Lである。めっき液中における亜鉛イオンの含有量の上限は亜鉛換算で、好ましくは55g/L、より好ましくは30g/Lである。めっき液中におけるコバルトイオンの含有量の下限はコバルト換算で、好ましくは10g/L、より好ましくは30g/Lである。めっき液中におけるコバルトイオンの含有量の上限はコバルト換算で、好ましくは50g/L、より好ましくは45g/Lである。
 めっき液はデキストリンを含有する。めっき液中におけるデキストリンの含有量の下限は、好ましくは0.5g/L、より好ましくは1.0g/Lである。めっき液中におけるデキストリンの含有量の上限は、好ましくは15g/L、より好ましくは10g/Lである。
 めっき液は必要に応じて、電導度塩、アノード溶解促進剤、錯化剤、pH緩衝剤、界面活性剤、還元剤、安定剤及びその他の添加剤からなる群から選択される1種又は2種以上を含有してもよい。
 続いて、上述のとおり準備しためっき液にピン側接触表面40及びボックス側接触表面50の少なくとも一方を浸漬する。
 [通電工程]
 通電工程では、上記めっき液に浸漬したピン側接触表面40及びボックス側接触表面50の少なくとも一方に通電する。これによりピン側接触表面40及びボックス側接触表面50の少なくとも一方の上にZn-Co合金めっき層6を形成する。つまり、Zn-Co合金めっき層6は、電気めっきにより形成される。電気めっきの条件は適宜設定できる。電気めっきの条件はたとえば、めっき液pH:1~10、めっき液温度:10~60℃、電流密度:1~100A/dm、及び、処理時間:0.1~30分である。
 [固体潤滑被膜形成工程]
 好ましくは、上記製造方法は、Zn-Co合金めっき層6上に固体潤滑被膜7を形成する工程(固体潤滑被膜形成工程)を備える。固体潤滑被膜形成工程では、はじめに、固体潤滑被膜用組成物(以下、組成物とも称する。)を準備する。組成物は、上述の潤滑性粒子及び結合剤を混合することで形成される。組成物はさらに、上述の溶媒及び他の成分を含有してもよい。
 得られた組成物をZn-Co合金めっき層6上に塗布する。塗布の方法は特に限定されない。たとえば、スプレーガンを用いて、Zn-Co合金めっき層6上に組成物を噴霧する。組成物が塗布されたピン4又はボックス5を、加熱乾燥させる。これにより、組成物が硬化し、Zn-Co合金めっき層6上に固体潤滑被膜7が形成される。加熱乾燥の条件は、組成物に含まれる各成分の沸点及び融点等を考慮して、適宜設定できる。溶媒を用いない組成物に対しては、ホットメルト法を用いることができる。ホットメルト法では、組成物を加熱して流動状態にする。流動状態になった組成物をたとえば、温度保持機能を有するスプレーガンを用いて噴霧する。組成物を塗布したピン4又はボックス5を、空冷等により冷却する。これにより、組成物が硬化し、Zn-Co合金めっき層6上に固体潤滑被膜7が形成される。
 [その他の工程]
 上記製造工程はさらに、必要に応じて、浸漬工程の前に前処理工程を備えてもよい。前処理工程はたとえば、酸洗及びアルカリ脱脂である。前処理工程では、接触表面40及び50上に付着した油分等を除去する。前処理工程はさらに、機械研削仕上げ等の研削加工を備えてもよい。
 上記製造工程はさらに、必要に応じて、燐酸塩被膜形成工程を備えてもよい。燐酸塩被膜形成工程では、Zn-Co合金めっき層6と固体潤滑被膜7との間に燐酸塩被膜を形成する。燐酸塩被膜により、固体潤滑被膜の密着性を高めることができる。燐酸塩はたとえば、燐酸亜鉛及び燐酸マンガンからなる群から選択される1種又は2種である。燐酸塩被膜形成工程は、周知の方法で実施できる。
 以下、実施例を説明する。実施例において、ピンの接触表面をピン表面、ボックスの接触表面をボックス表面という。また、実施例中の%は、質量%を意味する。
 基材には、高合金鋼の1種であるCr13%鋼(C:0.18%、Si:0.23%、Mn:0.8%、P:0.02%、S:0.01%、Cu:0.04%、Ni:0.1%、Cr:13%、Mo:0.04%、残部:Fe及び不純物)を用いた。このCr13%鋼を用いて、継目無鋼管及びカップリングを製造した。継目無鋼管のサイズは外径244.5mm、肉厚13.84mm、長さ1200mmであった。継目無鋼管の両端の外面には、切削加工によってピン側ねじ部及びねじ無し金属接触部(ピン側金属シール部及びピン側ショルダー部)を有するピンを形成した。カップリングの両端の内面には、切削加工によってボックス側ねじ部及びねじ無し金属接触部(ボックス側金属シール部及びボックス側ショルダー部)を有するボックスを形成した。
 [浸漬工程]
 亜鉛イオン、コバルトイオン及びデキストリンを含有するめっき液を準備した。めっき液は、市販特級の硫酸亜鉛七水和物、硫酸コバルト七水和物、市販特級のデキストリン(キシダ化学製、重量平均分子量:10~10)、塩化アンモニウム:0.5mol/L及びホウ酸:0.5mol/Lを純水に溶かして作製した。亜鉛イオン濃度、コバルトイオン濃度及びデキストリンの濃度をそれぞれ変化させて数種類のめっき液を建浴した。続いて、各試験番号のめっき液にカップリングを浸漬した。
 [通電工程]
 試験番号1~試験番号13のボックス表面にZn-Co合金めっき層を形成した。具体的には、上記めっき液に浸漬した各試験番号のカップリングに通電することでZn-Co合金めっき層を形成した。めっき条件は、めっき液pH:3.5、めっき液温度:35℃、電流密度:2~20A/dm(定電流電解法)であった。
 試験番号14のボックス表面には、Cu-Sn-Zn合金めっき層を形成した。具体的には、銅イオン、錫イオン及び亜鉛イオンを含有するシアン浴を用いて、電気めっきによりボックス表面にCu-Sn-Zn合金めっき層を形成した。Cu-Sn-Zn合金めっき層は、Zn:約7%、Sn:約40%、Cu:約53%を含有した。
 [固体潤滑被膜形成工程]
 試験番号1~試験番号14のボックス表面にさらに固体潤滑被膜を形成した。固体潤滑被膜形成用の組成物は、ポリアミドイミド樹脂:12質量%、ジメチルスルホキシド:45質量%、PTFE粒子:5質量%、純水:残部を含有した。この組成物を合金めっき層上にスプレー塗布した後、予備乾燥(85℃、10分)及び本加熱(280℃、30分)し、平均膜厚30μmの固体潤滑被膜を形成した。
 ピン表面は、機械研削仕上げ(表面粗さ3μm)を施した後、固体防食被膜を形成した。固体防食被膜形成用の組成物は、アクリル樹脂系紫外線硬化型樹脂、亜燐酸アルミニウム及びポリエチレンワックスを含有した。亜燐酸アルミニウム及びポリエチレンワックスの含有量は、アクリル樹脂系紫外線硬化型樹脂1に対して、それぞれ0.05及び0.01であった。この組成物をピン表面に塗布した後、組成物にUVランプ(空冷水銀ランプ、出力4kW、紫外線波長:260nm)で紫外線を照射して硬化させた。固体防食被膜の厚さは25μmであった。
 [Zn-Co合金めっき層中のCo含有量測定試験]
 各試験番号のZn-Co合金めっき層中のCo含有量を上述の方法により測定した。結果を表1に示す。
 [Zn-Co合金めっき層中のデキストリン含有量測定試験]
 各試験番号のZn-Co合金めっき層中のデキストリン含有量を上述の方法により測定した。結果を表1に示す。
 [Zn-Co合金めっき層の膜厚測定試験]
 各試験番号のZn-Co合金めっき層の膜厚を上述の方法により測定した。結果を表1に示す。
 [耐焼付き性評価試験]
 各試験番号のピン及びボックスに対して耐焼付き性を評価した。具体的には、各試験番号のピン及びボックスを有する継目無鋼管及びカップリングを用いて、常温でねじ締め及びねじ戻しを繰り返した。ねじ締め及びねじ戻しは最大10回繰り返された。ねじ締めの締付けトルクは49351.8N・m(36400ft・lbs)であった。ねじ締め及びねじ戻しを1回行うごとに、ピン表面を目視観察した。目視観察により焼付きが発生した回数を測定した。結果を表1に示す。表1中、「>10」とあるのは、ねじ締め及びねじ戻しを10回繰り返しても焼付きが発生しなかったことを示す。
 [塩水噴霧試験]
 上記カップリングと同様の組成を有する試験片を用いて、塩水噴霧試験を実施した。試験片は、各試験番号のボックス表面と同様のZn-Co合金めっき層及び固体潤滑被膜を備えた。試験片の大きさは幅:70mm、長さ:50mm、厚さ:1mmであった。塩水噴霧試験はJIS Z2371(2000)に記載された方法に基づいて実施した。試験時間は最大4500時間であった。目視観察により各試験番号の試験片表面に錆が発生した時間を計測した。結果を表1に示す。表1中、「>4500」とあるのは、4500時間経過後も発錆が確認されなかったことを示す。
Figure JPOXMLDOC01-appb-T000001
 [評価結果]
 表1を参照して、試験番号1~試験番号5の管用ねじ継手は、ピン側接触表面及びボックス側接触表面の少なくとも一方の上に適切なZn-Co合金めっき層を備えた。具体的には、試験番号1~試験番号5の管用ねじ継手は、5.0~25.0質量%のコバルト、0.10~5.00質量%のデキストリン、残部は亜鉛からなるZn-Co合金めっき層を備えた。そのため、試験番号1~試験番号5の管用ねじ継手は、優れた耐焼付き性及び耐食性を示した。具体的には、試験番号1~試験番号5の管用ねじ継手は、ねじ締め及びねじ戻しを10回繰り返しても焼付きが発生しなかった。さらに、試験番号1~試験番号5の管用ねじ継手は、塩水噴霧試験において4500時間経過後も発錆が確認されなかった。
 一方、試験番号6の管用ねじ継手は、合金めっき層のコバルト含有量が4.5質量%であった。さらに、試験番号6の管用ねじ継手の合金めっき層はデキストリンを含有しなかった。そのため、試験番号6の管用ねじ継手はねじ締め及びねじ戻しを8回繰り返すと焼付きが発生した。さらに、試験番号6の管用ねじ継手には、塩水噴霧試験において500時間経過後に発錆が確認された。
 試験番号7の管用ねじ継手は、合金めっき層のコバルト含有量が4.5質量%であった。さらに、試験番号7の管用ねじ継手は、合金めっき層のデキストリン含有量が0.01質量%であった。そのため、試験番号7の管用ねじ継手はねじ締め及びねじ戻しを8回繰り返すと焼付きが発生した。さらに、試験番号7の管用ねじ継手には、塩水噴霧試験において500時間経過後に発錆が確認された。
 試験番号8の管用ねじ継手の合金めっき層はデキストリンを含有しなかった。そのため、試験番号8の管用ねじ継手には、塩水噴霧試験において4000時間経過後に発錆が確認された。
 試験番号9の管用ねじ継手は、合金めっき層のデキストリン含有量が0.05質量%であった。そのため、試験番号9の管用ねじ継手には、塩水噴霧試験において4000時間経過後に発錆が確認された。
 試験番号10の管用ねじ継手は、合金めっき層のデキストリン含有量が5.50質量%であった。そのため、試験番号10の管用ねじ継手はねじ締め及びねじ戻しを9回繰り返すと焼付きが発生した。
 試験番号11の管用ねじ継手は、合金めっき層のコバルト含有量が28.0質量%であった。さらに、試験番号11の管用ねじ継手は、合金めっき層のデキストリン含有量が0.02質量%であった。そのため、試験番号11の管用ねじ継手はねじ締め及びねじ戻しを8回繰り返すと焼付きが発生した。さらに、試験番号11の管用ねじ継手には、塩水噴霧試験において1200時間経過後に発錆が確認された。
 試験番号12の管用ねじ継手は、合金めっき層のコバルト含有量が28.0質量%であった。そのため、試験番号12の管用ねじ継手はねじ締め及びねじ戻しを8回繰り返すと焼付きが発生した。さらに、試験番号12の管用ねじ継手には、塩水噴霧試験において1500時間経過後に発錆が確認された。
 試験番号13の管用ねじ継手は、合金めっき層のコバルト含有量が28.0質量%であった。さらに、試験番号13の管用ねじ継手は、合金めっき層のデキストリン含有量が5.50質量%であった。そのため、試験番号13の管用ねじ継手はねじ締め及びねじ戻しを7回繰り返すと焼付きが発生した。さらに、試験番号13の管用ねじ継手には、塩水噴霧試験において2000時間経過後に発錆が確認された。
 試験番号14の管用ねじ継手は、従来のCu-Sn-Zn合金めっき層を備えた。そのため、試験番号14の管用ねじ継手はねじ締め及びねじ戻しを8回繰り返すと焼付きが発生した。さらに、試験番号14の管用ねじ継手には、塩水噴霧試験において750時間経過後に発錆が確認された。
 以上、本発明の実施の形態を説明した。しかしながら、上述した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
 1     管用ねじ継手
 2     鋼管
 3     カップリング
 4     ピン
 5     ボックス
 6     Zn-Co合金めっき層
 7     固体潤滑被膜
 40    ピン側接触表面
 41    ピン側ねじ部
 42    ピン側金属シール部
 43    ピン側ショルダー部
 50    ボックス側接触表面
 51    ボックス側ねじ部
 52    ボックス側金属シール部
 53    ボックス側ショルダー部

Claims (7)

  1.  管用ねじ継手であって、
     ピン側ねじ部を含むピン側接触表面を有するピンと、
     ボックス側ねじ部を含むボックス側接触表面を有するボックスと、
     前記ピン側接触表面及び前記ボックス側接触表面の少なくとも一方の上に、
      5.0~25.0質量%のコバルト、
      0.10~5.00質量%のデキストリン、及び、
      残部は亜鉛及び不純物
     からなるZn-Co合金めっき層とを備える、管用ねじ継手。
  2.  請求項1に記載の管用ねじ継手であって、
     前記Zn-Co合金めっき層の厚さは1~20μmである、管用ねじ継手。
  3.  請求項1又は請求項2に記載の管用ねじ継手であってさらに、
     前記Zn-Co合金めっき層上に固体潤滑被膜を備える、管用ねじ継手。
  4.  請求項1~請求項3のいずれか1項に記載の管用ねじ継手であって、
     前記ピン側接触表面はさらに、ピン側金属シール部及びピン側ショルダー部を含み、
     前記ボックス側接触表面はさらに、ボックス側金属シール部及びボックス側ショルダー部を含む、管用ねじ継手。
  5.  管用ねじ継手の製造方法であって、
     ピン側ねじ部を含むピン側接触表面及びボックス側ねじ部を含むボックス側接触表面の少なくとも一方を、亜鉛イオン、コバルトイオン及びデキストリンを含有するめっき液に浸漬する工程と、
     前記めっき液に浸漬させた前記ピン側接触表面及び前記ボックス側接触表面の少なくとも一方に通電することにより、前記ピン側接触表面及び前記ボックス側接触表面の少なくとも一方の上に
      5.0~25.0質量%のコバルト、
      0.10~5.00質量%のデキストリン、及び、
      残部は亜鉛及び不純物
     からなるZn-Co合金めっき層を形成する工程とを備える、管用ねじ継手の製造方法。
  6.  請求項5に記載の管用ねじ継手の製造方法であってさらに、
     前記Zn-Co合金めっき層上に、固体潤滑被膜を形成する工程を備える、管用ねじ継手の製造方法。
  7.  請求項5又は請求項6に記載の管用ねじ継手の製造方法であって、
     前記ピン側接触表面はさらに、ピン側金属シール部及びピン側ショルダー部を含み、
     前記ボックス側接触表面はさらに、ボックス側金属シール部及びボックス側ショルダー部を含む、管用ねじ継手の製造方法。
PCT/JP2018/028268 2018-07-27 2018-07-27 管用ねじ継手及びその製造方法 WO2020021704A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/028268 WO2020021704A1 (ja) 2018-07-27 2018-07-27 管用ねじ継手及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/028268 WO2020021704A1 (ja) 2018-07-27 2018-07-27 管用ねじ継手及びその製造方法

Publications (1)

Publication Number Publication Date
WO2020021704A1 true WO2020021704A1 (ja) 2020-01-30

Family

ID=69180415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028268 WO2020021704A1 (ja) 2018-07-27 2018-07-27 管用ねじ継手及びその製造方法

Country Status (1)

Country Link
WO (1) WO2020021704A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831097A (ja) * 1981-08-20 1983-02-23 Sumitomo Metal Ind Ltd 耐焼付性に優れた油井管継手およびその製造方法
JPS62188883A (ja) * 1986-02-10 1987-08-18 大同特殊鋼株式会社 金属管の接合構造
JP2002348587A (ja) * 2001-05-24 2002-12-04 Sumitomo Metal Ind Ltd 鋼管用ねじ継手
JP2006112594A (ja) * 2004-10-18 2006-04-27 Daido Steel Co Ltd 金属被覆鋼管ネジ継手
WO2009057754A1 (ja) * 2007-11-02 2009-05-07 Sumitomo Metal Industries, Ltd. 潤滑被膜を備えた管ねじ継手
JP2015092109A (ja) * 2009-10-09 2015-05-14 テナリス・コネクシヨンズ・リミテツドTenaris Connections Limited 表面コーティングを有する楔形ねじ山を備える管状接合部
JP2018123346A (ja) * 2017-01-30 2018-08-09 新日鐵住金株式会社 管用ねじ継手及びその製造方法
JP2018123831A (ja) * 2017-01-30 2018-08-09 新日鐵住金株式会社 管用ねじ継手及び管用ねじ継手の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831097A (ja) * 1981-08-20 1983-02-23 Sumitomo Metal Ind Ltd 耐焼付性に優れた油井管継手およびその製造方法
JPS62188883A (ja) * 1986-02-10 1987-08-18 大同特殊鋼株式会社 金属管の接合構造
JP2002348587A (ja) * 2001-05-24 2002-12-04 Sumitomo Metal Ind Ltd 鋼管用ねじ継手
JP2006112594A (ja) * 2004-10-18 2006-04-27 Daido Steel Co Ltd 金属被覆鋼管ネジ継手
WO2009057754A1 (ja) * 2007-11-02 2009-05-07 Sumitomo Metal Industries, Ltd. 潤滑被膜を備えた管ねじ継手
JP2015092109A (ja) * 2009-10-09 2015-05-14 テナリス・コネクシヨンズ・リミテツドTenaris Connections Limited 表面コーティングを有する楔形ねじ山を備える管状接合部
JP2018123346A (ja) * 2017-01-30 2018-08-09 新日鐵住金株式会社 管用ねじ継手及びその製造方法
JP2018123831A (ja) * 2017-01-30 2018-08-09 新日鐵住金株式会社 管用ねじ継手及び管用ねじ継手の製造方法

Similar Documents

Publication Publication Date Title
EP2128506B1 (en) Screw joint for steel pipe
CA3009607C (en) Threaded connection for pipe or tube and method of producing the threaded connection for pipe or tube
EP3633256B1 (en) Threaded connection for pipes or tubes and method for producing the threaded connection for pipes or tubes
JP6964678B2 (ja) 管用ねじ継手及び管用ねじ継手の製造方法
EA035552B1 (ru) Резьбовой трубный элемент, обеспеченный металлическим противокоррозионным и противозадирным покрытием
WO2018003455A1 (ja) 管用ねじ継手及び管用ねじ継手の製造方法
EP4206511A1 (en) Metal pipe for oil well
EP3680534B1 (en) Threaded connection for pipes and method for producing threaded connection for pipes
EP3696256B1 (en) Composition, and threaded connection for pipes or tubes including lubricant coating layer formed from the composition
JP2018123346A (ja) 管用ねじ継手及びその製造方法
CN110741108A (zh) 油井管用螺纹接头及油井管用螺纹接头的制造方法
JP2018123831A (ja) 管用ねじ継手及び管用ねじ継手の製造方法
WO2020149310A1 (ja) 管用ねじ継手及び管用ねじ継手の製造方法
WO2020021704A1 (ja) 管用ねじ継手及びその製造方法
JP7553221B2 (ja) 管用ねじ継手及び管用ねじ継手の製造方法
WO2020021691A1 (ja) 管用ねじ継手及び管用ねじ継手の製造方法
JP6250150B2 (ja) 管用ねじ継手用めっき液及び管用ねじ継手の製造方法
WO2020021710A1 (ja) 管用ねじ継手及び管用ねじ継手の製造方法
US11920703B2 (en) Threaded connection for pipes and method for producing threaded connection for pipes
JP2018123349A (ja) 管用ねじ継手及び管用ねじ継手の製造方法
WO2023063384A1 (ja) 油井用金属管
OA18803A (en) Threaded joint for pipe, and manufacturing method of threaded joint for pipe.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP