WO2020020214A1 - 砷化镓多晶合成装置及合成方法 - Google Patents

砷化镓多晶合成装置及合成方法 Download PDF

Info

Publication number
WO2020020214A1
WO2020020214A1 PCT/CN2019/097465 CN2019097465W WO2020020214A1 WO 2020020214 A1 WO2020020214 A1 WO 2020020214A1 CN 2019097465 W CN2019097465 W CN 2019097465W WO 2020020214 A1 WO2020020214 A1 WO 2020020214A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
gallium arsenide
reaction
upper cavity
cavity
Prior art date
Application number
PCT/CN2019/097465
Other languages
English (en)
French (fr)
Inventor
肖亚东
雷仁贵
谈笑天
Original Assignee
汉能新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810825693.6A external-priority patent/CN108570708A/zh
Priority claimed from CN201810827502.XA external-priority patent/CN108866630A/zh
Application filed by 汉能新材料科技有限公司 filed Critical 汉能新材料科技有限公司
Publication of WO2020020214A1 publication Critical patent/WO2020020214A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • C30B28/06Production of homogeneous polycrystalline material with defined structure from liquids by normal freezing or freezing under temperature gradient
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G28/00Compounds of arsenic

Definitions

  • the present disclosure relates to the technical field of semiconductor single crystal material preparation, and in particular, to a gallium arsenide polycrystal synthesis device and a synthesis method.
  • GaAs has a wide range of applications in microelectronic devices such as high frequency, high speed, high temperature, and radiation resistance.
  • GaAs materials are divided into two categories, namely semi-insulating GaAs materials and semiconductor GaAs materials.
  • To obtain a gallium arsenide single crystal material the synthesis of a gallium arsenide polycrystalline raw material is first performed. Because gallium arsenide is a binary compound, the vapor pressure of arsenic is high, and arsenic and gallium are easily oxidized, so it is not easy to synthesize gallium arsenide polycrystals in a stoichiometric ratio.
  • the current technology uses the horizontal Bridgeman method to synthesize gallium arsenide polycrystals.
  • the general process is: put arsenic and gallium in a crucible, then place the crucible in a quartz tube for vacuum sealing; the quartz tube has a low temperature. Zone and high temperature zone, the temperature of each temperature zone is controlled by computer for polycrystalline synthesis.
  • the above synthesis method has the following defects:
  • the cross section of the synthesized polycrystalline material is D-shaped.
  • the single crystal is grown and charged, it does not match the cylindrical crucible, resulting in a relatively low filling in the container;
  • the synthetic quartz tube is placed horizontally, so the temperature gradient distribution of the thermal field in the quartz tube is uneven, which results in the synthesized polycrystalline material being prone to voids, gallium-rich, and stoichiometric deviation.
  • the problem directly affects the growth of gallium arsenide single crystal and single crystal performance parameters.
  • the purpose of the present disclosure is to provide a gallium arsenide polycrystalline synthesis device and synthesis method to solve the problem that the polycrystalline material existing in the existing synthesis technology has a relatively low filling in the PBN crucible, and the polycrystalline material easily generates voids, gallium-rich, Stoichiometry deviation.
  • the technical scheme of the gallium arsenide polycrystalline synthesis device proposed by the present disclosure is as follows:
  • a gallium arsenide polycrystal synthesis device includes: a heating device having a heating cavity; a reaction container installed in the heating cavity, the reaction container having an upper cavity and a lower cavity connected to each other; and installed in the upper cavity An inner holding container, the holding container is provided with an upward opening, and the opening is in communication with the upper cavity.
  • the vertical Bridgman method is used for polycrystalline synthesis in principle.
  • the synthesized polycrystalline material is more than the prior art, which increases the production capacity; and because the polycrystalline material is in The inside of the container is formed, so when the single crystal is charged, it can be completely matched with the container, which can increase the input amount per heat and reduce the production cost of the single crystal.
  • a gallium arsenide polycrystal synthesis device may further have the following additional technical features:
  • a container holder is installed in the reaction container, the container holder is disposed between the upper cavity and the lower cavity, and an inner wall of the container holder supports the receiving container, so An outer wall of the container holder is opposed to an inner wall of the reaction container, and the container holder is provided with a communication structure that connects the upper cavity and the lower cavity.
  • the communication structure includes a through hole provided in a middle portion of the container holder and a groove provided on an inner wall of the container holder, and the through hole communicates the upper cavity and the lower cavity, respectively.
  • the groove communicates with the through hole and the upper cavity.
  • the communication structure includes a groove opened on an outer wall of the container holder, and the groove communicates with the upper cavity and the lower cavity, respectively.
  • a material of the container holder includes one of quartz, boron nitride, mullite, silicon carbide, and graphite.
  • the heating cavity has a high temperature region and a low temperature region, the upper cavity is located in the high temperature region, and the lower cavity is located in the high temperature region.
  • a heat insulation layer is provided between the high temperature region and the low temperature region.
  • the reaction container is further provided with a constriction between the upper cavity and the lower cavity, and the radial size of the constriction is smaller than that of the upper cavity and the lower cavity.
  • the necked portions communicate with the upper cavity and the lower cavity, respectively.
  • a thermally conductive layer is connected to an inner wall of the heating device.
  • a material of the thermally conductive layer includes silicon carbide.
  • the technical scheme of the gallium arsenide polycrystal synthesis method proposed in the present disclosure includes the following steps:
  • a holding container is installed in the upper cavity, and the holding container is filled with gallium, and the lower cavity is filled with arsenic;
  • reaction vessel Subjecting the reaction vessel to a temperature rise treatment so that arsenic and gallium undergo a synthesis reaction;
  • the reaction vessel is cooled down, and then the synthesized gallium arsenide polycrystal is taken out.
  • the vertical Bridgman method is used for polycrystalline synthesis.
  • the synthesized polycrystalline material is more than the prior art, which increases the production capacity; and because the polycrystalline material is in a container, Internal molding, so when the single crystal is charged, it can be completely matched with the holding container, which can increase the input amount per heat and reduce the production cost of the single crystal.
  • the reaction container is vertically arranged and has an upper cavity and a lower cavity, the thermal field of the reaction container The temperature gradient distribution is uniform, the synthesized polycrystalline material is dense, no pores, and no gallium rich, and the synthesis ratio is greatly improved compared with the previous one.
  • a method for synthesizing gallium arsenide according to the above embodiments of the present disclosure may further have the following additional technical features:
  • the temperature increasing treatment of the reaction container specifically includes: increasing the upper cavity to a first reaction temperature, and increasing the lower cavity to a second reaction temperature, wherein the first reaction temperature is greater than The second reaction temperature.
  • the method before filling the reaction container with gallium and arsenic, the method further includes: washing the reaction container.
  • the cleaning process of the reaction container specifically includes: immersing the reaction container in an acidic cleaning solution for 15-45min, taking out the reaction container after soaking, and rinsing the reaction container with deionized water; Soak in the alkaline cleaning solution for 15-45min, take out the reaction container after soaking, and rinse with deionized water; finally, air-dry the reaction container.
  • the method before filling the reaction container with gallium and arsenic, the method further includes: washing the loading container.
  • the cleaning treatment of the loading container specifically includes: immersing the loading container in an acidic cleaning solution for 1-4 hours, taking out the loading container after soaking, and rinsing with deionized water; The holding container is immersed in deionized water, and the deionized water is heated to a preset temperature. After soaking for 15-45 minutes, the holding container is taken out and rinsed with deionized water; finally, the holding container is air-dried deal with.
  • the preset temperature is 60-80 degrees Celsius.
  • the receiving container when a receiving container is installed in the upper cavity, the receiving container is filled with a single crystal silicon wafer.
  • a container holder for supporting the receiving container is installed between the upper cavity and the lower cavity.
  • the material of the container holder is graphite, and an inner wall or an outer wall of the container holder is provided. A groove or a through hole connecting the upper cavity and the lower cavity.
  • the loading container when a loading container is installed in the upper cavity, the loading container is filled with high-purity graphite powder.
  • FIG. 1 is a schematic structural diagram of a gallium arsenide polycrystal synthesis device according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a gallium arsenide polycrystal synthesis method according to an embodiment of the present disclosure.
  • Heating device 101. High-temperature heating zone; 102. Low-temperature heating zone; 2.
  • Reaction container 201. Upper cavity; 202; Lower cavity; 3.
  • Thermally conductive layer 5.
  • this embodiment provides a gallium arsenide polycrystal synthesis device, which includes a heating device 1, a reaction container 2, and a receiving container 3.
  • the heating device 1 of this embodiment includes a heating furnace body.
  • a heat conducting layer 4 is also provided on the inner wall of the heating furnace body to improve the heat transfer efficiency.
  • the material is silicon carbide, and the heat-conducting layer 4 made of silicon carbide integrally forms a silicon carbide furnace.
  • the interior of the silicon carbide furnace is a heating chamber.
  • the reaction container 2 is vertically installed in the heating chamber, and the reaction must be guaranteed during the production process. The vertical state of the container 2.
  • the heating furnace body of this embodiment has an upper high-temperature heating area 101 and a lower low-temperature heating area 102, and a heat insulation layer is provided between the high-temperature heating area 101 and the low-temperature heating area 102, that is, in the furnace body.
  • the furnace wall is provided with a heat insulation material, which is located between the furnace wall of the high-temperature heating area 101 and the furnace wall of the low-temperature heating area 102.
  • the high-temperature heating zone 101 has a plurality of high-temperature heaters (not shown), and the low-temperature zone has a plurality of low-temperature heaters (not shown), and the temperature of each heater is controlled by a control system (not shown) of the heating furnace.
  • This design can form a temperature gradient during the synthesis of polycrystals, and promote the growth of polycrystals from the bottom right to the top.
  • the reaction container 2 in this embodiment is a quartz tube.
  • the reaction container 2 has an upper cavity 201 and a lower cavity 202 which are communicated with each other.
  • the upper cavity 201 is provided with a receiving container 3 and the lower cavity 202 is filled with Arsenic, the reaction container 2 is further provided with a constriction between the upper cavity 201 and the lower cavity 202, and the radial size of the constriction is smaller than that of the upper cavity 201 and the lower cavity 202. Radial size, the constricted necks communicate with the upper cavity 201 and the lower cavity 202, respectively.
  • constricted necks are designed to control the unit quantity that enters the upper cavity 201 when the arsenic sublimes, and prevent a large amount of arsenic from directly entering the upper cavity 201 after sublimation The problem of incomplete reaction occurs when the reaction proceeds.
  • the receiving container 3 in this embodiment is a crucible, the receiving container 3 is installed in the upper cavity 201, the receiving container 3 is provided with an upward opening 301, and the opening 301 and the opening The upper cavity 201 communicates with each other.
  • the receiving container 3 is filled with gallium, and the receiving container 3 is provided with a boron oxide layer 5 for liquid sealing the gallium.
  • the holding container 3 in this embodiment is installed in the upper cavity 201 of the reaction container 2 through a container holder 6.
  • the material of the container holder 6 is quartz, boron nitride, and molybdenum, which are relatively stable in physical and chemical properties. Materials such as ore, silicon carbide or graphite. When manufacturing a synthetic semi-insulating grade gallium arsenide polycrystalline rod, a graphite material is preferred.
  • the container holder 6 of this embodiment is installed in the reaction container 2 and is located between the upper cavity 201 and the lower cavity 202.
  • the upper portion of the container holder 6 is located in the upper cavity 201
  • the lower part is located in the neck part, and its shape is funnel-shaped, the inner wall of the container holder 6 is used to support the holding container 3, and the outer wall of the container holder 6 and the reaction container 2
  • the inner wall abuts, and the container holder 6 is provided with a communication structure that connects the upper cavity 201 and the lower cavity 202.
  • arsenic is heated to become arsenic vapor, it enters the upper cavity 201 through the communication structure and communicates with the upper cavity 201.
  • the gallium in the receiving container 3 undergoes a synthesis reaction.
  • the communication structure may include a through hole 601 opened in the middle of the container holder 6 and an inner wall of the container holder 6.
  • a groove (not shown), the through hole 601 communicates with the upper cavity 201 and the lower cavity 202 respectively, and the groove communicates with the through hole 601 and the upper cavity 201.
  • the communication structure may be a groove provided on an outer wall of the container holder 6, and the groove communicates with the upper cavity 201 and the lower cavity 202, respectively.
  • the material of the holding container 3 holder may be quartz, boron nitride, or molybdenum. Laminate, silicon carbide and other high temperature resistant materials; the entire process ensures that the holding container 3 and the reaction container 2 are vertical to prevent the gallium liquid from flowing out and sticking to the reaction container 2.
  • reaction container 2 filled with arsenic and gallium was evacuated, and the reaction container was welded and sealed, and then waited for its temperature to drop to normal temperature.
  • the heating device 1 has a plurality of heaters.
  • the heaters are used for heating, melting, and polycrystalline synthesis.
  • the temperature of the high-temperature heating zone 101 is set.
  • the temperature of the low-temperature heating zone 102 is controlled at 600-650 degrees Celsius, which can ensure good reaction efficiency.
  • arsenic vapor is formed.
  • the arsenic vapor enters the upper cavity 201 from the lower cavity 202 and undergoes a polycrystalline synthesis reaction with gallium in the holding container 3.
  • the reaction container 2 Inside the receiving container 3 of the chamber 201 are unreacted gallium, a boron oxide liquid seal, a gallium arsenide solution 7 and a gallium arsenide polycrystal 8 from top to bottom.
  • the lower chamber 202 of the reaction container 2 is high-purity arsenic.
  • reaction vessel 2 after the completion of the synthesis is slowly cooled, and the cooling method may be natural cooling or mechanical air supply cooling.
  • the mouth of the reaction container is cut open, and the synthesized cylindrical polycrystalline rod is taken out to complete the synthesis of gallium arsenide polycrystal.
  • the method further includes cleaning the reaction container 2 and the holding container 3 Processing, the cleaning processing of the reaction container 2 specifically includes:
  • the cleaning treatment of the loading container 3 specifically includes: immersing it in a mixed solution of hydrofluoric acid, nitric acid and deionized water for 1-4 hours, taking it out and washing it clean with deionized water; and then immersing it in deionized water Shock washing with heating, the temperature of deionized water is 60-80 degrees Celsius, and the immersion time in deionized water is about 15-60min; finally, rinse with deionized water, dehydrate with ethanol, then air-dry, and set aside.
  • high-purity graphite powder can also be added to the holding container 3 before synthesis to synthesize semi-insulating gallium arsenide polycrystalline rods, or single crystal silicon wafers can be filled in the holding container 3 to synthesize semiconductor-grade cylinders. Shaped polycrystalline rod.
  • the gallium arsenide polycrystal synthesis device provided by this embodiment has the following advantages:
  • the principle of device synthesis uses vertical Bridgman method for polycrystalline synthesis.
  • the shape and size of the synthesized polycrystalline material are compatible with the container. Therefore, when the single crystal is charged, it can be completely matched with the container. Increase the feed amount per furnace and reduce the cost of single crystal growth; moreover, the polycrystalline material synthesized each time is more than the original technology, which greatly reduces the production cost.
  • the synthetic quartz tube is placed vertically, and the temperature gradient of the thermal field is evenly distributed.
  • the synthesized polycrystalline material is dense, no holes, and no gallium-rich.
  • the synthesis ratio is higher than before. There are relatively large improvements;
  • the present disclosure also provides a method for synthesizing gallium arsenide polycrystal, which will be described below with reference to three specific embodiments.
  • this embodiment provides a method for synthesizing a gallium arsenide polycrystal, specifically a method for synthesizing a semi-insulating grade gallium arsenide polycrystal rod, which includes the following steps:
  • a holding container is installed in the upper cavity, and the holding container is filled with gallium, and the lower cavity is filled with arsenic;
  • reaction vessel Subjecting the reaction vessel to a temperature rise treatment so that arsenic and gallium undergo a synthetic reaction;
  • the reaction vessel is cooled down, and then the synthesized gallium arsenide polycrystal is taken out.
  • the reaction container 2 in this embodiment is a quartz tube
  • the receiving container 3 is a crucible.
  • the steps of filling gallium and arsenic in this embodiment are as follows: a certain mass of 6N or 7N (N is a unit of chemical substance purity) high-purity arsenic is loaded into the lower cavity of a cleaned quartz tube, and according to the quartz tube's The amount of space and the addition of excess arsenic ensure a balance with the decomposition pressure of gallium arsenide under high temperature melting conditions.
  • the material of the container holder 6 may be quartz, boron nitride, mullite, silicon carbide and other high temperature resistant materials; the inner or outer wall of the container holder 6 is provided with a communication upper cavity And the cavity of the lower cavity, or a through hole in the container holder 6 is provided to allow the arsenic vapor to pass at high temperature to synthesize polycrystals with gallium. The entire process ensures that the crucible and quartz tube are vertical to prevent The gallium solution flows out and sticks to the quartz tube.
  • the “sealing the reaction container and vacuuming the reaction container” in this embodiment specifically includes: moving a quartz tube filled with arsenic and gallium to a vertical vacuum tube welding furnace, evacuating it, and performing vertical Weld the seal and wait for it to cool to room temperature.
  • the “heating the reaction vessel to synthesize arsenic and gallium” in this embodiment specifically includes: placing a vacuum-sealed quartz tube in a vertical synthesis furnace, and the vertical synthesis furnace has a plurality of heaters.
  • the heater is used for heating, melting, and polycrystalline synthesis; during synthesis, the upper cavity is heated to a first reaction temperature, and the lower cavity is heated to a second reaction temperature, wherein the first reaction temperature is greater than the The second reaction temperature, that is, the upper cavity is a high temperature region, and the lower cavity is a low temperature region.
  • the first reaction temperature in this embodiment is 1200-1300 degrees Celsius
  • the second reaction temperature is 600-650 degrees Celsius, which can ensure good reaction efficiency.
  • arsenic vapor is formed.
  • the arsenic vapor enters the upper cavity from the lower cavity, and a polycrystalline synthesis reaction occurs with gallium in the crucible.
  • the crucible in the upper cavity of the quartz tube starts from the top To the bottom are unreacted gallium, boron oxide layer 5, gallium arsenide solution 7, and gallium arsenide polycrystal 8, and high purity arsenic in the lower cavity of the quartz tube.
  • the “cooling the reaction vessel and then taking out the synthesized gallium arsenide polycrystal” in this embodiment specifically includes: slowly cooling the quartz tube after the synthesis is completed.
  • the cooling method may be natural cooling or mechanical cooling. . After the cooling is completed, the quartz tube is cut open, and the synthesized cylindrical polycrystalline rod is taken out to complete the synthesis of gallium arsenide polycrystal.
  • the method further includes: Container cleaning processing, specifically the reaction container cleaning processing includes:
  • the cleaning treatment of the loading container specifically includes: immersing the PBN crucible in a mixed solution of hydrofluoric acid, nitric acid and deionized water for 1-4 hours, taking it out and washing it clean with deionized water; and then immersing it in The deionized water is heated and shaken.
  • the temperature of the deionized water is 60-80 degrees Celsius, and the immersion time in the deionized water is about 15-60min. Finally, it is rinsed with deionized water, dehydrated with ethanol, and then air-dried for use.
  • a cylindrical polycrystalline rod suitable for the size of the crucible can be synthesized, and the synthesized polycrystalline rod has the advantages of compactness, no pores, no gallium rich, and good synthesis ratio.
  • This embodiment provides a method for synthesizing a gallium arsenide polycrystal, specifically a method for synthesizing a semi-insulating grade gallium arsenide polycrystal rod.
  • the difference between the synthetic method and the first embodiment is that the material of the container holder 6 is high. Pure graphite material, and add a certain amount of high purity graphite powder in the crucible.
  • the container holder 6 includes: filling 6N or 7N high-purity gallium with a certain mass into a crucible, and then into the upper cavity of a quartz tube; or first filling the crucible into a quartz tube, and then filling 6N or 7N high-purity gallium with Into the crucible; then place the crucible on the container holder 6 in the quartz tube, and add a certain amount of high-purity graphite powder in the crucible.
  • the material of the container holder 6 is a high-purity graphite material, which is convenient for the synthesis of semi-insulating gallium arsenide.
  • the container holder 6 is provided with grooves or through holes connecting the upper cavity and the lower cavity to facilitate the passage of arsenic vapor at high temperature to synthesize polycrystals with gallium. The entire process ensures that the crucible and quartz tube are vertical to prevent the gallium liquid from flowing out and sticking. Go to the quartz tube.
  • a semi-insulating polycrystalline rod that matches the size of the crucible can be synthesized, and the synthesized polycrystalline rod has the advantages of compactness, no holes, no gallium rich, and good synthesis ratio.
  • the polycrystalline rod synthesized in this embodiment is tested by a Hall tester, and its resistivity is> 1E7 ⁇ .cm, which meets the requirements of semi-insulating polycrystalline.
  • This embodiment provides a method for synthesizing a semiconductor-grade cylindrical polycrystalline rod.
  • the synthesis method is different from the above embodiment in that a single crystal silicon wafer is filled in the receiving container.
  • the material of the container holder 6 can be quartz, boron nitride, mullite, silicon carbide and other high temperature resistant high-purity materials;
  • the inner wall of the container holder 6 is designed with many through holes to facilitate the passage of arsenic vapor at high temperatures to synthesize polycrystals with gallium. The entire process needs to ensure that the crucible and quartz tube are vertical to prevent the gallium liquid from flowing out and sticking to the quartz tube.
  • a compact, non-porous, non-gallium-rich, and well-combined cylindrical polycrystalline rod can be synthesized; and its carrier concentration meets the requirements of semiconductor-level polycrystals as measured by a Hall tester. .
  • the gallium arsenide polycrystalline synthesis process of the present disclosure has the following advantages:
  • the synthetic quartz tube is placed vertically, and the temperature gradient of the thermal field is evenly distributed.
  • the synthesized polycrystalline material is dense, non-porous, and gallium-free.
  • the synthesis ratio is larger than before. improve;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本公开提供了一种砷化镓多晶合成装置及合成方法,其中所述砷化镓多晶合成装置,包括加热装置、反应容器和承装容器,所述加热装置具有加热腔,所述反应容器安装在加热腔内,所述反应容器具有相连通的上腔和下腔,所述承装容器安装在所述上腔内,所述承装容器设有向上的开口,且所述开口与所述上腔相连通。本公开采用垂直布里奇曼法进行多晶合成,生产量高;多晶料在承装容器内成型,因此在单晶装料时,可与承装容器完全匹配,提高每炉次的投料量并降低单晶生产成本;由于反应容器垂直设置并具有上腔和下腔,反应容器热场的温度梯度分布均匀,合成的多晶料致密、无孔洞,无富镓,合成比例较之前有比较大的改善。

Description

砷化镓多晶合成装置及合成方法
本公开要求申请日为2018年7月25日、申请号为CN2018108256936、名称为“一种砷化镓合成装置”的中国专利申请,以及申请日为2018年7月25日、申请号为CN201810827502X、名称为“一种砷化镓多晶合成方法”的中国专利申请的优先权,上述申请的全部内容通过引用结合在本公开中。
技术领域
本公开涉及半导体单晶材料制备技术领域,具体涉及一种砷化镓多晶合成装置及合成方法。
背景技术
砷化镓在高频、高速、高温及抗辐照等微电子器件中具有广泛的应用。砷化镓材料分为两类,即半绝缘砷化镓材料和半导体砷化镓材料。要获得砷化镓单晶材料,首先要进行砷化镓多晶原材料的合成。由于砷化镓是二元化合物,砷的蒸汽压高,且砷和镓容易氧化,故合成符合化学计量比的砷化镓多晶并不容易。现在技术采用水平布里奇曼法进行砷化镓多晶的合成,其大体工艺过程是:将砷与镓,装入坩埚内,然后将坩埚放入石英管内,进行真空密封;石英管内具有低温区和高温区,通过计算机控制各温区的温度以进行多晶合成。但是上述合成方法具有以下缺陷:
1.由于石英管水平放置,因此合成的多晶料横截面是D形的,在单晶生长装料时,与圆柱形坩埚不匹配,导致承装容器内的填充比较低;
2.在现有技术合成多晶料时,合成石英管是水平放置的,所以石英管内热场的温度梯度分布不均匀,导致合成的多晶料容易产生空洞、富镓、化学计量比偏离等问题,直接影响砷化镓单晶生长和单晶性能参数。
发明内容
本公开的目的在于提供一种砷化镓多晶合成装置和合成方法,以解决现有的合成技术存在的多晶料在PBN坩埚内的填充比较低,多晶料容易产生空洞、富镓、化学计量比偏离等问题。
为实现上述目的,本公开提出的砷化镓多晶合成装置的技术方案如下:
一种砷化镓多晶合成装置,包括:具有加热腔的加热装置;安装在所述加热腔内的反应容器,所述反应容器具有相连通的上腔和下腔;安装在所述上腔内的承装容器,所述承装容器设有向上的开口,且所述开口与所述上腔相连通。
根据本公开提供的砷化镓多晶合成装置,从原理上采用垂直布里奇曼法进行多晶合成,合成的多晶料要多于现有技术,提高生产量;而且由于多晶料在承装容器内成型,因此在单晶装料时,可与承装容器完全匹配,提高每炉次的投料量并降低单晶生产成本。
另外,根据本公开上述实施例的一种砷化镓多晶合成装置,还可以具有如下附加的技术特征:
根据本公开的一个示例,所述反应容器内安装有容器托,所述容器托设于所述上腔和所述下腔之间,所述容器托的内壁承托所述承装容器,所述容器托的外壁与所述反应容器的内壁相抵,所述容器托设有连通所述上腔和所述下腔的连通结构。
根据本公开的一个示例,所述连通结构包括开设在所述容器托中部的贯通孔和开设在所述容器托内壁上的沟槽,所述贯通孔分别连通所述上腔和所述下腔,所述沟槽连通所述贯通孔和所述上腔。
根据本公开的一个示例,所述连通结构包括开设在所述容器托外壁上的沟槽,所述沟槽分别连通所述上腔和所述下腔。
根据本公开的一个示例,所述容器托的材质包括石英、氮化硼、莫来石、碳化硅和石墨中的一种。
根据本公开的一个示例,所述加热腔具有高温区和低温区,所述上腔位于 所述高温区内,所述下腔位于所述高温区内.
根据本公开的一个示例,所述高温区和所述低温区之间设有隔热层。
根据本公开的一个示例,所述反应容器在所述上腔和所述下腔之间还设有缩颈部,所述缩颈部的径向尺寸小于所述上腔和所述下腔的径向尺寸,所述缩颈部分别连通所述上腔和下腔。
根据本公开的一个示例,所述加热装置的内壁连接有导热层。
根据本公开的一个示例,所述导热层的材质包括碳化硅。
本公开提出的砷化镓多晶合成方法的技术方案,包括以下步骤:
提供具有相连通的上腔和下腔的反应容器,在所述上腔内安装承装容器,且所述承装容器内填装有镓,在所述下腔内填装砷;
密封所述反应容器,并对所述反应容器进行抽真空处理;
对所述反应容器进行升温处理,使砷和镓进行合成反应;
合成反应完成后,对所述反应容器进行降温处理,随后将合成的砷化镓多晶体取出。
根据本公开提供的砷化镓多晶合成方法,采用垂直布里奇曼法进行多晶合成,合成的多晶料要多于现有技术,提高生产量;而且由于多晶料在承装容器内成型,因此在单晶装料时,可与承装容器完全匹配,提高每炉次的投料量并降低单晶生产成本;由于反应容器垂直设置并具有上腔和下腔,反应容器热场的温度梯度分布均匀,合成的多晶料致密、无孔洞,无富镓,合成比例较之前有比较大的改善。
另外,根据本公开上述实施例的一种砷化镓多晶合成方法,还可以具有如下附加的技术特征:
根据本公开的一个示例,对所述反应容器进行升温处理具体包括:将所述上腔升温至第一反应温度,所述下腔升温至第二反应温度,其中,所述第一反应温度大于所述第二反应温度。
根据本公开的一个示例,对所述反应容器中装填镓和砷之前还包括:对所述反应容器清洗处理。
根据本公开的一个示例,所述反应容器清洗处理具体包括:将所述反应容器浸泡在酸性清洗溶液中15-45min,浸泡后取出反应容器,并用去离子水进行冲洗;随后将所述反应容器浸泡在碱性清洗溶液中15-45min,浸泡后取出反应容器,并用去离子水进行冲洗;最后对所述反应容器进行风干处理。
根据本公开的一个示例,对所述反应容器中装填镓和砷之前还包括:对所述承装容器清洗处理。
根据本公开的一个示例,对所述承装容器清洗处理具体包括:将所述承装容器浸泡在酸性清洗溶液中1-4h,浸泡后取出承装容器,并用去离子水进行冲洗;随后将所述承装容器浸泡在去离子水中,并将去离子水加热至预设温度,浸泡15-45min后取出所述承装容器,并用去离子水进行冲洗;最后对所述承装容器进行风干处理。
根据本公开的一个示例,所述预设温度为60-80摄氏度。
根据本公开的一个示例,在所述上腔内安装承装容器时,所述承装容器内填装有单晶硅片。
根据本公开的一个示例,所述上腔和所述下腔之间安装有承托所述承装容器的容器托,所述容器托的材质为石墨,所述容器托的内壁或外壁设有连通所述上腔和所述下腔的沟槽或通孔。
根据本公开的一个示例,在所述上腔内安装承装容器时,所述承装容器内填装有高纯石墨粉。
以上附加方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1为本公开实施例的砷化镓多晶合成装置的结构示意图;
图2为本公开实施例的砷化镓多晶合成方法的流程图。
附图中,各标号所代表的部件列表如下:
1、加热装置;101、高温加热区;102、低温加热区;2、反应容器;201、上腔;202、下腔;3、承装容器;301、开口;4、导热层;5、氧化硼层;6、容器托;601、贯通孔;7、砷化镓溶体;8、砷化镓多晶。
具体实施方式
结合附图1所示,本实施例提供了一种砷化镓多晶合成装置,包括加热装置1、反应容器2和承装容器3。具体的,本实施例的所述加热装置1包括加热炉体,为了提高加热效率,本实施例还在加热炉体的内壁上设置一层导热层4,以提高传热效率,导热层4的材质为碳化硅,碳化硅制成的导热层4整体形成一个碳化硅炉膛,碳化硅炉膛内部为加热腔,所述反应容器2竖直安装在加热腔内,并且在生产过程中也要保证反应容器2的竖直状态。
另外,本实施例的加热炉体具有上部的高温加热区101和下部的低温加热区102,并且在高温加热区101和低温加热区102之间设有隔热层,即在所述炉体的炉壁上设有隔热材料,隔热材料位于高温加热区101的炉壁和低温加热区102的炉壁之间。并且高温加热区101具有多个高温加热器(未示出),低温区具有多个低温加热器(未示出),通过加热炉的控制系统(未示出)对各个加热器进行温度控制。该设计可以在多晶合成时,能够形成温度梯度,促进多晶右下至上进行生长。
具体的,本实施例的所述反应容器2具体为石英管,反应容器2具有相连通的上腔201和下腔202,上腔201内安装有承装容器3,下腔202内填装有砷, 所述反应容器2在所述上腔201和所述下腔202之间还设有缩颈部,所述缩颈部的径向尺寸小于所述上腔201和所述下腔202的径向尺寸,所述缩颈部分别连通所述上腔201和下腔202,缩颈部的设计是为了控制砷升华时进入上腔201的单位量,防止大量砷升华后直接进入上腔201进行反应而出现的反应不完全的问题。
具体的,本实施例的承装容器3为坩埚,所述承装容器3安装在所述上腔201内,所述承装容器3设有向上的开口301,且所述开口301与所述上腔201相连通,所述承装容器3内填装由镓,并且承装容器3内设有液封所述镓的氧化硼层5。
具体的,本实施例的所述承装容器3通过容器托6安装在所述反应容器2的上腔201内,容器托6的材质为物理和化学性质较稳定的石英、氮化硼、莫来石、碳化硅或石墨等材料。在制作合成半绝缘级砷化镓多晶棒时,优选为石墨材料。
本实施例的所述容器托6安装在所述反应容器2内,并位于所述上腔201和所述下腔202之间,如图所示,容器托6的上部位于所述上腔201内,下部位于所述所颈部内,并且其形状呈漏斗状,所述容器托6的内壁用于承托所述承装容器3,所述容器托6的外壁与所述反应容器2的内壁相抵,并且在所述容器托6设有连通所述上腔201和所述下腔202的连通结构,砷加热变成砷蒸汽后,通过所述连通结构进入上腔201,并与所述承装容器3内的镓进行合成反应。
具体的,本实施例的连通结构的形式有多种,如图1所示,所述连通结构可以包括开设在所述容器托6中部的贯通孔601和开设在所述容器托6内壁上的沟槽(图中未示出),所述贯通孔601分别连通所述上腔201和所述下腔202,所述沟槽连通所述贯通孔601和所述上腔201。
再例如,所述连通结构可以是开设在所述容器托6外壁上的沟槽,所述沟槽分别连通所述上腔201和所述下腔202。
下面就本实施例的砷化镓多晶合成装置的具体合成过程进行描述:
首先,将一定质量的6N或7N(N为化学物质纯度单位)的高纯砷装入清洗干净的反应容器2的下腔202内,并根据反应容器2的空间量,添加多余的砷,确保在高温熔融条件下,与砷化镓的分解压保持平衡。
将一定质量的6N或7N的高纯镓,装入承装容器3内,然后装入反应容器2的上腔201内;或者先将承装容器3装入反应容器2内,再将6N或7N的高纯镓,装入承装容器3内;然后将承装容器3放入反应容器2内的承装容器3托上,承装容器3托的材质可为石英、氮化硼、莫来石、碳化硅等耐高温材料;整个过程确保承装容器3和反应容器2竖直,以防止镓液流出,粘到反应容器2上面。
随后,将填充有砷和镓的反应容器2抽真空,并对反应容器进行焊接密封,随后等待其降温至常温。
然后,将真空密封的反应容器2,装入加热装置1内,加热装置1内具有多个加热器,通过加热器进行升温、熔料、多晶合成;合成时,将高温加热区101的温度为控制在1200-1300摄氏度,低温加热区102的温度控制在为600-650摄氏度,能够保证良好的反应效率。
合成过程中,随着砷和镓的升温,形成砷蒸汽,砷蒸汽由下腔202进入上腔201,并且在承装容器3内与镓发生多晶合成反应,反应过程中,反应容器2上腔201的承装容器3内由上至下依次为未反应的镓、氧化硼液封、砷化镓溶体7和砷化镓多晶8,反应容器2下腔202内为高纯砷。
最后,对合成完成后的反应容器2进行缓慢降温,降温方式可以是自然降温或机械送风降温。降温完成后,将反应容器2口切开,将合成好的圆柱形多晶棒取出,完成砷化镓多晶合成。
有利的,为了防止石英管和坩埚不洁而影响多晶合成,确保合成效果,本实施例对所述反应容器2中填装镓和砷之前还包括:对反应容器2和承装容器3 清洗处理,对反应容器2清洗处理具体包括:
将石英管浸泡在氢氟酸、硝酸与去离子水的混合液中腐蚀清洗15-45min,取出用去离子水冲洗干净;而后将其浸泡在碱性玻璃清洗剂中进行清洗15-45min,取出后再用离子水冲洗干净;最后通过乙醇进行脱水,然后风干,备用。
对承装容器3进行清洗处理具体包括:将其浸泡在氢氟酸、硝酸与去离子水的混合液中腐蚀清洗1-4h,取出用去离子水冲洗干净;而后将其浸泡在去离子水中进行加热震洗,去离子水的温度为60-80摄氏度,在去离子水的浸泡时间约15-60min;最后用去离子水冲洗干净,通过乙醇进行脱水,然后风干,备用。
当然,上述的酸性清洗溶液和碱性清洗溶液的具体组合不限于此,其他能够起到清洗功能的化学清洗溶液也在本实施例的可选范围之内。
另外,还可以在合成之前在承装容器3内添加高纯石墨粉,以合成半绝缘级砷化镓多晶棒,或者在承装容器3内填装单晶硅片,以合成半导体级圆柱形多晶棒。
综上所述,根据本实施例提供的砷化镓多晶合成装置,具有以下优点:
1、装置合成原理采用垂直布里奇曼法进行多晶合成,合成的多晶料的形状尺寸与承装容器相适配,因此在单晶装料时,可与承装容器完全匹配,大大提高每炉次的投料量并降低单晶生长成本;而且每次合成的多晶料要比原有技术多,大大降低生产成本。
2、采用本实施例的合成装置合成多晶料时,合成石英管是竖直放置的,热场的温度梯度分布均匀,合成的多晶料致密、无孔洞,无富镓,合成比例较之前有比较大的改善;
3、在合成多晶料时,可以进行相应掺杂,合成出的多晶料具有半导体或半绝缘的属性;这样在单晶生长时,避免再次掺杂,可降低由于掺杂生成缺陷的 概率以及提高单晶性能的均匀性。
本公开还提供了一种砷化镓多晶合成方法,下面结合三个具体的实施例加以描述。
实施例一
如图2所示,本实施例提供了一种砷化镓多晶合成方法,具体是合成半绝缘级砷化镓多晶棒的方法,其包括以下步骤:
提供具有相连通的上腔和下腔的反应容器,在所述上腔内安装承装容器,且所述承装容器内填装有镓,在所述下腔内填装砷;
密封所述反应容器,并对所述反应容器进行抽真空处理;
对所述反应容器进行升温处理,以使砷和镓进行合成反应;
合成反应完成后,对所述反应容器进行降温处理,随后将合成的砷化镓多晶体取出。
具体的,本实施例的反应容器2为石英管,承装容器3为坩埚。
本实施例的填装镓和砷的步骤具体为:将一定质量的6N或7N(N为化学物质纯度单位)的高纯砷装入清洗干净的石英管的下腔内,并根据石英管的空间量,添加多余的砷,确保在高温熔融条件下,与砷化镓的分解压保持平衡。
将一定质量的6N或7N的高纯镓,装入坩埚内,然后装入石英管的上腔内;或者先将坩埚装入石英管内,再将6N或7N的高纯镓,装入坩埚内;然后将坩埚放入石英管内的容器托6上,容器托6的材质可为石英、氮化硼、莫来石、碳化硅等耐高温材料;容器托6的内壁或外壁设有连通上腔和下腔的沟槽,或者在容器托6内设有连通上腔和下腔的通孔,便于砷蒸汽高温下通过,与镓合成多晶,整个过程确保坩埚和石英管竖直,以防止镓液流出,粘到石英管上面。
本实施例的“密封所述反应容器,并对所述反应容器进行抽真空处理”具体包括:将填充有砷和镓的石英管移至竖直真空焊管炉,对其抽真空,并进行垂直焊接密封,随后等待其降温至常温。
本实施例的“对所述反应容器进行升温处理,以使砷和镓进行合成反应”具体包括:将真空密封的石英管,装入垂直合成炉内,垂直合成炉内具有多个加热器,通过加热器进行升温、熔料、多晶合成;合成时,将所述上腔升温至第一反应温度,所述下腔升温至第二反应温度,其中,所述第一反应温度大于所述第二反应温度,即上腔为高温区,下腔为低温区。具体的,本实施例的第一反应温度为1200-1300摄氏度,第二反应温度为600-650摄氏度,能够保证良好的反应效率。
合成过程中,随着砷和镓的升温,形成砷蒸汽,砷蒸汽由下腔进入上腔,并且在坩埚内与镓发生多晶合成反应,反应过程中,石英管上腔的坩埚内由上至下依次为未反应的镓、氧化硼层5、砷化镓溶体7和砷化镓多晶8,石英管下腔内为高纯砷。
本实施例的“对所述反应容器进行降温处理,随后将合成的砷化镓多晶体取出”具体包括:对合成完成后的石英管进行缓慢降温,降温方式可以是自然降温或机械送风降温。降温完成后,将石英管口切开,将合成好的圆柱形多晶棒取出,完成砷化镓多晶合成。
有利的,为了防止石英管和坩埚不洁而影响多晶合成,确保合成效果,本实施例对所述反应容器(即石英管)中填装镓和砷之前还包括:对反应容器和承装容器清洗处理,对反应容器清洗处理具体包括:
将石英管浸泡在氢氟酸、硝酸与去离子水的混合液中腐蚀清洗15-45min,取出用去离子水冲洗干净;而后将其浸泡在碱性玻璃清洗剂中进行清洗15-45min,取出后再用离子水冲洗干净;最后通过乙醇进行脱水,然后风干,备用。
对承装容器(坩埚)进行清洗处理具体包括:将PBN坩埚浸泡在氢氟酸、硝酸与去离子水的混合液中腐蚀清洗1-4h,取出用去离子水冲洗干净;而后将其浸泡在去离子水中进行加热震洗,去离子水的温度为60-80摄氏度,在去离 子水的浸泡时间约15-60min;最后用去离子水冲洗干净,通过乙醇进行脱水,然后风干,备用。
当然,上述的酸性清洗溶液和碱性清洗溶液的具体组合不限于此,其他能够起到清洗功能的化学清洗溶液也在本实施例的可选范围之内。
通过上述合成工艺能够合成出与坩埚尺寸相适配的圆柱形多晶棒,且合成后的多晶棒具有致密、无孔洞、无富镓、合成比例佳等优点。
实施例二
本实施例提供了一种砷化镓多晶合成方法,具体是合成半绝缘级砷化镓多晶棒的方法,其合成方法与实施例一的区别之处在于:容器托6的材质为高纯石墨材料,并且在坩埚内添加一定量的高纯石墨粉。
具体包括:将一定质量的6N或7N的高纯镓,装入坩埚内,然后装入石英管的上腔内;或者先将坩埚装入石英管内,再将6N或7N的高纯镓,装入坩埚内;然后将坩埚放入石英管内的容器托6上,并且在坩埚内添加一定量的高纯石墨粉,容器托6的材质为高纯石墨材料,便于合成半绝缘级砷化镓多晶;容器托6设有连通上腔和下腔的沟槽或通孔,便于砷蒸汽高温下通过,与镓合成多晶,整个过程确保坩埚和石英管竖直,以防止镓液流出,粘到石英管上面。
本实施例的其余步骤与上述实施例相同,因此本实施例不做过多赘述。
通过上述合成工艺能够合成出与坩埚尺寸相适配的半绝缘级多晶棒,且合成后的多晶棒具有致密、无孔洞、无富镓、合成比例佳等优点。将本实施例合成的多晶棒的通过霍尔测试仪检测,其电阻率>1E7Ω.cm,满足半绝缘级多晶的要求。
实施例三
本实施例提供了一种半导体级圆柱形多晶棒的合成方法,其合成方法与上述实施例不同之处在于:在所述承装容器内填装单晶硅片。
具体包括:将一定量的6N或7N的高纯砷,装入清洗干净的石英管内,并 根据石英管1的空间量,添加多余的砷,确保在高温熔融条件下,与砷化镓的分解压保持平衡;
将一定量的6N或7N的高纯镓,装入坩埚内,然后装入石英管内;或者先将坩埚装入石英管内,再将一定量的6N或7N的高纯镓,以及一定量的高纯单晶硅片,装入坩埚内;然后将其放入石英管内的容器托6上,容器托6的材质可为石英、氮化硼、莫来石、碳化硅等耐高温高纯材料;容器托6内壁设计有许多通孔,便于砷蒸汽高温下通过,与镓合成多晶,整个过程需要保证坩埚、石英管竖直,以免镓液流出,粘到石英管上面。
本实施例的其余步骤与上述实施例相同,因此本实施例不做过多赘述。
通过本实施例的合成方法,能够合成出致密、无孔洞、无富镓、合成比例佳的圆柱形多晶棒;并且通过霍尔测试仪检测,其载流子浓度满足半导体级多晶的要求。
结合以上三个实施例所述,本公开的砷化镓多晶合成工艺具有以下优点:
1、提出采用垂直布里奇曼法进行多晶合成,合成的多晶料的形状尺寸与承装容器(坩埚)相适配,因此在单晶装料时,可与坩埚完全匹配,大大提高每炉次的投料量并降低单晶生长成本;而且每次合成的多晶料要比原有技术多,大大降低生产成本。
2、采用本方案合成多晶料时,合成石英管是竖直放置的,热场的温度梯度分布均匀,合成的多晶料致密、无孔洞,无富镓,合成比例较之前有比较大的改善;
3、在合成多晶料时,可以进行相应掺杂,合成出的多晶料具有半导体或半绝缘的属性;这样在单晶生长时,避免再次掺杂,可降低由于掺杂生成缺陷的概率以及提高单晶性能的均匀性。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的 范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种砷化镓多晶合成装置,其中,包括:
    具有加热腔的加热装置;
    竖直安装在所述加热腔内的反应容器,所述反应容器具有相连通的上腔和下腔;
    安装在所述上腔内的承装容器,所述承装容器设有向上的开口,且所述开口与所述上腔相连通。
  2. 根据权利要求1所述的砷化镓多晶合成装置,其中,所述反应容器内安装有容器托,所述容器托设于所述上腔和所述下腔之间,所述容器托的内壁承托所述承装容器,所述容器托的外壁与所述反应容器的内壁相抵,且所述容器托设有连通所述上腔和所述下腔的连通结构。
  3. 根据权利要求2所述的砷化镓多晶合成装置,其中,所述连通结构包括开设在所述容器托中部的贯通孔和开设在所述容器托内壁上的沟槽,所述贯通孔分别连通所述上腔和所述下腔,所述沟槽连通所述贯通孔和所述上腔。
  4. 根据权利要求2所述的砷化镓多晶合成装置,其中,所述连通结构包括开设在所述容器托外壁上的沟槽,所述沟槽分别连通所述上腔和所述下腔。
  5. 根据权利要求2-4任一项所述的砷化镓多晶合成装置,其中,所述容器托的材质包括石英、氮化硼、莫来石、碳化硅和石墨中的一种。
  6. 根据权利要求1-4任一项所述的砷化镓多晶合成装置,其中,所述加热腔具有高温区和低温区,所述上腔位于所述高温区内,所述下腔位于所述高温区内。
  7. 根据权利要求6所述的砷化镓多晶合成装置,其中,所述高温区和所述低温区之间设有隔热层。
  8. 根据权利要求1-4任一项所述的砷化镓多晶合成装置,其中,所述反应容器在所述上腔和所述下腔之间还设有缩颈部,所述缩颈部的径向尺寸小于所述 上腔和所述下腔的径向尺寸,所述缩颈部分别连通所述上腔和下腔。
  9. 根据权利要求1-4任一项所述砷化镓多晶合成装置,其中,所述加热装置的内壁连接有导热层。
  10. 根据权利要求9所述砷化镓多晶合成装置,其中,所述导热层的材质包括碳化硅。
  11. 一种砷化镓多晶合成方法,其中,包括以下步骤:
    提供具有相连通的上腔和下腔的反应容器,在所述上腔内安装承装容器,且所述承装容器内填装有镓,在所述下腔内填装砷;
    密封所述反应容器,并对所述反应容器进行抽真空处理;
    对所述反应容器进行升温处理,以使砷和镓进行合成反应;
    合成反应完成后,对所述反应容器进行降温处理,随后将合成的砷化镓多晶体取出。
  12. 根据权利要求11所述砷化镓多晶合成方法,其中,对所述反应容器进行升温处理具体包括:将所述上腔升温至第一反应温度,所述下腔升温至第二反应温度,其中,所述第一反应温度大于所述第二反应温度。
  13. 根据权利要求11所述砷化镓多晶合成方法,其中,对所述反应容器中装填镓和砷之前还包括:对所述反应容器清洗处理。
  14. 根据权利要求13所述砷化镓多晶合成方法,其中,所述反应容器清洗处理具体包括:
    将所述反应容器浸泡在酸性清洗溶液中15-45min,浸泡后取出反应容器,并用去离子水进行冲洗;
    随后将所述反应容器浸泡在碱性清洗溶液中15-45min,浸泡后取出反应容器,并用去离子水进行冲洗;
    最后对所述反应容器进行风干处理。
  15. 根据权利要求11所述砷化镓多晶合成方法,其中,对所述反应容器中装填镓和砷之前还包括:对所述承装容器清洗处理。
  16. 根据权利要求15所述砷化镓多晶合成方法,其中,所述承装容器清洗处理具体包括:
    将所述承装容器浸泡在酸性清洗溶液中1-4h,浸泡后取出承装容器,并用去离子水进行冲洗;
    随后将所述承装容器浸泡在去离子水中,并将去离子水加热至预设温度,浸泡15-45min后取出所述承装容器,并用去离子水进行冲洗;
    最后对所述承装容器进行风干处理。
  17. 根据权利要求16所述砷化镓多晶合成方法,其中,所述预设温度为60-80摄氏度。
  18. 根据权利要求11-17任一项所述砷化镓多晶合成方法,其中,在所述上腔内安装承装容器时,所述承装容器内填装有单晶硅片。
  19. 根据权利要求11-17任一项所述砷化镓多晶合成方法,其中,所述上腔和所述下腔之间安装有承托所述承装容器的容器托,所述容器托的材质为石墨,所述容器托设有连通所述上腔和所述下腔的沟槽或通孔。
  20. 根据权利要求11-17任一项所述砷化镓多晶合成方法,其中,在所述上腔内安装承装容器时,所述承装容器内填装有高纯石墨粉。
PCT/CN2019/097465 2018-07-25 2019-07-24 砷化镓多晶合成装置及合成方法 WO2020020214A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810827502.X 2018-07-25
CN201810825693.6 2018-07-25
CN201810825693.6A CN108570708A (zh) 2018-07-25 2018-07-25 一种砷化镓多晶合成装置
CN201810827502.XA CN108866630A (zh) 2018-07-25 2018-07-25 一种砷化镓多晶合成方法

Publications (1)

Publication Number Publication Date
WO2020020214A1 true WO2020020214A1 (zh) 2020-01-30

Family

ID=69181289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097465 WO2020020214A1 (zh) 2018-07-25 2019-07-24 砷化镓多晶合成装置及合成方法

Country Status (1)

Country Link
WO (1) WO2020020214A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899714A (zh) * 2012-09-25 2013-01-30 四川大学 一种磷硅镉单晶体的生长方法与生长容器
KR20140131312A (ko) * 2014-10-24 2014-11-12 윤영덕 갈륨비소 다결정체 합성 장치 및 방법
CN104313680A (zh) * 2014-09-28 2015-01-28 中国工程物理研究院化工材料研究所 一种用于晶体生长的垂直管式炉设备及其使用方法
CN105154978A (zh) * 2015-10-14 2015-12-16 云南鑫耀半导体材料有限公司 砷化镓多晶磁场生长炉以及生长方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899714A (zh) * 2012-09-25 2013-01-30 四川大学 一种磷硅镉单晶体的生长方法与生长容器
CN104313680A (zh) * 2014-09-28 2015-01-28 中国工程物理研究院化工材料研究所 一种用于晶体生长的垂直管式炉设备及其使用方法
KR20140131312A (ko) * 2014-10-24 2014-11-12 윤영덕 갈륨비소 다결정체 합성 장치 및 방법
CN105154978A (zh) * 2015-10-14 2015-12-16 云南鑫耀半导体材料有限公司 砷化镓多晶磁场生长炉以及生长方法

Similar Documents

Publication Publication Date Title
JP7254932B2 (ja) インジウム・リン混合物を用いてリン化インジウム結晶を製造するシステム
CN108060454B (zh) 一种vgf法制备砷化镓晶体的装置及方法
CN206624942U (zh) 一种物理气相输运法生长碳化硅晶体的装置
JP5005651B2 (ja) 炭素ドーピング、抵抗率制御、温度勾配制御を伴う、剛性サポートを備える半導体結晶を成長させるための方法および装置
KR100441357B1 (ko) 단결정인상방법및그실행장치
US4556436A (en) Method of preparing single crystalline cubic silicon carbide layers
CN113322510A (zh) SiC单晶生长装置及液相外延SiC单晶生长方法
CN108866630A (zh) 一种砷化镓多晶合成方法
JP2003277197A (ja) CdTe単結晶およびCdTe多結晶並びにその製造方法
CN112359409A (zh) 一种砷化镓单晶生长装置及生长方法
CN106757322A (zh) 一种氮化铝原料高温提纯方法
CN112663134A (zh) 一种双温区独立控制的碳化硅单晶生长装置和生长方法
WO2020020214A1 (zh) 砷化镓多晶合成装置及合成方法
CN109183143A (zh) 一种利用还原气体提高AlN单晶纯度的方法
JP2001509769A (ja) 大形炭化珪素単結晶成長装置
CN207376142U (zh) 一种高纯半绝缘的碳化硅单晶生长装置
CN212895088U (zh) 一种液态磷注入法合成磷化铟的系统
WO2023221667A1 (zh) 一种半绝缘砷化镓单晶体及其制备方法和生长装置
CN211420368U (zh) 用于生长大直径碳化硅晶体的装置
CN204779912U (zh) 一种带浮渣过滤结构的lec单晶生长装置
CN109881253B (zh) 半导体晶体的生长装置及方法
CN112226813A (zh) 一种目标单晶生长装置及方法
EP3587627A1 (en) Semiconductor synthesizing device and method
US3235418A (en) Method for producing crystalline layers of high-boiling substances from the gaseous phase
CN108570708A (zh) 一种砷化镓多晶合成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 19841639

Country of ref document: EP

Kind code of ref document: A1