WO2020020518A1 - Verfahren zum betreiben eines bremssystems sowie bremssystem - Google Patents
Verfahren zum betreiben eines bremssystems sowie bremssystem Download PDFInfo
- Publication number
- WO2020020518A1 WO2020020518A1 PCT/EP2019/063553 EP2019063553W WO2020020518A1 WO 2020020518 A1 WO2020020518 A1 WO 2020020518A1 EP 2019063553 W EP2019063553 W EP 2019063553W WO 2020020518 A1 WO2020020518 A1 WO 2020020518A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- brake
- actuating
- electric motor
- active circuit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000006073 displacement reaction Methods 0.000 claims abstract description 26
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 2
- 239000012530 fluid Substances 0.000 description 8
- 238000002955 isolation Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 3
- 238000000418 atomic force spectrum Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/02—Brake-action initiating means for personal initiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/12—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
- B60T13/14—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
- B60T13/142—Systems with master cylinder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/12—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
- B60T13/14—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
- B60T13/148—Arrangements for pressure supply
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/12—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
- B60T13/16—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs
- B60T13/18—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs with control of pump output delivery, e.g. by distributor valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/66—Electrical control in fluid-pressure brake systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/10—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
- B60T13/66—Electrical control in fluid-pressure brake systems
- B60T13/68—Electrical control in fluid-pressure brake systems by electrically-controlled valves
- B60T13/686—Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/74—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T13/00—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
- B60T13/74—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
- B60T13/745—Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T17/00—Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
- B60T17/18—Safety devices; Monitoring
- B60T17/22—Devices for monitoring or checking brake systems; Signal devices
- B60T17/221—Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T17/00—Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
- B60T17/18—Safety devices; Monitoring
- B60T17/22—Devices for monitoring or checking brake systems; Signal devices
- B60T17/221—Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
- B60T17/222—Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems by filling or bleeding of hydraulic systems
- B60T17/223—Devices for pressurising brake systems acting on pedal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T7/00—Brake-action initiating means
- B60T7/02—Brake-action initiating means for personal initiation
- B60T7/04—Brake-action initiating means for personal initiation foot actuated
- B60T7/042—Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/32—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
- B60T8/34—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
- B60T8/40—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
- B60T8/404—Control of the pump unit
- B60T8/4054—Control of the pump unit involving the delivery pressure control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T17/00—Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
- B60T17/18—Safety devices; Monitoring
- B60T17/22—Devices for monitoring or checking brake systems; Signal devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2240/00—Monitoring, detecting wheel/tire behaviour; counteracting thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2270/00—Further aspects of brake control systems not otherwise provided for
- B60T2270/82—Brake-by-Wire, EHB
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2270/00—Further aspects of brake control systems not otherwise provided for
- B60T2270/88—Pressure measurement in brake systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/30—Sensors
- B60Y2400/306—Pressure sensors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/81—Braking systems
Definitions
- Brake systems for vehicles in particular for motor vehicles, such as cars or trucks, are usually implemented as electrohydraulic brake systems, in which hydraulic pressure is generated in a brake circuit for actuating wheel brakes by means of a master brake cylinder operated by means of a manual actuation device.
- Braking force curve is usually by a
- Pressure generating device which has an electric motor and a displacer or plunger which can be moved by means of the electric motor, is supported.
- So-called brake-by-wire systems are also increasingly being used. Such a system is described for example in DE 10 2011 079 454 A1.
- an actuation circuit is provided, in which hydraulic pressure is generated by actuating a master brake cylinder. This pressure is recorded and, based on the recorded pressure, a target brake pressure is determined, which is generated by means of a pressure generating device which is movable by an electric motor and by an electric motor
- Brake system and a brake system for a vehicle in particular for a motor vehicle.
- a method for operating a brake system for a vehicle is provided.
- a braking request signal characterizing a braking request is generated by actuating an actuating arrangement of an actuating circuit.
- a signal representing a desired deceleration of the vehicle is consequently generated in this step.
- a target brake pressure required in an active circuit is determined on the basis of the brake request signal.
- Brake request signal thus forms an input variable for a
- Investigative function e.g. can be implemented as a software module. This determination function determines a value for a as the output variable
- Brake pressure to be set in an active circuit.
- an actual brake pressure in the active circuit is set in accordance with the desired brake pressure by means of a pressure generating device by moving a displacement piston of the pressure generating device with the aid of an electric motor of the pressure generating device in order to couple one to the active circuit
- the electric motor can in particular be coupled to the displacer piston via a gear mechanism, which converts a rotary movement of the electric motor into a translational movement of the displacer piston in order to vary the pressure in the active circuit and thereby one
- Actuate wheel brake which acts on a wheel of the vehicle.
- a condition is carried out under the condition that the braking request signal is constant over a predetermined period of time
- the actual brake pressure in the active circuit is first set to a value that is greater than the target brake pressure by moving the displacement piston with the help of the electric motor. The actual brake pressure is then lowered until the target brake pressure is reached by Moving the displacer using the electric motor, especially in the opposite direction.
- a brake system for a vehicle is provided.
- the brake system comprises an actuating circuit with an actuating arrangement that can be actuated by means of an actuating device for generating a braking request signal, an active circuit with a pressure generating device, comprising an electric motor and a displacement piston that can be moved in translation by means of the electric motor and that is coupled to the electric motor by means of a gear, and with at least one hydraulically to the
- Pressure generating device coupled wheel brake. Furthermore, the brake system has a control device which is connected to the actuating arrangement of the actuating circuit and to the pressure generating device of the
- control device is set up to determine a desired brake pressure required in the active circuit from the desired brake signal, to control the electric motor of the pressure generating device for setting an actual brake pressure in the active circuit according to the desired brake pressure and under the condition that the desired brake signal is transmitted via a
- predetermined period of time is constant to control the electric motor for performing a pressure modulation, comprising setting the actual brake pressure in the active circuit to a value that is greater than the target brake pressure and lowering the actual brake pressure until the target brake pressure is reached.
- One idea on which the invention is based is to protect the electric motor of the active brake circuit by performing pressure modulation when the brake request signal is constant over a predetermined period of time.
- the actual brake pressure in the active circuit is varied periodically as long as the brake request signal remains constant.
- a temporal actual brake pressure curve can be set, which is approximately the same as a sawtooth function.
- a pressure increase above the target braking pressure is set.
- the displacement piston is moved into a by means of the electric motor first direction moved to generate a positive volume flow of hydraulic fluid in the active circuit.
- the actual brake pressure is then reduced.
- the displacement piston is moved in the opposite direction by means of the electric motor in order to generate a negative volume flow of the hydraulic fluid out of the active circuit.
- the actual brake pressure in the active circuit is set to a value that is greater than the target brake pressure with a time pressure gradient that is between 10 and 50 times greater than a time pressure gradient with which the lowering of the actual brake pressure until the target brake pressure is reached. Accordingly, the time required to set the pressure increase in the actual brake pressure is significantly less than the time in which the actual brake pressure is reduced. This means that the torque that the electric motor has to deliver in order to generate the pressure increase is only slightly higher for a short time, the torque that the electric motor has to deliver during the reduction of the actual braking pressure being significantly reduced due to the friction losses in the transmission, in particular compared to a torque that would be necessary for a constant adjustment of the actual brake pressure to the target brake pressure. In this way, the average torque that the electric motor must deliver is further reduced.
- Condition a) can be met, for example, if the detected speed is so small that the vehicle can be stopped from a standstill.
- the speed threshold value can be determined by a number of
- Revolutions per second of the respective wheel can be defined, which corresponds to a driving speed of the vehicle of 3 km / h.
- This offers the advantage that pressure modulation is not carried out at higher speeds, which advantageously prevents the driver from feeling the pressure modulation.
- Condition b) reduces the number of situations in which one
- Isolation valve that is in a hydraulic path between the
- the second predetermined period is in particular significantly longer than the predetermined period after which the pressure modulation is carried out. Accordingly, the pressure in a brake-side part of the hydraulic path, which extends between the isolating valve and the wheel brake, is kept constant by closing the isolating valve when the pressure modulation over a certain period, for example over a period between 30 seconds and 420 seconds, in particular over a period of 300 seconds. After the hydraulic decoupling, the electric motor can be switched off, which further reduces the load on the electric motor.
- the actuating arrangement has a master brake cylinder which can be actuated by means of an actuating device and a sensor arrangement, wherein the generation of the brake request signal involves detection of a by actuating the master brake cylinder in the
- Actuating circuit generated hydraulic pressure and / or a travel of the Actuating device as the variables characterizing the braking request comprises.
- the braking request signal can be formed in particular by the variables which identify the braking request and are detected by the sensor device.
- the actuating arrangement has a master brake cylinder which can be actuated by means of the actuating device and a sensor arrangement for detecting a by actuating the
- Master brake cylinder generated hydraulic pressure in the actuating circuit and / or an actuating path of the actuating device as quantities characterizing a braking request, the braking request signal being formed by the quantities which identify the braking request and are detected by the sensor device.
- the active circuit has a pressure sensor for detecting the actual brake pressure in the
- Active circuit which is connected to the control device, wherein the control device is set up to control the electric motor for regulating the actual braking pressure on the basis of the detected actual braking pressure. In this way, a closed control loop is realized.
- the active circuit has a separating valve which is located in a hydraulic path between the
- Pressure generating device and the wheel brake is arranged, and wherein the control device is configured to close the isolating valve for hydraulically decoupling the wheel brake from the pressure generating device and to switch off the electric motor of the pressure generating device.
- the actual braking pressure in the brake-side part of the hydraulic path can be reduced by means of the isolating valve
- Figure 1 is a schematic representation of a brake system according to an embodiment of the present invention.
- Fig. 2 shows a pressure curve in an active circuit of the one shown in Fig. 1
- FIG. 3 shows the force relationships on a pressure generating device during a pressure increase in the active circuit of the brake system while carrying out a method according to an exemplary embodiment of the present invention
- Fig. 4 shows the force relationships on the pressure generating device during a pressure drop in the active circuit of the brake system while performing a method according to an embodiment of the present invention.
- the brake system 1 shows an example of a brake system 1 for a vehicle. As shown in FIG. 1, the brake system 1 has an actuation circuit 2, an active circuit 4 and a control device 5.
- the actuating circuit 2 shown by way of example in FIG. 1 has one
- Actuating arrangement 20 and an actuating device 21 The actuating device 20 can, in particular, as shown by way of example in FIG. 1, have a hydraulic master brake cylinder 22 and a sensor arrangement with at least one pressure sensor 23 and an actuating travel sensor 24.
- the actuating device 20 can also have an optional reset simulator 25.
- the master arrangement 22 can be actuated by means of the actuating device 21, which is exemplarily shown in FIG. 1 as a foot pedal.
- the actuation of the master brake cylinder 22 comprises a displacement of one or more displacement pistons 22 A, 22 B, whereby a hydraulic fluid, for example oil, is displaced against a restoring force and a hydraulic pressure is thereby generated in the actuation circuit 2.
- the restoring force can be generated, for example, by the optional reset simulator 25, which is hydraulically, ie in a fluid-conducting manner, coupled to the master brake cylinder 22 via a hydraulic line 6.
- the optional pressure sensor 23 detects the pressure generated by the master brake cylinder 22 and generates a pressure signal 3A representing this pressure.
- the pressure sensor 23 is hydraulically coupled to the hydraulic line 6 in FIG. 1 by way of example via the reset simulator 25.
- the optional travel sensor 24 detects a travel covered by the actuation device 21 and generates a travel signal 3B representing the travel.
- the pressure signal 3A and the actuation travel signal 3B together form an exemplary brake request signal 3, which is generated by means of the actuating arrangement 20.
- the actuating arrangement 20 can alternatively also be formed only by the actuating travel sensor 24, which detects the actuating travel of the actuating device 21.
- the braking request signal 3 is formed by the actuation travel signal 3B.
- the active circuit 4 has a pressure generating device 40, at least one wheel brake 43 and at least one isolating valve 44.
- the active circuit 4 also has a brake control valve arrangement 47. 1 shows an example of an active circuit 4 with a total of four wheel brakes 43A, 43B, 43C, 43D and two isolation valves 44A, 44B.
- the pressure generating device 40 has an electric motor 41 and a displacement piston 42, which can be moved in translation by means of the electric motor 41.
- a gear 41A which is shown only schematically in FIG kinematically couples to the displacement piston 42.
- the displacer piston 42 is movable in a guide cylinder 42A, whereby an in the
- Hydraulic fluid e.g. Oil that is displaced.
- the isolation valves 44A, 44B can be implemented, for example, as electromechanical switching valves.
- the isolation valves 44A, 44B can each be switched between an open state in which they enable fluid flow and a closed state in which the isolation valves 44A, 44B block fluid flow.
- the isolation valves 44A, 44B are shown as an example in a closed state.
- the wheel brakes 43A, 43B, 43C, 43D each act via friction linings (not shown) on those provided on a respective wheel (not shown)
- Friction surfaces for example in the form of a brake disc 7, 7A, 7B, 7C, 7D, in order to brake the respective wheel.
- the optional brake control valve arrangement 47 is only shown schematically in FIG. 1 and is used for individual control of the individual wheel brakes 43A, 43B, 43C, 43D.
- the brake control valve arrangement 47 is not explained in more detail here for reasons of clarity.
- the isolating valves 44A, 44B are hydraulically coupled to the pressure generating device 40 via a branching hydraulic line 15. Furthermore, the first pressure valve 44A is coupled to the brake discs 7A and 7B of the wheels (not shown) via a branching hydraulic line 16. The second pressure valve 44B is coupled to the brake discs 7C and 7D of the wheels (not shown) via a branching hydraulic line 17.
- the first pressure valve 44A is coupled to the brake discs 7A and 7B of the wheels (not shown) via a branching hydraulic line 16.
- the second pressure valve 44B is coupled to the brake discs 7C and 7D of the wheels (not shown) via a branching hydraulic line 17.
- Hydraulic lines 15, 16, 17 thus form a hydraulic path 45 between the pressure generating device 40 and the at least one wheel brake 43.
- the hydraulic lines 16, 17 connected to the wheel brakes 43 form a brake-side part 45A of the hydraulic path 45
- Hydraulic line 15 connected to pressure generating device 40 forms a part 45B of hydraulic path 45 on the pressure generating side. 1 further shows that an optional brake pressure sensor 46 for detecting a brake pressure can be provided in the pressure-boosting part 45B of the hydraulic path 45. Optional are also exemplary in FIG. 1
- Motor sensors 47A, 47B for detecting operating variables of the electric motor, such as the operating current or a rotational position.
- the actuation circuit 2 can be hydraulically coupled to the active circuit 4 via optional valves 26A, 26B, in order in the event of a
- the displacement pistons 22A, 22B are connected to the valves 26A, 26B
- valves 26A, 26B can be designed analogously to the isolating valves 44A, 44B.
- Fig. 1 the valves 26A, 26 B are shown in a closed state.
- control device 5 As further shown in Fig. 1, the control device 5 with the
- Actuating arrangement 20 of the actuating circuit 2 in particular connected to the sensors 23, 24 of the actuating arrangement 20 and to the pressure generating device 40.
- the control device 5 can also be equipped with the optional isolating valves 44A, 44B, with the optional valves 26A, 26B, with the optional
- Brake pressure sensor 46 and the optional engine sensors 47A, 47B can be connected.
- “connected” is understood to mean a functional connection, in particular a data connection, which can be implemented in a wired or wireless manner.
- the control device 5 can in particular have a processor (not shown) and a data memory (not shown), the data memory containing software which is set up to cause the processor to carry out the functions described below or the method described below.
- FIG. 2 shows, in a first diagram A, a pressure curve in the active circuit 4 of the brake system 1, in particular that detected by means of the brake pressure sensor 46 in the part 45B of the hydraulic path 45 on the pressure generator side
- FIG. 2 shows a torque curve of the electric motor 41 that results in order to generate the pressure curve shown in diagram A.
- a braking request is made at time 0
- characteristic brake request signal 3 generated by actuating the actuating arrangement 20 of the actuating circuit 2.
- Actuator 21 moves and thereby the master cylinder 22 is actuated against the restoring force of the optional reset simulator 25.
- the pressure sensor 23 and the travel sensor 24 each detect a pressure or a travel.
- the pressure sensor 23 generates a corresponding pressure signal 3A and the travel sensor 24 generates a corresponding travel signal 3B. These form the brake request signal 3 and are transmitted to the control device 5.
- the control device 5 uses the braking request signal 3 to determine and generate a desired braking pressure required in the active circuit 4
- Corresponding motor control signal 5M which is transmitted to the electric motor 41 of the pressure generating device 40.
- the electric motor 41 is operated in accordance with the motor control signal 5M and thereby moves the displacement piston 42 in such a way that the target brake pressure 9a is set in the active circuit 4.
- a closed control loop can be implemented by means of the optional brake pressure sensor 46, in which the actual brake pressure 9b in the active circuit 4 is regulated according to the target brake pressure 9a.
- the optional isolation valves 44A, 44B are open. As shown in FIG. 2, the actual brake pressure 9b is increased until the time t1, that is to say in the present case after about a second, the target brake pressure 9a has been reached. 2, the target brake pressure 9a is, for example, at a pressure of approximately 25 bar.
- the wheel brakes 43 are actuated.
- the target brake pressure 9a remains constant over a predetermined time period t_l of, for example, seconds 6 seconds. This corresponds to a constant brake request signal 3.
- t_l a predetermined time period of, for example, seconds 6 seconds. This corresponds to a constant brake request signal 3.
- Constant can be understood here in particular to mean that a change in the
- Brake request signal 3 is less than a predetermined value.
- the brake request signal 3 is constant if neither the pressure signal 3A nor the actuation travel signal 3B changes within a predetermined period of time, for example over 3 seconds or as shown in FIG. 2 by way of example over 6 seconds, by more than a predetermined value, for example by no more changes as 1 percent.
- a constant braking request signal 3 results in a constant target braking pressure 9a and in a constant actual braking pressure 9b, as can be seen in FIG. 2.
- the electric motor 41 of the pressure generating device 40 has to provide an increasing torque 10a for displacing the displacer 42 until the actual brake pressure 9b is set to the desired brake pressure 9a at the time t1. From time t1, the actual brake pressure 9b is kept at the level of the target brake pressure 9a.
- the electric motor 41 has to apply an approximately constant torque 10a to hold the displacement piston 42. From time t1, an average torque 10b, which the electric motor 41 must hold in order to hold the displacer 42 in order to keep the actual brake pressure 9b at the level of the target brake pressure 9a, is approximately 0.28 Nm.
- Pressure modulation includes, in particular, an increase in pressure, that is to say setting the actual brake pressure 9b in the active circuit 4 to a value 9c which is greater than the target brake pressure 9a, and then reducing the actual brake pressure 9b from this value to the target brake pressure 9a is reached again.
- the pressure increase of the actual brake pressure 9b is preferably carried out significantly faster than the pressure reduction.
- 2 shows an example that a The pressure is increased by approximately 3 bar within a time t_2 of approximately 0.25 seconds and the pressure is decreased by the same value to the target brake pressure of 25 bar within a time t_3 of approximately 12 seconds.
- the setting of the actual braking pressure in the active circuit 4 to a value which is greater than the target braking pressure can be carried out with a temporal pressure gradient which is between 10 and 50 times greater than a temporal pressure gradient with which the actual value is reduced - Brake pressure until the target brake pressure is reached.
- control device 5 In order to carry out the pressure modulation of the actual brake pressure 9b, the control device 5 generates an engine control signal 5M, on the basis of which the
- Electric motor 41 is driven, whereby a movement of the
- Displacement piston 42 takes place. As shown schematically by way of example in FIG. 3, the pressure moves during the pressure increase
- Displacement piston 42 in a first direction 11. This acts on the
- Displacement piston 42 has a force F_H which results from the application of pressure to the hydraulic fluid in the active circuit 4. This force F_H is given by the
- Electric motor 41 is provided, which, however, must additionally overcome the friction losses F_R in the transmission 41A when the piston 42 moves in the first direction 11.
- the electric motor 41 thus provides the motor force F_M during the time t_2 in order to displace the displacement piston 42 in the first direction 11 during the pressure increase, the motor force F_M corresponding in simplified form to the force F_H plus the friction force F_R from the transmission losses.
- the displacer 42 moves in a second direction 12, i.e. opposite to the first direction 11, during the pressure reduction.
- the force F_H which results from the application of pressure to the hydraulic fluid in the active circuit 4, acts on the displacer 42 results.
- This force F_H is provided by the electric motor 41.
- Friction losses F_R in the gear 41A counter the movement of the piston 42.
- the electric motor 41 thus provides the motor force F_M during the time t_3 in order to displace the displacement piston 42 in the second direction 12 during the pressure reduction, the motor force F_M in simplified form corresponding to the force F_H minus the friction force F_R from the transmission losses.
- the force F_R counteracts the force F_H, which relieves the load on the electric motor 41, since the force F_R supports the motor force F_M.
- a high torque 10a must first be provided by the electric motor 41 for the pressure increase for the short period of time t_2.
- the displacer 42 is braked in addition to the electric motor 41 by the friction losses occurring in the transmission 41A, which results in a low torque 10a of the electric motor 41 during the period t_3. Since the period t_2 is significantly smaller than the period t_3, the mean torque 10b during the combined period t_2 and t_3 is the
- the pressure modulation can be carried out several times in succession, as long as the brake request signal 3 or the target brake pressure 9a is constant.
- the at least one wheel brake 43 can be hydraulically uncoupled from the pressure generating device 40 by closing the at least one isolating valve 44.
- the control device 5 generates a valve control signal 5V, which causes the isolating valves 44A, 44B to close, on the condition that the brake request signal 3 is constant over a predetermined second time period.
- the electric motor 41 can then be switched off and the actual brake pressure in the brake-side part 45A of the hydraulic path 45 is kept constant by the closed isolation valves 44A, 44B.
- the execution of the pressure modulation can optionally be additionally coupled to the existence of further conditions. For example, a speed of the wheels can be detected on the wheels by means of speed sensors 18A, 18B, 18C, 18D and transmitted to the control device 5 as a speed signal 5D. Carrying out the pressure modulation can be done under the additional
- Condition that the detected speed is less than a predetermined speed threshold. It can also be required as an additional condition that the determined target brake pressure of the active circuit 4 is greater than a predetermined pressure threshold value. Alternatively or additionally, it can also be required as a condition that a thermal load on the
- Characteristic electric motor 41 of the pressure generating device reaches a predetermined load threshold.
- the operating current detected by means of the motor sensor 47A can be transmitted to the
- Control device 5 are transmitted. If the operating current 51 is above a limit value for a certain time, the isolating valves 44 are closed.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Regulating Braking Force (AREA)
- Braking Systems And Boosters (AREA)
Abstract
Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben eines Bremssystems für ein Fahrzeug. Gemäß dem Verfahren wird ein einen Bremswunsch kennzeichnendes Bremswunschsignal durch Betätigung einer Stellanordnung eines Betätigungskreises erzeugt und ein in einem Aktivkreis erforderlicher Soll-Bremsdruck anhand des Bremswunschsignals ermittelt. Ferner erfolgt ein Einstellen eines Ist-Bremsdrucks im Aktivkreis gemäß dem Soll-Bremsdruck mittels einer Druckerzeugungseinrichtung durch Bewegen eines Verdrängerkolbens der Druckerzeugungseinrichtung mithilfe eines Elektromotors der Druckerzeugungseinrichtung, um eine an den Aktivkreis gekoppelte Radbremse zu betätigen. Unter der Bedingung, dass das Bremswunschsignal über einen vorbestimmten Zeitraum konstant ist, erfolgt ein Durchführen einer Druckmodulation, umfassend ein Einstellen des Ist-Bremsdrucks im Aktivkreis (4) auf einen Wert, der größer als der Soll-Bremsdruck ist, und ein Absenken des Ist-Bremsdrucks bis der Soll-Bremsdruck erreicht wird durch Bewegen des Verdrängerkolbens mithilfe des Elektromotors.
Description
Beschreibung
Titel
Verfahren zum Betreiben eines Bremssystems sowie Bremssystem
Stand der Technik
Bremssysteme für Fahrzeuge, insbesondere für Kraftfahrzeuge, wie PKWs oder LKWs, sind üblicherweise als elektrohydraulische Bremssysteme realisiert, bei welchen durch einen mittels einer manuellen Betätigungseinrichtung betätigten Hauptbremszylinder ein hydraulischer Druck in einem Bremskreislauf zur Betätigung von Radbremsen erzeugt wird. Die Druckerzeugung in dem
Bremskraftverlauf wird dabei üblicherweise durch eine
Druckerzeugungseinrichtung, welche einen Elektromotor und einen mittels des Elektromotors bewegbaren Verdrängerkolben oder Plunger aufweist, unterstützt.
Zunehmend kommen auch sogenannte Brake-by-Wire-Systeme zum Einsatz. Ein solches ist System ist beispielsweise in der DE 10 2011 079 454 Al beschrieben. Bei diesem Bremssystem ist ein Betätigungskreis vorgesehen, in welchem durch Betätigung eines Hauptbremszylinders ein hydraulischer Druck erzeugt wird. Dieser Druck wird erfasst und anhand des erfassten Drucks wird ein Soll- Bremsdruck ermittelt, der mittels einer Druckerzeugungseinrichtung, welche einen Elektromotor und einen mittels des Elektromotors bewegbaren
Verdrängerkolben aufweist, in einem Aktivkreis zur Betätigung der Radbremsen eingestellt.
Offenbarung der Erfindung
Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben eines
Bremssystems sowie ein Bremssystem für ein Fahrzeug, insbesondere für ein Kraftfahrzeug.
Gemäß einem ersten Aspekt der Erfindung ist ein Verfahren zum Betreiben eines Bremssystems für ein Fahrzeug vorgesehen.
Bei dem erfindungsgemäßen Verfahren erfolgt ein Erzeugen eines einen Bremswunsch kennzeichnenden Bremswunschsignals durch Betätigung einer Stellanordnung eines Betätigungskreises. In diesem Schritt wird folglich ein Signal erzeugt, das eine gewünschte Verzögerung des Fahrzeugs repräsentiert.
In einem weiteren Schritt erfolgt ein Ermitteln eines in einem Aktivkreis erforderlichen Soll-Bremsdrucks anhand des Bremswunschsignals. Das
Bremswunschsignal bildet somit eine Eingangsgröße für eine
Ermittlungsfunktion, die z.B. als ein Softwaremodul realisiert sein kann. Diese Ermittlungsfunktion ermittelt als Ausgangsgröße einen Wert für einen
Bremsdruck, der in einem Aktivkreis eingestellt werden soll.
Weiterhin erfolgt ein Einstellen eines Ist- Bremsdrucks im Aktivkreis gemäß dem Soll-Bremsdruck mittels einer Druckerzeugungseinrichtung durch Bewegen eines Verdrängerkolbens der Druckerzeugungseinrichtung mithilfe eines Elektromotors der Druckerzeugungseinrichtung, um eine an den Aktivkreis gekoppelte
Radbremse zu betätigen. Der Elektromotor kann insbesondere über ein Getriebe an den Verdrängerkolben gekoppelt sein, welches eine Drehbewegung des Elektromotors in eine translatorische Bewegung des Verdrängerkolbens umwandelt, um den Druck im Aktivkreis zur variieren und dadurch eine
Radbremse, welche auf ein Rad des Fahrzeugs wirkt, zu betätigen.
Erfindungsgemäß erfolgt unter der Bedingung, dass das Bremswunschsignal über einen vorbestimmten Zeitraum konstant ist, ein Durchführen einer
Druckmodulation. Hierbei wird der Ist-Bremsdrucks im Aktivkreis durch Bewegen des Verdrängerkolbens mithilfe des Elektromotors zunächst auf einen Wert eingestellt, der größer als der Soll-Bremsdruck ist. Anschließend erfolgt ein Absenken des Ist- Bremsdrucks bis der Soll-Bremsdruck erreicht wird durch
Bewegen des Verdrängerkolbens mithilfe des Elektromotors, insbesondere in der entgegengesetzten Richtung.
Gemäß einem weiteren Aspekt der Erfindung ist ein Bremssystem für ein Fahrzeug vorgesehen.
Das Bremssystem umfasst einen Betätigungskreis mit einer mittels einer Betätigungseinrichtung betätigbaren Stellanordnung zur Erzeugung eines Bremswunschsignals, einen Aktivkreis mit einer Druckerzeugungseinrichtung, umfassend einen Elektromotor und einen mittels des Elektromotors translatorisch bewegbaren Verdrängerkolben, der mittels eines Getriebes an den Elektromotor gekoppelt ist, und mit zumindest einer hydraulisch an die
Druckerzeugungseinrichtung gekoppelten Radbremse. Weiterhin weist das Bremssystem eine Steuerungsvorrichtung auf, welche mit der Stellanordnung des Betätigungskreises und mit der Druckerzeugungseinrichtung des
Aktivkreises verbunden ist.
Erfindungsgemäß ist die Steuerungsvorrichtung dazu eingerichtet, aus dem Bremswunschsignal einen im Aktivkreis erforderlichen Soll-Bremsdruck zu ermitteln, den Elektromotor der Druckerzeugungseinrichtung zur Einstellung eines Ist-Bremsdrucks im Aktivkreis gemäß dem Soll-Bremsdruck anzusteuern und unter der Bedingung, dass das Bremswunschsignal über einen
vorbestimmten Zeitraum konstant ist, den Elektromotor zur Durchführen einer Druckmodulation, umfassend ein Einstellen des Ist-Bremsdrucks im Aktivkreis auf einen Wert, der größer als der Soll-Bremsdruck ist und ein Absenken des Ist- Bremsdrucks bis der Soll-Bremsdruck erreicht wird, anzusteuern.
Eine der Erfindung zugrunde liegende Idee besteht darin, den Elektromotor des Aktivbremskreises zu schonen, indem eine Druckmodulation durchgeführt wird, wenn das Bremswunschsignal über einen vorbestimmten Zeitraum konstant ist. Hierzu wird der Ist-Bremsdruck im Aktivkreis periodisch variiert, solange das Bremswunschsignal konstant bleibt. Insbsondere kann ein zeitlicher Ist- Bremsdruckverlauf eingestellt werden, der etwa einer Sägezahnfunktion gleicht. Allgemein wird eine Drucküberhöhung oberhalb des Soll-Bremsdrucks eingestellt. Hierzu wird der Verdrängerkolben mittels des Elektromotors in eine
erste Richtung bewegt, um einen positiven Volumenstrom eines Hydraulikfluids in den Aktivkreis zu erzeugen. Anschließend erfolgt ein Absenken Ist- Bremsdrucks. Hierzu wird der Verdrängerkolben mittels des Elektromotors in entgegengesetzter Richtung bewegt, um einen negativen Volumenstrom des Hydraulikfluids aus dem Aktivkreis heraus zu erzeugen. Während der
Druckabsenkung entstehen in dem Getriebe, welches den Elektromotor an den Verdrängerkolben koppelt, Reibungsverluste. Diese wirken der Bewegung des Verdrängerkolbens entgegen und bremsen diesen somit. Damit wird die Kraft, die vom Elektromotor auf den Kolben aufgebracht werden muss, verringert, was zu einer mechanischen und thermischen Entlastung des Elektromotors führt.
Gemäß einer Ausführungsform des Verfahrens erfolgt das Einstellen des Ist- Bremsdrucks im Aktivkreis auf einen Wert, der größer als der Soll-Bremsdruck ist, mit einem zeitlichen Druckgradienten, der zwischen 10 und 50 mal größer ist, als ein zeitlicher Druckgradient, mit welchem das Absenken des Ist- Bremsdrucks bis der Soll-Bremsdruck erreicht wird erfolgt. Demnach ist die Zeit, die für das Einstellen der Drucküberhöhung im Ist-Bremsdruck benötigt wird, wesentlich kleiner, als die Zeit, in der das Absenken des Ist- Bremsdrucks erfolgt. Damit ist ein Drehmoment, das der Elektromotor liefern muss, um die Drucküberhöhung zu erzeugen, lediglich kurzzeitig etwas höher, wobei das Drehmoment, das der Elektromotor während des Absenken des Ist- Bremsdrucks liefern muss, aufgrund der Reibungsverluste im Getriebe deutlich verringert ist, insbesondere gegenüber einem Drehmoment, das für eine konstante Einstellung des Ist- Bremsdrucks auf den Soll-Bremsdruck nötig wäre. Auf diese Weise wird das mittlere Drehmoment, das der Elektromotor liefern muss, weiter verringert.
Gemäß einer weiteren Ausführungsform des Verfahrens erfordert das
Durchführen der Druckmodulation zusätzlich das Vorliegen einer oder mehrerer der folgenden Bedingungen:
a) eine erfasste Drehzahl eines von der Radbremse gebremsten Rads ist kleiner als ein vorbestimmter Drehzahl-Schwellwert,
b) der ermittelte Soll-Bremsdruck des Aktivkreises ist größer als ein
vorbestimmter Druck-Schwellwert.
Bedingung a) kann beispielsweise erfüllt sein, wenn die erfasste Drehzahl so klein ist, dass von einem Stillstand des Fahrzeugs ausgegagen werden kann. Insbesondere kann der Drehzahl-Schwellwert durch eine Anzahl von
Umdrehungen pro Sekunde des jeweiligen Rades definiert sein, welche einer Fahrgeschwindigkeit des Fahrzeugs von 3 km/h entspricht. Dies bietet den Vorteil, dass eine Druckmodulation bei höheren Geschwindigkeiten nicht durchgeführt wird, wodurch eine Spürbarkeit der Druckmodulation für den Fahrer vorteilhaft vermieden wird.
Die Bedingung b) verringert die Anzahl der Situationen, in denen eine
Druckmodulation vorgenommen wird.
Gemäß einer weiteren Ausführungsform des Verfahrens ist vorgesehen, dass unter der Bedingung, dass das Bremswunschsignal über einen zweiten vorbestimmten Zeitraum konstant ist, ein hydraulisches Abkoppeln der
Radbremse von der Druckerzeugungseinrichtung durch Schließen eines
Trennventils, das in einem hydraulischen Pfad zwischen der
Druckerzeugungseinrichtung und der Radbremse angeordnet ist, und ein Abschalten des Elektromotors erfolgt. Der zweite vorbestimmte Zeitraum ist insbesondere deutlich länger als der vorbestimmte Zeitraum, nach welchem die Druckmodulation durch geführt wird. Demnach erfolgt ein Konstanthalten des Drucks in einem bremsseitigen Teil des hydraulischen Pfads, der sich zwischen dem Trennventil und der Radbremse erstreckt, indem das Trennventil geschlossen wird, wenn die Druckmodulation über einen gewissen Zeitraum, beispielsweise über einen Zeitraum zwischen 30 Sekunden und 420 Sekunden, insbesondere über einen Zeitraum von 300 Sekunden, durchgeführt wurde. Nach der hydraulischen Abkopplung kann der Elektromotor ausgeschaltet werden, was die Belastung des Elektromotors weiter verringert.
Gemäß einer weiteren Ausführungsform des Verfahrens weist die Stellanordnung einen mittels einer Betätigungseinrichtung betätigbaren Hauptbremszylinder und eine Sensoranordnung auf, wobei das Erzeugen des Bremswunschsignals ein Erfassen eines durch die Betätigung des Hauptbremszylinders im
Betätigungskreis erzeugten hydraulischen Drucks und/oder eines Stellwegs der
Betätigungseinrichtung als den Bremswunsch kennzeichnende Größen umfasst. Das Bremswunschsignal kann insbesondere durch die den Bremswunsch kennzeichnenden, mittels der Sensoreinrichtung erfassten Größen gebildet sein.
Gemäß einer Ausführungsform des Bremssystem weist die Stellanordnung einen mittels der Betätigungseinrichtung betätigbaren Hauptbremszylinder und eine Sensoranordnung zur Erfassung eines durch Betätigung des
Hauptbremszylinders erzeugten hydraulischen Drucks im Betätigungskreis und/oder eines Stellwegs der Betätigungseinrichtung als einen Bremswunsch kennzeichnende Größen auf, wobei das Bremswunschsignal durch die den Bremswunsch kennzeichnenden, mittels der Sensoreinrichtung erfassten Größen gebildet ist.
Gemäß einer weiteren Ausführungsform des Bremssystems ist vorgesehen, dass der Aktivkreis einen Drucksensor zur Erfassung des Ist- Bremsdrucks im
Aktivkreis aufweist, welcher mit der Steuerungseinrichtung verbunden ist, wobei die Steuerungseinrichtung dazu eingereichtet ist, den Elektromotor zur Regelung des Ist-Bremsdrucks auf Basis des erfassten Ist-Bremsdrucks anzusteuern. Auf diese Weise wird eine geschlossene Regelschleife realisiert.
Gemäß einer weiteren Ausführungsform des Bremssystems weist der Aktivkreis ein Trennventil auf, welches in einem hydraulischen Pfad zwischen der
Druckerzeugungseinrichtung und der Radbremse angeordnet ist, und wobei die Steuerungsvorrichtung dazu eingerichtet ist, das Trennventil zur hydraulischen Abkopplung der Radbremse von der Druckerzeugungseinrichtung zu schließen und den Elektromotor der Druckerzeugungseinrichtung abzuschalten. Wie bereits oben zum Verfahren beschrieben, kann mittels des Trennventils der Ist- Bremsdruck im bremsseitigen Teil des hydraulischen Pfades bei
ausgeschaltetem Elektromotor konstant gehalten werden.
Die vorliegende Erfindung wird nachfolgend anhand der in den schematischen Figuren der Zeichnungen angegebenen Ausführungsbeispiele näher erläutert. Es zeigen dabei:
Fig. 1 eine schematische Darstellung eines Bremssystems gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
Fig. 2 einen Druckverlauf in einem Aktivkreis des in Fig. 1 dargestellten
Bremssystems, insbesondere in einem druckerzeugerseitigen Teil eines hydraulischen Pfads, sowie einen Drehmomentverlauf eines
Elektromotors des Aktivkreises des in Fig. 1 dargestellten
Bremssystems während der Durchführung eines Verfahrens gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
Fig. 3 die Kraftverhältnisse an einer Druckerzeugungseinrichtung während einer Druckerhöhung im Aktivkreis des Bremssystems während der Durchführung eines Verfahrens gemäß einem Ausführungsbeispiel der vorliegenden Erfindung; und
Fig. 4 die Kraftverhältnisse an der Druckerzeugungseinrichtung während einer Druckabsenkung im Aktivkreis des Bremssystems während der Durchführung eines Verfahrens gemäß einem Ausführungsbeispiel der vorliegenden Erfindung.
In den Figuren der Zeichnung sind gleiche, funktionsgleiche und gleich wirkende
Elemente, Merkmale und Komponenten - sofern nichts Anderes ausführt ist - jeweils mit denselben Bezugszeichen versehen.
Fig. 1 zeigt beispielhaft ein Bremssystem 1 für ein Fahrzeug. Wie in Fig. 1 dargestellt, weist das Bremssystem 1 einen Betätigungskreis 2, einen Aktivkreis 4 und eine Steuerungsvorrichtung 5 auf.
Der in Fig. 1 beispielhaft dargestellte Betätigungskreis 2 weist eine
Stellanordnung 20 und eine Betätigungseinrichtung 21 auf. Die Stelleinrichtung 20 kann insbesondere, wie in Fig. 1 beispielhaft dargestellt, einen hydraulischen Hauptbremszylinder 22 sowie eine Sensoranordnung mit zumindest einem Drucksensor 23 sowie einem Stellwegsensor 24 aufweisen. Die Stelleinrichtung 20 kann ferner einen optionalen Rückstellsimulator 25 aufweisen. Bei der in Fig.
1 beispielhaft gezeigten Stellanordnung 20 ist der Hauptbremszylinder 22 mittels der Betätigungseinrichtung 21, welche in Fig. 1 beispielhaft als Fußpedal dargestellt ist, betätigbar. Die Betätigung des Hauptbremszylinders 22 umfasst hierbei ein Verschieben eines oder mehrerer Verdrängerkolben 22 A, 22 B, wodurch ein Hydraulikfluid, z.B. Öl, gegen eine Rückstellkraft verdrängt und dadurch ein hydraulischer Druck im Betätigungskreis 2 erzeugt wird.
Die Rückstellkraft kann beispielsweise durch den optionale Rückstellsimulator 25 erzeugt werden, welcher über eine Hydraulikleitung 6 hydraulisch, also in fluidleitender Weise, an den Hauptbremszylinder 22 gekoppelt ist.
Der optionale Drucksensor 23 erfasst den durch den Hauptbremszylinder 22 erzeugten Druck und erzeugt ein diesen Druck repräsentierendes Drucksignal 3A. Der Drucksensor 23 ist in Fig. 1 beispielhaft über den Rückstellsimulator 25 hydraulisch an die Hydraulikleitung 6 gekoppelt. Der optionale Stellwegsensor 24 erfasst einen von der Betätigungseinrichtung 21 zurückgelegten Stellweg und erzeugt ein den Stellweg repräsentierendes Stellwegsignal 3B. Das Drucksignal 3A und das Stellwegsignal 3B bilden vorliegend gemeinsam ein beispielhaftes Bremswunschsignal 3, das mittels der Stellanordnung 20 erzeugt wird.
Die Stellanordnung 20 kann alternativ auch lediglich durch den Stellwegsensor 24 gebildet sein, welcher den Stellweg der Betätigungseinrichtung 21 erfasst. In diesem Fall ist das Bremswunschsignal 3 durch das Stellwegsignal 3B gebildet.
Der Aktivkreis 4 weist eine Druckerzeugungseinrichtung 40, zumindest eine Radbremse 43 und zumindest ein Trennventil 44 auf. Optional weist der Aktivkreis 4 außerdem eine Bremsregelungsventilanordnung 47 auf. In Fig. 1 ist beispielhaft ein Aktivkreis 4 mit insgesamt vier Radbremsen 43A, 43B, 43C, 43D und zwei Trennventilen 44A, 44B dargestellt.
Die Druckerzeugungseinrichtung 40 weist einen Elektromotor 41 und einen Verdrängerkolben 42 auf, welcher mittels des Elektromotors 41 translatorisch bewegbar ist. Zur Umwandlung einer Rotationsbewegung des Elektromotors 41 in eine Translationsbewegung des Verdrängerkolbens 42 ist ein in Fig. 1 lediglich schematisch dargestelltes Getriebe 41A vorgesehen, das den Elektromotor 41
kinematisch an den Verdrängerkolben 42 koppelt. Der Verdrängerkolben 42 ist in einem Führungszyliner 42A bewegbar, wodurch ein sich in dem
Führungszylinder 42A befindliches Hydraulikfluid, z.B. Öl, verdrängt wird.
Die Trennventile 44A, 44B können beispielsweise als elektromechanische Schaltventile realisiert sein. Die Trennventile 44A, 44B sind jeweils zwischen einem offenen Zustand, in welchem diese einen Fluiddurchfluss ermöglichen, und einem geschlossenen Zustand, in welchem die Trennventile 44A, 44B einen Fluiddurchfluss sperren, schaltbar. In Fig. 1 sind die Trennventile 44A, 44B beispielhaft in einem geschlossenen Zustand dargestellt.
Die Radbremsen 43A, 43B, 43C, 43D wirken jeweils über Reibbeläge (nicht dargestellt) auf an einem jeweiligen Rad (nicht dargestellt) vorgesehene
Reibflächen, beispielsweise in Form einer Bremsscheibe 7, 7A, 7B, 7C, 7D, ein, um das jeweilige Rad zu bremsen.
Die optionale Bremsregelungsventilanordnung 47 ist in Fig. 1 lediglich schematisch dargestellt und dient zur individuellen Regelung der einzelnen Radbremsen 43A, 43B, 43C, 43D. Die Bremsregelungsventilanordnung 47 wird hierin aus Gründen der Übersichtlichkeit nicht näher erläutert.
Die Trennventile 44A, 44B sind über eine sich verzweigende Hydraulikleitung 15 hydraulisch an die Druckerzeugungseinrichtung 40 gekoppelt. Ferner ist das erste Druckventil 44A über eine sich verzweigende Hydraulikleitung 16 an die Bremsscheiben 7A und 7B der Räder (nicht dargestellt) gekoppelt. Das zweite Druckventil 44B ist über eine sich verzweigende Hydraulikleitung 17 an die Bremsscheiben 7C und 7D der Räder (nicht dargestellt) gekoppelt. Die
Hydraulikleitungen 15, 16, 17 bilden somit einen Hydraulikpfad 45 zwischen der Druckerzeugungseinrichtung 40 und der zumindest einen Radbremse 43 aus.
Die an die Radbremsen 43 angeschlossenen Hydraulikleitungen 16, 17 bilden einen bremsseitigen Teil 45A des hydraulischen Pfads 45. Die an die
Druckerzeugungseinrichtung 40 angeschlossene Hydraulikleitung 15 bildet einen druckerzeugungsseitigen Teil 45B des hydraulischen Pfads 45.
Fig. 1 zeigt weiter, dass ein optionaler Bremsdrucksensor 46 zur Erfassung eines Bremsdrucks in dem druckereugungsseitigen Teil 45B des hydraulischen Pfads 45 vorgesehen sein kann. Auch sind in Fig. 1 beispielhaft optionale
Motorsensoren 47A, 47B zur Erfassung von Betriebsgrößen des Elektromotors, wie des Betriebsstroms oder einer Drehstellung dargestellt.
Wie in Fig. 1 gezeigt ist, kann der Betätigungskreis 2 über optionale Ventile 26A, 26B hydraulisch an den Aktivkreis 4 gekoppelt sein, um im Falle eines
Betriebsausfalls der Druckerzeugungseinrichtung 40 eine Betätigung der Radbremsen 43 über den Hauptbremszylinder 22 zu ermöglichen. Hierzu sind die Verdrängerkolben 22A, 22B über die Ventile 26A, 26B an die
Hydraulikleitungen 16, 17 angeschlossen, wobei die Ventile 26A, 26B analog zu den Trennventilen 44A, 44B gestaltet sein können. In Fig. 1 sind die Ventile 26A, 26 B in einem geschlossenen Zustand dargestellt.
Wie in Fig. 1 weiterhin gezeigt, ist die Steuerungsvorrichtung 5 mit der
Stellanordnung 20 des Betätigungskreises 2, insbesondere mit den Sensoren 23, 24 der Stellanordnung 20 und mit der Druckerzeugungseinrictung 40 verbunden. Die Steuerungsvorrichtung 5 kann ferner mit den optionalen Trennventilen 44A, 44B, mit den optionalen Ventilen 26A, 26B, mit dem optionalen
Bremsdrucksensor 46 sowie den optionalen Motorsensoren 47A, 47B verbunden sein. Hierbei wird unter„verbunden“ eine funktionelle Verbindung verstanden, insbesondere eine Datenverbindung, die drahtgebunden oder drahtlos realisiert sein kann.
Die Steuerungsvorrichtung 5 kann insbesondere einen Prozessor (nicht dargestellt) und einen Datenspeicher (nicht dargestellt) aufweisen, wobei der Datenspeicher Software enthält, die dazu eingerichtet ist, den Prozessor zur Ausführung der nachfolgend beschriebenen Funktionen bzw. des nachfolgend beschriebenen Verfahens zu veranlassen.
Das erfindungsgemäße Verfahren wird nachfolgend beispielhaft anhand des voranstehend beschriebenen Bremssystems 1 erläutert.
Fig. 2 zeigt in einem ersten Diagramm A einen Druckverlauf im Aktivkreis 4 des Bremssystems 1, insbesondere den mittels des Bremsdrucksensors 46 im druckerzeugerseitigen Teil 45B des hydraulischen Pfads 45 erfassten
Druckverlauf, aufgetragen über die Zeit. In einem zweiten Diagramm B zeigt Fig. 2 einen Drehmomentverlauf des Elektromotors 41 der sich ergibt, um den in Diagramm A gezeigten Druckverlauf zu erzeugen.
Wie in Fig. 2 gezeigt, wird zum Zeitpunkt 0 ein einen Bremswunsch
kennzeichnendes Bremswunschsignal 3 durch Betätigung der Stellanordnung 20 des Betätigungskreises 2 erzeugt. Beispielsweise wird die
Betätigungseinrichtung 21 bewegt und dadurch der Hauptbremszylinder 22 gegen die Rückstellkraft des optionalen Rückstellsimulators 25 betätigt. Der Drucksensor 23 und der Stellwegsensor 24 erfassen jeweils einen Druck bzw. einen Stellweg. Der Drucksensor 23 erzeugt ein entsprechendes Drucksignal 3A und der Stellwegsensor 24 ein entsprechendes Stellwegsignals 3B. Diese bilden das Bremswunschsignal 3 und werden an die Steuerungsvorrichtung 5 übermittelt.
Die Steuerungsvorrichtung 5 ermittelt anhand des Bremswunschsignals 3 einen in dem Aktivkreis 4 erforderlichen Soll-Bremsdrucks und erzeugt ein
entsprechendes Motorsteuersignal 5M, welches an den Elektromotor 41 der Druckerzeugungseinrichtung 40 übermittelt wird.
Der Elektromotor 41 wird gemäß dem Motorsteuersignal 5M betrieben und bewegt dadurch den Verdrängerkolben 42 derart, dass der Soll-Bremsdruck 9a im Aktivkreis 4 eingestellt wird. Optional kann hierbei mittels des optionalen Bremsdrucksensors 46 eine geschlossene Regelschleife realisiert werden, in welcher der Ist-Bremsdruck 9b im Aktivkreis 4 gemäß dem Soll-Bremsdruck 9a geregelt wird. Die optionalen Trennventile 44A, 44B sind geöffnet. Wie in Fig. 2 gezeigt ist, wird der Ist-Bremsdruck 9b vergrößert bis zum Zeitpunkt tl, also vorliegend nach etwa einer Sekunde, der Soll-Bremsdruck 9a erreicht ist. In Fig. 2 liegt der Soll-Bremsdruck 9a beispielhaft bei einem Druck von etwa 25 bar. Durch das Einstellen des Ist-Bremsdrucks 9b auf einen Wert von größer 0 bar werden die Radbremsen 43 betätigt.
Wie in Fig. 2 weiter erkennbar ist, bleibt der Soll-Bremsdruck 9a über einen vorbestimmten Zeitraum t_l von beispielsweise Sekunden 6 Sekunden konstant. Dies entspricht einem konstanten Bremswunschsignal 3. Unter„konstant“ kann hierin insbesondere verstanden werden, dass eine Änderung des
Bremswunschsignals 3 kleiner einem vorbestimmten Wert ist. Beispielsweise ist das Bremswunschsignal 3 konstant, wenn sich weder das Drucksignal 3A noch das Stellwegsignal 3B innerhalb eines vorbestimmte Zeitraums, beispielsweise über 3 Sekunden oder wie in Fig. 2 beispielhaft gezeigt über 6 Sekunden, um nicht mehr als einen vorbestimmten Wert, beispielsweise um nicht mehr als 1 Prozent ändert. Ein konstantes Bremswunschsignal 3 resultiert in einem konstanten Soll-Bremsdruck 9a sowie in einem konstanten Ist-Bremsdruck 9b, wie in Fig. 2 erkennbar ist.
Wie in Fig. 2 in Diagramm B dargestellt ist, muss der Elektromotor 41 der Druckerzeugungseinrichtung 40 zum Verschieben des Verdrängerkolbens 42 bis der Ist-Bremsdruck 9b zum Zeitpunkt tl auf den Soll-Bremsdruck 9a eingestellt ist, ein zunehmendes Drehmoment 10a bereitstellen. Ab dem Zeitpunkt tl wird der Ist- Bremsdruck 9b auf dem Niveau des Soll-Bremsdrucks 9a gehalten.
Hierzu muss der Elektromotor 41 zum Halten des Verdrängerkolbens 42 ein näherungsweise konstantes Drehmoment 10a aufbringen. Ab dem Zeitpunkt tl liegt ein mittleres Drehmoment 10b, welches der Elektromotor 41 zum Halten des Verdrängerkolbens 42 aufbringen muss, um den Ist-Bremsdruck 9b auf dem Niveau des Soll-Bremsdrucks 9a zu halten, bei etwa 0,28 Nm.
Unter der Bedingung, dass das Bremswunschsignal 3 über den vorbestimmten Zeitraum t_l konstant ist, erfolgt ein Durchführen einer Druckmodulation des Ist- Bremsdrucks 9b, wie dies in Fig. 2 beispielhaft dargestellt ist. Die
Druckmodulation umfasst insbesondere eine Druckerhöhung, also ein Einstellen des Ist- Bremsdrucks 9b im Aktivkreis 4 auf einen Wert 9c, der größer als der Soll-Bremsdruck 9a ist, und eine anschließende Druckabsenkung des Ist- Bremsdrucks 9b von diesem Wert bis der Soll-Bremsdruck 9a wieder erreicht wird.
Vorzugsweise wird die Druckerhöhung des Ist-Bremsdrucks 9b deutlich schneller durchgeführt als die Druckabsenkung. In Fig. 2 ist beispielhaft gezeigt, dass eine
Druckerhöhung um etwa 3 bar innerhalb einer Zeit t_2 von etwa 0,25 Sekunden erfolgt und die Druckabsenkung um denselben Wert auf den Soll-Bremsdruck von 25 bar innerhalb einer Zeit t_3 etwa 12 Sekunden erfolgt. Generell kann das Einstellen des Ist- Bremsdrucks im Aktivkreis 4 auf einen Wert, der größer als der Soll-Bremsdruck ist, mit einem zeitlichen Druckgradienten erfolgen, der zwischen 10 und 50 mal größer ist, als ein zeitlicher Druckgradient, mit welchem das Absenken des Ist- Bremsdrucks bis der Soll-Bremsdruck erreicht wird.
Um die Druckmodulation des Ist- Bremsdrucks 9b durchzuführen, erzeugt die Steuerungsvorrichtung 5 ein Motorsteuersignal 5M, aufgrund dessen der
Elektromotor 41 angesteuert wird, wodurch eine Bewegung des
Verdrängerkolbens 42 erfolgt. Wie in Fig. 3 beispielhaft und schematisch dargestellt ist, erfolgt während der Druckerhöhung eine Bewegung des
Verdrängerkolbens 42 in einer ersten Richtung 11. Hierbei wirkt auf den
Verdrängerkolben 42 eine Kraft F_H, welche aus der Druckaufbringung auf das Hydraulikfluid im Aktivkreis 4 resultiert. Diese Kraft F_H wird durch den
Elektromotor 41 bereitgestellt, welcher jedoch bei der Bewegung des Kolbens 42 in der ersten Richtung 11 zusätzlich die Reibungsverluste F_R im Getriebe 41A überwinden muss. Damit stellt der Elektromotor 41 während der Zeit t_2 die Motorkraft F_M bereit, um den Verdrängerkolben 42 während der Druckerhöhung in der ersten Richtung 11 zu verschieben, wobei die Motorkraft F_M vereinfacht der Kraft F_H plus der Reibungskraft F_R aus den Getriebeverlusten entspricht.
Wie in Fig. 4 dargestellt ist, erfolgt während der Druckabsenkung eine Bewegung des Verdrängerkolbens 42 in einer zweiten Richtung 12, also entgegengesetzt zur ersten Richtung 11. Hierbei wirkt auf den Verdrängerkolben 42 die Kraft F_H, welche aus der Druckaufbringung auf das Hydraulikfluid im Aktivkreis 4 resultiert. Diese Kraft F_H wird durch den Elektromotor 41 bereitgestellt. Bei der Bewegung des Verdrängerkolbens 42 in der zweiten Richtung 12 wirken die
Reibungsverluste F_R im Getriebe 41A jedoch der Bewegung des Kolbens 42 entgegen. Damit stellt der Elektromotor 41 während der Zeit t_3 die Motorkraft F_M bereit, um den Verdrängerkolben 42 während der Druckabsenkung in der zweiten Richtung 12 zu verschieben, wobei die Motorkraft F_M vereinfacht der Kraft F_H abzüglich der Reibungskraft F_R aus den Getriebeverlusten entspricht.
Insbesondere wirkt die also die Kraft F_R der Kraft F_H entgegen, wodurch der Elektromotor 41 entlastet wird, da die Kraft F_R die Motorkraft F_M unterstützt.
Wie in Fig. 2 dargestellt, muss für die Druckerhöhung also zunächst für den kurzen Zeitraum t_2 ein hohes Drehmoment 10a von dem Elektromotor 41 bereitgestellt werden. Während der Druckabsenkung wird der Verdrängerkolben 42 zusätzlich zu dem Elektromotor 41 auch durch die im Getriebe 41A auftretenden Reibungsverluste gebremst, was in einem niedrigen Drehmoment 10a des Elektromotors 41 während des Zeitraums t_3 resultiert. Da der Zeitraum t_2 deutlich kleiner als der Zeitraum t_3 ist, ist das mittlere Drehmoment 10b während des zusammengenommenen Zeitraums t_2 und t_3 der
Druckmodulation annähernd konstant. Wie in Fig. 2 erkennbar, liegt das mittlere Drehmoment 10b während der Druckmodulation bei etwa 0,18 Nm und damit deutlich unter dem Wert von 0,28 während des Zeitraums ab dem Zeitpunkt tl, während dessen der Ist- Bremsdruck 9b auf dem Niveau des Soll-Bremsdrucks 9a gehalten wird. Somit kann durch die Druckmodulation das mittlere
Drehmoment 10b und damit die thermische und die mechanische Belastung des Elektromotors 41 in vorteilhafter Weise verringert werden.
Wie in Fig. 2 dargestellt, kann die Druckmodulation mehrfach hintereinander durchgeführt werden, solange das Bremswunschsignal 3 bzw. der Soll- Bremsdruck 9a konstant ist.
Optional kann nach Ablauf einer bestimmten Zeitdauer bzw. nach einer bestimmten Anzahl von Druckmodulationen ein hydraulisches Abkoppeln der zumindest einen Radbremse 43 von der Druckerzeugungseinrichtung 40 durch Schließen des zumindest einen Trennventils 44 erfolgen. Hierzu erzeugt die Steuerungsvorrichtung 5 unter der Bedingung, dass das Bremswunschsignal 3 über einen vorbestimmten zweiten Zeitraum konstant ist, ein Ventilsteuersignal 5V, welches ein Schließen der Trennventile 44A, 44B bewirkt. Der Elektromotor 41 kann dann abgeschaltet werden und der Ist-Bremsdruck in dem bremsseitigen Teil 45A des hydraulischen Pfads 45 wird durch die geschlossenen Trennventile 44A, 44B konstant gehalten.
Das Durchführen der Druckmodulation kann optional zusätzlich an das Vorliegen weiterer Bedingungen gekoppelt werden. Beispielsweise kann an den Rädern mittels Drehzahlsensoren 18A, 18B, 18C, 18D eine Drehzahl der Räder erfasst und als Drehzahlsignal 5D an die Steuerungsvorrichtung 5 übermittelt werden. Das Durchführen der Druckmodulation kann hierbei unter der zusätzlichen
Bedingung erfolgen, dass die erfasste Drehzahl kleiner als ein vorbestimmter Drehzahl-Schwellwert ist. Auch kann als zusätzliche Bedingung gefordert werden, dass der ermittelte Soll-Bremsdruck des Aktivkreises 4 größer als ein vorbestimmter Druck-Schwellwert ist. Alternativ oder zusätzlich kann außerdem als Bedingung gefordert werden, dass eine eine thermische Belastung des
Elektromotors 41 der Druckerzeugungseinrichtung kennzeichnende Größe einen vorbestimmten Belastungs-Schwellwert erreicht. Beispielsweise kann der mittels des Motorsensors 47A erfasste Betriebsstrom als Stromsignal 51 an die
Steuerungsvorrichtung 5 übermittelt werden. Wenn der durch Betriebsstrom 51 über eine bestimmte Zeit oberhalb eines Grenzwerts liegt, erfolgt ein Schließen der Trennventile 44.
Claims
1. Verfahren zum Betreiben eines Bremssystems (1) für ein Fahrzeug, aufweisend die folgenden Schritte:
Erzeugen eines einen Bremswunsch kennzeichnenden Bremswunschsignals (3) durch Betätigung einer Stellanordnung (20) eines Betätigungskreises (2);
Ermitteln eines in einem Aktivkreis (4) erforderlichen Soll-Bremsdrucks (9a) anhand des Bremswunschsignals (3);
Einstellen eines Ist- Bremsdrucks (9b) im Aktivkreis (4) gemäß dem Soll- Bremsdruck mittels einer Druckerzeugungseinrichtung (40) durch Bewegen eines Verdrängerkolbens (42) der Druckerzeugungseinrichtung (40) mithilfe eines Elektromotors (41) der Druckerzeugungseinrichtung (40), um eine an den Aktivkreis (4) gekoppelte Radbremse (43) zu betätigen; und
unter der Bedingung, dass das Bremswunschsignal (3) über einen
vorbestimmten Zeitraum konstant ist, Durchführen einer Druckmodulation, umfassend ein Einstellen des Ist- Bremsdrucks (9b) im Aktivkreis (4) auf einen Wert (9c), der größer als der Soll-Bremsdruck (9a) ist, und ein Absenken des Ist- Bremsdrucks (9b) bis der Soll-Bremsdruck (9a) erreicht wird durch Bewegen des Verdrängerkolbens (42) mithilfe des Elektromotors (41).
2. Verfahren nach Anspruch 1, wobei das Einstellen des Ist- Bremsdrucks im Aktivkreis (4) auf einen Wert, der größer als der Soll-Bremsdruck ist, mit einem zeitlichen Druckgradienten erfolgt, der zwischen 10 und 50 mal größer ist, als ein zeitlicher Druckgradient, mit welchem das Absenken des Ist- Bremsdrucks bis der Soll-Bremsdruck erreicht wird erfolgt.
3. Verfahren nach Anspruch 1 oder 2, das Durchführen der
Druckmodulation zusätzlich das Vorliegen einer oder mehrerer der folgenden Bedingungen erfordert:
- eine erfasste Drehzahl eines von der Radbremse (43) gebremsten Rads ist kleiner als ein vorbestimmter Drehzahl-Schwellwert,
- der ermitelte Soll-Bremsdruck (9a) des Aktivkreises (4) ist größer als ein vorbestimmter Druck-Schwellwert,
- eine eine thermische Belastung des Elektromotors (41) der
Druckerzeugungseinrichtung kennzeichnende Größe erreicht einen
vorbestimmten Belastungs-Schwellwert.
4. Verfahren nach einem der voranstehenden Ansprüche, wobei unter der Bedingung, dass das Bremswunschsignal (3) über einen zweiten vorbestimmten Zeitraum konstant ist, ein hydraulisches Abkoppeln Radbremse (43) von der Druckerzeugungseinrichtung (40) durch Schließen eines Trennventils (44), das in einem hydraulischen Pfad (45) zwischen der Druckerzeugungseinrichtung (40) und der Radbremse (43) angeordnet ist, und ein Abschalten des Elektromotors (41) erfolgt.
5. Verfahren nach einem der voranstehenden Ansprüche, wobei die Stellanordnung (20) einen mitels einer Betätigungseinrichtung (21) betätigbaren Hauptbremszylinder (22) und eine Sensoranordnung (23, 24) aufweist, und wobei das Erzeugen des Bremswunschsignals (3) ein Erfassen eines durch die Betätigung des Hauptbremszylinders (22) im Betätigungskreis erzeugten hydraulischen Drucks (3A) und/oder eines Stellwegs (3B) der
Betätigungseinrichtung (21) als den Bremswunsch kennzeichnende Größen (3A, 3B) umfasst.
6. Bremssystem (1) für ein Fahrzeug, mit
einem Betätigungskreis (2) mit einer mitels einer Betätigungseinrichtung (21) betätigbaren Stellanordnung (20) zur Erzeugung eines Bremswunschsignals (3); einem Aktivkreis (4) mit einer Druckerzeugungseinrichtung (40), umfassend einen Elektromotor (41) und einen mitels des Elektromotors (41) translatorisch bewegbaren Verdrängerkolben (42), der mitels eines Getriebes (41A) an den Elektromotor (41) gekoppelt ist, und zumindest einer hydraulisch an die
Druckerzeugungseinrichtung (40) gekoppelten Radbremse (43); und
einer Steuerungsvorrichtung (5), welche mit der Stellanordnung (20) des
Betätigungskreises (2) und mit der Druckerzeugungseinrichtung (40) des Aktivkreises (4) verbunden ist;
wobei die Steuerungsvorrichtung (5) dazu eingerichtet ist, aus dem
Bremswunschsignal (3) einen im Aktivkreis (4) erforderlichen Soll-Bremsdruck zu ermitteln, den Elektromotor (41) der Druckerzeugungseinrichtung (40) zur Einstellung eines Ist- Bremsdrucks im Aktivkreis (4) gemäß dem Soll-Bremsdruck anzusteuern und unter der Bedingung, dass das Bremswunschsignal (3) über einen vorbestimmten Zeitraum konstant ist, den Elektromotor (41) zur
Durchführen einer Druckmodulation, umfassend ein Einstellen des Ist- Bremsdrucks (9b) im Aktivkreis (4) auf einen Wert (9c), der größer als der Soll- Bremsdruck (9a) ist und ein Absenken des Ist- Bremsdrucks (9b) bis der Soll- Bremsdruck (9a) erreicht wird, anzusteuern
7. Bremssystem (1) nach Anspruch 6, wobei die Stellanordnung (20) einen mittels der Betätigungseinrichtung (21) betätigbaren Hauptbremszylinder (22) und eine Sensoranordnung (23; 24) zur Erfassung eines durch Betätigung des Hauptbremszylinders (22) erzeugten hydraulischen Drucks (3A) im
Betätigungskreis (2) und/oder eines Stellwegs (3B) der Betätigungseinrichtung (21) als einen Bremswunsch kennzeichnende Größen aufweist, und wobei das Bremswunschsignal (3) durch die den Bremswunsch kennzeichnenden, mittels der Sensoreinrichtung erfassten Größen (3A; 3B) gebildet ist.
8. Bremssystem (1) nach Anspruch 6 oder 7, wobei der Aktivkreis (4) einen Drucksensor (46) zur Erfassung des Ist- Bremsdrucks (9b) im Aktivkreis (4) aufweist, welcher mit der Steuerungseinrichtung (5) verbunden ist, und wobei die Steuerungseinrichtung (5) dazu eingerichtet ist, den Elektromotor (41) zur Regelung des Ist- Bremsdrucks (9b) auf Basis des erfassten Ist- Bremsdrucks anzusteuern.
9. Bremssystem (1) nach einem der Ansprüche 6 bis 8, wobei der
Aktivkreis (4) ein Trennventil (44) aufweist, welches in einem hydraulischen Pfad (45) zwischen der Druckerzeugungseinrichtung (40) und der Radbremse (43A,
43 B; 43C, 43D) angeordnet ist, und wobei die Steuerungsvorrichtung (5) dazu eingerichtet ist, das Trennventil (40) zur hydraulischen Abkopplung der
Radbremse (43) von der Druckerzeugungseinrichtung (40) zu schließen und den Elektromotor (41) der Druckerzeugungseinrichtung (40) abzuschalten.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/258,413 US11958453B2 (en) | 2018-07-24 | 2019-05-25 | Method for operating a brake system, and brake system |
KR1020217004825A KR102628698B1 (ko) | 2018-07-24 | 2019-05-25 | 브레이크 시스템의 작동 방법 및 브레이크 시스템 |
CN201980049235.0A CN112424034B (zh) | 2018-07-24 | 2019-05-25 | 用于运行制动系统的方法以及制动系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102018212284.9A DE102018212284A1 (de) | 2018-07-24 | 2018-07-24 | Verfahren zum Betreiben eines Bremssystems sowie Bremssystem |
DE102018212284.9 | 2018-07-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020020518A1 true WO2020020518A1 (de) | 2020-01-30 |
Family
ID=66676509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2019/063553 WO2020020518A1 (de) | 2018-07-24 | 2019-05-25 | Verfahren zum betreiben eines bremssystems sowie bremssystem |
Country Status (5)
Country | Link |
---|---|
US (1) | US11958453B2 (de) |
KR (1) | KR102628698B1 (de) |
CN (1) | CN112424034B (de) |
DE (1) | DE102018212284A1 (de) |
WO (1) | WO2020020518A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018212279A1 (de) * | 2018-07-24 | 2020-01-30 | Robert Bosch Gmbh | Verfahren zum Betreiben eines Bremssystems sowie Bremssystem |
DE102018212284A1 (de) * | 2018-07-24 | 2020-01-30 | Robert Bosch Gmbh | Verfahren zum Betreiben eines Bremssystems sowie Bremssystem |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011079454A1 (de) | 2011-07-20 | 2013-01-24 | Continental Teves Ag & Co. Ohg | Elektrohydraulisches Bremssystem vom Typ Brake-by-Wire und zugehöriges Betriebsverfahren |
DE102011084746A1 (de) * | 2011-10-19 | 2013-04-25 | Ford Global Technologies, Llc | Steuerungsverfahren für ein hydraulisches Bremssystem eines Kraftfahrzeugssowie Bremssystem |
WO2014195092A1 (de) * | 2013-06-06 | 2014-12-11 | Continental Teves Ag & Co. Ohg | Verfahren zur steuerung und regelung eines elektrohydraulischen bremssystems und bremssystem |
DE102014220432A1 (de) * | 2014-10-09 | 2016-04-14 | Continental Teves Ag & Co. Ohg | Hydraulisches Sicherheitssystem, Bremsanlage und Betriebsverfahren |
DE102015119773A1 (de) * | 2015-11-16 | 2017-05-18 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Bremsanlage für ein Kraftfahrzeug sowie Verfahren zur Bremsbetätigung einer Bremsanlage |
DE102016208564A1 (de) * | 2016-05-19 | 2017-11-23 | Continental Teves Ag & Co. Ohg | Verfahren zum Betreiben einer Bremsanlage mit einer Druckbereitstellungseinrichtung und Bremsanlage |
EP3333031A1 (de) * | 2016-12-08 | 2018-06-13 | Robert Bosch GmbH | Bremssystem und verfahren zum betrieb |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4317846A1 (de) * | 1993-05-28 | 1994-12-01 | Wabco Vermoegensverwaltung | Verfahren zur Einstellung eines Bremswertes auf einen Soll-Bremswert |
JPH10194109A (ja) * | 1997-01-13 | 1998-07-28 | J K C Toratsuku Brake Syst:Kk | トレーラブレーキ制御方法 |
DE102011076675A1 (de) * | 2010-06-10 | 2011-12-15 | Continental Teves Ag & Co. Ohg | Verfahren und Vorrichtung zur Regelung eines elektrohydraulischen Bremssystems für Kraftfahrzeuge |
JP5761057B2 (ja) * | 2012-02-02 | 2015-08-12 | トヨタ自動車株式会社 | ブレーキ制御装置 |
DE102013207127A1 (de) * | 2012-06-12 | 2013-12-12 | Ford Global Technologies, Llc | Verfahren zum Anpassen eines Bremsvorgangs |
DE102012222718A1 (de) * | 2012-12-11 | 2014-06-12 | Robert Bosch Gmbh | Steuervorrichtung für ein Bremssystem eines Fahrzeugs und Verfahren zum Betreiben eines Bremssystems eines Fahrzeugs |
CN103241228A (zh) * | 2013-04-26 | 2013-08-14 | 吉林大学 | 带有踏板行程模拟器的制动能量回收系统及其控制方法 |
DE102013216329A1 (de) * | 2013-08-19 | 2015-02-19 | Continental Teves Ag & Co. Ohg | Verfahren und Vorrichtung zur Regelung eines Bremssystems |
JP6069149B2 (ja) * | 2013-09-19 | 2017-02-01 | 日立オートモティブシステムズ株式会社 | ブレーキ制御装置 |
KR102528065B1 (ko) * | 2016-04-15 | 2023-05-03 | 에이치엘만도 주식회사 | 전동 부스터 제동 시스템의 제동압력 제어장치 및 방법 |
US10988032B2 (en) * | 2016-04-19 | 2021-04-27 | Walnut Technology Limited | Self-propelled personal transportation device |
DE102018212284A1 (de) * | 2018-07-24 | 2020-01-30 | Robert Bosch Gmbh | Verfahren zum Betreiben eines Bremssystems sowie Bremssystem |
DE102018213306A1 (de) * | 2018-08-08 | 2020-02-13 | Robert Bosch Gmbh | Verfahren zur Detektion einer Leckage beim Betreiben eines Bremssystems für ein Fahrzeug und Bremssystem für ein Fahrzeug |
-
2018
- 2018-07-24 DE DE102018212284.9A patent/DE102018212284A1/de active Pending
-
2019
- 2019-05-25 CN CN201980049235.0A patent/CN112424034B/zh active Active
- 2019-05-25 WO PCT/EP2019/063553 patent/WO2020020518A1/de active Application Filing
- 2019-05-25 US US17/258,413 patent/US11958453B2/en active Active
- 2019-05-25 KR KR1020217004825A patent/KR102628698B1/ko active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011079454A1 (de) | 2011-07-20 | 2013-01-24 | Continental Teves Ag & Co. Ohg | Elektrohydraulisches Bremssystem vom Typ Brake-by-Wire und zugehöriges Betriebsverfahren |
DE102011084746A1 (de) * | 2011-10-19 | 2013-04-25 | Ford Global Technologies, Llc | Steuerungsverfahren für ein hydraulisches Bremssystem eines Kraftfahrzeugssowie Bremssystem |
WO2014195092A1 (de) * | 2013-06-06 | 2014-12-11 | Continental Teves Ag & Co. Ohg | Verfahren zur steuerung und regelung eines elektrohydraulischen bremssystems und bremssystem |
DE102014220432A1 (de) * | 2014-10-09 | 2016-04-14 | Continental Teves Ag & Co. Ohg | Hydraulisches Sicherheitssystem, Bremsanlage und Betriebsverfahren |
DE102015119773A1 (de) * | 2015-11-16 | 2017-05-18 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Bremsanlage für ein Kraftfahrzeug sowie Verfahren zur Bremsbetätigung einer Bremsanlage |
DE102016208564A1 (de) * | 2016-05-19 | 2017-11-23 | Continental Teves Ag & Co. Ohg | Verfahren zum Betreiben einer Bremsanlage mit einer Druckbereitstellungseinrichtung und Bremsanlage |
EP3333031A1 (de) * | 2016-12-08 | 2018-06-13 | Robert Bosch GmbH | Bremssystem und verfahren zum betrieb |
Also Published As
Publication number | Publication date |
---|---|
CN112424034A (zh) | 2021-02-26 |
KR20210035840A (ko) | 2021-04-01 |
CN112424034B (zh) | 2023-04-04 |
DE102018212284A1 (de) | 2020-01-30 |
KR102628698B1 (ko) | 2024-01-25 |
US20220348177A1 (en) | 2022-11-03 |
US11958453B2 (en) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3271227B1 (de) | Bremsanlage mit schwimmkolben-hauptbremszylindereinheit mit neuartiger mux-regelung (mux 2.0) mit mindestens einem auslassventil und verfahren zur druckregelung | |
EP1708912B1 (de) | Verfahren zum betreiben der bremsausrüstung eines fahrzeugs | |
DE102018213306A1 (de) | Verfahren zur Detektion einer Leckage beim Betreiben eines Bremssystems für ein Fahrzeug und Bremssystem für ein Fahrzeug | |
EP2305524B1 (de) | Verfahren zum Betrieb einer Bremseinrichtung für ein hydraulisch gebremstes Zugfahrzeug | |
WO2016023995A1 (de) | Betätigungssystem, insbesondere für eine fahrzeugbremse und verfahren zum betrieb des betätigungssystems | |
DE102015106089A1 (de) | Diagnoseverfahren für ein Bremssystem | |
DE102009055721A1 (de) | Bremssystem mit Speichereinrichtung mit Mehrfachfunktion | |
DE102011085986A1 (de) | Bremsanlage | |
WO2016184609A1 (de) | Elektrohydraulische bremskrafterzeugungsvorrichtung für eine elektro-hydraulische kraftfahrzeug-bremsanlage | |
WO2020020517A1 (de) | Verfahren zum betreiben eines bremssystems sowie bremssystem | |
WO2020020518A1 (de) | Verfahren zum betreiben eines bremssystems sowie bremssystem | |
EP4297998A1 (de) | Verfahren zum bremsen eines fahrzeugs und bremssystem | |
EP3585666B1 (de) | Verfahren zur diagnose eines bremssystems eines kraftfahrzeugs sowie entsprechendes bremssystem | |
WO2020020516A1 (de) | Verfahren zum betreiben eines bremssystems sowie bremssystem | |
DE102019204016A1 (de) | Elektronisch gesteuert betätigbare Druckerzeugereinheit, elektronisch schlupfregelbare Bremsanlage und Verfahren zum Betreiben einer elektronisch schlupfregelbaren Bremsanlage | |
DE102010021935A1 (de) | Bremspedalsimulator und Bremssystem | |
EP4347336A1 (de) | Elektro-pneumatische ausrüstung eines fahrzeugs mit vorsorglich mit backup-druck versorgtem autonomen bremskreis | |
DE102021004532A1 (de) | Verfahren zum Betrieb einer Fahrzeugbremsanlage | |
DE102021204552A1 (de) | Bremssystem für ein Fahrzeug und Verfahren zum Betreiben eines Bremssystems eines Fahrzeugs | |
WO2021023411A1 (de) | Verfahren zur funktionsprüfung eines druckerzeugeraggregats einer elektronisch schlupfregelbaren fremdkraftbremsanlage mit redundanter bremsdruckerzeugung, insbesondere für ein autonom fahrbares kraftfahrzeug | |
DE102019215288A1 (de) | Verfahren zur Steuerung einer elektronisch schlupfregelbaren Fremdkraftbremsanlage, insbesondere für ein Kraftfahrzeug und elektronisch schlupfregelbaren Fremdkraftbremsanlage, insbesondere für ein Kraftfahrzeug | |
WO2019179668A1 (de) | Verfahren zur regelung der antriebsleistung eines elektronisch ansteuerbaren motors zum antrieb eines druckerzeugers einer schlupfregelbaren fremdkraftbremsanlage eines kraftfahrzeugs | |
DE10216692B3 (de) | Betätigungseinheit für eine elektrohydraulische Bremsanlage eines Kraftfahrzeugs | |
DE102011076423A1 (de) | Verfahren und Regelvorrichtung zur Regelung eines elektrohydraulischen Bremssystems für Kraftfahrzeuge | |
WO2011134552A1 (de) | Verfahren zum betrieb einer bremsanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19727342 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217004825 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19727342 Country of ref document: EP Kind code of ref document: A1 |