WO2020020324A1 - 信号传输方法及装置、显示装置 - Google Patents

信号传输方法及装置、显示装置 Download PDF

Info

Publication number
WO2020020324A1
WO2020020324A1 PCT/CN2019/097830 CN2019097830W WO2020020324A1 WO 2020020324 A1 WO2020020324 A1 WO 2020020324A1 CN 2019097830 W CN2019097830 W CN 2019097830W WO 2020020324 A1 WO2020020324 A1 WO 2020020324A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
signal
receiving end
specified
target
Prior art date
Application number
PCT/CN2019/097830
Other languages
English (en)
French (fr)
Inventor
高贤永
雷嗣军
陆旭
高亮
陈善彬
冉博
孙艳生
Original Assignee
京东方科技集团股份有限公司
重庆京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910002796.7A external-priority patent/CN110768730B/zh
Application filed by 京东方科技集团股份有限公司, 重庆京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/643,136 priority Critical patent/US11335238B2/en
Publication of WO2020020324A1 publication Critical patent/WO2020020324A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G3/2096Details of the interface to the display terminal specific for a flat panel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/18Packaging or power distribution
    • G06F1/189Power distribution
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2569Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to polarisation mode dispersion [PMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0245Lay-out of balanced signal pairs, e.g. differential lines or twisted lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/58Arrangements comprising a monitoring photodetector
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/06Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/08Fault-tolerant or redundant circuits, or circuits in which repair of defects is prepared
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/06Consumer Electronics Control, i.e. control of another device by a display or vice versa
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/08Details of image data interface between the display device controller and the data line driver circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/10Use of a protocol of communication by packets in interfaces along the display data pipeline
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/14Use of low voltage differential signaling [LVDS] for display data communication
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6638Differential pair signal lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0272Arrangements for coupling to multiple lines, e.g. for differential transmission
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09227Layout details of a plurality of traces, e.g. escape layout for Ball Grid Array [BGA] mounting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09727Varying width along a single conductor; Conductors or pads having different widths
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09736Varying thickness of a single conductor; Conductors in the same plane having different thicknesses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present disclosure relates to the technical field of signal transmission, and in particular, to a signal transmission method and device, and a display device.
  • the display device includes a display panel and a driving structure for driving the display panel.
  • the driving structure includes a controller and a driver.
  • P2P peer-to-peer
  • the P2P technology refers to a technology in which a receiving end and a transmitting end of a signal transmission are directly connected for signal transmission without passing through a relay device.
  • a signal transmission method which is applied to a receiving end.
  • the signal transmission method includes: receiving a signal sent by a transmitting end through a transmission line; detecting whether a received signal has a transmission error; and when the received signal has a transmission When the error occurs, the receiving end adjusts at least one of the specified parameters affecting the anti-jamming capability of the signal on the transmission line, and / or controls the transmitting end to specify the anti-jamming capability of the signal on the transmission line. At least one of the parameters is adjusted.
  • the receiving end adjusts at least one of the specified parameters affecting the anti-interference capability of the signal on the transmission line, and / or controls the transmitting end to affect the signal on the transmission line.
  • Adjusting at least one of the specified parameters of the anti-jamming capability includes: determining target parameter information based on the received signal; the target parameter information includes a first indication of at least one adjustable parameter among the specified parameters Information, the first indication information includes parameter value or adjustment degree information; according to the target parameter information, the receiving end adjusts at least one parameter corresponding to the target parameter information, and / or controls the transmission The end adjusts at least one parameter corresponding to the target parameter information.
  • the determining target parameter information based on the received signal includes determining a degree parameter of the received signal, the degree parameter being configured to reflect an occurrence of the received signal The severity of the transmission error; querying the pre-established degree parameter range and parameter information as the target parameter information; each parameter information recorded in the correspondence includes a first indication of at least one of the specified parameters Information, the first indication information includes parameter value or adjustment degree information.
  • the specified parameter includes a first parameter adjustable by a transmitting end and a second parameter adjustable by a receiving end
  • the first indication information includes a target parameter value
  • the according to the target parameter information Adjusting, by the receiving end, at least one parameter corresponding to the target parameter information, and / or controlling the transmitting end to adjust at least one parameter corresponding to the target parameter information, including: adjusting the target parameter
  • the information includes the target parameter value of the first parameter
  • sending the target parameter value of the first parameter to the transmitting end so as to control the transmitting end to adjust the parameter value of the first parameter, so that the adjustment
  • the parameter value of the subsequent first parameter is equal to the corresponding target parameter value in the target parameter information
  • the target parameter information includes the target parameter value of the second parameter
  • the receiving end adjusts the first parameter value.
  • the parameter value of the two parameters is such that the parameter value of the adjusted second parameter is equal to the corresponding target parameter value in the target parameter information.
  • the specified parameter includes a first parameter adjustable by a transmitting end and a second parameter adjustable by a receiving end
  • the first indication information includes target adjustment degree information
  • the receiving end adjusts at least one parameter corresponding to the target parameter information, and / or controls the transmitting end to adjust at least one parameter corresponding to the target parameter information, including:
  • the target parameter information includes target adjustment degree information of the first parameter
  • the target parameter information includes the target adjustment degree information of the second parameter, adjust the first parameter according to the corresponding target adjustment degree information in the target parameter information.
  • the first parameter includes at least one of a driving current, a swing amplitude, and a slew rate at a transmitting end;
  • the second parameter includes a swing amplitude, an equalizer, a matching resistance at a receiving end, and a filter of a filter At least one of a parameter and a driving current at the receiving end.
  • the receiving end adjusts at least one of the specified parameters affecting the anti-interference capability of the signal on the transmission line, and / or controls the transmitting end to affect the signal on the transmission line.
  • Adjusting at least one of the specified parameters of the anti-jamming capability includes: in accordance with the priority order of each parameter in the specified parameter, the receiving end adjusts each of the parameters in turn, and / or controls the The transmitting end adjusts each of the parameters in turn until the adjustment end condition is reached.
  • the adjustment end condition includes at least one of the following: a signal received again from the transmitting end has no transmission error; completion of adjustment of all parameters of the specified parameter; completion of the adjustment of the parameters Adjustment of the specified number of parameters in the specified parameters.
  • the receiving end adjusts each of the parameters in order, and / or controls the transmitting end to sequentially perform each of the parameters.
  • Performing the adjustment includes performing at least one of the following in accordance with the priority order of each parameter in the specified parameter: increasing the parameter value of the third parameter; and sending a second instruction information to the transmitting end, the second instruction information Configured to instruct the transmitting end to increase the parameter value of the first parameter; execute a fourth parameter adjustment process at least once, the fourth parameter adjustment process including increasing or decreasing the parameter value of the fourth parameter;
  • the third parameter includes at least one of a swing amplitude and a driving current at a receiving end
  • the first parameter includes at least one of a driving current, a swing amplitude, and a slew rate at a transmitting end
  • the fourth parameter includes At least one of an equalizer, a matching resistor at the receiving end, and a filtering parameter of a filter.
  • the priority of the third parameter is greater than the priority of the first parameter, and the priority of the first parameter is greater than the priority of the fourth parameter.
  • the signal on the transmission line is transmitted in the form of a data packet
  • the detecting whether the received signal has a transmission error includes any one of the following two combinations: a: recording received through the transmission line The packet loss rate of the received signal. When the packet loss rate is greater than the specified packet loss rate threshold, it is determined that there is a transmission error in the received signal; b: when the received data packet meets the specified condition, the received signal is determined.
  • the specified condition includes at least one of the following: the number of data packets with transmission errors received within a specified time period is greater than the first specified number of thresholds; appearing in the received specified number of data packets The number of data packets with transmission errors is greater than the second specified number threshold; the number of data packets with consecutive transmission errors in the received specified number of data packets is greater than the third specified number threshold.
  • the method further comprises: after adjusting at least one of the specified parameters, when a restoration condition is reached, restoring a corresponding parameter in the specified parameter to an initial setting, the initial setting Setting before adjusting the corresponding parameter in the specified parameter; the recovery condition includes at least one of the following: a time interval between the current time and the adjustment time of the specified parameter is greater than a specified time interval; and the receiving end is powered on again.
  • a signal transmission method is provided.
  • the signal transmission method is applied to a transmitting end, and the signal transmitting method includes: sending a signal to a receiving end through a transmission line; receiving a control signal sent by the receiving end, the control signal being received by the receiving end upon detection The signal is sent after a transmission error exists; based on the received control signal, adjusting at least one of the specified parameters affecting the anti-interference ability of the signal on the transmission line.
  • the control signal includes first indication information of a first parameter; the first parameter is a parameter adjustable by the transmitting end among specified parameters affecting the anti-interference capability of the signal on the transmission line, and
  • the first indication information includes a target parameter value or target adjustment degree information; and adjusting, based on the received control signal, at least one parameter of a specified parameter that affects an anti-interference capability of a signal on the transmission line, includes: The first indication information of the first parameter included in the received control signal adjusts the first parameter.
  • the first indication information includes a target parameter value
  • the adjusting the first parameter based on the first indication information of the first parameter included in the received control signal includes: adjusting The parameter value of the first parameter is such that the parameter value of the adjusted first parameter is equal to the target parameter value included in the received first instruction information.
  • the first indication information includes target adjustment degree information
  • the adjusting the first parameter based on the first indication information of the first parameter included in the received control signal includes: The first parameter is adjusted according to the target adjustment degree information included in the received first instruction information.
  • the control signal includes second indication information of a first parameter; the first parameter is a parameter that is adjustable by the transmitting end among specified parameters that affect the anti-interference capability of the signal on the transmission line, so
  • the second instruction information is configured to instruct the transmitting end to increase a parameter value of the first parameter; and based on the received control signal, the specified parameter affecting the anti-interference capability of the signal on the transmission line is increased.
  • Adjusting at least one parameter includes increasing a parameter value of the first parameter based on the received second indication information of the first parameter included in the control signal.
  • the first parameter includes at least one of a driving current, a swing amplitude, and a slew rate of the transmitting end.
  • the signal transmission method further includes: after adjusting at least one of the specified parameters, when a restoration condition is reached, restoring a corresponding parameter in the specified parameter to an initial setting, the The initial setting is the setting before the corresponding parameter adjustment in the specified parameter; the recovery condition includes at least one of the following: the time interval between the current time and the adjustment time of the specified parameter is greater than the specified time interval; the transmitting end is on again Electricity.
  • a signal transmission device is provided.
  • the signal transmission device is applied to a receiving end, and the signal transmission device includes a first receiving part, a detecting part, a control part, and a first adjusting part.
  • the first receiving component is configured to receive a signal transmitted by a transmitting end through a transmission line.
  • the detecting means is configured to detect whether there is a transmission error in the received signal.
  • the control component is configured to control the first adjustment component to adjust at least one of the specified parameters affecting the anti-interference capability of the signal on the transmission line when there is a transmission error in the received signal, and to control
  • the transmitting end adjusts at least one parameter of a specified parameter affecting the anti-interference ability of a signal on the transmission line.
  • the first adjusting component is configured to adjust at least one parameter of a specified parameter affecting the anti-interference ability of a signal on the transmission line under the control of the control component.
  • a signal transmission device is provided.
  • the signal transmission device is applied to a transmitting end.
  • the signal transmission device includes: a transmitting component, a second receiving component, and a second adjusting component.
  • the transmitting component is configured to transmit a signal to a receiving end through a transmission line.
  • the second receiving component is configured to receive a control signal sent by the receiving end, and the control signal is sent by the receiving end after detecting that there is a transmission error in the received signal.
  • the second adjustment component is configured to adjust at least one parameter of a specified parameter affecting the anti-interference ability of a signal on the transmission line based on the received control signal.
  • a signal transmission device is provided.
  • the signal transmission device is applied to a receiving end, and the signal transmission device includes a memory and a processor.
  • the memory is configured to store executable instructions.
  • the processor is configured to execute the executable instructions to implement one or more steps in the signal transmission method according to any one of the above embodiments.
  • a signal transmission device is provided.
  • the signal transmission device is applied to a transmitting end, and the signal transmission device includes a memory and a processor.
  • the memory is configured to store executable instructions.
  • the processor is configured to refer to a memory that executes the executable instructions; wherein when the processor executes the executable instructions, the processor can implement the signal transmission method according to any one of the second aspects.
  • a display device in another aspect, includes a controller and a plurality of drivers. Each of the plurality of drivers is coupled to the controller through a transmission line. Each of the drivers includes the signal transmission device according to the foregoing embodiment, and the controller includes the signal transmission according to the fourth aspect. Device.
  • a computer-readable storage medium is provided. Instructions are stored in the computer-readable storage medium, and when the instructions are run on a processing component, the processing component is caused to execute the signal transmission method according to the foregoing embodiment.
  • FIG. 1 is a schematic diagram of an implementation environment of a signal transmission method according to some embodiments.
  • FIG. 2 is a schematic diagram of an implementation environment of another signal transmission method according to some embodiments.
  • FIG. 3 is an exemplary signal diagram according to some embodiments.
  • FIG. 4 is another exemplary signal diagram according to some embodiments.
  • FIG. 5 is a schematic circuit diagram of an exemplary transmitting end and a receiving end according to some embodiments
  • FIG. 6 is a flowchart of a signal transmission method according to some embodiments.
  • FIG. 7 is a flowchart of another signal transmission method according to some embodiments.
  • FIG. 8 is a flowchart of another signal transmission method according to some embodiments.
  • FIG. 9 is a flowchart of a method for detecting whether there is an error in a transmitted signal according to some embodiments.
  • FIG. 10 is a flowchart of a method for a receiver to determine target parameter information according to some embodiments
  • 11 is a flowchart of another method for determining target parameter information by a receiving end according to some embodiments.
  • FIG. 13 is a flowchart of a method for adjusting a specified parameter according to some embodiments.
  • FIG. 14 is a block diagram of a signal transmission apparatus according to some embodiments.
  • 15 is a block diagram of another signal transmission apparatus according to some embodiments.
  • FIG. 16 is a schematic structural diagram of a display device according to some embodiments.
  • FIG. 1 is a schematic diagram of an implementation environment of a signal transmission method provided by some embodiments of the present disclosure.
  • the signal transmission method is applied to a display device.
  • the display device may be a notebook computer, a television, a liquid crystal panel, E-paper, Organic Light-Emitting Diode (OLED for short) panels, mobile phones, tablet computers, monitors, digital photo frames or navigators and any other products or components with display functions.
  • OLED Organic Light-Emitting Diode
  • the display device includes a controller 10 and a plurality of drivers 20.
  • the controller 10 is coupled to the plurality of drivers 20 in a one-to-one correspondence through a plurality of transmission lines H, and signals between the controller 10 and the drivers 20 pass through.
  • Transmission line H transmits.
  • the controller 10 is further connected with a signal line L, and each driver 20 is coupled to the signal line L.
  • the above driver 20 may be a source driver chip or a gate driver chip
  • the controller 10 may be a timing controller, a graphics processor, a system chip (System Chip) (SOC), and a micro-control unit (integrated in the timing controller) Microcontroller (Unit, MCU for short).
  • SOC System Chip
  • MCU Microcontroller
  • FIG. 2 uses the controller as the timing controller 101 and the driver as the source driver chip 201 as an example.
  • the timing controller 101 is coupled to the source driver chips 201 through a plurality of transmission lines H in a one-to-one correspondence. Then, the timing controller 101 is further connected to a signal line L, and each source driving chip 201 is coupled to the signal line L.
  • the signal transmission rate of the signal line L is smaller than the signal transmission rate of the transmission line H.
  • This signal line L is called a low-speed signal line, and is usually used to indicate the level status.
  • the transmission line H is called a high-speed signal line or a high-speed transmission line, and is usually used to transmit high-speed differential signals.
  • the transmission line H may be a differential signal line.
  • the signals on the differential signal line are transmitted in one direction.
  • FIG. 1 The signal transmission direction of the differential signal line is the direction from the controller to the driver.
  • the signal transmission direction of the differential signal line is the direction from the timing controller to the source driver chip.
  • the transmitting end and the receiving end are relative concepts.
  • the end transmitting a signal is referred to as a transmitting end
  • the end receiving a signal is referred to as a receiving end.
  • the transmitting end and the receiving end may correspond according to a direction of signal transmission. Change, for example, when the controller sends a signal to the driver through a transmission line, the transmitting end is the controller and the receiving end is the driver.
  • the transmitting end and the receiving end can perform high-speed transmission of signals through P2P technology.
  • the clock is usually embedded, and the clock is restored by the characteristics of the signal received by the source driver chip through the transmission line (ie, the above-mentioned transmission line H), and an additional signal line is used. (Ie, the above-mentioned signal line L) to indicate the level state.
  • the transmission line may be subject to interference due to the high transmission rate. For example, if a mobile phone that is talking is close to a working display device, the signals transmitted at a high rate in the display device will crosstalk with the Global System for Mobile Communication (GSM) signals. As a result, the display of the display device is abnormal.
  • GSM Global System for Mobile Communication
  • the anti-interference ability of the signal on the transmission line can be improved by adjusting the specified parameters in the transmitting end and the receiving end that affect the anti-interference ability of the signal.
  • the specified parameters may include a first parameter adjustable at the transmitting end and a second parameter adjustable at the receiving end.
  • the first parameter adjustable at the transmitting end includes at least one of a driving current, a swing level, and a slew rate (SR) of the transmitting end.
  • SR slew rate
  • the driving current at the transmitting end is the current used to drive the working of the transmitting end; the swing is used to characterize the degree of signal fluctuation.
  • the magnitude of the driving current at the transmitting end is proportional to the magnitude of the swing, that is, the larger the driving current at the transmitting end, the larger the swing, the larger the swing, the larger the swing, the larger the eye height of the signal eye diagram, and the greater The stronger the interference ability; the larger the slew rate, the larger the eye width of the signal eye diagram, and the stronger the anti-interference ability of the signal on the transmission line.
  • the signal eye diagram refers to a pattern observed on an oscilloscope when using experimental methods to estimate and improve the performance of a signal on a transmission line, which can characterize the transmission quality of the signal.
  • the second parameter adjustable at the receiving end includes at least one of a swing amplitude, an equalizer, a matching resistor at the receiving end, a filtering parameter of a filter, and a driving current at the receiving end.
  • the equalizer refers to a device used to correct the amplitude frequency characteristics and phase frequency characteristics of the transmission channel during the signal transmission process, which can be a software module or a hardware device; the matching resistance at the receiving end refers to the receiving
  • the resistor provided at the terminal is an adjustable resistor in some embodiments of the present disclosure.
  • the resistor can consume the energy of the high-speed signal at the receiving end, which can reduce or avoid the phenomenon of signal reflection after the high-speed signal reaches the receiving end. In order to avoid the actual transmission of high-speed signals from being reflected by the reflected high-speed signals.
  • the driving current at the receiving end refers to the current used to drive the working of the receiving end.
  • the larger the driving current at the receiving end the stronger the receiving end's ability to receive high-speed signals. In this way, it can receive high-speed signals with weak signal strength and avoid high speed The loss of signal enhances the anti-interference ability of high-speed signals.
  • the filter can be set at the front end of the receiving end to filter the noise signal in the signal transmitted on the transmission line, so that the signal actually transmitted by the transmitting end passes normally, and at the same time, the noise signal is filtered.
  • the filter may be a filter in the form of hardware.
  • the filter may be a filter in the form of a double-ended or single-ended circuit, or a filter in the form of a device such as a ceramic filter.
  • the filter may also be a software filter, for example, the filter may be a digital filter.
  • the filter in the form of hardware may be a filter made of shielding materials such as copper foil, aluminum foil, conductive cloth, or a wave absorbing material, but this may cause an increase in equipment costs.
  • the filter is a software filter, there is no need to add shielding materials.
  • the filter is a hardware filter
  • the signal sent by the transmitting end through the transmission line is filtered by the filter before being transmitted to the receiving end.
  • the filter is a software filter
  • the signal sent by the transmitting end through the transmission line is filtered by the filter before being transmitted to the receiving end; in another implementable manner, The receiving end controls whether the high-speed signal sent by the transmitting end passes the filter according to the situation.
  • the receiving end needs to adjust the filtering parameters of the filter to control the signal sent by the transmitting end to pass through the filter.
  • the frequency of the useful signal and the noise signal in the received signal are not significantly different, for example, the frequency of the useful signal and the frequency of the noise signal are both about 400 MHz, and when the frequency of the useful signal and the frequency of the noise signal cannot be distinguished.
  • the receiving end does not need to adjust the filtering parameters of the filter, and controls the signal sent by the transmitting end not to pass through the filter.
  • the filter may be a band-pass filter.
  • FIG. 3 is a schematic diagram of a signal interfered with by a noise signal provided by some embodiments of the present disclosure
  • FIG. 4 is a signal subject to noise in FIG. 3. Schematic diagram of the signal after the interfering signal is filtered by the band-pass filter.
  • the band-pass filter is used to filter the signal interfered by the noise signal, the noise signal is filtered, thereby improving the accuracy of the signal received by the receiving end. Sex.
  • the filtering parameter of the filter refers to a parameter that can affect the filtering effect of the filter.
  • the filtering parameter of the filter may include a filtering strength and / or a filtering frequency band.
  • the filtering strength can be enhanced, or the filtering frequency band can be increased to a noise frequency band.
  • the filtering strength can also be increased while increasing the filtering frequency band to a noise frequency band. In order to increase the filtering strength of the noise signal, the filtering effect of the noise signal is further improved.
  • the magnitude of the swing amplitude and the driving current at the receiving end are both proportional to the anti-interference ability of the signal, that is, the larger the swing current and the driving current at the receiving end, the stronger the anti-interference ability of the signal.
  • the relationship between the matching resistance of the equalizer, the receiving end and the filter, and the anti-interference ability of the signal is that the anti-interference ability of the signal first increases with the increase of the matching resistance of the equalizer, the receiving end, and the filter.
  • the filtering parameters of the equalizer, the matching resistor at the receiving end, and the filter need to be adjusted in combination with the actual situation.
  • the structures of the transmitting end and the receiving end, especially the circuit structure are different, and the parameter adjustment methods are different.
  • FIG. 5 is a schematic diagram of a circuit structure of a transmitting end and a receiving end according to an exemplary embodiment.
  • the left side of the dotted line L is the transmitting end 10 and the right side is the receiving end 20.
  • the transmission line is a differential signal line, and the differential signal line includes a first transmission signal line Q1 and a second transmission signal line Q2.
  • Transmitter 10 includes: two parallel wires disposed between the first signal terminal and a ground terminal G1, D1, and SW 1, SW 2, SW 3 and SW 4 four switches, wherein the wire has a series out switch SW 1 And switch SW 3 , and another switch is connected in series with switch SW 2 and switch SW 4 .
  • the receiving end 20 includes a first conductive line provided between the first power supply terminal D2 and the ground terminal G2, a second conductive line provided between the second power supply terminal D3 and the ground terminal G3, and a gate and the first transmission signal line Q1.
  • the first transistor M 1 coupled to the second transistor M 2 , the gate of which is coupled to the second transmission signal line Q 2 , and the matching resistor R at the receiving end.
  • One end of the first transmission signal line Q1 is connected to the potential point a, and the other end is connected to the gate of the first transistor M 1 .
  • One end of the second transmission signal line Q2 is connected to the potential point b, and the other end is connected to the gate of the second transistor M 2 .
  • the matching resistor R at the receiving end is provided between the first transmission signal line Q1 and the second transmission signal line Q2, where the potential point a is the potential point between the switch SW 2 and the switch SW 4 , and the potential point b is the switch SW 1 and 3 potential point between the switch SW.
  • the signal input terminal Din + of the receiving terminal 20 is the gate of the second transistor M 2
  • the signal input terminal Din ⁇ of the receiving terminal 20 is the gate of the first transistor M 1
  • the signal output terminal Vout + of the receiving terminal 20 is located at the first D2 between the supply terminal and the first electrode of the first transistor M 1 and the reception signal output terminal Vout 20 - located between the second supply terminal D3 of the first electrode of the second transistor M 2
  • M 1 of a first transistor the second electrode is connected to the ground terminal G2
  • a second electrode of the second transistor M and the ground terminal 2 is connected to G3.
  • the first electrode and the second electrode are one of a source electrode and a drain electrode, that is, when the first electrode is the source electrode, the second electrode is the drain electrode, and when the first electrode is the drain electrode, the second electrode is the source electrode.
  • the receiving end 20 further comprising: a first power supply terminal D2 connected in series with the first transistor resistance R a M 1 between the first electrode and the second power supply terminal D3 connected in series with the second transistor M 2 A resistor R b between the first poles, a capacitor C 1 and a resistor R 1 connected in parallel between the second pole of the first transistor M 1 and the second pole of the second transistor M 2 .
  • the resistance R a and R b is an adjustable resistance resistor.
  • For the transmitter 10 can be opened out switch SW 1 and the switch SW 4 by simultaneously, or simultaneously opens the switch SW 2 and the switch SW 3 is controlled manner the flow direction of the emission end of the driving current I TX.
  • the driving current at the transmitting end passes through the switch SW 1 , the potential point b, the second transmission signal line Q2, the resistor R, the first transmission signal line Q1, the potential point a, And switch SW 4 , at this time, the driving current flowing through the transmitting terminal 10 flows counterclockwise.
  • the driving current of the transmitting terminal passes through the switch SW 2 , the potential point a, the first transmission signal line Q1, the resistor R, the second transmission signal line Q2, the potential point b, and the switch SW 3 At this time, the driving current flowing through the transmitting terminal 10 flows clockwise.
  • the magnitude of the driving current I TX and / or the magnitude of the swing of the transmitting terminal 10 can be adjusted by adjusting the switches SW 1 and SW 2 .
  • Exemplary, out switch SW 1 and the switch SW 2 is composed of a plurality of switching transistors, in the open or switch out switch SW 1 SW 2, the number or switch out switch SW 1 SW 2 can be opened by a transistor controlled to control the transmitter 10
  • the magnitude of the driving current I TX Under the condition that the resistance R is unchanged, the magnitude of the swing is proportional to the magnitude of the driving current I TX at the transmitting terminal 10, so the magnitude of the swing can also be controlled by controlling the magnitude of the driving current I TX at the transmitting terminal 10. .
  • the slew rate refers to the conversion rate of the voltage of the signal output from the transmitting terminal 10, that is, the magnitude of the change in the output voltage value of the device per unit time (usually in microseconds).
  • the magnitude of the slew rate can be adjusted by adjusting the switching rate of the corresponding switch.
  • the switching rate of the corresponding switch is increased during the conduction of the circuit of the transmitting terminal 10, so that the change in the output voltage value of the switch in a unit time will increase. For example, when the circuit is on, the circuit voltage is 6V. Before increasing the corresponding switching rate, the opening rate of the switch is 2 ⁇ s.
  • the change in the output voltage value of the switch per unit time is 3V / ⁇ s; and increasing the corresponding switch After the switching rate of the switch, the opening rate of the switch is 1 ⁇ s. In this way, the change in the output voltage value of the switch in a unit time is 6 V / ⁇ s. In this way, the magnitude of the slew rate can be adjusted by adjusting the switching rate of the corresponding switch.
  • the matching resistance R of the receiving end and the driving current I RX (the current flowing through the first lead, the resistor R 1 , and the second lead) of the receiving end can be directly adjusted by adjusting the capacitance C 1 and the resistance R 1
  • the size can be adjusted to the swing and equalizer size.
  • circuit structure of the transmitting end and the receiving end shown in FIG. 5 is only a schematic illustration.
  • the circuit structure of the transmitting end and the receiving end may have other forms, for example, based on the series shown in FIG. Or a parallel resistor or capacitor, etc., the corresponding parameter adjustment mode is correspondingly adjusted, which is not limited in the embodiments of the present disclosure.
  • Some embodiments of the present disclosure provide a signal transmission method.
  • the method includes the following steps:
  • Step 301 The receiving end receives a signal sent by the transmitting end through a transmission line.
  • Step 302 The receiving end detects whether there is a transmission error in the received signal.
  • Step 303 When there is a transmission error in the received signal, the receiving end adjusts at least one of the specified parameters affecting the anti-interference capability of the signal on the transmission line, and / or, controls the transmitting end to resist the anti-interference capability of the signal on the transmission line. Adjust at least one of the specified parameters.
  • the receiving end when the receiving end detects a transmission error of the received signal, the receiving end adjusts at least one of the specified parameters affecting the anti-interference ability of the signal on the transmission line. , And / or, the receiving end controls the transmitting end to adjust at least one of the specified parameters affecting the anti-interference ability of the signal on the transmission line to improve the anti-interference ability of the signal on the transmission line, so that when the external electromagnetic interference is received, the signal on the transmission line It is not easy to lose, thereby improving the accuracy of the signal received by the receiving end.
  • controlling the transmitting end to adjust at least one of the specified parameters affecting the anti-interference ability of the signal on the transmission line includes: When a signal has a transmission error, a control signal is sent to the transmitting end to control the transmitting end to adjust at least one of the specified parameters affecting the anti-interference ability of the signal on the transmission line.
  • Some embodiments of the present disclosure provide a signal transmission method.
  • the method includes the following steps:
  • Step 401 The transmitting end sends a signal to the receiving end through a transmission line.
  • Step 402 The transmitting end receives a control signal sent by the receiving end.
  • the control signal is sent by the receiving end after detecting that there is a transmission error in the received signal.
  • the control signal may be first indication information of a first parameter, and the first parameter is a parameter adjustable by the transmitting end among the specified parameters affecting the anti-interference ability of the signal on the transmission line, and the first indication information includes the target parameter value Or target adjustment information.
  • the control signal may further include second indication information, where the second indication information is used to instruct the transmitting end to increase a parameter value of the first parameter.
  • Step 403 Based on the received control signal, the transmitting end adjusts at least one of the specified parameters affecting the anti-interference ability of the signal on the transmission line.
  • the signal transmission method can send a control signal to the transmitting end when the receiving end detects that the received signal has a transmission error, and the transmitting end receives the control signal, and based on the control signal Adjusting at least one of the specified parameters affecting the anti-interference ability of the signal on the transmission line to improve the anti-interference ability of the signal on the transmission line, so that when the signal on the transmission line is subject to external electromagnetic interference, the signal on the transmission line is not easily lost, This improves the accuracy of the signals received by the receiving end.
  • the receiving end when the receiving end detects that there is a transmission error in the received signal, there may be multiple ways to adjust at least one of the specified parameters.
  • the embodiments of the present disclosure use the following two methods as examples. Instructions.
  • the receiving end when the receiving end detects a transmission error of the received signal, it first determines the target parameter information that needs to be adjusted. Based on the target parameter information, the receiving end sets the specified parameter that affects the anti-interference ability of the signal on the transmission line. At least one of the parameters is adjusted, and / or, the transmitting end is controlled to adjust the parameter of at least one of the specified parameters affecting the anti-interference ability of the signal on the transmission line.
  • the signal transmission method may include the following steps:
  • Step 501 The transmitting end sends a signal to the receiving end through a transmission line. Go to step 502.
  • the transmitting end is a timing controller
  • the receiving end is a source driving chip
  • the transmission line is a differential signal line, that is, the timing controller sends a high-speed differential signal to the source driving chip through the differential signal line.
  • Step 502 The receiving end detects whether there is a transmission error in the received signal.
  • the target data that the transmitting end needs to send is divided into data packets for transmission by the transmitting end.
  • packet loss may occur during the transmission of data packets.
  • the packet loss rate is the ratio of the number of lost packets to the total number of packets transmitted.
  • the receiving end cannot recover the signal sent by the transmitting end, which can be regarded as a signal transmission error.
  • the receiving end can detect whether there is an error in the received signal by detecting the packet loss rate of the received signal within a specified period of time. Please refer to FIG. 9.
  • the above process of detecting whether the received signal has a transmission error may include the following steps: :
  • Step 5021 The receiving end records a packet loss rate of a signal received through the transmission line.
  • the transmitting end When transmitting the signal, the transmitting end divides the signal into multiple groups of target data for transmission.
  • the transmitting end divides the target data to be transmitted into multiple data packets.
  • the multiple data packets are usually transmitted continuously.
  • the size (also called the amount of data) and the size of each set of target data can be pre-approved at the transmitting end and the receiving end. Data packets belonging to the same set of target data are identified in a pre-approved manner. For example, if the target data is a frame of image data, the first packet and the last packet of the frame of image data both carry the specified control instruction.
  • the first packet carries the instruction CTRL_L, and CTRL_L is configured to indicate The identifier of the start of a frame of image data; the last packet carries the instruction CTRL_F, and an identifier used to indicate the end of a frame of image data is configured in CTRL_F; for another example, if the target data is a line of image data, the first of the line of image data
  • Each data packet and the last data packet carry a designated identifier, wherein the first data packet carries an identifier K1 and the last data packet carries an identifier K2, where K1 indicates the beginning of each line of data and K2 indicates each End of row data.
  • the receiving end can determine the number of data packets T1 received from the set of target data by identifying the corresponding identifier, and use the packet loss rate calculation formula to calculate the packet loss of the set of target data.
  • the packet loss rate of the above signals is also the packet loss rate of each group of target data.
  • Step 5022 When the packet loss rate is greater than the specified packet loss rate threshold, the receiving end determines that there is a transmission error in the received signal.
  • the receiver can set a packet loss rate threshold. When the receiver detects that the packet loss rate of the received signal is greater than the packet loss rate threshold, it determines that there is a transmission error in the received signal; when the receiver detects the loss of the received signal When the packet rate is not greater than the packet loss rate threshold, it is determined that there is no transmission error in the received signal.
  • the packet loss rate of the signal is the packet loss rate of each set of target data
  • the receiving end detects that the packet loss rate of any set of target data is greater than the packet loss rate threshold, it is determined that the received signal exists Transmission error; when the packet loss rate of each set of target data detected by the receiving end is not greater than the packet loss rate threshold, it is determined that there is no transmission error in the received signal.
  • the packet loss rate threshold is 10%
  • the packet loss rate threshold is 10%
  • step 5021 and step 5022 use the packet loss rate of the signal as an example to describe the packet loss rate of each group of target data.
  • the algorithm of the packet loss rate may have other methods. Embodiments of the present disclosure I will not repeat them here.
  • the received data packet meets a specified condition, it is determined that there is a transmission error in the received signal.
  • the specified condition includes at least one of the following: the number of data packets with transmission errors received within a specified time period is greater than the first specified number threshold; the number of data packets with transmission errors in the specified number of data packets received The number is greater than the second specified number threshold; the number of consecutive data transmission errors in the received specified number of data packets is greater than the third specified number threshold.
  • each data packet has a fixed encoding format.
  • each data packet includes a preamble, a start identifier, a data bit, and an end identifier arranged in order.
  • the preamble is used to instruct the receiving end to perform clock and phase calibration.
  • the start identifier is used to indicate the start of data transmission
  • the data bit is used to carry configuration data (that is, the data that needs to be actually transmitted)
  • the end identifier is used to indicate the end of data transmission.
  • the preamble is obtained by continuous encoding of at least 8-bit binary zeros using Manchester encoding; the start identifier includes continuous at least 2-bit binary 0s; the configuration data carried by the data bits is data obtained using Manchester encoding; the end The identifier includes consecutive at least 2-bit binary ones.
  • the receiving end After receiving a data packet, the receiving end detects whether there is an error in the signal encoding format in the data packet, and when an error occurs in the signal encoding format, it is determined that a transmission error occurs in the data packet.
  • the number of packets with transmission errors received within the specified time period is greater than the first specified number threshold, and the number of packets with transmission errors in the received specified number of packets is greater than the second specified number threshold ,
  • the number of consecutively transmitted data packets in the received specified number of data packets is greater than the third specified number threshold, and if at least one of the three specified conditions is met, it is determined that the received signal exists Transmission error.
  • step 503 When the receiving end detects that there is a transmission error in the received signal, step 503 is performed, and when the receiving end detects that the received signal has no transmission error, step 501 is repeatedly performed.
  • Step 503 The receiving end determines target parameter information based on the received signal. Step 504 is performed, or step 506 is performed, or step 504 and step 506 are performed.
  • the target parameter information includes first indication information that specifies at least one parameter that can be adjusted among the parameters, and the first indication information includes parameter value or adjustment degree information.
  • the parameter value is the value of the parameter.
  • the value of the parameter is 2 or 10.
  • the adjustment degree information is information for reflecting the adjustment degree of the parameter.
  • the adjustment degree information is an adjustment gear value, which can be 1 or 2 gears, etc., or an adjustment proportion value, such as an increase of 5 percent. Or lower by 10 percent. That is, the target parameter information includes target parameter value of at least one parameter, or target adjustment degree information of at least one parameter.
  • the receiving end may have multiple implementation methods for determining target parameter information based on the received signal.
  • the embodiments of the present disclosure use the following two implementation methods as examples for description.
  • the receiving end may determine the target parameter information by querying the correspondence table.
  • the process may include the following steps:
  • Step 5031 The receiving end determines a degree parameter of the received signal.
  • the degree parameter is configured to reflect the severity of a transmission error in the received signal.
  • the degree parameter may be a packet loss rate, which may be calculated by using the method described in step 5021 above. The higher the packet loss rate, the more serious the transmission error of the signal received by the receiving end.
  • the degree parameter may also be a level, by which the severity of a transmission error occurring in the signal is characterized.
  • a correspondence relationship between a range of packet loss rates and levels can be established. After the receiving end determines the packet loss rate of the received signal, it queries the correspondence between the range of packet loss rates and levels and determines the correspondence with the range of the packet loss rate Rating. For example, suppose that the receiving end determines that the packet loss rate of the signal received through the transmission line is 30%, and the level of the packet loss rate range from 20% to 40% obtained by querying 30% is level two, and the degree of determination parameter is level two.
  • the degree parameter may also be other information, for example, the number of data packets with transmission errors received within a specified time period, or the number of data packets with transmission errors in the specified number of data packets received. Number, or the number of consecutively transmitted data packets among the specified number of received data packets, which is not limited in the embodiments of the present disclosure, as long as it can reflect the seriousness of the transmission errors in the received signal Degree.
  • Step 5032 The receiving end queries the correspondence relationship between the degree parameter range and the parameter information established in advance, and obtains the parameter information corresponding to the degree parameter range where the degree parameter of the received signal is located, and uses the parameter information as the target parameter information.
  • Each parameter information recorded in the corresponding relationship includes first indication information specifying at least one of the parameters, and the first indication information includes parameter value or adjustment degree information.
  • the receiving end determines the degree parameter of the received signal, determines the degree parameter range in which the degree parameter is located, and obtains the target parameter value of at least one parameter corresponding to the degree parameter range, or the target adjustment degree information of the at least one parameter.
  • the receiving end may determine target parameter information by establishing a parameter adjustment model in advance.
  • the process may include the following steps:
  • Step 5033 The receiving end determines a degree parameter of the received signal.
  • the degree parameter is configured to reflect the severity of a transmission error in the received signal.
  • Step 5034 The receiving end inputs the degree parameter into a preset parameter adjustment model.
  • This parameter adjustment model is used to predict the parameter information corresponding to the degree parameter of the input parameter adjustment model.
  • Step 5035 The receiving end receives the target parameter information output by the parameter adjustment model.
  • the above-mentioned parameter adjustment model can be established through multiple experiments. After the receiver determines the degree parameter of the received signal, the degree parameter is input into the parameter adjustment model, and at least one corresponding to the degree parameter is obtained through the parameter adjustment model. The target parameter value of the parameter, or the target adjustment degree information of at least one parameter.
  • the specified parameters include the first parameter adjustable by the transmitting end and the second parameter adjustable by the receiving end.
  • the target parameter information may include the first indication information of the first parameter and / or the second parameter.
  • First indication information wherein the first parameter includes at least one of a driving current, a swing amplitude, and a slew rate at a transmitting end, and the second parameter includes a swing amplitude, an equalizer, a matching resistance at a receiving end, a filtering parameter of a filter, and a receiving At least one of the driving currents of the terminals.
  • the receiving end can perform the following steps:
  • Step 504 When the target parameter information includes the first indication information of the first parameter, the receiving end sends the first indication information of the first parameter to the transmitting end. Go to step 505.
  • the receiving end may directly send the first indication information of the first parameter to the transmitting end through the transmission line.
  • the transmission line of the transmitting end and the receiving end performs a unidirectional transmission of the signal, that is, the signal can only be sent from the transmitting end to the receiving end from the transmission line, at this time the receiving end needs to send the first instruction information to the transmitting end through other methods.
  • an additional signal line is provided between the transmitting end and the receiving end for transmitting the first instruction information. Taking the implementation environment shown in FIG. 1 and FIG. 2 as an example, a transmitting end and a receiving end are provided.
  • the signal line L in an implementable manner, the signal on the signal line L can be transmitted in both directions, and the receiving end sends the first indication information of the first parameter to the transmitting end through the signal line L; in another In an implementable manner, since the signal line L can identify the level status, the receiving end can achieve the effect of notifying the first instruction information of the first parameter of the transmitting end by setting the level status on the signal line L high or low. , Which is equivalent to sending the first indication information of the first parameter to the transmitting end through the signal line L.
  • the transmission line of the transmitting end and the receiving end can perform bidirectional transmission of signals, since the current transmission line is in a state where the signal is interfered, the first instruction information transmitted by the receiving end through the transmission line is also vulnerable to interference.
  • the receiving end may also use the above additional signal line to send the first indication information of the first parameter.
  • Step 505 The transmitting end adjusts the first parameter based on the received first indication information of the first parameter. Go to step 507.
  • Step 506 When the target parameter information includes the first indication information of the second parameter, the receiving end adjusts the second parameter based on the first indication information of the second parameter. Go to step 508.
  • the target parameter information includes target parameter value of at least one parameter, or target adjustment degree information of at least one parameter.
  • the above steps 504 to 506 include: when the target parameter information includes the target parameter value of the first parameter, the receiving end sends the first The target parameter value of the parameter is sent to the transmitting end. Accordingly, the transmitting end adjusts the first parameter based on the target parameter value of the first parameter.
  • the adjustment process includes: the transmitting end adjusts the first parameter so that the adjusted parameter value of the first parameter is equal to the corresponding value in the target parameter information. Target parameter value.
  • the receiving end adjusts the second parameter based on the target parameter value of the second parameter.
  • the adjustment process is: the receiving end adjusts the second parameter so that the adjusted second parameter The parameter value of is equal to the corresponding target parameter value in the target parameter information.
  • the target parameter information includes the target parameter value of at least one parameter
  • the correspondence between the degree parameter range and the target parameter value is shown in Table 1.
  • Table 1 is used as an example for the above steps 504 to 506. Further explanation.
  • the receiver determines that the degree parameter of the received signal is 45%, and determines the range in which the degree parameter is located: 41% to 60%
  • querying Table 1 to obtain the target parameter information corresponding to the range is: the slew rate is e ,
  • the equalizer is f
  • the filtering parameter of the filter is g
  • the receiving end sends the target parameter information of the target parameter value of the slew rate to the transmitting end, and the transmitting end adjusts the slew rate so that the adjusted slew rate
  • the parameter value of is equal to e.
  • the receiving end adjusts the filtering parameters of the equalizer and the filter so that the parameter value of the adjusted equalizer is equal to f and the parameter value of the adjusted filter parameter is equal to g.
  • Degree parameter range Target parameter value 0 to 20% The driving current at the transmitting end is a, and the swing is b 21% ⁇ 40% The driving current at the transmitting end is c, and the matching resistance at the receiving end is d 41% ⁇ 60%
  • the slew rate is e
  • the equalizer is f
  • the filtering parameter of the filter is g 61% ⁇ 80%
  • the equalizer is m
  • the driving current at the receiving end is n 81% to 100% Slew rate is t
  • the matching resistance at the receiving end is k
  • the above steps 504 to 506 include: when the target parameter information includes target adjustment degree information of the first parameter, the receiving end will The target adjustment degree information of the first parameter is sent to the transmitting end. Correspondingly, the transmitting end adjusts the first parameter based on the target adjustment degree information of the first parameter.
  • the receiving end performs adjustment of the second parameter based on the target adjustment degree information of the second parameter.
  • the target parameter information when the target parameter information includes target adjustment degree information of at least one parameter, the correspondence between the degree parameter range and the target adjustment degree information is shown in Table 2.
  • Table 2 is used as an example for step 504 described above.
  • the receiver determines that the degree parameter of the received signal is 45%, and determines that the degree parameter lies in a range of 41% to 60%.
  • the target parameter information corresponding to this range is: the slew rate is increased by e%, the equalizer is decreased by f%, and the filter parameter of the filter is increased by g%.
  • the receiver sends the target parameter information of the slew rate increased by e% to the transmitting end.
  • the transmitting side adjusts the slew rate so that the parameter value of the adjusted slew rate increases by e% from the initial value
  • the receiving side adjusts the filtering parameters of the equalizer and the filter so that the adjusted equalizer parameter value is at the initial.
  • the value of f is reduced by f%, and the parameter value of the filtered parameter of the adjusted filter is increased by g% from the initial value.
  • Tables 1 and 2 are only exemplary descriptions of some embodiments of the present disclosure.
  • target parameter information of designated parameters may be determined according to requirements and experimental conditions. The embodiments of the present disclosure do not address this. Be limited.
  • the transmitting end and / or the receiving end After at least one of the transmitting end and the receiving end adjusts the specified parameter, in an implementable manner, the transmitting end and / or the receiving end keep the parameter value of the adjusted specified parameter unchanged, and perform subsequent signal transmission. .
  • the transmitting end and / or the receiving end After adjusting the specified parameters, for example, increasing some of the specified parameter values will cause the power consumption of the transmitting and receiving circuits to increase, thereby affecting the transmitting and receiving ends. Therefore, in order to reduce the power consumption increased by adjusting the specified parameters, the following steps 507 and 508 may be performed.
  • Step 507 When the restoration condition is reached, the transmitting end restores the corresponding parameters in the specified parameters to the initial settings.
  • This initial setting is the setting before the corresponding parameter adjustment in the specified parameter.
  • the transmitting end restores the first parameter to the setting before adjustment.
  • the examples shown in Tables 1 and 2 described above are still used as an example for description, that is, when the above-mentioned degree parameter is 45%, the adjustment of the first parameter by the transmitting end is used as an example.
  • the initial setting of the rate is e 0.
  • the transmitting end restores the parameter value of the slew rate from e to e 0 .
  • the above restoration conditions may include at least one of the following:
  • the first recovery condition is that the time interval between the current time and the adjustment time of the specified parameter is greater than the specified time interval.
  • the specified time interval may be 5 minutes.
  • the transmitting terminal adjusts the first parameter, if the time interval between the current time and the adjusting time of the first parameter is greater than 5 minutes, the first parameter may be restored to the initial setting; If the time interval between the current time and the adjustment time of the first parameter is not greater than 5 minutes, the parameter value of the first parameter is maintained at the current value.
  • the specified time interval is 5 minutes
  • the initial setting of the slew rate is e 0
  • the parameter value of the adjusted slew rate is equal to e.
  • the transmitter can restore the slew rate value to e 0. If the time interval between the current moment and the moment when the slew rate is adjusted is not greater than 5 minutes, the The value is still e.
  • the transmitter is powered on again.
  • the first parameter is restored to the initial setting.
  • Step 508 When the restoration condition is reached, the receiving end restores the corresponding parameters in the specified parameters to the initial settings.
  • This initial setting is the setting before the corresponding parameter adjustment in the specified parameter.
  • the receiving end restores the second parameter to the setting before adjustment.
  • the transmitting end restores the first parameter to the setting before adjustment in step 507, which is not described in the embodiment of the present disclosure.
  • the above restoration conditions may include at least one of the following:
  • the first recovery condition is that the time interval between the current time and the adjustment time of the specified parameter is greater than the specified time interval.
  • the receiver In the second recovery condition, the receiver is powered on again.
  • the second parameter is restored to the initial setting.
  • the receiving end can directly obtain the target parameter value or the target adjustment degree information of the parameter to be adjusted according to the correspondence between the severity range of the transmission error and the parameter information. Adjusting the parameters to appropriate values simplifies the adjustment process and improves the efficiency of signal transmission.
  • a receiving end when a receiving end detects a transmission error in a received signal, it can directly obtain the required adjustment according to the correspondence between the severity range of the transmission error and the parameter information.
  • the target parameter information of the parameter and control at least one of the receiving end and the transmitting end to adjust the parameters that affect the anti-interference ability of the signal on the transmission line according to the target parameter information, thereby improving the anti-interference ability of the signal on the transmission line, During electromagnetic interference, the signal on the transmission line is not easily lost, thereby improving the accuracy of the signal received by the receiving end.
  • the parameters in the specified parameters can be restored to the settings before adjustment, which effectively reduces the power consumption caused by adjusting the specified parameters, thereby increasing the life of the devices in the receiving end and the transmitting end.
  • the receiving end can be set to automatically detect whether the received signal has a transmission error and automatically control at least one of the receiving end and the transmitting end to adjust, so that the signal on the transmission line can be achieved. Better anti-interference ability.
  • the receiving end controls at least one of the receiving end and the transmitting end to adjust the parameters according to the priority order of each parameter in the specified parameter.
  • the signal transmission method may include the following steps:
  • Step 601 The transmitting end sends a signal to the receiving end through a transmission line. Go to step 602.
  • step 601 For the process of step 601, reference may be made to the foregoing step 501, which is not described in this embodiment of the present disclosure.
  • Step 602 The receiving end detects whether there is a transmission error in the received signal.
  • step 603 When the receiving end detects that the received signal has a transmission error, step 603 is performed; when the receiving end detects that the received signal has no transmission error, step 601 is repeatedly performed.
  • step 602 For the process of step 602, reference may be made to the foregoing step 502, which is not described in the embodiment of the present disclosure.
  • Step 603 When the receiving end detects a transmission error in the received signal, the receiving end adjusts each parameter in the specified parameter that affects the anti-interference ability of the signal on the transmission line according to the priority order of each parameter in the specified parameter, and / Or, control the transmitting end to sequentially adjust each parameter until the adjustment end condition is reached. Go to step 604.
  • the adjustment end condition includes at least one of the following conditions:
  • the first condition is that there is no transmission error in the signal sent by the transmitting end received again.
  • step 502 For a process of detecting whether there is a transmission error in a signal received by a transmitting end that is received again, refer to step 502 above, which is not described in the embodiment of the present disclosure.
  • the second condition is to adjust all the parameters in the specified parameters.
  • the receiving end controls at least one of the receiving end and the transmitting end to adjust all the parameters in the specified parameter according to the priority order of each parameter in the specified parameter
  • the adjustment end condition is reached and the adjustment can be ended process.
  • the third condition is to adjust the specified number of parameters in the specified parameters.
  • a specified number may be set in advance, and the time for adjusting the specified number of parameters is the adjustment time.
  • the adjustments made within the duration can quickly act as anti-interference.
  • the above-mentioned priority order may be preset, or may be dynamically adjusted according to actual conditions, may be randomly determined, or may be obtained through calculation based on experience or experiments.
  • the specified parameters include a first parameter adjustable by a transmitting end and a second parameter adjustable by a receiving end, and after receiving a signal, if the receiving end directly performs a second parameter that is adjustable by itself, Adjustment, there is no need to control the transmitter, reducing the control process.
  • the second parameter the parameters such as the equalizer, the matching resistance at the receiving end, and the filtering parameters of the filter need to be adjusted according to the actual situation.
  • the adjustment process may need to be performed multiple times, and the adjustment period is relatively long.
  • the driving current can be adjusted directly by increasing, and the adjustment period is short. Therefore, the second parameter can be divided into a third parameter with a short adjustment period and a fourth parameter with a long adjustment period.
  • the third parameter includes the pendulum. At least one of the amplitude and the driving current at the receiving end, and the fourth parameter includes at least one of an equalizer, a matching resistor at the receiving end, and a filtering parameter of the filter.
  • the foregoing priority order may be the priority of the third parameter
  • the priority is greater than the first parameter
  • the priority of the first parameter is greater than the priority of the fourth parameter. The larger the parameter values of the third parameter and the first parameter are, the stronger the anti-interference ability of the signal is.
  • the receiver can first adjust the parameters that have a significant impact on the anti-interference ability of the signal, and then adjust the parameters that need to be adjusted according to the actual situation. In this way, the resistance of the signal on the transmission line can be adjusted by adjusting the higher priority parameters.
  • the interference capability achieves the required effect, no further adjustment of parameters with lower priority is required, thereby simplifying the adjustment process and further improving the efficiency of signal transmission.
  • each parameter in the above-mentioned specified parameters there can be various ways to control at least one of the receiving end and the transmitting end to sequentially adjust each parameter in the above step 603.
  • FIG. Perform at least one of the following steps 6031 to 6033 in priority order:
  • Step 6031 The receiving end increases the parameter value of the third parameter.
  • the receiving end may gradually increase the parameter value of the third parameter.
  • the receiving end may gradually increase the parameter value of the third parameter according to a certain ratio, and the certain ratio may be 10% to improve the signal resistance.
  • Interference ability For example, the receiving end may directly increase the parameter value of the third parameter to a maximum value, so that the anti-interference ability of the signal reaches the best effect.
  • Step 6032 The receiving end sends the second instruction information to the transmitting end.
  • the second instruction information is used to instruct the transmitting end to increase the parameter value of the first parameter.
  • the transmitting end receives the second instruction information, based on the second instruction information, the parameter value of the first parameter is increased.
  • the transmitting end may gradually increase the parameter value of the first parameter.
  • the transmitting end may gradually increase the parameter value of the first parameter according to a certain ratio, and the certain ratio may be 10% to improve the signal resistance. Interference ability.
  • the transmitting end may directly increase the parameter value of the first parameter to a maximum value, so that the anti-interference ability of the signal reaches the best effect.
  • Step 6033 The receiving end executes the fourth parameter adjustment process at least once.
  • the fourth parameter adjustment process includes increasing or decreasing the parameter value of the fourth parameter.
  • the above-mentioned process of adjusting the fourth parameter may be performed multiple times. After passing through the fourth parameter adjustment process, if the anti-interference ability of the signal decreases , The fourth parameter adjustment process is performed again, and the adjustment direction of the fourth parameter adjustment process performed again is opposite to that of the last fourth parameter adjustment process. For example, when the fourth parameter adjustment process is performed by increasing the resistance value of the matching resistance at the receiving end, the anti-interference ability of the signal is reduced, and then the fourth value is performed again by reducing the resistance value of the matching resistance at the receiving end. Parameter adjustment process.
  • the fourth parameter adjustment process may be performed again, and the adjustment direction of the fourth parameter adjustment process performed again and the last adjustment of the fourth parameter adjustment process The direction is the same. For example, when the fourth parameter adjustment process is performed by increasing the resistance value of the matching resistor at the receiving end, the anti-interference ability of the signal is improved, and then the fourth value is performed again by increasing the resistance value of the matching resistor at the receiving end. Parameter adjustment process.
  • Step 604 When the restoration condition is reached, the receiving end and the transmitting end restore the corresponding parameters in the specified parameters to the initial settings.
  • step 507 and step 508 For a process in which the receiving end and the transmitting end restore the corresponding parameters in the specified parameters to the initial settings, reference may be made to step 507 and step 508 described above, and details are not described herein in this embodiment of the present disclosure.
  • the receiving end does not need to perform an action such as looking up a table, and directly adjusts parameters, and / or, controls the transmitting end to adjust the parameters, the adjustment process is relatively simple and rapid, and the adjustment efficiency is high.
  • the receiving end when the receiving end detects a transmission error of the received signal, it can control at least one of the receiving end and the transmitting end according to the priority order of each parameter in the specified parameters.
  • One end adjusts the parameters that affect the anti-interference ability of the signal on the transmission line to improve the anti-interference ability of the signal on the transmission line, so that when the external electromagnetic interference occurs, the signal on the transmission line is not easy to be lost, thereby improving the accuracy.
  • the parameters in the specified parameters can be restored to the settings before adjustment, which effectively reduces the power consumption caused by adjusting the specified parameters, thereby increasing the life of the devices in the receiving end and the transmitting end.
  • the receiving end can be set to automatically detect whether the received signal has a transmission error and automatically control at least one of the receiving end and the transmitting end to adjust, so that the signal on the transmission line can be achieved. Better anti-interference ability.
  • the signal transmission device 700 includes:
  • the first receiving part 701 is configured to receive a signal sent by a transmitting end through a transmission line.
  • the detecting unit 702 is configured to detect whether there is a transmission error in the received signal.
  • the control component 703 is configured to control the first adjustment component 704 to adjust at least one of the specified parameters affecting the anti-interference ability of the signal on the transmission line when the received signal has a transmission error, and control the transmitting end to influence the transmission line. At least one of the specified parameters of the signal anti-interference ability is adjusted.
  • the first adjustment component 704 is configured to adjust at least one parameter of a specified parameter affecting the anti-interference ability of a signal on the transmission line under the control of the control component 703.
  • the receiving end receives the signal sent by the transmitting end through the first receiving part 701, and when the receiving end detects the transmission error of the received signal through the detecting part 702, it can
  • the control part 703 controls at least one of the first adjustment part 704 and the transmitting end to adjust at least one of the specified parameters affecting the anti-interference ability of the signal on the transmission line, thereby improving the anti-interference ability of the signal on the transmission line, so that when When subjected to external electromagnetic interference, the signal on the transmission line is not easily lost, thereby improving the accuracy of the signal received by the receiving end.
  • control component 703 when there is a transmission error in the received signal, the control component 703 includes:
  • a determination sub-module is used to determine target parameter information based on the received signal.
  • the target parameter information includes first indication information that specifies at least one parameter that can be adjusted among the parameters, and the first indication information includes parameter value or adjustment degree information.
  • a control sub-module is configured to control the first adjustment component 704 to adjust a parameter corresponding to the target parameter information according to the target parameter information, and / or control the transmitter to adjust a parameter corresponding to the target parameter information.
  • the determining submodule is configured to:
  • the degree parameter is used to reflect the severity of transmission errors in the received signal.
  • Each parameter information recorded in the corresponding relationship includes first indication information specifying at least one of the parameters, and the first indication information includes parameter value or adjustment degree information.
  • the specified parameters include a first parameter adjustable by the transmitting end and a second parameter adjustable by the receiving end.
  • the control sub-module is configured to:
  • the target parameter value of the first parameter is sent to the transmitting end to control the transmitting end to adjust the parameter value of the first parameter, so that the adjusted parameter of the first parameter The value is equal to the corresponding target parameter value in the target parameter information.
  • the parameter value of the second parameter is adjusted by the receiving end, so that the parameter value of the adjusted second parameter is equal to the corresponding target parameter value in the target parameter information.
  • the foregoing control submodule is configured to:
  • the target adjustment degree information of the first parameter is sent to the transmitting end to control the transmitting end to adjust the first parameter according to the corresponding target adjustment degree information in the target parameter information.
  • the target adjustment degree information of the second parameter is sent to the first adjustment component to control the first adjustment component according to the corresponding target adjustment degree information in the target parameter information. Adjust the second parameter.
  • the first parameter includes at least one of a driving current, a swing amplitude, and a slew rate of the transmitting end.
  • the second parameter includes at least one of a swing amplitude, an equalizer, a matching resistance at the receiving end, a filtering parameter of a filter, and a driving current at the receiving end.
  • the above-mentioned first adjustment component 704 includes:
  • An adjustment sub-module is used to control at least one of the receiving end and the transmitting end to sequentially adjust each parameter according to the priority order of each parameter in the specified parameter until the adjustment end condition is reached.
  • the adjustment end condition includes at least one of the following:
  • the foregoing adjustment submodule is used for:
  • the second instruction information is used to instruct the transmitting end to increase a parameter value of the first parameter.
  • the fourth parameter adjustment process includes increasing or decreasing a parameter value of the fourth parameter.
  • the third parameter includes at least one of a swing and a driving current at the receiving end
  • the first parameter includes at least one of a driving current at the transmitting end, a swing, and a slew rate
  • the fourth parameter includes matching between the equalizer and the receiver At least one of a filter parameter of a resistor and a filter.
  • the priority of the third parameter is greater than the priority of the first parameter, and the priority of the first parameter is greater than the priority of the fourth parameter.
  • the signal on the transmission line is transmitted in a data packet manner
  • the detection component 702 is configured to:
  • the received data packet satisfies a specified condition, it is determined that there is a transmission error in the received signal.
  • the specified condition includes at least one of the following: the number of data packets with transmission errors received within a specified time period is greater than the first specified number of thresholds; the number of data packets with transmission errors in the received specified number of data packets The number is greater than the second specified number threshold; the number of consecutive data transmission errors in the received specified number of data packets is greater than the third specified number threshold.
  • the signal transmission device 700 further includes:
  • the restoration component is used to restore the corresponding parameters in the specified parameters to the initial settings when the restoration conditions are reached after the parameters in the specified parameters are adjusted.
  • This initial setting is the setting before the corresponding parameter adjustment in the specified parameter.
  • the foregoing restoration conditions include at least one of the following:
  • the time interval between the current time and the adjustment time of the specified parameter is greater than the specified time interval.
  • the receiver is powered on again.
  • the receiving end receives the signal sent by the transmitting end through the first receiving part 701, and when the receiving end detects the transmission error of the received signal through the detecting part 702, it can
  • the control part 703 controls at least one of the first adjustment part 704 and the transmitting end to adjust parameters that affect the anti-interference ability of the signal on the transmission line, thereby improving the anti-interference ability of the signal on the transmission line, so that when subjected to external electromagnetic interference, The signal on the transmission line is not easy to be lost, thereby improving the accuracy of the signal received by the receiving end.
  • the parameters in the specified parameters can be restored to the settings before the adjustment through the restoration component, which further effectively reduces the power consumption caused by adjusting the specified parameters, thereby increasing the life of the devices in the receiving end and the transmitting end.
  • the receiving end can be set to automatically detect whether the received signal has a transmission error and automatically control at least one of the receiving end and the transmitting end to adjust, so that the signal on the transmission line can be achieved. Better anti-interference ability.
  • control component 703 is further configured to send a control signal to the transmitting end when there is a transmission error in the received signal, so as to control the transmitting end to at least one of the specified parameters affecting the anti-interference ability of the signal on the transmission line. Make adjustments.
  • the signal transmission device 800 includes:
  • the sending unit 801 is configured to send a signal to a receiving end through a transmission line.
  • the second receiving component 802 is configured to receive a control signal sent by a receiving end.
  • the control signal is sent by the receiving end after detecting that there is a transmission error in the received signal.
  • the second adjustment component 803 is configured to adjust at least one parameter of a specified parameter that affects the anti-interference ability of the signal on the transmission line based on the received control signal.
  • the transmitting end sends a signal to the receiving end through the sending part 801.
  • the receiving end detects that the received signal has an error, it can send a control signal to the transmitting end.
  • the control signal is received by the second receiving part 802, and the parameters affecting the anti-interference ability of the signal on the transmission line are adjusted by the second adjusting part 803 based on the control signal, thereby improving the anti-interference ability of the signal on the transmission line, so that when receiving During electromagnetic interference, the signal on the transmission line is not easily lost, thereby improving the accuracy of the signal received by the receiving end.
  • the control signal is first indication information of a first parameter
  • the first parameter is a parameter that is adjustable by the transmitting end of the specified parameters that affect the anti-interference ability of the signal on the transmission line
  • the first indication is The information includes any one of a target parameter value and target adjustment degree information.
  • the second adjusting component 803 includes:
  • An adjustment submodule configured to adjust the first parameter based on the received first indication information of the first parameter.
  • the adjustment submodule is configured to:
  • the first parameter is adjusted so that the parameter value of the adjusted first parameter is equal to the corresponding target parameter value.
  • the adjustment submodule is configured to:
  • the first parameter is adjusted according to the target adjustment degree information.
  • control signal includes second indication information, and the second indication information is used to instruct a transmitting end to increase a parameter value of the first parameter.
  • the above control component is used to:
  • the first parameter includes at least one of a driving current, a swing amplitude, and a slew rate of the transmitting end.
  • the above-mentioned signal transmission device 800 further includes:
  • the restoration component is used for restoring the parameters in the specified parameters to the initial settings when the restoration conditions are reached after the parameters in the specified parameters are adjusted.
  • This initial setting is the setting before parameter adjustment in the specified parameters.
  • the foregoing restoration conditions include at least one of the following:
  • the time interval between the current time and the adjustment time of the specified parameter is greater than the specified time interval.
  • the transmitter is powered up again.
  • a transmitting end sends a signal to a receiving end through a transmitting component.
  • the receiving end detects a transmission error of the received signal, it can send a control signal to the transmitting end.
  • the control signal is received by the second receiving part, and the parameters affecting the anti-interference ability of the signal on the transmission line are adjusted by the second adjusting part based on the control signal, thereby improving the anti-interference ability of the signal on the transmission line, so that when subjected to external electromagnetic interference At this time, the signal on the transmission line is not easy to be lost, thereby improving the accuracy of the signal received by the receiving end.
  • the parameters in the specified parameters can be restored to the settings before the adjustment through the restoration component, which further effectively reduces the power consumption caused by adjusting the specified parameters, thereby increasing the life of the devices in the receiving end and the transmitting end.
  • Some embodiments of the present disclosure also provide a signal transmission device, which is applied to a receiving end.
  • the signal transmission device includes:
  • the memory is configured to store executable instructions.
  • a processor configured to execute executable instructions.
  • the processor executes the executable instruction, it can implement any signal transmission method applied to the receiving end in the foregoing embodiment.
  • Some embodiments of the present disclosure also provide a signal transmission device, which is applied to a transmitting end.
  • the signal transmission device includes:
  • the memory is configured to store executable instructions.
  • a processor configured to execute executable instructions.
  • the processor executes the executable instruction, it can implement any signal transmission method applied to the transmitting end in the foregoing embodiment.
  • An embodiment of the present disclosure provides a display device.
  • the display device includes a controller and a plurality of drivers. Each of the plurality of drivers is coupled to the controller through a transmission line, and each driver includes the foregoing shown in FIG. 14.
  • the controller includes the foregoing signal transmission device applied to the transmitting end shown in FIG. 15. Exemplarily, the controller may also include the foregoing signal transmission device applied to the receiving end shown in FIG. 14, and each driver may also include the foregoing signal transmission device applied to the transmitting end shown in FIG. 15.
  • the controller may be disposed on the main board of the display device, and the driver may be disposed on the array substrate of the display device.
  • the transmitting end and the receiving end are P2P interfaces in the display device, respectively.
  • the P2P interfaces in the display device are a timing controller and a source driving chip, respectively.
  • the graphics processor has integrated the function of a timing controller.
  • the P2P interface in the display device is a graphics processor and a source driver chip, respectively.
  • some embodiments of the present disclosure further provide a display device 1000.
  • the display device 1000 includes a controller and a plurality of drivers. Each of the plurality of drivers is coupled to a controller through a transmission line. Each driver includes the signal transmission device according to the foregoing embodiment, and the controller includes the signal transmission device according to the foregoing embodiment.
  • the display device 1000 may be any product or component having a display function, such as a notebook computer, a television, a liquid crystal panel, an electronic paper, an OLED panel, a mobile phone, a tablet computer, a display, a digital photo frame, or a navigator.
  • the controller in the display device may be at least one of a timing controller, an SOC, and an MCU.
  • the plurality of drivers in the display device may be source driver chips.
  • the display device 1000 further includes: a processor 1001 and a memory 1002.
  • the memory 1002 is configured to store executable instructions of the processor and computer instructions. When the processor 1001 runs the computer instructions, it can implement the signal transmission method described in the foregoing embodiment. One or more steps.
  • the processor 1001 may include one or more processing cores, such as a 4-core processor, an 8-core processor, and the like.
  • the processor 1001 may use at least one of Digital Signal Processing (DSP), Field-Programmable Gate Array (FPGA), and Programmable Logic Array (PLA).
  • DSP Digital Signal Processing
  • FPGA Field-Programmable Gate Array
  • PDA Programmable Logic Array
  • the processor 1001 may also include a main processor and a co-processor.
  • the main processor is a processor for processing data in the awake state, also referred to as a central processing unit (CPU); a co-processor It is a low-power processor for processing data in the standby state.
  • CPU central processing unit
  • co-processor It is a low-power processor for processing data in the standby state.
  • the processor 1001 may be integrated with a graphics processing unit (Graphics Processing Unit, GPU for short), and the GPU is responsible for rendering and drawing content required to be displayed by the display device.
  • the processor 1001 may further include an artificial intelligence (Artificial Intelligence) processor, which is used to process computing operations related to machine learning.
  • Artificial Intelligence Artificial Intelligence
  • the memory 1002 may include one or more computer-readable storage media, which may be non-transitory.
  • the memory 1002 may further include a high-speed random access memory, and a non-volatile memory, such as one or more disk storage devices, flash storage devices.
  • the non-transitory computer-readable storage medium in the memory 1002 is used to store at least one instruction that is executed by the processor 1001 to implement the signal transmission provided by the method embodiment in the present disclosure. method.
  • the apparatus 1000 may further include: a peripheral device interface 1003 and at least one peripheral device.
  • the processor 1001, the memory 1002, and the peripheral device interface 1003 may be connected through a bus or a signal line.
  • Each peripheral device can be connected to the peripheral device interface 1003 through a bus, a signal line, or a circuit board.
  • the peripheral device includes at least one of a radio frequency circuit 1004, a display screen 1005, a camera component 1006, an audio circuit 1007, a positioning component 1008, and a power supply 1009.
  • the peripheral device interface 1003 may be used to connect at least one peripheral device related to Input / Output (Input / Output, I / O for short) to the processor 1001 and the memory 1002.
  • the processor 1001, the memory 1002, and the peripheral device interface 1003 are integrated on the same chip or circuit board; in other embodiments, any one of the processor 1001, the memory 1002, and the peripheral device interface 1003 or Two can be implemented on separate chips or circuit boards, which are not limited in the embodiments of the present disclosure.
  • the radio frequency circuit 1004 is configured to receive and transmit radio frequency (Radio Frequency, RF for short) signals, also referred to as electromagnetic signals.
  • the radio frequency circuit 1004 communicates with a communication network and other communication equipment through electromagnetic signals.
  • the radio frequency circuit 1004 converts electrical signals into electromagnetic signals for transmission, or converts received electromagnetic signals into electrical signals.
  • the radio frequency circuit 1004 includes an antenna system, an RF transceiver, one or more amplifiers, a tuner, an oscillator, a digital signal processor, a codec chipset, a subscriber identity module card, and the like.
  • the radio frequency circuit 1004 can communicate with other devices through at least one wireless communication protocol.
  • the wireless communication protocol includes, but is not limited to, the World Wide Web, a metropolitan area network, an intranet, mobile communication networks of all generations (2G, 3G, 4G, and 5G), a wireless local area network, and / or a WIFI network.
  • the radio frequency circuit 1004 may further include an NFC-related circuit, which is not limited in the embodiments of the present disclosure.
  • the display screen 1005 is used to display a user interface (User Interface).
  • the UI can include graphics, text, icons, videos, and any combination thereof.
  • the display screen 1005 also has the ability to collect touch signals on or above the surface of the display screen 1005.
  • the touch signal can be input to the processor 1001 as a control signal for processing.
  • the display screen 1005 may also be used to provide a virtual button and / or a virtual keyboard, which is also called a soft button and / or a soft keyboard.
  • one display screen 1005 may be provided on the front panel of the display device 1000. In other embodiments, at least two display screens 1005 may be provided on different surfaces of the display device 1000 or folded.
  • the display screen 1005 may be a flexible display screen, disposed on a curved surface or a folded surface of the display device 1000.
  • the display screen 1005 may also be set as a non-rectangular irregular figure, that is, a special-shaped screen.
  • the display 1005 can be made of a liquid crystal display (Liquid Crystal Display, LCD for short), OLED and other materials.
  • the camera assembly 1006 is used to capture images or videos.
  • the camera assembly 1006 includes a front camera and a rear camera.
  • the front camera is disposed on the front panel of the display device 1000
  • the rear camera is disposed on the back of the display device 1000.
  • the camera and the wide-angle camera are integrated to realize panoramic shooting and virtual reality (VR) shooting functions or other fusion shooting functions.
  • the camera assembly 1006 may further include a flash.
  • the flash can be a monochrome temperature flash or a dual color temperature flash.
  • a dual color temperature flash is a combination of a warm light flash and a cold light flash, which can be used for light compensation at different color temperatures.
  • the audio circuit 1007 may include a microphone and a speaker.
  • the microphone is used for collecting sound waves of the user and the environment, and converting the sound waves into electrical signals and inputting them to the processor 1001 for processing, or inputting to the radio frequency circuit 1004 to implement voice communication.
  • the microphone can also be an array microphone or an omnidirectional acquisition microphone.
  • the speaker is used to convert electric signals from the processor 1001 or the radio frequency circuit 1004 into sound waves.
  • the speaker can be a traditional film speaker or a piezoelectric ceramic speaker.
  • the speaker When the speaker is a piezoelectric ceramic speaker, it can not only convert electrical signals into sound waves audible to humans, but also convert electrical signals into sound waves inaudible to humans for ranging purposes.
  • the audio circuit 1007 may further include a headphone jack.
  • the positioning component 1008 is used to locate the current geographic position of the display device 1000 to implement navigation or location-based services (Location-Based Service, LBS for short).
  • the positioning component 1008 may be a positioning component based on a US-based Global Positioning System (GPS) or China's Beidou system or Russia's Galileo system.
  • the power supply 1009 is used to supply power to various components in the display device 1000.
  • the power source 1009 may be an alternating current, a direct current, a disposable battery, or a rechargeable battery.
  • the rechargeable battery may be a wired rechargeable battery or a wireless rechargeable battery.
  • the wired rechargeable battery is a battery charged through a wired line
  • the wireless rechargeable battery is a battery charged through a wireless coil.
  • the rechargeable battery can also be used to support fast charging technology.
  • the display device 1000 may further include one or more sensors 1010.
  • the one or more sensors 1010 may include: an acceleration sensor 1011, a gyroscope sensor 1012, a pressure sensor 1013, a fingerprint sensor 1014, an optical sensor 1015, and a proximity sensor 1016.
  • the acceleration sensor 1011 can detect the magnitude of acceleration on the three coordinate axes of the coordinate system established by the display device 1000.
  • the acceleration sensor 1011 may be used to detect components of the acceleration of gravity on three coordinate axes.
  • the processor 1001 may control the touch display screen 1005 to display the user interface in a horizontal view or a vertical view according to the gravity acceleration signal collected by the acceleration sensor 1011.
  • the acceleration sensor 1011 may also be used for collecting motion data of a game or a user.
  • the gyro sensor 1012 can detect the body direction and the rotation angle of the display device 1000, and the gyro sensor 1012 can cooperate with the acceleration sensor 1011 to collect a 3D motion of the user on the device 1000. Based on the data collected by the gyro sensor 1012, the processor 1001 can implement the following functions: motion sensing (such as changing the UI according to the user's tilt operation), image stabilization during shooting, game control, and inertial navigation.
  • motion sensing such as changing the UI according to the user's tilt operation
  • image stabilization during shooting game control
  • game control and inertial navigation.
  • the pressure sensor 1013 may be disposed on a side frame of the display device 1000 and / or a lower layer of the touch display screen 1005.
  • a user's holding signal to the device 1000 can be detected, and the processor 1001 can perform left-right hand recognition or quick operation according to the holding signal collected by the pressure sensor 1013.
  • the processor 1001 controls the operability controls on the UI interface according to the user's pressure operation on the touch display screen 1005.
  • the operability controls include at least one of a button control, a scroll bar control, an icon control, and a menu control.
  • the fingerprint sensor 1014 is used to collect a user's fingerprint, and the processor 1001 recognizes the identity of the user based on the fingerprint collected by the fingerprint sensor 1014, or the fingerprint sensor 1014 recognizes the identity of the user based on the collected fingerprint. When identifying the user's identity as a trusted identity, the processor 1001 authorizes the user to perform related sensitive operations, such as unlocking the screen, viewing encrypted information, downloading software, paying and changing settings.
  • the fingerprint sensor 1014 may be disposed on the front, back, or side of the display device 1000. When a physical button or a manufacturer's trademark is provided on the display device 1000, the fingerprint sensor 1014 can be integrated with the physical button or the manufacturer's trademark.
  • the optical sensor 1015 is used to collect ambient light intensity.
  • the processor 1001 may control the display brightness of the touch display screen 1005 according to the ambient light intensity collected by the optical sensor 1015. For example, when the ambient light intensity is high, the display brightness of the touch display screen 1005 is increased; when the ambient light intensity is low, the display brightness of the touch display screen 1005 is decreased.
  • the processor 1001 may also dynamically adjust the shooting parameters of the camera component 1006 according to the ambient light intensity collected by the optical sensor 1015.
  • the proximity sensor 1016 also referred to as a distance sensor, is usually disposed on the front panel of the display device 1000.
  • the proximity sensor 1016 is used to collect a distance between a user and a front surface of the display device 1000.
  • the processor 1001 controls the touch display screen 1005 to switch from the bright screen state to the closed screen state; when the proximity sensor 1016 When it is detected that the distance between the user and the front of the device 1000 gradually increases, the processor 1001 controls the touch display screen 1005 to switch from the rest screen state to the bright screen state.
  • FIG. 16 does not constitute a limitation on the display device 1000, and may include more or fewer components than shown in the figure, or combine certain components, or adopt different component arrangements.
  • An embodiment of the present disclosure provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the processing component causes the processing component to execute any one of the signal transmission methods described in the foregoing embodiments. .

Abstract

一种信号传输方法。该信号传输方法应用于接收端,所述信号传输方法包括:接收发射端通过传输线发送的信号;检测接收到的信号是否存在传输错误;当所述接收到的信号存在传输错误时,由所述接收端对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,和/或,控制所述发射端对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节。

Description

信号传输方法及装置、显示装置
本申请要求于2018年07月27日提交中国专利局、申请号为201810848255.1、名称为“信号传输的抗干扰方法、信号传输装置及显示装置”及于2019年01月02日提交中国专利局、申请号为201910002796.7、名称为“信号传输方法及装置、显示装置”的两个中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及信号传输技术领域,尤其涉及一种信号传输方法及装置、显示装置。
背景技术
显示装置包括显示面板以及用于驱动该显示面板的驱动结构,该驱动结构包括控制器和驱动器。随着显示装置分辨率的不断提高,控制器与驱动器之间的信号传输速率也越来越高,相应的,需要通过点对点(peer-to-peer,简称P2P)技术实现控制器与驱动器之间的信号的高速传输。其中,P2P技术指的是信号传输的接收端和发射端之间不经过中转装置,而直接连接以进行信号传输的技术。
发明内容
一方面,提供一种信号传输方法,应用于接收端,所述信号传输方法包括:接收发射端通过传输线发送的信号;检测接收到的信号是否存在传输错误;当所述接收到的信号存在传输错误时,由所述接收端对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,和/或,控制所述发射端对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节。
在一些实施例中,所述由所述接收端对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,和/或,控制所述发射端对影响所 述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,包括:基于所述接收到的信号,确定目标参数信息;所述目标参数信息包括所述指定参数中可调节的至少一个参数的第一指示信息,所述第一指示信息包括参数值或调节程度信息;根据所述目标参数信息,由所述接收端对所述目标参数信息对应的至少一个参数进行调节,和/或,控制所述发射端对所述目标参数信息对应的至少一个参数进行调节。
在一些实施例中,所述基于所述接收到的信号,确定目标参数信息,包括:确定所述接收到的信号的程度参数,所述程度参数被配置为反映所述接收到的信号出现的传输错误的严重程度;查询预先建立的程度参数范围与参数信息,将该参数信息作为目标参数信息;所述对应关系中记录的每个参数信息包括所述指定参数中至少一个参数的第一指示信息,所述第一指示信息包括参数值或调节程度信息。
在一些实施例中,所述指定参数包括由发射端可调的第一参数和由接收端可调的第二参数,所述第一指示信息包括目标参数值,所述根据所述目标参数信息,由所述接收端对所述目标参数信息对应的至少一个参数进行调节,和/或,控制所述发射端对所述目标参数信息对应的至少一个参数进行调节,包括:在所述目标参数信息包括所述第一参数的目标参数值的情况下,将所述第一参数的目标参数值发送至所述发射端,以控制所述发射端调节所述第一参数的参数值,使得调节后的第一参数的参数值等于所述目标参数信息中对应的目标参数值;在所述目标参数信息包括所述第二参数的目标参数值的情况下,由所述接收端调节所述第二参数的参数值,使得调节后的第二参数的参数值等于所述目标参数信息中对应的目标参数值。
在一些实施例中,所述指定参数包括由发射端可调的第一参数和由接收端可调的第二参数,所述第一指示信息包括目标调节程度信息,所述根据所述目标参数信息,由所述接收端对所述目标参数信息对应的至少一个参数进行调节,和/或,控制所述发射端中对所述目标参数信息对应的至少一个参数进行调节,包括:在所述目标参数信息包括所述第一参数的目标调节程度信 息的情况下,将所述第一参数的目标调节程度信息发送至所述发射端,以控制所述发射端按照所述目标参数信息中对应的目标调节程度信息调节所述第一参数;在所述目标参数信息包括所述第二参数的目标调节程度信息的情况下,按照所述目标参数信息中对应的目标调节程度信息调节所述第二参数。
在一些实施例中,所述第一参数包括发射端的驱动电流、摆幅和压摆率中的至少一种;所述第二参数包括摆幅、均衡器、接收端的匹配电阻、滤波器的滤波参数和接收端的驱动电流中的至少一种。
在一些实施例中,所述由所述接收端对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,和/或,控制所述发射端对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,包括:按照所述指定参数中各个参数的优先级顺序,由所述接收端对所述各个参数依次进行调节,和/或,控制所述发射端对所述各个参数依次进行调节,直至达到调节结束条件。
在一些实施例中,所述调节结束条件包括以下至少一种:再次接收到的所述发射端发送的信号不存在传输错误;完成对所述指定参数中的所有参数的调节;完成对所述指定参数中的指定个数个参数的调节。
在一些实施例中,所述按照所述指定参数中各个参数的优先级顺序,由所述接收端对所述各个参数依次进行调节,和/或,控制所述发射端对所述各个参数依次进行调节,包括:按照所述指定参数中各个参数的优先级顺序,执行以下至少一者:增大第三参数的参数值;向所述发射端发送第二指示信息,所述第二指示信息被配置为指示所述发射端增大所述第一参数的参数值;执行至少一次第四参数调节过程,所述第四参数调节过程包括增大或减小所述第四参数的参数值;其中,所述第三参数包括摆幅和接收端的驱动电流中的至少一种,所述第一参数包括发射端的驱动电流、摆幅和压摆率中的至少一种,所述第四参数包括均衡器、接收端的匹配电阻和滤波器的滤波参数中的至少一种。
在一些实施例中,所述指定参数中,第三参数的优先级大于第一参数的 优先级,所述第一参数的优先级大于第四参数的优先级。
在一些实施例中,所述传输线上的信号以数据包的方式传输,所述检测接收到的信号是否存在传输错误,包括以下两种组合中的任一种:a:记录通过所述传输线接收到的信号的丢包率,当所述丢包率大于指定丢包率阈值时,确定所述接收到的信号存在传输错误;b:当接收到的数据包满足指定条件时,确定接收到的信号存在传输错误;所述指定条件包括以下至少一种:指定时长内接收到的出现传输错误的数据包的个数大于第一指定个数阈值;在接收到的指定个数的数据包中出现传输错误的数据包的个数大于第二指定个数阈值;在接收到的指定个数的数据包中连续出现传输错误的数据包的个数大于第三指定个数阈值。
在一些实施例中,所述方法还包括:在对所述指定参数中的至少一个参数进行调节之后,在达到恢复条件时,将所述指定参数中的相应参数恢复初始设置,所述初始设置为所述指定参数中的相应参数调节之前的设置;所述恢复条件包括以下至少一种:当前时刻与所述指定参数的调节时刻的时间间隔大于指定时长间隔;所述接收端再次上电。
另一方面,提供一种信号传输方法。所述信号传输方法应用于发射端,所述信号传输方法包括:通过传输线向接收端发送信号;接收所述接收端发送的控制信号,所述控制信号是所述接收端在检测到接收到的信号存在传输错误后发送的;基于接收到的所述控制信号,对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节。
在一些实施例中,所述控制信号包括第一参数的第一指示信息;所述第一参数为影响所述传输线上信号抗干扰能力的指定参数中由所述发射端可调的参数,所述第一指示信息包括目标参数值或目标调节程度信息;所述基于接收到的所述控制信号,对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,包括:基于接收到的所述控制信号所包括的第一参数的第一指示信息对所述第一参数进行调节。
在一些实施例中,所述第一指示信息包括目标参数值,所述基于接收到 的所述控制信号所包括的第一参数的第一指示信息对所述第一参数进行调节,包括:调节所述第一参数的参数值,使得调节后的第一参数的参数值等于接收到的第一指示信息所包括的目标参数值。
在一些实施例中,所述第一指示信息包括目标调节程度信息,所述基于接收到的所述控制信号所包括的第一参数的第一指示信息对所述第一参数进行调节,包括:按照接收到的第一指示信息所包括的目标调节程度信息调节所述第一参数。
在一些实施例中,所述控制信号包括第一参数的第二指示信息;所述第一参数为影响所述传输线上信号抗干扰能力的指定参数中由所述发射端可调的参数,所述第二指示信息被配置为指示所述发射端增大所述第一参数的参数值;所述基于接收到的所述控制信号,对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,包括:基于接收到的所述控制信号所包括的第一参数的第二指示信息,增大所述第一参数的参数值。
在一些实施例中,所述第一参数包括发射端的驱动电流、摆幅和压摆率中的至少一种。
在一些实施例中,所述信号传输方法还包括:在对所述指定参数中的至少一个参数进行调节之后,在达到恢复条件时,将所述指定参数中的相应参数恢复初始设置,所述初始设置为所述指定参数中的相应参数调节之前的设置;所述恢复条件包括以下至少一种:当前时刻与所述指定参数的调节时刻的时间间隔大于指定时长间隔;所述发射端再次上电。
又一方面,提供一种信号传输装置。所述信号传输装置应用于接收端,所述信号传输装置包括:第一接收部件、检测部件、控制部件、及第一调节部件。所述第一接收部件被配置为接收发射端通过传输线发送的信号。所述检测部件被配置为检测接收到的信号是否存在传输错误。所述控制部件被配置为当所述接收到的信号存在传输错误时,控制所述第一调节部件对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,及控制所述发射端对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参 数进行调节。所述第一调节部件被配置为在所述控制部件的控制下,对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节。
又一方面,提供一种信号传输装置,所述信号传输装置应用于发射端,所述信号传输装置包括:发送部件、第二接收部件、及第二调节部件。所述发送部件被配置为通过传输线向接收端发送信号。所述第二接收部件被配置为接收所述接收端发送的控制信号,所述控制信号是所述接收端在检测到接收到的信号存在传输错误后发送的。所述第二调节部件被配置为基于接收到的所述控制信号,对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节。
又一方面,提供一种信号传输装置。所述信号传输装置应用于接收端,所述信号传输装置包括:存储器和处理器。所述存储器被配置为存储所可执行指令。所述处理器被配置为执行所述可执行指令,以实现上述实施例中的任一项所述的信号传输方法中的一个或多个步骤。
又一方面,提供一种信号传输装置。所述信号传输装置应用于发射端,所述信号传输装置包括:存储器和处理器。所述存储器被配置为存储可执行指令。所述处理器被配置为指行所述可执行指令的存储器;其中,所述处理器在执行所述可执行指令时,能够实现第二方面任一所述的信号传输方法。
又一方面,提供一种显示装置。所述显示装置包括:控制器,以及多个驱动器。所述多个驱动器中的每个驱动器与所述控制器通过传输线耦接,每个所述驱动器包括如上述实施例所述的信号传输装置,所述控制器包括第四方面所述的信号传输装置。
又一方面,提供一种计算机可读存储介质。所述计算机可读存储介质中存储有指令,所述指令在处理组件上运行时,使得所述处理组件执行如上述实施例所述的信号传输方法。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图 仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为根据一些实施例的一种信号传输方法的实施环境示意图;
图2为根据一些实施例的另一种信号传输方法的实施环境示意图;
图3为根据一些实施例的一种示例性的信号示意图;
图4为根据一些实施例的另一种示例性的信号示意图;
图5为根据一些实施例的一种示例性的发射端和接收端的电路原理示意图;
图6为根据一些实施例的一种信号传输方法流程图;
图7为根据一些实施例的另一种信号传输方法流程图;
图8为根据一些实施例的又一种信号传输方法流程图;
图9为根据一些实施例的一种检测传输的信号是否存在错误的方法流程图;
图10为根据一些实施例的一种接收端确定目标参数信息的方法流程图;
图11为根据一些施例的另一种接收端确定目标参数信息的方法流程图;
图12为根据一些实施例的又一种信号传输方法流程图;
图13为根据一些实施例的一种调节指定参数的方法流程图;
图14为根据一些实施例的一种信号传输装置的框图;
图15为根据一些实施例的另一种信号传输装置的框图;
图16为根据一些实施例的一种显示装置的结构示意图。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
具体实施方式
为了使本公开的目的、技术方案和技术效果更加清楚,下面将结合附图对本公开中的实施例作进一步地详细描述,显然,所描述的实施例仅仅是本 公开一部份实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员所获得的所有其它实施例,都属于本公开保护的范围。
请参考图1,图1是本公开一些实施例提供的一种信号传输方法的实施环境示意图,该信号传输方法应用于显示装置中,该显示装置可以为:笔记本电脑、电视机、液晶面板、电子纸、有机发光二极管(Organic Light-Emitting Diode,简称OLED)面板、手机、平板电脑、显示器、数码相框或者导航仪等任何具有显示功能的产品或部件。
如图1所示,该显示装置包括控制器10和多个驱动器20,该控制器10通过多个传输线H与多个驱动器20一一对应耦接,控制器10和驱动器20之间的信号通过传输线H传输。在一些可能的设计中,该控制器10还连接有信号线L,每个驱动器20均与信号线L耦接。
上述驱动器20可以为源极驱动芯片或栅极驱动芯片,控制器10可以为时序控制器,图形处理器,系统芯片(System on Chip,简称SOC)以及集成在时序控制器中的微控制单元(Microcontroller Unit,简称MCU)中的任一种。
请参考图2,图2以控制器为时序控制器101,驱动器为源极驱动芯片201为例进行说明,该时序控制器101通过多个传输线H与多个源极驱动芯片201一一对应耦接,该时序控制器101还连接有信号线L,每个源极驱动芯片201均与信号线L耦接。
图1和图2中,信号线L的信号传输速率小于传输线H的信号传输速率。该信号线L称为低速信号线,通常用于标识电平状态。传输线H称为高速信号线或高速传输线,通常用于传输高速差分信号,示例性的,该传输线H可以为差分信号线,通常该差分信号线上的信号是单向传输的,例如,图1中,该差分信号线的信号传输方向为从控制器到驱动器的方向,图2中,该差分信号线的信号传输方向为从时序控制器到源极驱动芯片的方向。
在本公开一些实施例中,发射端和接收端是相对的概念,将发射信号的一端称为发射端,接收信号的一端称为接收端,该发射端和接收端可以根据信号传输的方向对应改变,示例性的,当控制器通过传输线向驱动器发送信 号时,发射端为控制器,接收端为驱动器。发射端和接收端之间传输信号的方式有多种,例如,发射端和接收端可以通过P2P技术进行信号的高速传输。
需要说明的是,传统的面板驱动电路中,通常采用内嵌时钟的方式,由源极驱动芯片通过传输线(也即上述传输线H)接收到的信号的特征还原出时钟,并且使用额外的信号线(也即上述信号线L)来标识电平状态。在信号从发射端通过传输线传输至接收端的过程中,由于传输线的传输速率较高,可能会受到干扰。例如,若正在通话的手机靠近正在工作的显示装置时,该显示装置中高速率传输的信号会与全球移动通信系统(Global System for Mobile communication,简称GSM)信号发生串话干扰(crosstalk),从而导致显示装置的显示异常。
在本公开一些实施例中,可以通过调节发射端和接收端中的影响信号抗干扰能力的指定参数,来提高信号传输过程中,传输线上信号的抗干扰能力。上述指定参数可以包括发射端可调的第一参数和接收端可调的第二参数。为了便于读者理解,本公开实施例对影响信号抗干扰能力的指定参数进行简单介绍:
发射端可调的第一参数包括:发射端的驱动电流、摆幅(swing level)和压摆率(Slew Rate,简称SR)中的至少一种。
其中,发射端的驱动电流是用于驱动发射端工作的电流;摆幅用于表征信号的波动程度,摆幅越大,信号的波动越明显;压摆率指的是发射端输出的信号的电压的转换速率。这些参数中,发射端的驱动电流的大小与摆幅的大小成正比,即发射端的驱动电流越大,摆幅越大,摆幅越大,信号眼图的眼高越大,传输线上信号的抗干扰能力越强;压摆率越大,信号眼图的眼宽越大,传输线上信号的抗干扰能力越强。该信号眼图是指利用实验的方法估计和改善传输线上信号的性能时在示波器上观察到的一种图形,可以表征信号的传输质量。
接收端可调的第二参数包括:摆幅、均衡器(Equalizer)、接收端的匹配电阻、滤波器的滤波参数和接收端的驱动电流中的至少一种。
其中,均衡器指的是在信号传输过程中,用于校正传输信道幅度频率特性和相位频率特性的器件,其可以为软件模块,也可以为硬件器件;该接收端的匹配电阻指的是在接收端设置的电阻,在本公开的一些实施例中,该电阻为一可调电阻。当传输高速信号的高速信号线的阻抗与接收端的电阻不匹配(大小相等或大约相等)时,高速信号的能量无法在接收端被消耗掉,此时,高速信号会在接收端发生信号反射,反射的高速信号会沿着高速信号线向发射端传输,这样就会干扰由发射端向接收端传输的高速信号。通过调整该电阻,使该电阻与高速信号线的阻抗相匹配,则可以使得该电阻将高速信号的能量在接收端被消耗掉,可以减少或避免高速信号到达接收端后所产生的信号反射现象,从而避免实际传输的高速信号被反射的高速信号所干扰。
接收端的驱动电流指的是用于驱动接收端工作的电流,接收端的驱动电流越大,则接收端接收高速信号的能力越强,这样,就能够接收信号强度较弱的高速信号,避免了高速信号的丢失,增强了高速信号的抗干扰能力。
该滤波器可以设置在接收端的前端,对传输线上传输的信号中的噪声信号进行滤波,使得发射端实际发送的信号正常通过,同时过滤噪声信号。该滤波器可以为硬件形式的滤波器,例如,该滤波器可以为双端、单端等电路形式的滤波器,或者为陶瓷滤波器这类器件形式的滤波器。在一些可能的设计中,该滤波器还可以为软件形式的滤波器,例如,该滤波器可以为数字滤波器。需要说明的是,该硬件形式的滤波器可以为铜箔、铝箔、导电布或者吸波材等屏蔽材料所制成的滤波器,但是这样可能导致设备成本的增加。当滤波器为软件形式的滤波器时,无需增加屏蔽材料,通过调节滤波器自身的影响信号抗干扰能力的参数,即可提高传输线上信号的抗干扰能力,因此会降低成本。
当滤波器为硬件形式的滤波器时,发射端通过传输线发送的信号先经过滤波器滤波后,再传输至接收端。当滤波器为软件形式的滤波器时,在一种可实现的方式中,发射端通过传输线发送的信号先经过滤波器滤波后,再传输至接收端;在另一种可实现的方式中,由接收端根据情况控制发射端发送 的高速信号是否经过滤波器。对于所述另一种可实现的方式,示例性的,当检测到接收信号中的有用信号和噪声信号的频率相差较大时,比如有用信号的频率为400MHz,噪声信号的频率为600MHz时,接收端需要对滤波器的滤波参数进行调节,控制发射端发送的信号经过滤波器。当检测到接收信号中的有用信号和噪声信号的频率相差不大时,比如,有用信号的频率和噪声信号的频率均为400MHz左右,无法对有用信号的频率和噪声信号的频率进行区分时,接收端不需要对滤波器的滤波参数进行调节,控制发射端发送的信号不经过滤波器。
示例性的,该滤波器可以为带通滤波器,请参考图3和图4,图3为本公开一些实施例提供的受到噪声信号干扰的信号示意图,图4为图3中的受到噪声信号干扰的信号经过带通滤波器滤波后的信号示意图,当采用带通滤波器对该受到噪声信号干扰的信号进行滤波后,该噪声信号被滤除,从而提高了接收端接收到的信号的准确性。
在一些实施例中,滤波器的滤波参数指的是能够影响滤波器的滤波效果的参数,例如:上述滤波器的滤波参数可以包括滤波强度和/或滤除频段。示例性的,接收端在对滤波器的滤波参数进行调节时,可以增强滤波强度,也可以增加滤除频段为噪声频段,当然还可以在增加滤除频段为噪声频段的同时,增强滤波强度,以增加对噪声信号的过滤强度,进一步提高对噪声信号的滤波效果。
上述第二参数中,摆幅和接收端的驱动电流的大小均与信号的抗干扰能力成正比,也即是摆幅和接收端的驱动电流越大,信号的抗干扰能力越强。而均衡器、接收端的匹配电阻以及滤波器的滤波参数与信号的抗干扰能力的关系为,信号的抗干扰能力先随着均衡器、接收端的匹配电阻以及滤波器的滤波参数的增大而增强,在均衡器、接收端的匹配电阻以及滤波器的滤波参数增大到某一定值后,信号的抗干扰能力再随着均衡器、接收端的匹配电阻以及滤波器的滤波参数的增大而减弱,因此,对于均衡器、接收端的匹配电阻以及滤波器的滤波参数需要结合实际情况进行调节。
在一些实施例中,发射端和接收端的结构,尤其电路结构不同,其对参数的调节方式不同。请参考图5,图5为一示意性实施例提供的发射端和接收端的电路结构示意图,在图5中,虚线L左侧为发射端10,右侧为接收端20,两者之间的传输线为差分信号线,该差分信号线包括第一传输信号线Q1和第二传输信号线Q2。
发射端10包括:第一信号端D1和接地端G1之间设置的并联的两根导线,以及SW 1、SW 2、SW 3和SW 4四个开关,其中一根导线上串联有开关SW 1和开关SW 3,另一根导线上串联有开关SW 2和开关SW 4
接收端20包括:设置在第一电源端D2和接地端G2之间的第一导线,设置在第二电源端D3和接地端G3之间的第二导线,栅极与第一传输信号线Q1(相当于图1和图2中的传输线H)耦接的第一晶体管M 1,栅极与第二传输信号线Q2耦接的第二晶体管M 2,以及接收端的匹配电阻R。第一传输信号线Q1的一端与电位点a连接,另一端与第一晶体管M 1的栅极连接。第二传输信号线Q2的一端与电位点b连接,另一端与第二晶体管M 2的栅极连接。
接收端的匹配电阻R设置在第一传输信号线Q1和第二传输信号线Q2之间,其中,电位点a为开关SW 2和开关SW 4之间的电位点,电位点b为开关SW 1和开关SW 3之间的电位点。接收端20的信号输入端Din +为第二晶体管M 2的栅极,接收端20的信号输入端Din -为第一晶体管M 1的栅极,接收端20的信号输出端Vout +位于第一电源端D2与第一晶体管M 1的第一极之间,接收端20的信号输出端Vout -位于第二电源端D3与第二晶体管M 2的第一极之间,第一晶体管M 1的第二极与接地端G2连接,第二晶体管M 2的第二极与接地端G3连接。其中,第一极和第二极分别为源极和漏极中的一者,也即是第一极为源极时,第二极为漏极,第一极为漏极时,第二极为源极。
在一些实施例中,接收端20还包括:串联在第一电源端D2与第一晶体管M 1的第一极之间的电阻R a,串联在第二电源端D3与第二晶体管M 2的第一极之间的电阻R b,在第一晶体管M 1的第二极和第二晶体管M 2的第二极之间并联的电容C 1和电阻R 1。其中,电阻R a和电阻R b为可调式电阻。
对于发射端10,可以通过同时打开开关SW 1和开关SW 4,或同时打开开关SW 2和开关SW 3的方式控制发射端的驱动电流I TX的流动方向。示例性的,当同时打开开关SW 1和开关SW 4时,发射端的驱动电流经开关SW 1、电位点b、第二传输信号线Q2、电阻R、第一传输信号线Q1、电位点a、及开关SW 4,此时,流经发射端10中的驱动电流逆时针流动。当同时打开开关SW 2和开关SW 3时,发射端的驱动电流经开关SW 2、电位点a、第一传输信号线Q1、电阻R、第二传输信号线Q2、电位点b、及开关SW 3,此时,流经发射端10中的驱动电流顺时针流动。
在一些实施例中,可以通过调节开关SW 1和开关SW 2的方式调节发射端10的驱动电流I TX的大小和/或摆幅的大小。示例性的,开关SW 1和开关SW 2由多个开关晶体管构成,在打开开关SW 1或开关SW 2时,可以通过控制打开开关SW 1或开关SW 2中晶体管的数量以控制发射端10的驱动电流I TX的大小。在电阻R不变的情况下,摆幅的大小是和发射端10的驱动电流I TX的大小成正比的,因此,还可以通过控制发射端10的驱动电流I TX的大小控制摆幅的大小。
由上述可知,压摆率指的是发射端10输出的信号的电压的转换速率,即单位时间(一般用微秒)器件输出电压值的改变的大小。这样,在发射端10的电路导通的过程中,可以通过调节对应的开关的开关速率来调节压摆率的大小。示例性的,在发射端10的电路导通的过程中增大对应的开关的开关速率,这样,单位时间内开关输出电压值的改变的就会增大。例如,电路导通时电路电压为6V,增大对应的开关的开关速率前,开关的打开速率为2μs,这样,单位时间内开关输出电压值的改变为3V/μs;而增大对应的开关的开关速率后,开关的打开速率为1μs,这样,单位时间内开关输出电压值的改变为6V/μs,这样,就实现了通过调节对应的开关的开关速率来调节压摆率的大小。
对于接收端20,可以直接调节接收端的匹配电阻R、接收端的驱动电流I RX(流经第一导线、电阻R 1、及第二导线的电流)的大小,通过调节电容C 1和电阻R 1的大小可以调节摆幅和均衡器的大小。
需要说明的是,图5所示的发射端和接收端的电路结构只是示意性说明,实际实现时,发射端和接收端的电路结构还可以有其他形式,例如在图5所示的基础上,串联或并联电阻或电容等等,相应的参数调节方式也对应调整,本公开实施例对此不做限定。
本公开的一些实施例提供了一种信号传输方法,当将该信号传输方法应用于接收端时,请参考图6,该方法包括以下步骤:
步骤301、接收端接收发射端通过传输线发送的信号。
步骤302、接收端检测接收到的信号是否存在传输错误。
步骤303、当接收到的信号存在传输错误时,由接收端对影响传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,和/或,控制发射端对影响传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节。
综上所述,本公开一些实施例提供的信号传输方法,当接收端检测到接收到的信号存在传输错误时,接收端对影响传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,和/或,接收端控制发射端对影响传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,以提高传输线上信号的抗干扰能力,使得当受到外界电磁干扰时,传输线上信号不容易丢失,从而提高了接收端接收到的信号的准确性。
在一些实施例中,在步骤303中,当接收到的信号存在传输错误时,控制发射端对影响传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节的步骤包括:当接收到的信号存在传输错误时,向发射端发送控制信号,以控制发射端对影响传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节。
本公开的一些实施例提供了一种信号传输方法,当将该信号传输方法应用于发射端时,请参考图7,该方法包括以下步骤:
步骤401、发射端通过传输线向接收端发送信号。
步骤402、发射端接收接收端发送的控制信号。
该控制信号是接收端在检测到接收到的信号存在传输错误后发送的。示 例性的,该控制信号可以为第一参数的第一指示信息,第一参数为影响传输线上信号抗干扰能力的指定参数中由发射端可调的参数,该第一指示信息包括目标参数值或目标调节程度信息。在一些可能的设计中,该控制信号还可以包括第二指示信息,该第二指示信息用于指示发射端增大第一参数的参数值。
步骤403、发射端基于接收到的控制信号,对影响传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节。
综上所述,本公开一些实施例提供的信号传输方法,当接收端检测到接收到的信号存在传输错误时,能够向发射端发送控制信号,发射端接收该控制信号,并基于该控制信号对影响传输线上信号的抗干扰能力的指定参数中的至少一个参数进行调节,以提高传输线上信号的抗干扰能力,使得当传输线上的信号受到外界电磁干扰时,传输线上的信号不容易丢失,从而提高了接收端接收到的信号的准确性。
在本公开实施例中,当接收端检测到接收到的信号存在传输错误时,对指定参数中的至少一个参数进行调节的方式可以有多种,本公开实施例以以下两种方式为例进行说明。
在第一种方式中,接收端在检测到接收到的信号存在传输错误时,先确定所需调节的目标参数信息,基于目标参数信息,由接收端对影响传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,和/或,控制发射端对影响传输线上信号抗干扰能力的指定参数中的至少一端进行参数的调节。示例性的,请参考图8,该信号传输方法可以包括以下步骤:
步骤501、发射端通过传输线向接收端发送信号。执行步骤502。
示例性的,发射端为时序控制器,接收端为源极驱动芯片,传输线为差分信号线,即时序控制器通过差分信号线向源极驱动芯片发送高速差分信号。
步骤502、接收端检测接收到的信号是否存在传输错误。
在一些实施例中,在接收端通过传输线接收信号的过程中,可以通过检测信号丢包率来确定接收到的信号是否存在传输错误。在信号传输过程中, 发射端需要发送的目标数据是被发射端分成一个个数据包进行传输的。当发射端和接收端之间的传输线受到干扰时,数据包在传输过程中会出现丢包的情况。丢包率为丢失数据包的个数与传输的数据包的总数的比值。当丢包率达到一定数值时,接收端无法恢复出发射端发送的信号,可以视为信号传输错误。接收端可以通过检测指定时长内接收到的信号的丢包率来检测接收到的信号是否出现错误,则请参考图9,上述接收端检测接收到的信号是否存在传输错误的过程可以包括以下步骤:
步骤5021、接收端记录通过传输线接收到的信号的丢包率。
发射端在发送信号时,会将信号分为多组目标数据进行传输,发射端将需要传输的目标数据划分为多个数据包,该多个数据包通常是连续传输的,每个数据包的大小(也称数据量),以及每组目标数据的大小可以在发射端和接收端进行预先约定,属于同一组目标数据的数据包通过预先约定的方式标识。例如,目标数据为一帧图像数据,则该一帧图像数据的首个数据包和末个数据包均携带指定的控制指令,其中,首个数据包携带有指令CTRL_L,CTRL_L中配置有用来指示一帧图像数据开始的标识符;末个数据包携带有指令CTRL_F,CTRL_F中配置有用来指示一帧图像数据结束的标识符;又例如,目标数据为一行图像数据,则该一行图像数据的首个数据包和末个数据包均携带有指定的标识符,其中,首个数据包携带有标识符K1,末个数据包携带有标识符K2,其中,K1指示每行数据开始,K2指示每行数据结束。
则对于接收到的每组目标数据,接收端可以通过识别对应的标识符来确定接收到的来自该组目标数据的数据包的数量T1,采用丢包率计算公式计算该组目标数据的丢包率P,该丢包率计算公式满足:P=(T-T1)/T,其中,T为目标数据中数据包的总数,其等于目标数据的大小除以数据包的大小。则上述信号的丢包率也即是每组目标数据的丢包率。假设一组目标数据的大小为100比特,一个数据包的大小为10比特,接收端接收到的属于该组目标数据的数据包的个数为5个,则该组目标数据的丢包率为(10-5)/10=50%。
步骤5022、当丢包率大于指定丢包率阈值时,接收端确定接收到的信号 存在传输错误。
接收端中可以设置丢包率阈值,当接收端检测到接收到的信号的丢包率大于丢包率阈值时,确定接收到的信号存在传输错误;当接收端检测到接收到的信号的丢包率不大于丢包率阈值时,确定接收到的信号不存在传输错误。在一些实施例中,当信号的丢包率为每组目标数据的丢包率,则当接收端检测到任一组目标数据的丢包率大于丢包率阈值时,确定接收到的信号存在传输错误;当接收端检测到的每组目标数据的丢包率均不大于丢包率阈值时,确定接收到的信号不存在传输错误。
例如,假设丢包率阈值为10%,当检测到某一组目标数据的丢包率为50%时,则确定接收到的信号存在传输错误。
需要说明的是,步骤5021和步骤5022以信号的丢包率为每组目标数据的丢包率为例进行说明,在实际实现时,丢包率的算法还可以有其他方式,本公开实施例对此不再赘述。
在另一些实施例中,当接收到的数据包满足指定条件时,确定接收到的信号存在传输错误。指定条件包括以下至少一种:指定时长内接收到的出现传输错误的数据包的个数大于第一指定个数阈值;在接收到的指定个数的数据包中出现传输错误的数据包的个数大于第二指定个数阈值;在接收到的指定个数的数据包中连续出现传输错误的数据包的个数大于第三指定个数阈值。
此处,数据包是否发生传输错误可以通过检测接收到的信号中各个数据包的信号编码格式来确定。每个数据包具有固定的编码格式,例如,每个数据包包括依次排列的前导码、起始标识、数据位和结束标识,其中,该前导码用于指示接收端进行时钟和相位校准,该起始标识用于指示数据传输开始,该数据位用于携带配置数据(也即是实际需要传输的数据),该结束标识用于指示数据传输结束。例如,该前导码由连续的至少8比特二进制的0采用曼彻斯特编码得到;该起始标识包括连续的至少2比特二进制的0;该数据位携带的配置数据为采用曼彻斯特编码得到的数据;该结束标识包括连续的至 少2比特二进制的1。
接收端在每接收到一个数据包后,检测该数据包中的信号编码格式是否出现错误,当信号编码格式出现错误时,确定该数据包出现传输错误。指定时长内接收到的出现传输错误的数据包的个数大于第一指定个数阈值,在接收到的指定个数的数据包中出现传输错误的数据包的个数大于第二指定个数阈值,在接收到的指定个数的数据包中连续出现传输错误的数据包的个数大于第三指定个数阈值,若上述三个指定条件中满足至少一个指定条件,则确定接收到的信号存在传输错误。
需要说明的是,上述两种实现方式所提供的确定接收到的信号存在传输错误的方式只是示意性说明,实际实现时,还可以采用其他方式来确定接收到的信号是否存在传输错误,本公开实施例对此不做限定。
当接收端检测接收到的信号存在传输错误时,执行步骤503,当接收端检测接收到的信号不存在传输错误时,重复执行步骤501。
步骤503、接收端基于接收到的信号,确定目标参数信息。执行步骤504,或执行步骤506,或执行步骤504和步骤506。
该目标参数信息包括指定参数中可调节的至少一个参数的第一指示信息,该第一指示信息包括参数值或调节程度信息。该参数值为参数的数值,例如参数的数值为2或10。该调节程度信息为用于反映参数的调节程度的信息,例如该调节程度信息为调节档位值,其可以为1档或2档等等,也可以为调节比例值,例如上调百分之5或下调百分之10等。也即是,该目标参数信息包括至少一个参数的目标参数值,或者,至少一个参数的目标调节程度信息。
示例性的,接收端基于接收到的信号,确定目标参数信息的实现方式可以有多种,本公开实施例以以下两种实现方式为例进行说明。
在第一种可实现的方式中,接收端可以通过查询对应关系表的方式确定目标参数信息,如图10所示,该过程可以包括以下步骤:
步骤5031、接收端确定接收到的信号的程度参数。
该程度参数被配置为反映接收到的信号出现的传输错误的严重程度。示例性的,该程度参数可以为丢包率,该丢包率可以采用上述步骤5021所述的方式计算得到,丢包率越高,接收端接收到的信号出现的传输错误越严重。该程度参数还可以为等级,通过该等级表征信号出现的传输错误的严重程度。示例性的,可以建立丢包率范围与等级的对应关系,当接收端确定接收到的信号的丢包率后,查询丢包率范围与等级的对应关系,确定与该丢包率所在范围对应的等级。例如,假设接收端确定通过传输线接收的信号的丢包率为30%,查询得到30%所在的丢包率范围20%-40%所对应的等级为二级,确定程度参数为二级。
当然,该程度参数还可以为其他信息,例如,指定时长内接收到的出现传输错误的数据包的个数,或者,在接收到的指定个数的数据包中出现传输错误的数据包的个数,又或者,在接收到的指定个数的数据包中连续出现传输错误的数据包的个数,本公开实施例对此不做限定,只要能够反映接收到的信号出现的传输错误的严重程度即可。
步骤5032、接收端查询预先建立的程度参数范围与参数信息的对应关系,得到接收到的信号的程度参数所在的程度参数范围对应的参数信息,将该参数信息作为目标参数信息。
该对应关系中记录的每个参数信息包括指定参数中至少一个参数的第一指示信息,第一指示信息包括参数值或调节程度信息。
接收端确定接收到的信号的程度参数后,确定该程度参数所在的程度参数范围,得到与该程度参数范围对应的至少一个参数的目标参数值,或者至少一个参数的目标调节程度信息。
在第二种实现方式中,上述接收端可以通过预先建立参数调节模型,确定目标参数信息。如图11所示,该过程可以包括以下步骤:
步骤5033、接收端确定接收到的信号的程度参数。
该程度参数被配置为反映接收到的信号出现的传输错误的严重程度。该接收端确定接收到的信号的程度参数的过程可以参考前述步骤5031,本公开 实施例在此不做赘述。
步骤5034、接收端将程度参数输入预设的参数调节模型。
该参数调节模型用于预测输入参数调节模型的程度参数所对应的参数信息。
步骤5035、接收端接收参数调节模型输出的目标参数信息。
示例性的,可以通过多次实验建立上述参数调节模型,接收端确定接收到的信号的程度参数后,将该程度参数输入该参数调节模型,通过该参数调节模型得到与程度参数对应的至少一个参数的目标参数值,或者至少一个参数的目标调节程度信息。
如前所述,上述指定参数包括由发射端可调的第一参数和由接收端可调的第二参数,该目标参数信息可以包括第一参数的第一指示信息和/或第二参数的第一指示信息,其中,第一参数包括发射端的驱动电流、摆幅和压摆率中的至少一种,第二参数包括摆幅、均衡器、接收端的匹配电阻、滤波器的滤波参数和接收端的驱动电流中的至少一种。则基于目标参数信息的内容,接收端可以执行以下步骤:
步骤504、当目标参数信息包括第一参数的第一指示信息,接收端将第一参数的第一指示信息发送至发射端。执行步骤505。
在一些可能的设计中,当发射端和接收端的传输线可以进行信号的双向传输时,接收端可以直接将第一参数的第一指示信息通过该传输线发送至发射端。
当发射端和接收端的传输线进行信号的单向传输时,也即是信号只能从该传输线上由发射端发送至接收端,此时接收端需要通过其他方式将第一指示信息发送至发射端。例如,在发射端和接收端之间设置额外的一根信号线,用于传输该第一指示信息,以图1和图2所示的实施环境为例,发射端和接收端之间设置有信号线L,在一种可实现的方式中,该信号线L上的信号可以双向传输,则接收端通过该信号线L将第一参数的第一指示信息发送至发射端;在另一种可实现的方式中,由于信号线L可以标识电平的状态,接收 端可以通过将信号线L上的电平状态置高或者置低来达到通知发射端第一参数的第一指示信息的效果,相当于将第一参数的第一指示信息通过该信号线L发送至发射端。
需要说明的是,即使发射端和接收端的传输线可以进行信号的双向传输,由于当前传输线处于信号受到干扰的状态,接收端通过该传输线传输的第一指示信息也容易受到干扰,因此,为了保证第一指示信息的有效传输,接收端也可以采用上述额外的信号线来发送第一参数的第一指示信息。
步骤505、发射端基于接收到的第一参数的第一指示信息,进行第一参数的调节。执行步骤507。
步骤506、当目标参数信息包括第二参数的第一指示信息,接收端基于第二参数的第一指示信息,进行第二参数的调节。执行步骤508。
请参考上述步骤503,目标参数信息包括至少一个参数的目标参数值,或者,至少一个参数的目标调节程度信息。
在第一种可实现的方式中,当目标参数信息包括至少一个参数的目标参数值时,则上述步骤504至506包括:当目标参数信息包括第一参数的目标参数值,接收端将第一参数的目标参数值发送至发射端。相应的,发射端基于第一参数的目标参数值,进行第一参数的调节,该调节过程包括:发射端调节第一参数,使得调节后的第一参数的参数值等于目标参数信息中对应的目标参数值。当目标参数信息包括第二参数的目标参数值,接收端基于第二参数的目标参数值,进行第二参数的调节,该调节过程为:接收端调节第二参数,使得调节后的第二参数的参数值等于目标参数信息中对应的目标参数值。
示例性的,当目标参数信息包括至少一个参数的目标参数值时,程度参数范围与目标参数值的对应关系如表1所示,本公开一些实施例以表1为例对上述步骤504至506进行进一步说明。假设接收端确定接收到的信号的程度参数为45%,确定该程度参数所在的范围为:41%~60%,则查询表1得到与该范围对应的目标参数信息为:压摆率为e,均衡器为f,滤波器的滤波参 数为g,则接收端将压摆率的目标参数值为e的目标参数信息发送至发射端,发射端调节压摆率,使得调节后的压摆率的参数值等于e,接收端调节均衡器以及滤波器的滤波参数,使得调节后的均衡器的参数值等于f,调节后的滤波器的滤波参数的参数值等于g。
表1
程度参数范围 目标参数值
0~20% 发射端的驱动电流为a,摆幅为b
21%~40% 发射端的驱动电流为c,接收端的匹配电阻为d
41%~60% 压摆率为e,均衡器为f,滤波器的滤波参数为g
61%~80% 均衡器为m,接收端的驱动电流为n
81%~100% 压摆率为t,接收端的匹配电阻为k
在第二种可实现的方式中,当目标参数信息包括至少一个参数的目标调节程度信息时,则上述步骤504至506包括:当目标参数信息包括第一参数的目标调节程度信息,接收端将第一参数的目标调节程度信息发送至发射端。相应的,发射端基于第一参数的目标调节程度信息,进行第一参数的调节。当目标参数信息包括第二参数的目标调节程度信息,接收端基于第二参数的目标调节程度信息,进行第二参数的调节。
示例性的,当目标参数信息包括至少一个参数的目标调节程度信息时,程度参数范围与目标调节程度信息的对应关系如表2所示,本公开一些实施例以表2为例对上述步骤504至506进行进一步说明。示例性的,假设该目标调节程度信息为调节比例值,接收端确定接收到的信号的程度参数为45%,确定该程度参数所在的范围为:41%~60%,则查询表2得到与该范围对应的目标参数信息为:压摆率上调e%,均衡器下调f%,滤波器的滤波参数上调g%,则接收端将压摆率上调e%的目标参数信息发送至发射端,发射端调节压摆率,使得调节后的压摆率的参数值在初始的数值上增大e%,接收端调节均衡器以及滤波器的滤波参数,使得调节后的均衡器的参数值在初始的数值上 减小f%,调节后的滤波器的滤波参数的参数值在初始的数值上增大g%。
表2
Figure PCTCN2019097830-appb-000001
需要说明的是,上述表1和表2只是本公开一些实施例中一种示例性说明,在实际实现时,可以根据需求和实验情况确定指定参数的目标参数信息,本公开实施例对此不做限定。
当发射端和接收端中的至少一端对指定参数进行调节后,在一种可实现的方式中,发射端和/或接收端保持调节后的指定参数的参数值不变,进行后续的信号传输。在另一种可实现的方式中,由于对指定参数进行调节后,例如,增大指定参数中的一些参数值,会导致发射端和接收端的电路的功耗增加,从而影响发射端和接收端中器件寿命,因此,为了减小调节指定参数所增加的功耗,可以执行以下步骤507和步骤508。
步骤507、在达到恢复条件时,发射端将指定参数中的相应参数恢复初始设置。
该初始设置为指定参数中的相应参数调节之前的设置。在达到恢复条件时,发射端将第一参数恢复至调节之前的设置。示例性的,仍然以上述表1和表2所示的例子为例进行说明,也即是以上述当程度参数为45%时,发射端对第一参数的调节为例进行说明,假设压摆率的初始设置为e 0,则在达到恢复条件时,发射端将压摆率的参数值从e恢复为e 0
上述恢复条件可以包括以下至少一种:
第一种恢复条件,当前时刻与指定参数的调节时刻的时间间隔大于指定时长间隔。
示例性的,该指定时长间隔可以为5分钟,发射端对第一参数进行调节后,若当前时刻与第一参数的调节时刻的时间间隔大于5分钟,则可以将第一参数恢复初始设置;若当前时刻与第一参数的调节时刻的时间间隔不大于5分钟,则将第一参数的参数值保持当前值不变。仍然以上述例子为例,该指定时长间隔为5分钟,压摆率的初始设置为e 0,发射端调节压摆率后,使得调节后的压摆率的参数值等于e,若当前时刻与压摆率的调节时刻的时间间隔大于5分钟,则发射端可以将压摆率值恢复为e 0;若当前时刻与压摆率的调节时刻的时间间隔不大于5分钟,则压摆率的值依旧为e。
第二种恢复条件,发射端再次上电。示例性的,当发射端重新上电开启时,将第一参数恢复初始设置。
步骤508、在达到恢复条件时,接收端将指定参数中的相应参数恢复初始设置。
该初始设置为指定参数中的相应参数调节之前的设置。示例性的,在达到恢复条件时,接收端将第二参数恢复至调节之前的设置。该接收端将第二参数恢复至调节之前的设置的过程可以参考上述步骤507中发射端将第一参数恢复至调节之前的设置的过程,本公开实施例在此不做赘述。
上述恢复条件可以包括以下至少一种:
第一种恢复条件,当前时刻与指定参数的调节时刻的时间间隔大于指定时长间隔。
第二种恢复条件,接收端再次上电。示例性的,当接收端重新上电开启时,将第二参数恢复初始设置。
在第一种方式中,接收端根据传输错误的严重程度范围与参数信息的对应关系,能够直接得到所需调节的参数的目标参数值或者目标调节程度信息,无需进行多次调节即可将指定参数调整至合适的值,简化了调节过程,提高了信号传输的效率。
综上所述,本公开实施例提供的信号传输方法,当接收端检测到接收到的信号存在传输错误时,能够根据传输错误的严重程度范围与参数信息的对应关系,直接得到所需调节的参数的目标参数信息,并根据该目标参数信息控制接收端和发射端中的至少一端对影响传输线上信号的抗干扰能力的参数进行调节,提高了传输线上信号的抗干扰能力,使得当受到外界电磁干扰时,传输线上信号不容易丢失,从而提高了接收端接收到的信号的准确性。且在达到恢复条件时,能够将指定参数中的参数恢复调节之前的设置,有效减小了调节指定参数所导致的功耗,从而增加了接收端和发射端中器件的寿命。其中,由于上述对指定参数的调节过程,可以设置为接收端自动检测接收到的信号是否存在传输错误,并自动控制接收端和发射端中的至少一端进行调整,因此,可以使得传输线上信号达到较优的抗干扰能力。
在第二种方式中,接收端按照指定参数中各个参数的优先级顺序,控制接收端和发射端中的至少一端进行参数的调节。示例性的,请参考图12,该信号传输方法可以包括以下步骤:
步骤601、发射端通过传输线向接收端发送信号。执行步骤602。
该步骤601的过程可以参考上述步骤501,本公开实施例对此不做赘述。
步骤602、接收端检测接收到的信号是否存在传输错误。
当接收端检测接收到的信号存在传输错误时,执行步骤603;当接收端检测接收到的信号不存在传输错误时,重复执行步骤601。
该步骤602的过程可以参考上述步骤502,本公开实施例在此不做赘述。
步骤603、当接收端检测到接收到的信号存在传输错误时,接收端按照指定参数中各个参数的优先级顺序,对影响传输线上信号抗干扰能力的指定参数中的各个参数进行调节,和/或,控制发射端对各个参数依次进行调节,直至达到调节结束条件。执行步骤604。
该调节结束条件包括以下条件中的至少一种:
第一种条件,再次接收到的发射端发送的信号不存在传输错误。
检测再次接收到的发射端发送的信号是否存在传输错误的过程可以参考 上述步骤502,本公开实施例在此不做赘述。
第二种条件,完成对指定参数中的所有参数的调节。
示例性的,当接收端按照指定参数中各个参数的优先级顺序,控制接收端和发射端中的至少一端对指定参数中的所有参数都进行了调节之后,则达到调节结束条件,可以结束调节过程。
第三种条件,完成对指定参数中的指定个数个参数的调节。
示例性的,由于进行多个参数调节的过程可能比较长,而实际上信号干扰的时间比较短,因此可以预先设置指定个数,调节该指定个数个参数的时长为调节时长,在该调节时长内所进行的调节能够快速地起到抗干扰作用。
在本公开实施例中,上述优先级顺序可以是预先设置的,也可以是根据实际情况动态调整的,可以是随机确定的,也可以是根据经验或实验测算得到的。
在一些实施例中,由于上述指定参数包括由发射端可调节的第一参数以及由接收端可调节的第二参数,而接收端在接收到信号后,如果直接进行自身可调节的第二参数的调节,则无需对发射端进行控制,减少了控制流程。但是,由于第二参数中,均衡器、接收端的匹配电阻和滤波器的滤波参数等参数需要根据实际情况进行调节,其调节过程可能需要执行多次,调节周期比较长,而摆幅和接收端的驱动电流则可以直接通过增大的方式调节,调节周期较短,因此,第二参数可以划分为调节周期较短的第三参数和调节周期较长的第四参数,其中,第三参数包括摆幅和接收端的驱动电流中的至少一种,第四参数包括均衡器、接收端的匹配电阻和滤波器的滤波参数中的至少一种。
在一些可能的设计中,由于第四参数的调节周期可能比控制发射端进行第一参数调节的周期还要长,且复杂度高,因此,该上述优先级顺序可以为第三参数的优先级大于第一参数的优先级,第一参数的优先级大于第四参数的优先级。其中,第三参数和第一参数的参数值越大,信号的抗干扰能力越强。
按照该优先级顺序,接收端可以先调节对信号抗干扰能力影响较为明显的参数,再调节需要根据实际情况调节的参数,这样,在能够通过调节优先级较高的参数使传输线上信号的抗干扰能力达到所需效果时,无需再对优先级较低的参数进行进一步调节,从而简化了调节过程,进一步提高了信号传输的效率。
根据上述指定参数中各个参数的优先级顺序,上述步骤603中控制接收端和发射端中的至少一端对各个参数依次进行调节的方式可以有多种,示例性的,请参考图13,可以按照优先级顺序执行以下步骤6031至步骤6033中的至少一个步骤:
步骤6031、接收端增大第三参数的参数值。
示例性的,接收端可以逐渐增大第三参数的参数值,例如,接收端可以按照一定的比例逐渐增大第三参数的参数值,该一定的比例可以为10%,以提高信号的抗干扰能力。例如,接收端还可以直接将第三参数的参数值增大到最大值,以使得信号的抗干扰能力达到最好的效果。
步骤6032、接收端向发射端发送第二指示信息。
该第二指示信息用于指示发射端增大第一参数的参数值,当发射端接收到该第二指示信息后,基于该第二指示信息,增大第一参数的参数值。
示例性的,发射端可以逐渐增大第一参数的参数值,例如,发射端可以按照一定的比例逐渐增大第一参数的参数值,该一定的比例可以为10%,以提高信号的抗干扰能力。在一些实施例中,发射端还可以直接将第一参数的参数值增大到最大值,以使得信号的抗干扰能力达到最好的效果。
步骤6033、接收端执行至少一次第四参数调节过程。
该第四参数调节过程包括增大或减小第四参数的参数值,上述对第四参数进行调节的过程可能有多次,当经过一次第四参数调节过程后,若信号的抗干扰能力下降,则再次执行第四参数调节过程,且再次执行的第四参数调节过程的调节方向与上次第四参数调节过程的调节方向相反。例如,当通过增大接收端的匹配电阻的电阻值的方式,执行一次第四参数调节过程后,信 号的抗干扰能力下降,则通过减小接收端的匹配电阻的电阻值的方式,再次执行第四参数调节过程。当经过一次第四参数调节过程后,若信号的抗干扰能力提高,则可以再次执行第四参数调节过程,且再次执行的第四参数调节过程的调节方向与上次第四参数调节过程的调节方向相同。例如,当通过增大接收端的匹配电阻的电阻值的方式,执行一次第四参数调节过程后,信号的抗干扰能力提高,则通过增大接收端的匹配电阻的电阻值的方式,再次执行第四参数调节过程。
步骤604、在达到恢复条件时,接收端和发射端将指定参数中的相应参数恢复初始设置。
该接收端和发射端将指定参数中的相应参数恢复初始设置的过程可以参考上述步骤507和步骤508,本公开实施例在此不做赘述。
在第二种方式中,接收端无需执行查表等动作,直接对参数进行调节,和/或,控制发射端对参数进行调节,调节过程较为简单迅速,调节效率较高。
需要说明的是,本公开一些实施例提供的信号传输方法步骤的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
综上所述,本公开实施例提供的信号传输方法,当接收端检测到接收到的信号存在传输错误时,能够按照指定参数中各个参数的优先级顺序,控制接收端和发射端中的至少一端对影响传输线上信号的抗干扰能力的参数进行调节,提高了传输线上信号的抗干扰能力,使得当受到外界电磁干扰时,传输线上信号不容易丢失,从而提高了接收端接收到的信号的准确性。且在达到恢复条件时,能够将指定参数中的参数恢复调节之前的设置,有效减小了调节指定参数所导致的功耗,从而增加了接收端和发射端中器件的寿命。其中,由于上述对指定参数的调节过程,可以设置为接收端自动检测接收到的信号是否存在传输错误,并自动控制接收端和发射端中的至少一端进行调整,因此,可以使得传输线上信号达到较优的抗干扰能力。
本公开一些实施例还提供了一种信号传输装置,应用于接收端,请参考图14,该信号传输装置700包括:
第一接收部件701,被配置为接收发射端通过传输线发送的信号。
检测部件702,被配置为检测接收到的信号是否存在传输错误。
控制部件703和第一调节部件704;
控制部件703,被配置为当接收到的信号存在传输错误时,控制第一调节部件704对影响传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,及控制发射端对影响传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节。
第一调节部件704被配置为在控制部件703的控制下,对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节。
综上所述,本公开实施例提供的信号传输装置,接收端通过第一接收部件701接收到发射端发送的信号,当接收端通过检测部件702检测到接收到的信号存在传输错误时,能够通过控制部件703控制第一调节部件704和发射端中的至少一者对影响传输线上信号的抗干扰能力的指定参数中的至少一个参数进行调节,提高了传输线上信号的抗干扰能力,使得当受到外界电磁干扰时,传输线上信号不容易丢失,从而提高了接收端接收到的信号的准确性。
在一些实施例中,当接收到的信号存在传输错误时,该控制部件703,包括:
确定子模块,用于基于接收到的信号,确定目标参数信息。该目标参数信息包括指定参数中可调节的至少一个参数的第一指示信息,该第一指示信息包括参数值或调节程度信息。
控制子模块,用于根据目标参数信息,控制第一调节部件704对目标参数信息对应的参数进行调节,和/或,控制发射端中对目标参数信息对应的参数进行调节。
在一些实施例中,该确定子模块,用于:
确定接收到的信号的程度参数。该程度参数用于反映接收到的信号出现的传输错误的严重程度。
查询预先建立的程度参数范围与参数信息的对应关系,得到接收到的信号的程度参数所在的程度参数范围对应的参数信息,将该参数信息作为目标参数信息。该对应关系中记录的每个参数信息包括指定参数中至少一个参数的第一指示信息,第一指示信息包括参数值或调节程度信息。
在一些可能的设计中,指定参数包括由发射端可调的第一参数和由接收端可调的第二参数,当该第一指示信息包括目标参数值,上述控制子模块,用于:
在目标参数信息包括第一参数的目标参数值的情况下,将第一参数的目标参数值发送至发射端,以控制发射端调节第一参数的参数值,使得调节后的第一参数的参数值等于目标参数信息中对应的目标参数值。
在目标参数信息包括第二参数的目标参数值的情况下,由接收端调节第二参数的参数值,使得调节后的第二参数的参数值等于目标参数信息中对应的目标参数值。
在一些实施例中,当第一指示信息包括目标调节程度信息,则上述控制子模块,用于:
在目标参数信息包括第一参数的目标调节程度信息的情况下,将第一参数的目标调节程度信息发送至发射端,以控制发射端按照目标参数信息中对应的目标调节程度信息调节第一参数。
在目标参数信息包括第二参数的目标调节程度信息的情况下,将第二参数的目标调节程度信息发送至第一调节部件,以控制第一调节部件按照目标参数信息中对应的目标调节程度信息调节第二参数。
在一些实施例中,第一参数包括发射端的驱动电流、摆幅和压摆率中的至少一种。第二参数包括摆幅、均衡器、接收端的匹配电阻、滤波器的滤波参数和接收端的驱动电流中的至少一种。
在第二种可实现的方式中,当接收到的信号存在传输错误时,上述第一 调节部件704,包括:
调节子模块,用于按照指定参数中各个参数的优先级顺序,控制接收端和发射端中的至少一端对各个参数依次进行调节,直至达到调节结束条件。
在一些实施例中,该调节结束条件包括以下至少一种:
再次接收到的发射端发送的信号不存在传输错误。
完成对指定参数中的所有参数的调节。
完成对指定参数中的指定个数个参数的调节。
在一些实施例中,上述调节子模块,用于:
按照指定参数中各个参数的优先级顺序,执行以下至少一者:
增大第三参数的参数值。
向发射端发送第二指示信息。该第二指示信息用于指示发射端增大第一参数的参数值。
执行至少一次第四参数调节过程。该第四参数调节过程包括增大或减小第四参数的参数值。
其中,第三参数包括摆幅和接收端的驱动电流中的至少一种,第一参数包括发射端的驱动电流、摆幅和压摆率中的至少一种,第四参数包括均衡器、接收端的匹配电阻和滤波器的滤波参数中的至少一种。
在上述指定参数中,第三参数的优先级大于第一参数的优先级,第一参数的优先级大于第四参数的优先级。
在一些实施例中,上述传输线上的信号以数据包的方式传输,上述检测部件702,用于:
记录通过传输线接收到的信号的丢包率,当丢包率大于指定丢包率阈值时,确定接收到的信号存在传输错误。
或者,当接收到的数据包满足指定条件时,确定接收到的信号存在传输错误。该指定条件包括以下至少一种:指定时长内接收到的出现传输错误的数据包的个数大于第一指定个数阈值;在接收到的指定个数的数据包中出现传输错误的数据包的个数大于第二指定个数阈值;在接收到的指定个数的数 据包中连续出现传输错误的数据包的个数大于第三指定个数阈值。
在一些实施例中,该信号传输装置700还包括:
恢复部件,用于在对指定参数中的参数进行调节之后,在达到恢复条件时,将指定参数中的相应参数恢复初始设置。该初始设置为指定参数中的相应参数调节之前的设置。
示例性的,上述恢复条件包括以下至少一种:
当前时刻与指定参数的调节时刻的时间间隔大于指定时长间隔。
接收端再次上电。
综上所述,本公开实施例提供的信号传输装置,接收端通过第一接收部件701接收到发射端发送的信号,当接收端通过检测部件702检测到接收到的信号存在传输错误时,能够通过控制部件703控制第一调节部件704和发射端中的至少一者对影响传输线上信号的抗干扰能力的参数进行调节,提高了传输线上信号的抗干扰能力,使得当受到外界电磁干扰时,传输线上信号不容易丢失,从而提高了接收端接收到的信号的准确性。且在达到恢复条件时,能够通过恢复部件将指定参数中的参数恢复调节之前的设置,进一步有效减小了调节指定参数所导致的功耗,从而增加了接收端和发射端中器件的寿命。其中,由于上述对指定参数的调节过程,可以设置为接收端自动检测接收到的信号是否存在传输错误,并自动控制接收端和发射端中的至少一端进行调整,因此,可以使得传输线上信号达到较优的抗干扰能力。
在一些实施例中,控制部件703还被配置为当接收到的信号存在传输错误时,向发射端发送控制信号,以控制发射端对影响传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节。
本公开一些实施例还提供了一种信号传输装置,应用于发射端,请参考图15,该信号传输装置800包括:
发送部件801,被配置为通过传输线向接收端发送信号。
第二接收部件802,被配置为接收接收端发送的控制信号。
该控制信号是接收端在检测到接收到的信号存在传输错误后发送的。
第二调节部件803,被配置为基于接收到的控制信号,对影响传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节。
综上所述,本公开实施例提供的信号传输装置,发射端通过发送部件801向接收端发送信号,当接收端检测到接收到的信号出现错误时,能够向发射端发送控制信号,发射端通过第二接收部件802接收该控制信号,并通过第二调节部件803基于该控制信号对影响传输线上信号的抗干扰能力的参数进行调节,提高了传输线上信号的抗干扰能力,使得当受到外界电磁干扰时,传输线上信号不容易丢失,从而提高了接收端接收到的信号的准确性。
在第一种可实现的方式中,上述控制信号为第一参数的第一指示信息,该第一参数为影响传输线上信号抗干扰能力的指定参数中由发射端可调的参数,第一指示信息包括目标参数值和目标调节程度信息中的任一种。
在一些实施例中,上述第二调节部件803包括:
调节子模块,用于基于接收到的第一参数的第一指示信息对第一参数进行调节。
当上述第一指示信息包括目标参数值,上述调节子模块,用于:
调节第一参数,使得调节后的第一参数的参数值等于对应的目标参数值。
当上述第一指示信息包括目标调节程度信息,上述调节子模块,用于:
按照目标调节程度信息调节第一参数。
在第二种可实现的方式中,上述控制信号包括第二指示信息,该第二指示信息用于指示发射端增大第一参数的参数值。此时,上述控制部件,用于:
基于第二指示信息,增大第一参数的参数值。
在一些实施例中,第一参数包括发射端的驱动电流、摆幅和压摆率中的至少一种。
在一些实施例中,上述信号传输装置800还包括:
恢复部件,用于在对指定参数中的参数进行调节之后,在达到恢复条件时,将指定参数中的参数恢复初始设置。该初始设置为指定参数中的参数调节之前的设置。
示例性的,上述恢复条件包括以下至少一种:
当前时刻与指定参数的调节时刻的时间间隔大于指定时长间隔。
发射端再次上电。
综上所述,本公开实施例提供的信号传输装置,发射端通过发送部件向接收端发送信号,当接收端检测到接收到的信号存在传输错误时,能够向发射端发送控制信号,发射端通过第二接收部件接收该控制信号,并通过第二调节部件基于该控制信号对影响传输线上信号的抗干扰能力的参数进行调节,提高了传输线上信号的抗干扰能力,使得当受到外界电磁干扰时,传输线上信号不容易丢失,从而提高了接收端接收到的信号的准确性。且在达到恢复条件时,能够通过恢复部件将指定参数中的参数恢复调节之前的设置,进一步有效减小了调节指定参数所导致的功耗,从而增加了接收端和发射端中器件的寿命。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的信号传输装置的部件具体工作过程,可以参考前述方法实施例中的对应过程,本公开实施例在此不再赘述。
本公开一些实施例还提供了一种信号传输装置,应用于接收端,该信号传输装置包括:
存储器,被配置为存储可执行指令。
处理器,被配置为执行可执行指令。
其中,处理器在执行可执行指令时,能够实现上述实施例中应用于接收端的任一信号传输方法。
本公开一些实施例还提供了一种信号传输装置,应用于发射端,该信号传输装置包括:
存储器,被配置为存储可执行指令。
处理器,被配置为执行可执行指令。
其中,处理器在执行可执行指令时,能够实现上述实施例中应用于发射端任一信号传输方法。
本公开实施例提供了一种显示装置,该显示装置包括:控制器,以及多个驱动器,多个驱动器中的每个驱动器与控制器通过传输线耦接,每个驱动器包括前述图14所示的应用于接收端的信号传输装置,控制器包括前述图15所示的应用于发射端的信号传输装置。示例性的,控制器也可以包括前述图14所示的应用于接收端的信号传输装置,每个驱动器也可以包括前述图15所示的应用于发射端的信号传输装置。
其中,控制器可以设置于显示装置的主板上,驱动器可以设置于显示装置的阵列基板上。
在一些实施例中,发射端和接收端分别为显示装置中的P2P接口。在一些实施例中,显示装置中的P2P接口分别为时序控制器和源极驱动芯片。在另一些实施例中,图形处理器集成有时序控制器的功能,在此情况下,显示装置中的P2P接口分别为图形处理器和源极驱动芯片。
请参考图16,本公开一些实施例还提供了一种显示装置1000,该显示装置1000包括:控制器以及多个驱动器。所述多个驱动器中的每个驱动器与控制器通过传输线耦接,每个驱动器包括如上述实施例所述的信号传输装置,控制器包括如上述实施例所述的信号传输装置。
显示装置1000可以是笔记本电脑、电视机、液晶面板、电子纸、OLED面板、手机、平板电脑、显示器、数码相框或者导航仪等任何具有显示功能的产品或部件。该显示装置中的控制器可以为时序控制器、SOC和MCU中的至少一种。该显示装置中的所述多个驱动器可以为源极驱动芯片。通常,显示装置1000还包括有:处理器1001和存储器1002,存储器1002用于存储处理器的可执行指令计算机指令,处理器1001在运行计算机指令时,能够实现上述实施例所述的信号传输方法的一个或多个步骤。
处理器1001可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器1001可以采用数字信号处理(Digital Signal Processing,简称DSP)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)、可编程逻辑阵列(Programmable Logic Array,简称PLA)中的至少一种硬件 形式来实现。处理器1001也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称中央处理器(Central Processing Unit,简称CPU);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器1001可以集成有图像处理器(Graphics Processing Unit,简称GPU),GPU用于负责显示装置所需要显示的内容的渲染和绘制。一些实施例中,处理器1001还可以包括人工智能(Artificial Intelligence,简称AI)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器1002可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器1002还可以包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器1002中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指令用于被处理器1001所执行以实现本公开中方法实施例提供的信号传输方法。
示例性的,装置1000还可以包括有:外围设备接口1003和至少一个外围设备。处理器1001、存储器1002和外围设备接口1003之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与外围设备接口1003相连。例如,外围设备包括:射频电路1004、显示屏1005、摄像头组件1006、音频电路1007、定位组件1008和电源1009中的至少一种。
外围设备接口1003可被用于将输入/输出(Input/Output,简称I/O)相关的至少一个外围设备连接到处理器1001和存储器1002。在一些实施例中,处理器1001、存储器1002和外围设备接口1003被集成在同一芯片或电路板上;在另一些实施例中,处理器1001、存储器1002和外围设备接口1003中的任意一个或两个可以在单独的芯片或电路板上实现,本公开实施例对此不做限定。
示例性的,射频电路1004用于接收和发射射频(Radio Frequency,简称RF)信号,也称电磁信号。射频电路1004通过电磁信号与通信网络以及其他 通信设备进行通信。射频电路1004将电信号转换为电磁信号进行发送,或者,将接收到的电磁信号转换为电信号。在一些实施例中,射频电路1004包括:天线系统、RF收发器、一个或多个放大器、调谐器、振荡器、数字信号处理器、编解码芯片组、用户身份模块卡等。射频电路1004可以通过至少一种无线通信协议来与其它装置进行通信。该无线通信协议包括但不限于:万维网、城域网、内联网、各代移动通信网络(2G、3G、4G及5G)、无线局域网和/或WIFI网络。在一些实施例中,射频电路1004还可以包括NFC有关的电路,本公开实施例对此不做限定。
示例性的,显示屏1005用于显示用户界面(User Interface,简称UI)。该UI可以包括图形、文本、图标、视频及其它们的任意组合。当显示屏1005是触摸显示屏时,显示屏1005还具有采集在显示屏1005的表面或表面上方的触摸信号的能力。该触摸信号可以作为控制信号输入至处理器1001进行处理。此时,显示屏1005还可以用于提供虚拟按钮和/或虚拟键盘,也称软按钮和/或软键盘。在一些实施例中,显示屏1005可以为一个,设置在显示装置1000的前面板;在另一些实施例中,显示屏1005可以为至少两个,分别设置在显示装置1000的不同表面或呈折叠设计;在一些可能的设计中,显示屏1005可以是柔性显示屏,设置在显示装置1000的弯曲表面上或折叠面上。示例性的,显示屏1005还可以设置成非矩形的不规则图形,也即异形屏。显示屏1005可以采用液晶显示屏(Liquid Crystal Display,简称LCD)、OLED等材质制备。
示例性的,摄像头组件1006用于采集图像或视频。在一些实施例中,摄像头组件1006包括前置摄像头和后置摄像头。通常,前置摄像头设置在显示装置1000的前面板,后置摄像头设置在显示装置1000的背面。在一些可能的设计中,后置摄像头为至少两个,分别为主摄像头、景深摄像头、广角摄像头、长焦摄像头中的任意一种,以实现主摄像头和景深摄像头融合实现背景虚化功能、主摄像头和广角摄像头融合实现全景拍摄以及虚拟现实(Virtual Reality,简称VR)拍摄功能或者其它融合拍摄功能。在另一些实施例中,摄像头组件1006还可以包括闪光灯。闪光灯可以是单色温闪光灯,也可以是双 色温闪光灯。双色温闪光灯是指暖光闪光灯和冷光闪光灯的组合,可以用于不同色温下的光线补偿。
示例性的,音频电路1007可以包括麦克风和扬声器。麦克风用于采集用户及环境的声波,并将声波转换为电信号输入至处理器1001进行处理,或者输入至射频电路1004以实现语音通信。麦克风可以为多个,分别设置在显示装置1000的不同部位,从而实现立体声的采集或降噪。麦克风还可以是阵列麦克风或全向采集型麦克风。扬声器用于将来自处理器1001或射频电路1004的电信号转换为声波。扬声器可以是传统的薄膜扬声器,也可以是压电陶瓷扬声器。当扬声器是压电陶瓷扬声器时,不仅可以将电信号转换为人类可听见的声波,也可以将电信号转换为人类听不见的声波以进行测距等用途。在一些实施例中,音频电路1007还可以包括耳机插孔。
示例性的,定位组件1008用于定位显示装置1000的当前地理位置,以实现导航或基于位置的服务(Location Based Service,简称LBS)。定位组件1008可以是基于美国的全球定位系统(Global Positioning System,简称GPS)或者中国的北斗系统或俄罗斯的伽利略系统的定位组件。
示例性的,电源1009用于为显示装置1000中的各个组件进行供电。电源1009可以是交流电、直流电、一次性电池或可充电电池。当电源1009包括可充电电池时,该可充电电池可以是有线充电电池或无线充电电池。其中,有线充电电池是通过有线线路充电的电池,无线充电电池是通过无线线圈充电的电池。该可充电电池还可以用于支持快充技术。
在一些实施例中,显示装置1000还可以包括有一个或多个传感器1010。该一个或多个传感器1010可以包括:加速度传感器1011、陀螺仪传感器1012、压力传感器1013、指纹传感器1014、光学传感器1015以及接近传感器1016。
加速度传感器1011可以检测以显示装置1000建立的坐标系的三个坐标轴上的加速度大小。比如,加速度传感器1011可以用于检测重力加速度在三个坐标轴上的分量。处理器1001可以根据加速度传感器1011采集的重力加速度信号,控制触摸显示屏1005以横向视图或纵向视图进行用户界面的显示。 加速度传感器1011还可以用于游戏或者用户的运动数据的采集。
陀螺仪传感器1012可以检测显示装置1000的机体方向及转动角度,陀螺仪传感器1012可以与加速度传感器1011协同采集用户对装置1000的3D动作。处理器1001根据陀螺仪传感器1012采集的数据,可以实现如下功能:动作感应(比如根据用户的倾斜操作来改变UI)、拍摄时的图像稳定、游戏控制以及惯性导航。
压力传感器1013可以设置在显示装置1000的侧边框和/或触摸显示屏1005的下层。当压力传感器1013设置在装置1000的侧边框时,可以检测用户对装置1000的握持信号,由处理器1001根据压力传感器1013采集的握持信号进行左右手识别或快捷操作。当压力传感器1013设置在触摸显示屏1005的下层时,由处理器1001根据用户对触摸显示屏1005的压力操作,实现对UI界面上的可操作性控件进行控制。可操作性控件包括按钮控件、滚动条控件、图标控件、菜单控件中的至少一种。
指纹传感器1014用于采集用户的指纹,由处理器1001根据指纹传感器1014采集到的指纹识别用户的身份,或者,由指纹传感器1014根据采集到的指纹识别用户的身份。在识别出用户的身份为可信身份时,由处理器1001授权该用户执行相关的敏感操作,该敏感操作包括解锁屏幕、查看加密信息、下载软件、支付及更改设置等。指纹传感器1014可以被设置在显示装置1000的正面、背面或侧面。当显示装置1000上设置有物理按键或厂商商标时,指纹传感器1014可以与物理按键或厂商商标集成在一起。
光学传感器1015用于采集环境光强度。在一些可能的设计中,处理器1001可以根据光学传感器1015采集的环境光强度,控制触摸显示屏1005的显示亮度。示例性的,当环境光强度较高时,调高触摸显示屏1005的显示亮度;当环境光强度较低时,调低触摸显示屏1005的显示亮度。在另一些实施例中,处理器1001还可以根据光学传感器1015采集的环境光强度,动态调整摄像头组件1006的拍摄参数。
接近传感器1016,也称距离传感器,通常设置在显示装置1000的前面板。 接近传感器1016用于采集用户与显示装置1000的正面之间的距离。在一些实施例中,当接近传感器1016检测到用户与显示装置1000的正面之间的距离逐渐变小时,由处理器1001控制触摸显示屏1005从亮屏状态切换为息屏状态;当接近传感器1016检测到用户与装置1000的正面之间的距离逐渐变大时,由处理器1001控制触摸显示屏1005从息屏状态切换为亮屏状态。
本领域技术人员可以理解,图16所示的结构并不构成对显示装置1000的限定,可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。
本公开实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,指令在处理组件上运行时,使得处理组件执行如上述实施例所述的任一种信号传输方法。
本公开中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (25)

  1. 一种信号传输方法,应用于接收端,所述信号传输方法包括:
    接收发射端通过传输线发送的信号;
    检测接收到的信号是否存在传输错误;
    当所述接收到的信号存在传输错误时,由所述接收端对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,和/或,控制所述发射端对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节。
  2. 根据权利要求1所述的信号传输方法,其中,
    所述由所述接收端对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,和/或,控制所述发射端对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,包括:
    基于所述接收到的信号,确定目标参数信息;所述目标参数信息包括所述指定参数中可调节的至少一个参数的第一指示信息,所述第一指示信息包括参数值或调节程度信息;
    根据所述目标参数信息,由所述接收端对所述目标参数信息对应的至少一个参数进行调节,和/或,控制所述发射端对所述目标参数信息对应的至少一个参数进行调节。
  3. 根据权利要求2所述的信号传输方法,其中,
    所述基于所述接收到的信号,确定目标参数信息,包括:
    确定所述接收到的信号的程度参数,所述程度参数被配置为反映所述接收到的信号出现的传输错误的严重程度;
    查询预先建立的程度参数范围与参数信息的对应关系,得到所述接收到的信号的程度参数所在的程度参数范围对应的参数信息,将该参数信息作为目标参数信息;所述对应关系中记录的每个参数信息包括所述指定参数中至少一个参数的第一指示信息,所述第一指示信息包括参数值或调节程度信息。
  4. 根据权利要求2或3所述的信号传输方法,其中,所述指定参数包括 由发射端可调的第一参数和由接收端可调的第二参数,所述第一指示信息包括目标参数值,
    所述根据所述目标参数信息,由所述接收端对所述目标参数信息对应的至少一个参数进行调节,和/或,控制所述发射端对所述目标参数信息对应的至少一个参数进行调节,包括:
    在所述目标参数信息包括所述第一参数的目标参数值的情况下,将所述第一参数的目标参数值发送至所述发射端,以控制所述发射端调节所述第一参数的参数值,使得调节后的第一参数的参数值等于所述目标参数信息中对应的目标参数值;
    在所述目标参数信息包括所述第二参数的目标参数值的情况下,由所述接收端调节所述第二参数的参数值,使得调节后的第二参数的参数值等于所述目标参数信息中对应的目标参数值。
  5. 根据权利要求2或3所述的信号传输方法,其中,所述指定参数包括由发射端可调的第一参数和由接收端可调的第二参数,所述第一指示信息包括目标调节程度信息,
    所述根据所述目标参数信息,由所述接收端对所述目标参数信息对应的至少一个参数进行调节,和/或,控制所述发射端对所述目标参数信息对应的至少一个参数进行调节,包括:
    在所述目标参数信息包括所述第一参数的目标调节程度信息的情况下,将所述第一参数的目标调节程度信息发送至所述发射端,以控制所述发射端按照所述目标参数信息中对应的目标调节程度信息调节所述第一参数;
    在所述目标参数信息包括所述第二参数的目标调节程度信息的情况下,按照所述目标参数信息中对应的目标调节程度信息调节所述第二参数。
  6. 根据权利要求4或5所述的信号传输方法,其中,
    所述第一参数包括发射端的驱动电流、摆幅和压摆率中的至少一种;
    所述第二参数包括摆幅、均衡器、接收端的匹配电阻、滤波器的滤波参数和接收端的驱动电流中的至少一种。
  7. 根据权利要求1所述的信号传输方法,其中,
    所述由所述接收端对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,和/或,控制所述发射端对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,包括:
    按照所述指定参数中各个参数的优先级顺序,由所述接收端对所述各个参数依次进行调节,和/或,控制所述发射端对所述各个参数依次进行调节,直至达到调节结束条件。
  8. 根据权利要求7所述的信号传输方法,其中,
    所述调节结束条件包括以下至少一种:
    再次接收到的所述发射端发送的信号不存在传输错误;
    完成对所述指定参数中的所有参数的调节;
    完成对所述指定参数中的指定个数个参数的调节。
  9. 根据权利要求7或8所述的信号传输方法,其中,
    所述按照所述指定参数中各个参数的优先级顺序,由所述接收端对所述各个参数依次进行调节,和/或,控制所述发射端对所述各个参数依次进行调节,包括:
    按照所述指定参数中各个参数的优先级顺序,执行以下至少一者:
    增大第三参数的参数值;
    向所述发射端发送第二指示信息,所述第二指示信息被配置为指示所述发射端增大第一参数的参数值;
    执行至少一次第四参数调节过程,所述第四参数调节过程包括增大或减小所述第四参数的参数值;
    其中,所述第三参数包括摆幅和接收端的驱动电流中的至少一种,所述第一参数包括发射端的驱动电流、摆幅和压摆率中的至少一种,所述第四参数包括均衡器、接收端的匹配电阻和滤波器的滤波参数中的至少一种。
  10. 根据权利要求9所述的信号传输方法,其中,所述指定参数中,第三参数的优先级大于第一参数的优先级,所述第一参数的优先级大于第四参 数的优先级。
  11. 根据权利要求1所述的信号传输方法,其中,所述传输线上的信号以数据包的方式传输,
    所述检测接收到的信号是否存在传输错误,包括以下两种组合中的任一种:
    a:记录通过所述传输线接收到的信号的丢包率,当所述丢包率大于指定丢包率阈值时,确定所述接收到的信号存在传输错误;
    b:当接收到的数据包满足指定条件时,确定接收到的信号存在传输错误;
    所述指定条件包括以下至少一种:
    指定时长内接收到的出现传输错误的数据包的个数大于第一指定个数阈值;
    在接收到的指定个数的数据包中出现传输错误的数据包的个数大于第二指定个数阈值;
    在接收到的指定个数的数据包中连续出现传输错误的数据包的个数大于第三指定个数阈值。
  12. 根据权利要求1所述的信号传输方法,所述信号传输方法还包括:
    在对所述指定参数中的至少一个参数进行调节之后,在达到恢复条件时,将所述指定参数中的相应参数恢复初始设置,所述初始设置为所述指定参数中的相应参数调节之前的设置;
    所述恢复条件包括以下至少一种:
    当前时刻与所述指定参数的调节时刻的时间间隔大于指定时长间隔;
    所述接收端再次上电。
  13. 一种信号传输方法,应用于发射端,所述信号传输方法包括:
    通过传输线向接收端发送信号;
    接收所述接收端发送的控制信号,所述控制信号是所述接收端在检测到接收到的信号存在传输错误后发送的;
    基于接收到的所述控制信号,对影响所述传输线上信号抗干扰能力的指 定参数中的至少一个参数进行调节。
  14. 根据权利要求13所述的信号传输方法,其中,
    所述控制信号包括第一参数的第一指示信息;所述第一参数为影响所述传输线上信号抗干扰能力的指定参数中由所述发射端可调的参数,所述第一指示信息包括目标参数值或目标调节程度信息,
    所述基于接收到的所述控制信号,对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,包括:
    基于接收到的所述控制信号所包括的第一参数的第一指示信息对所述第一参数进行调节。
  15. 根据权利要求14所述的信号传输方法,其中,所述第一指示信息包括目标参数值,
    所述基于接收到的所述控制信号所包括的第一参数的第一指示信息对所述第一参数进行调节,包括:
    调节所述第一参数的参数值,使得调节后的第一参数的参数值等于接收到的第一指示信息所包括的目标参数值。
  16. 根据权利要求14所述的信号传输方法,其中,所述第一指示信息包括目标调节程度信息,
    所述基于接收到的所述控制信号所包括的第一参数的第一指示信息对所述第一参数进行调节,包括:
    按照接收到的第一指示信息所包括的目标调节程度信息调节所述第一参数。
  17. 根据权利要求13所述的信号传输方法,其中,
    所述控制信号包括第一参数的第二指示信息;所述第一参数为影响所述传输线上信号抗干扰能力的指定参数中由所述发射端可调的参数,所述第二指示信息被配置为指示所述发射端增大所述第一参数的参数值;
    所述基于接收到的所述控制信号,对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,包括:
    基于接收到的所述控制信号所包括的第一参数的第二指示信息,增大所述第一参数的参数值。
  18. 根据权利要求14至17中任一项所述的信号传输方法,其中,
    所述第一参数包括发射端的驱动电流、摆幅和压摆率中的至少一种。
  19. 根据权利要求13所述的信号传输方法,所述信号传输方法还包括:
    在对所述指定参数中的至少一个参数进行调节之后,在达到恢复条件时,将所述指定参数中的相应参数恢复初始设置,所述初始设置为所述指定参数中的相应参数调节之前的设置;
    所述恢复条件包括以下至少一种:
    当前时刻与所述指定参数的调节时刻的时间间隔大于指定时长间隔;
    所述发射端再次上电。
  20. 一种信号传输装置,应用于接收端,所述信号传输装置包括:
    第一接收部件,被配置为接收发射端通过传输线发送的信号;
    检测部件,被配置为检测接收到的信号是否存在传输错误;
    控制部件和第一调节部件;
    所述控制部件被配置为当所述接收到的信号存在传输错误时,控制所述第一调节部件对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节,及控制所述发射端对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节;
    所述第一调节部件被配置为在所述控制部件的控制下,对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节。
  21. 一种信号传输装置,应用于发射端,所述信号传输装置包括:
    发送部件,被配置为通过传输线向接收端发送信号;
    第二接收部件,被配置为接收所述接收端发送的控制信号,所述控制信号是所述接收端在检测到接收到的信号存在传输错误后发送的;
    第二调节部件,被配置为基于接收到的所述控制信号,对影响所述传输线上信号抗干扰能力的指定参数中的至少一个参数进行调节。
  22. 一种信号传输装置,应用于接收端,所述信号传输装置包括:
    存储器,被配置为存储可执行指令;
    处理器,被配置为执行所述可执行指令,以实现权利要求1至12中任一项所述的信号传输方法中的一个或多个步骤。
  23. 一种信号传输装置,应用于发射端,所述信号传输装置包括:
    存储器,被配置为存储可执行指令;
    处理器,被配置为执行所述可执行指令,以实现权利要求13至19中任一项所述的信号传输方法中的一个或多个步骤。
  24. 一种显示装置,包括:控制器,以及多个驱动器,所述多个驱动器中的每个驱动器与所述控制器通过传输线耦接,每个所述驱动器包括如权利要求20所述的信号传输装置,所述控制器包括权利要求21所述的信号传输装置。
  25. 一种计算机可读存储介质,存储有指令,所述指令在处理组件上运行时,使得所述处理组件执行如权利要求1至19中任一项所述的信号传输方法。
PCT/CN2019/097830 2018-07-27 2019-07-26 信号传输方法及装置、显示装置 WO2020020324A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/643,136 US11335238B2 (en) 2018-07-27 2019-07-26 Signal transmission method and apparatus, and display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810848255 2018-07-27
CN201810848255.1 2018-07-27
CN201910002796.7A CN110768730B (zh) 2018-07-27 2019-01-02 信号传输方法及装置、显示装置
CN201910002796.7 2019-01-02

Publications (1)

Publication Number Publication Date
WO2020020324A1 true WO2020020324A1 (zh) 2020-01-30

Family

ID=69181319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097830 WO2020020324A1 (zh) 2018-07-27 2019-07-26 信号传输方法及装置、显示装置

Country Status (2)

Country Link
US (1) US11335238B2 (zh)
WO (1) WO2020020324A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923896B2 (en) * 2021-03-24 2024-03-05 Tektronix, Inc. Optical transceiver tuning using machine learning
US11923895B2 (en) 2021-03-24 2024-03-05 Tektronix, Inc. Optical transmitter tuning using machine learning and reference parameters
US11940889B2 (en) 2021-08-12 2024-03-26 Tektronix, Inc. Combined TDECQ measurement and transmitter tuning using machine learning
US11907090B2 (en) 2021-08-12 2024-02-20 Tektronix, Inc. Machine learning for taps to accelerate TDECQ and other measurements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197114A (zh) * 2006-12-04 2008-06-11 奇景光电股份有限公司 液晶显示器中时序控制器至源极驱动装置的数据传输方法
CN102867488A (zh) * 2011-07-06 2013-01-09 联咏科技股份有限公司 串行接口的控制系统
US20140078133A1 (en) * 2012-09-17 2014-03-20 Novatek Microelectronics Corp. Panel display apparatus
US20170132966A1 (en) * 2015-11-06 2017-05-11 Samsung Electronics Co., Ltd. Method of operating source driver, display driving circuit, and method of operating display driving circuit

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336139B2 (en) 2002-03-18 2008-02-26 Applied Micro Circuits Corporation Flexible interconnect cable with grounded coplanar waveguide
JP3920237B2 (ja) 2002-04-04 2007-05-30 セイコーエプソン株式会社 プリント配線基板
JP4371065B2 (ja) 2005-03-03 2009-11-25 日本電気株式会社 伝送線路、通信装置及び配線形成方法
US7609125B2 (en) 2006-10-13 2009-10-27 Avago Technologies Enterprise IP (Singapore) Pte. Ltd. System, device and method for reducing cross-talk in differential signal conductor pairs
JP4542117B2 (ja) 2007-04-27 2010-09-08 富士通株式会社 可変フィルタ素子、可変フィルタモジュール、およびこれらの製造方法
JP2009177010A (ja) 2008-01-25 2009-08-06 Toshiba Corp フレキシブルプリント配線板および電子機器
JP5508680B2 (ja) 2008-02-15 2014-06-04 株式会社ジャパンディスプレイ 表示装置
US8259249B2 (en) 2009-10-12 2012-09-04 Samsung Electronics Co., Ltd. Display substrate, method of manufacturing the display substrate and display device having the display substrate
TWI434634B (zh) 2011-08-09 2014-04-11 中原大學 Differential mode flat spiral delay line structure
TWI593329B (zh) 2013-09-24 2017-07-21 聯詠科技股份有限公司 配線方法、電子裝置與連接器
JP6237265B2 (ja) 2014-01-24 2017-11-29 富士通株式会社 プリント基板および配線配置方法
KR101880714B1 (ko) 2014-01-28 2018-07-20 가부시기가이샤즈겐 설계 지원 장치, 설계 지원 방법, 프로그램 및 메모리 매체
CN109417054B (zh) 2016-06-27 2022-11-15 Ngk电子器件株式会社 高频用陶瓷基板及高频用半导体元件收纳封装体
JP2018054852A (ja) 2016-09-28 2018-04-05 セイコーエプソン株式会社 電気光学装置および電子機器
JP2018074027A (ja) 2016-10-31 2018-05-10 株式会社ジャパンディスプレイ 回路基板及び表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197114A (zh) * 2006-12-04 2008-06-11 奇景光电股份有限公司 液晶显示器中时序控制器至源极驱动装置的数据传输方法
CN102867488A (zh) * 2011-07-06 2013-01-09 联咏科技股份有限公司 串行接口的控制系统
US20140078133A1 (en) * 2012-09-17 2014-03-20 Novatek Microelectronics Corp. Panel display apparatus
US20170132966A1 (en) * 2015-11-06 2017-05-11 Samsung Electronics Co., Ltd. Method of operating source driver, display driving circuit, and method of operating display driving circuit

Also Published As

Publication number Publication date
US11335238B2 (en) 2022-05-17
US20200335029A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
WO2020020324A1 (zh) 信号传输方法及装置、显示装置
CN110768730B (zh) 信号传输方法及装置、显示装置
US11231805B2 (en) Data transmission method, chip, controller and display device
WO2018098638A1 (zh) 一种电子设备拍摄方法和装置
CN110333834B (zh) 帧频调整方法及装置、显示设备、计算机可读存储介质
WO2019129020A1 (zh) 一种摄像头自动调焦方法、存储设备及移动终端
WO2021063099A1 (zh) 拍摄方法及电子设备
CN109710150B (zh) 按键控制方法及终端
US11567781B2 (en) Drive control method and apparatus, and display device
WO2020098388A1 (zh) 电磁干扰的调整方法及相关产品
US20220201181A1 (en) Image processing method and electronic device
WO2019192384A1 (zh) 探测参考信号传输、配置方法、用户设备及网络侧设备
AU2017440899B2 (en) Photographing method and terminal
EP3962204A1 (en) Method and apparatus for indicating spatial relation information, and communication device
US20210392221A1 (en) Mobile terminal and sound output control method
US11257439B2 (en) Data transmission method and device, display screen, and display device
US20220393506A1 (en) Circuit control apparatus and method
CN105204270A (zh) 一种拍照终端对焦距离的调整方法和装置
US11393418B2 (en) Method, device and system for data transmission, and display device
WO2021175178A1 (zh) 功率余量报告上报方法及终端
KR20200093660A (ko) 세컨더리 셀 상태의 지시 방법 및 통신 기기
WO2020025033A1 (zh) 基于音量的主从切换方法及相关产品
US11556158B2 (en) On-the-go (OTG) control and configuration method, mobile terminal, and storage medium
CN108521417B (zh) 一种通信处理方法及移动终端
WO2021052015A1 (zh) 一种触控屏控制方法和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840063

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19840063

Country of ref document: EP

Kind code of ref document: A1