WO2020020199A1 - 压铆装置 - Google Patents

压铆装置 Download PDF

Info

Publication number
WO2020020199A1
WO2020020199A1 PCT/CN2019/097412 CN2019097412W WO2020020199A1 WO 2020020199 A1 WO2020020199 A1 WO 2020020199A1 CN 2019097412 W CN2019097412 W CN 2019097412W WO 2020020199 A1 WO2020020199 A1 WO 2020020199A1
Authority
WO
WIPO (PCT)
Prior art keywords
inner tube
riveting device
driving rod
riveting
rotor
Prior art date
Application number
PCT/CN2019/097412
Other languages
English (en)
French (fr)
Inventor
蔡盛保
段大鹏
李文超
华寅
钱金宝
谭东昌
Original Assignee
宾科精密部件(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宾科精密部件(中国)有限公司 filed Critical 宾科精密部件(中国)有限公司
Publication of WO2020020199A1 publication Critical patent/WO2020020199A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/16Drives for riveting machines; Transmission means therefor
    • B21J15/26Drives for riveting machines; Transmission means therefor operated by rotary drive, e.g. by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J15/00Riveting
    • B21J15/10Riveting machines
    • B21J15/36Rivet sets, i.e. tools for forming heads; Mandrels for expanding parts of hollow rivets

Definitions

  • the present application relates to riveting technology, and more particularly, to a riveting device.
  • Press riveting is a riveting method that uses the static pressure upsetting rivet rod produced by the press to form the head. Pressed riveting parts have the characteristics of good surface quality, small deformation, and high connection strength. Therefore, they are widely used in various mechanical processing fields, such as shipbuilding and automobile manufacturing. However, in some processing environments, the internal space of the workpiece to be processed is limited, and the conventional press riveting device usually has a long axial length, so it is not suitable for operation in such a narrow working space.
  • the present application provides a crimping device with a short axial length, which can be adapted to operate in a narrow working space.
  • a press riveting device including: a direct drive motor having a stator and a rotor that cooperate with each other, and the stator is located on an outer periphery of the rotor to operatively drive The rotor rotates; a drive rod having a drive portion fixedly connected to the rotor, and a lead screw portion located outside the direct drive motor; wherein the drive rod has a rotation axis, and the drive A lever capable of being driven by the direct drive motor to rotate about the rotation axis; a nut, the nut being operatively mounted to a lead screw portion of the drive lever, and configured to rotate around the drive lever in response to the drive lever Rotation of a rotation axis to move axially along the lead screw portion; and a rivet head assembly fixedly connected to the nut and configured to follow the nut along the wire The rod part moves in the axial direction to perform a riveting process.
  • the driving rod is integrally formed.
  • the driving rod further includes a connecting portion between the driving portion and the lead screw portion, and the driving portion and the connecting portion of the driving rod are fixedly connected to each other through a coupling. together.
  • the driving rod extends from only one side of the rotor, and the lead screw portion is located at a portion where the driving rod extends from the rotor.
  • the direct drive motor is a permanent magnet synchronous motor.
  • the driving rod further includes a connecting portion between the driving portion and the lead screw portion
  • the press riveting device further includes a sleeve fixedly connected to the sleeve.
  • the direct drive motor and a hollow inner cavity for accommodating the connection portion and the screw portion of the drive rod; and a bearing assembly located between the drive rod and the sleeve, And used for supporting the driving rod to rotate around the rotation axis.
  • the crimping head assembly includes an inner tube which is sleeved to an outer periphery of a screw portion of the driving rod, and the inner tube has first ends opposite to each other in an axial direction thereof. And a second end, wherein the first end is fixedly connected to the nut, and the second end is used for installing a crimping head.
  • the inner tube has a limit plate located on an outer wall thereof and disposed along a circumferential direction of the inner tube, the limit plate is a predetermined distance from the second end of the inner tube, and the riveting head
  • the assembly also includes an outer tube that is movably nested between the sleeve and the inner tube, the outer tube and the inner tube being at least partially in the axial direction of the rotation axis.
  • a guide sleeve which is fixed to an end of the outer tube near the crimping head and has a guide hole configured to receive the crimping head and guide the crimping head Axial movement; an elastic member located between the guide sleeve of the outer tube and the limiting plate of the inner tube, the elastic member is used to make the inner tube in a relaxed position relative to the outer tube and Moving between the compression positions; in the compression position, the elastic member applies a pre-tensioning force to the guide sleeve.
  • the elastic member includes a plurality of sets of springs and guide posts distributed between the outer tube and the inner tube and spaced along a circumferential direction of the inner tube
  • the limit plate includes Correspondingly spaced multiple through holes, wherein each spring is sleeved on the outer periphery of the corresponding guide post; one end of each guide post is fixedly connected to the guide bush and the other end thereof slidably passes through the guide bush Corresponding through holes on the limit plate, and two ends of each spring abut against the limit plate and the guide sleeve, respectively.
  • the crimping head assembly further includes: an outer tube that is movably nested between the sleeve and the inner tube, and the outer tube and the inner tube At least partially overlap in the axial direction of the rotation axis; a guide sleeve is fixed to an end of the outer tube near the crimping head, and has a guide hole configured to receive the guide hole
  • the riveting head guides the axial movement of the riveting head; an elastic member is located between the outer tube and the inner tube, and the elastic member is used to make the inner tube relative to the outer tube at Move between a relaxed position and a compressed position; in the compressed position, the elastic member applies a pre-tensioning force to the guide sleeve.
  • the inner wall of the outer tube and the outer wall of the inner tube have protrusions, respectively, and two ends of the elastic member are respectively mounted on the protrusions.
  • the elastic member is a disc spring.
  • FIG. 1 to 4 are schematic diagrams of a riveting device 100 according to an embodiment of the present application; wherein, FIG. 1 is a schematic diagram of the appearance of the riveting device 100; and FIG. 2 is an axial direction of the riveting device 100 in an initial state.
  • FIG. 3 is a schematic axial cross-sectional view of the pressing riveting device 100 in a pressed riveting state;
  • FIG. 4 is an exploded view of the pressing riveting device 100;
  • FIG. 5 to 6 are schematic diagrams of a riveting device 200 according to another embodiment of the present application; wherein, FIG. 5 is a schematic axial sectional view of the riveting device 200; and FIG. 6 is an exploded view of the riveting device 200 ;
  • FIGS. 7 to 9 are schematic diagrams of a riveting device 300 according to yet another embodiment of the present application; wherein Figs. 7 and 8 are schematic axial sectional views of the riveting device 300 in an initial state and a riveted state, respectively; FIG. 9 is an exploded view of the crimping device 300.
  • FIGS. 1 to 4 are schematic diagrams of a riveting device 100 according to an embodiment of the present application.
  • 1 is a schematic diagram of the appearance of the riveting device 100
  • FIG. 2 is a schematic diagram of the riveting device 100 in an initial state
  • FIG. 3 is a schematic view of the riveting device 100 in a riveted state
  • FIG. 4 is the riveting device Exploded view of 100.
  • the riveting device 100 is designed as an automated or semi-automated device, powered by an external power source or a built-in power source, and used to perform a riveting process on a workpiece to be processed.
  • the riveting device 100 includes a direct drive motor 102 that provides a driving force for driving the riveting head of the riveting device 100 to work.
  • the direct drive motor 102 includes a motor case 104, and a stator 106 and a rotor 108 fixed in the motor case 104.
  • the stator 106 is located on the outer periphery of the rotor 108.
  • the stator 106 is configured as a plurality of equally spaced permanent magnet or electromagnetic coil windings.
  • the rotor 108 may also be configured as one or more permanent magnet or electromagnetic coil windings.
  • the stator 106 and the rotor 108 cooperate with each other, so that the rotor 108 is driven to rotate about its central axis.
  • the direct drive motor 102 is a permanent magnet synchronous motor.
  • the rotor 108 is configured as a permanent magnet
  • the stator 106 is configured as an electromagnetic coil winding.
  • the electromagnetic coil winding stator 106 receives a current, such as a three-phase symmetrical current, thereby generating a rotating magnetic field inside the motor housing 104.
  • the permanent magnet rotor 108 is rotated around its central axis by the electromagnetic force in the rotating magnetic field.
  • One advantage of using permanent magnets to construct the rotor 108 is that the rotor 108 can be configured into a relatively flat disc shape, which is beneficial to reducing the overall axial size of the rotor 108 and the direct drive motor 102.
  • the magnetic field generated by a disc motor is an axial magnetic field.
  • the axial magnetic field motor has a large power-to-weight ratio and a diameter-to-length ratio, so it can effectively reduce the overall weight and axial length of the riveting device.
  • the diameter-axial length ratio of the rotor 108 may be 1: 1 to 10: 1, and preferably 2: 1 to 4: 1.
  • the diameter of the rotor 108 is 100 to 500 mm, preferably 250 to 350 mm, such as 300 mm.
  • the axial length of the rotor 108 is 50 to 250 mm, preferably 80 to 150 mm, such as 100 mm.
  • the ratio of the axial length of the rotor 108 to the axial length of the pressing device 100 may be 1: 5 to 1:20, and preferably 1: 8 to 1:15.
  • the riveting device 100 further includes a driving rod 110 having a first end 112 and a second end 114 opposite to the first end 112. According to different positions, the driving lever 110 includes at least a driving portion 116 near the first end 112, a screw portion 118 near the second end 114, and a connecting portion 120 between the driving portion 116 and the screw portion 118.
  • the driving portion 116 is fixedly connected to the rotor 108, so that the driving rod 114 can be directly driven by the direct drive motor 102, and synchronously rotates about its own rotation axis following the rotation of the rotor 108.
  • This direct drive setting can avoid the use of transmission mechanisms such as gear sets, reducers, belts, etc., and the transmission path of force and energy is short, so the transmission efficiency can be effectively improved.
  • the shorter transmission path can also reduce the axial length of the riveting device.
  • the rotor 108 has a central hole located in a central area thereof, and the driving portion 116 is fixed in the central hole by a fastening mechanism.
  • the fastening mechanism is, for example, a fastening nut or nut 122 provided on one side of the center hole, which has a thread matching the first end 112 of the driving rod 110.
  • the central axis of the rotor 108 is collinear with the rotation axis of the driving rod 110.
  • the crimping device 100 may include a sleeve 124 that is fixedly connected to the direct drive motor 102.
  • the sleeve 124 has a hollow inner cavity, and the connecting portion 120 and the lead screw portion 118 of the driving rod 110 are both disposed in the hollow inner cavity.
  • the sleeve 124 has a cylindrical shape with a diameter smaller than that of the direct drive motor 102.
  • the sleeve 124 may also have an enlarged portion at its end near the direct drive motor 102, and the diameter of the enlarged portion is generally matched with the diameter of the motor housing 104 of the direct drive motor 102, so that the sleeve The barrel 124 can be fixed to the motor case 104 more stably.
  • the sleeve 124 is used to protect and close the driving rod 110 on the one hand, and a bearing assembly 126 may be provided on the inner wall of the sleeve 124 on the other hand.
  • the bearing assembly 126 is located between the driving rod 110 and the sleeve 124 and is used for supporting the rotation of the driving rod 110 about the rotation axis.
  • the bearing assembly 126 can reduce the friction coefficient when the driving rod 110 rotates, and can ensure the rotation accuracy and stability of the driving rod 110.
  • the driving rod 110 is integrally formed.
  • the integrated structure helps reduce the complexity of the overall structure, thereby reducing the axial length of the riveting device 100.
  • the driving rod 110 may not be an integrated structure, but may be connected together by two separate rods.
  • the driving part 116 of the driving lever 110 may be an output shaft of the direct drive motor 102 and thus provided together with the direct drive motor 102. In this way, according to the different specifications of the press riveting device, a direct drive motor 102 with different power can be equipped.
  • the driving part and the connecting part may be fixedly connected to each other through a coupling, and the two parts are coaxial, that is, both use the rotation axis as their axis.
  • the driving rod 110 extends only from one side of the rotor 108, for example, the connecting portion 120 and the lead screw portion 118 of the driving rod 110 extend from the right side of the rotor 108 shown in FIG. Out. It can be understood that, in some implementations, the driving rod 110 may also extend from both sides of the rotor 108. In this case, preferably, the lead screw portion 118 extends from the first side, and another portion corresponding to the bearing assembly extends from the second side and cooperates with the bearing assembly. This structure can avoid waste of the axial length of the driving rod 110.
  • the sleeve 124 of the riveting device 100 is located on a side of the direct drive motor 102, and contains a part of a driving rod (not shown), and a riveting head assembly 130. It can be seen that this design has a compact structure, which advantageously shortens the axial length of the riveting device 100.
  • the riveting device 100 further includes a nut 128 that is operatively mounted to the lead screw portion 118 of the drive rod 110.
  • the driving rod 110 is rotated around the rotation axis, the nut 128 can be moved axially along the screw portion 118 accordingly, thereby converting the rotational movement of the direct drive motor 102 into an axial linear movement.
  • the stroke of the axial movement of the nut 128 is limited.
  • the nut 128 is generally located at its initial position without being riveted; while in FIG.
  • the riveting device 100 can perform a riveting process on the workpiece to be processed through the riveting head assembly 130.
  • the riveting head assembly 130 is fixedly connected to the nut 128 so that it can move along the axial movement of the nut 128 along the screw portion 118, thereby realizing the riveting process of the workpiece to be processed.
  • the crimping head assembly 130 includes an inner tube 132 which is fixed on the nut 128.
  • the inner tube 132 is sleeved to the outer periphery of the lead screw portion 118 and includes a first end 134 and a second end 136 opposite to each other in the axial direction thereof.
  • the first end 134 is fixedly connected to the nut 128, and the first end 136 is used for installing the crimping head 138.
  • the first end 134 of the inner tube 132 has a relatively large diameter and substantially occupies the space between the sleeve 124 and the nut 128; while the second end 136 of the inner tube 132 is not directly connected to the nut 128, it may have a relatively large diameter
  • a small diameter, for example, the second end 136 may be near the outer wall of the lead screw portion 118 and the second end 114 of the drive rod 110.
  • the inner tube 136 may have a tapered portion 140 to connect the first end 134 and the second end 136 thereof. In this way, at the second end 136 of the inner tube 132, a gap 142 of a certain length is left between the outer wall of the inner tube 132 and the sleeve 124.
  • the riveting head assembly 130 is used to compact the pre-tightening component of the workpiece to be processed before the riveting process.
  • the pre-tensioning component can continuously apply a pre-tensioning force to the workpiece to be processed from the time when the crimping head component 130 starts to move until the time of the crimping treatment, thereby avoiding the wrong riveting position caused by the movement of the workpiece.
  • the pre-tensioning assembly includes an outer tube 144 that is movably sleeved between the sleeve 124 and the inner tube 132, that is, located in the gap 142.
  • the outer tube 144 and the inner tube 132 may at least partially overlap in the axial direction of the rotation axis.
  • the pre-tensioning assembly further includes a guide sleeve 146 that is fixed to an end of the outer tube 144 near the rivet head 138 and has a guide hole for receiving the rivet head 138 and guiding the rivet head 138 to move axially.
  • the inner tube 132 also has a limiting plate 148 located on its outer wall and arranged along the circumferential direction of the inner tube 132, wherein the limiting plate 148 is a predetermined distance from the second end 136 of the inner tube 132.
  • the limiting plate 148 may be provided in a ring shape.
  • the pre-tensioning assembly further includes an elastic member 150 located between the limit plate 148 and the guide sleeve 146.
  • the elastic member 150 abut against the limit plate 148 and the guide sleeve 146, respectively. Due to the elasticity of the elastic member 150, the inner tube 132 can move axially between the relaxed position and the compressed position relative to the outer tube 144. In the compressed position, due to the movement of the inner tube 132 and the limit plate 148, the elastic member 150 applies a pre-tensioning force to the workpiece to be processed via the guide sleeve 146. In the relaxed position, the elastic member 150 is in a relaxed state, so the pre-tensioning assembly does not apply a pre-tensioning force to the workpiece to be processed.
  • the pre-tensioning component and the inner tube 132 on which the crimping head 130 is installed at least partially overlap in the axial direction, that is, the two are connected in parallel.
  • this parallel connection helps to further shorten the axial length of the press riveting device 100 and has better stability.
  • an end cover (not shown in the figure) may be detachably connected to the guide sleeve 146, which is used to set the guide sleeve 146 therein, and directly bears against the torsion during the riveting process. On machined parts.
  • the elastic member 150 may include a set of springs spaced along the circumferential direction of the inner tube 132, and two ends of each spring abut against the limiting plate 148 and the guide sleeve 146, respectively. These springs can provide axial preload.
  • the elastic member 150 may further include a guide post 152 corresponding to the spring, wherein each spring is sleeved on the corresponding guide post 152.
  • the limit plate 148 includes a plurality of through holes 154 distributed at intervals corresponding to the spring; one end of each guide post 152 is fixedly connected to the guide sleeve 146, and the other end is slidably passed through the limit plate 148
  • the upper side corresponds to a plurality of through holes 154.
  • the outer side of the guide post 152 may be sheathed with a polyurethane jacket to increase its abrasion resistance.
  • the front cover of the guide sleeve 146 is not equipped with an end cover.
  • an end cap is installed at the front of the guide sleeve 146, and when the elastic member 150 is in a relaxed state, the end cap should extend beyond the pressing head 138 in the axial direction, so that the component to be processed can be compressed in advance to provide pre-tensioning effect.
  • the sleeve 124 is provided with a guide groove extending in the axial direction thereof.
  • the nut 128 is fixedly connected to a limiting member, and the limiting member is slidably inserted into the guiding groove. This can ensure that the nut 128 does not rotate about its own axis when it moves on the screw part 118, thereby ensuring that the crimping head assembly 130 moves back and forth in the axial direction as the nut 128 moves.
  • a plurality of cooperating stoppers and guide grooves may be provided at intervals in the circumferential direction of the sleeve 124 and the nut 128.
  • the riveting device 100 further includes a displacement sensor including a sensor body 158 and a magnetic ring 160.
  • the sensor body 158 is located outside the sleeve 124 and is configured as a long rod-like structure.
  • the magnetic ring 160 is fixed to the nut 128 and moves as the nut 128 moves. In this way, the position of the nut 128 in the sleeve 124 can be determined by the displacement sensor, and the position of the crimping head 138 can be obtained.
  • the riveting device 100 further includes a pressure sensor (not shown in the figure), which is used to monitor the force state of the driving rod 110 in the axial direction, so as to obtain the axial pressure output by the riveting head 138. According to the displacement sensor and the pressure sensor detecting the displacement and output force of the riveting head 138, the working state of the riveting device can be known, and the quality of the riveting process can be monitored.
  • the riveting head 138 of the riveting device 100 is aligned with a position to be processed on the workpiece.
  • the direct drive motor 102 works, and its mover 108 rotates to drive the drive rod 110 to rotate synchronously, so that the nut 128 moves forward along the length of the lead screw portion 118 toward the workpiece to be processed, and the inner tube 132 and the riveting head 138 are synchronized with it. Move straight forward.
  • the outer tube 144 is continuously pushed forward and gradually slides forward relative to the sleeve 124 until the end cap (not shown in the figure) at the front end of the outer tube 144 abuts against To be processed.
  • the driving rod 110 continues to rotate and drives the nut 128 to continue to move forward.
  • the elastic member 150 is continuously compressed and deformed, so that the end cap and the outer tube 144 continuously apply a pressing force to the workpiece to be processed, so that the workpiece to be processed is compressed and fixed .
  • the nut 128 continues to move forward, so that the crimping head 138 continues to move forward to contact the workpiece to be crimped.
  • the direct drive motor 102 rotates in the reverse direction to drive the nut 128 along the screw part 118 away from the workpiece to be moved backward, the inner tube 134 and the working head 138 move backward, and the elastic member 150 gradually relaxes toward it The Yu position returns, so that the outer tube 144 and the end cap loosen the pressing action of the workpiece to be processed.
  • the nut 128 continues to retract, and the elastic tube 150 drives the outer tube 144 to retract into the sleeve 124 and return to the initial state shown in FIG. 2.
  • the riveting device may provide a riveting force of, for example, 1 to 20 tons, or preferably 5 to 15 tons.
  • the press riveting device may provide a pretension force of 200 to 1000 kg, and preferably a pretension force of 400 to 1000 kg. It can be seen that, compared with the existing crimping device, the crimping device of the present invention can provide a force comparable to or even greater than that of the prior art while reducing the axial length.
  • FIG. 5 to 6 are schematic diagrams of a riveting device 200 according to another embodiment of the present application; wherein, FIG. 5 is a schematic axial sectional view of the riveting device 200; and FIG. 6 is an exploded view of the riveting device 200 .
  • the driving portion 216 and the screw portion 218 of the driving rod 210 of the crimping device 200 are two separate components.
  • the connecting portions 220 of the driving rod 210 are connected to each other through a coupling 221.
  • the sleeve of the crimping device 200 is also configured as two parts 224a and 224b, wherein the first part 224a is connected to the motor casing 204 of the direct drive motor 202, and the second part 224b is used to receive the driving rod 210
  • the screw part 218, the connection part 216, the bearing assembly 226, and the riveting head assembly 230 For other components of the riveting device 200 and their working methods, reference may be made to the corresponding description of the riveting device 100 shown in FIGS. 1 to 4, and details are not described herein again.
  • FIGS. 7 to 9 are schematic diagrams of a riveting device 300 according to yet another embodiment of the present application; wherein Figs. 7 and 8 are schematic axial sectional views of the riveting device 300 in an initial state and a riveted state, respectively; FIG. 9 is an exploded view of the crimping device 300.
  • a plurality of springs distributed in the circumferential direction are used as elastic members, and the pressing riveting device 300 uses a single spring as the elastic member.
  • a lead screw 318 is provided in the sleeve 324 of the crimping device 300 and is driven to rotate about its rotation axis by a direct drive motor 302.
  • a nut 328 is sleeved on the lead screw 318. When the lead screw 318 rotates, the nut 328 moves along the rotation axis. In this way, the inner tube 332 fixedly connected to the nut 328 can move axially together.
  • the spring 350 is sleeved between the inner tube 332 and the outer tube 344 for elastically transmitting a force between the inner tube 332 and the outer tube 344.
  • the spring 350 has a generally hollow tubular structure, and the outer diameters of the inner tube 332, the spring 350, and the outer tube 344 increase.
  • the outer wall of the inner tube 332 has a protruding portion 333, such as a ring-shaped protruding portion
  • the inner wall of the outer tube 344 has a protruding portion 345, and both ends of the spring 350 are respectively mounted on the two protruding portions 333 and 345. on.
  • the inner tube 332 when the nut 328 is driven to move toward the workpiece to be processed (not shown in the figure), for example, when starting to move from the initial state shown in FIG. 7, the inner tube 332, the spring 350, and the outer tube 344 can move axially together. Until it reaches the pressed state shown in FIG. 8. As shown in FIG. 8, the inner tube 332 and the outer tube 344 protrude from the sleeve 324 for a distance. At this time, the guide sleeve 346 at the end of the outer tube 344 contacts the workpiece, and as the inner tube 332 moves further axially, Gradually compact the part to be processed.
  • the outer tube 344 stops moving toward the workpiece, while the inner tube 332 continues to be driven to move axially toward the workpiece, and the spring 350 is compressed until the rivet head 338 passes through the guide hole at the front end to contact the workpiece. And it is crimped. It can be understood that when the riveting process is stopped, the inner tube 332 moves away from the workpiece, the spring 350 gradually returns to its relaxed state, and then the outer pipe 344 also moves away from the workpiece.
  • the spring 350 may be a coil spring. In other embodiments, the spring 350 may also be a disc spring. In particular, for a disc spring, the maximum compression distance and corresponding elastic force can be adjusted by reducing or increasing the number and / or thickness of the discs therein, so it is particularly suitable for the use of a compression head assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Press Drives And Press Lines (AREA)
  • Portable Nailing Machines And Staplers (AREA)

Abstract

一种压铆装置(100, 200, 300),包括直接驱动电机(102, 202, 302)、驱动杆(110, 210)、螺母(128, 328)以及压铆头组件(130, 230)。直接驱动电机具有相互配合的定子(106)和转子(108),并且定子位于转子的外周以可操作地驱动转子转动;驱动杆具有固定地连接到转子的驱动部分(116, 216),以及位于直接驱动电机外部的丝杠部分(118, 218, 318);驱动杆具有转动轴线,并且驱动杆能够被直接驱动电机驱动而绕转动轴线转动;螺母被可操作地安装到驱动杆的丝杠部分,并且被配置为响应于驱动杆绕转动轴线的转动而沿丝杠部分轴向地移动;压铆头组件被固定地连接到螺母上,并且配置为跟随螺母沿丝杠部分的轴向移动而移动,从而进行压铆处理;该压铆装置适合在狭小的工作空间中进行操作。

Description

压铆装置 技术领域
本申请涉及铆接技术,更具体地,涉及一种压铆装置。
背景技术
压铆是利用压铆机产生的静压力镦粗铆钉杆形成镦头的一种铆接方法。压铆的铆接件具有表面质量好、变形小、连接强度高等特点,因而其被广泛应用于各种机械加工领域,例如造船、汽车制造等。然而,在一些加工环境下,待加工件的内部空间有限,而传统的压铆装置通常具有较长的轴向长度,因而不适合在这类狭小的工作空间中进行操作。
发明内容
本申请提供了一种具有较短轴向长度的压铆装置,其能够适合在狭小的工作空间中进行操作。
在本申请的一个方面,提供了一种压铆装置,包括:直接驱动电机,所述直接驱动电机具有相互配合的定子和转子,并且所述定子位于所述转子的外周以可操作地驱动所述转子转动;驱动杆,所述驱动杆具有固定地连接到所述转子的驱动部分,以及位于所述直接驱动电机外部的丝杠部分;其中,所述驱动杆具有转动轴线,并且所述驱动杆能够被所述直接驱动电机驱动而绕所述转动轴线转动;螺母,所述螺母被可操作地安装到所述驱动杆的丝杠部分,并且被配置为响应于所述驱动杆绕所述转动轴线的转动而沿所述丝杠部分轴向地移动;以及压铆头组件,所述压铆头组件被固定地连接到所述螺母上,并且被配置为跟随所述螺母沿所述丝杠部分的轴向移动而移动,从而进行压铆处理。
在一些实施例中,所述驱动杆是一体成型的。
在一些实施例中,所述驱动杆还包括位于所述驱动部分与所述丝杠部分之间的连接部分,所述驱动杆的驱动部分与所述连接部分通过联轴器相互固定地连接在一起。
在一些实施例中,所述驱动杆仅从所述转子的一侧延伸出,所述丝杠部分位于所述驱动杆从所述转子延伸出的部分。
在一些实施例中,所述直接驱动电机是永磁同步电机。
在一些实施例中,所述驱动杆还包括位于所述驱动部分与所述丝杠部分之间的连接部分,并且所述压铆装置还包括:套筒,所述套筒被固定地连接到所述直接驱动电机,并且具有用于容纳所述驱动杆的所述连接部分和丝杠部分的中空内腔;以及轴承组件,所述轴承组件位于所述驱动杆与所述套筒之间,用于支撑所述驱动杆绕所述转动轴线旋转。
在一些实施例中,所述压铆头组件包括:内管,所述内管套接到所述驱动杆的丝杠部分的外周,所述内管具有沿其轴向方向相对的第一端与第二端,其中,所述第一端固定地连接到所述螺母上,而所述第二端用于安装压铆头。
在一些实施例中,所述内管具有位于其外壁并沿所述内管周向设置的限位板,所述限位板距离所述内管的第二端预定距离,所述压铆头组件还包括:外管,所述外管被可移动地嵌套于所述套筒与所述内管之间,所述外管与所述内管在所述转动轴线的轴向至少部分地重叠;导套,所述导套被固定于所述外管靠近所述压铆头的一端,并且具有导向孔,所述导向孔被配置容纳所述压铆头并且引导所述压铆头的轴向移动;弹性件,其位于所述外管的导套与所述内管的限位板之间,所述弹性件用于使得所述内管相对于所述外管在弛豫位置和压紧位置之间移动;在所述压紧位置,所述弹性件向所述导套施加预紧力。
在一些实施例中,所述弹性件包括位于所述外管与所述内管之间的沿所述内管的周向间隔地分布的多组弹簧及导柱,并且所述限位板包括对应的间隔分布的多个通孔,其中每个弹簧被套设在对应的导柱外周;每个导柱的一端被固定地连接在所述导套上而其另一端可滑动地穿过所述限位板上对应的通孔,并且每个弹簧的两端分别抵靠在所述限位板与所述导套上。
在一些实施例中,所述压铆头组件还包括:外管,所述外管被可移动地嵌套于所述套筒与所述内管之间,所述外管与所述内管在所述转动轴线的轴向至少部分地重叠;导套,所述导套被固定于所述外管靠近所述压铆头的一端,并且具有导向孔,所述导向孔被配置容纳所述压铆头并且引导所述压铆头的轴向移动;弹性件,其位于所述外管与所述内管之间,所述弹性件用于使得所述内管相对于所述外管在弛豫位置和压紧位置之间移动;在所述压紧位置,所述弹性件向所述导套施加预紧力。
在一些实施例中,所述外管的内壁和所述内管的外壁分别具有凸起部,所述弹性件的两端分别安装在所述凸起部上。
在一些实施例中,所述弹性件是碟簧。
以上为本申请的概述,可能有简化、概括和省略细节的情况,因此本领域的技术人员应该认识到,该部分仅是示例说明性的,而不旨在以任何方式限定本申请范围。本概述部分既非旨在确定所要求保护主题的关键特征或必要特征,也非旨在用作为确定所要求保护主题的范围的辅助手段。
附图说明
通过下面说明书和所附的权利要求书并与附图结合,将会更加充分地清楚理解本申请内容的上述和其他特征。可以理解,这些附图仅描绘了本申请内容的若干实施方式,因此不应认为是对本申请内容范围的限定。通过采用附图,本申请内容将会得到更加明确和详细地说明。
图1至图4示出了根据本申请一个实施例的压铆装置100的示意图;其中,图1是该压铆装置100的外观示意图;图2是该压铆装置100处于初始状态的轴向剖面示意图;图3是该压铆装置100处于压铆状态的轴向剖面示意图;图4是该压铆装置100的爆炸图;
图5至图6示出了根据本申请另一个实施例的压铆装置200的示意图;其中,图5是该压铆装置200的轴向剖面示意图;图6是该压铆装置200的爆炸图;
图7至图9示出了根据本申请又一个实施例的压铆装置300的示意图;其中,图7和图8是该压铆装置300分别处于初始状态和压铆状态的轴向剖面示意图;图9是该压铆装置300的爆炸图。
具体实施方式
在下面的详细描述中,参考了构成其一部分的附图。在附图中,类似的符号通常表示类似的组成部分,除非上下文另有说明。详细描述、附图和权利要求书中描述的说明性实施方式并非旨在限定。在不偏离本申请的主题的精神或范围的情况下,可以采用其他实施方式,并且可以做出其他变化。可以理解,可以对本申请中一般性描述的、在附图中图解说明的本申请内容的各个方面进行多种不同构成的配置、替换、组 合,设计,而所有这些都明确地构成本申请内容的一部分。
图1至图4示出了根据本申请一个实施例的压铆装置100的示意图。其中,图1是该压铆装置100的外观示意图;图2是该压铆装置100处于初始状态的示意图;图3是该压铆装置100处于压铆状态的示意图;图4是该压铆装置100的爆炸图。在一些实施中,该压铆装置100被设计为自动化或半自动化设备,由外部电源或内置电源提供动力,并且用于对待加工件进行压铆处理。
具体地,如图2所示,该压铆装置100包括直接驱动电机102,其提供用于驱动压铆装置100的压铆头工作的驱动力。该直接驱动电机102包括电机壳体104,以及固定在电机壳体104内的定子106和转子108。在一些实施例中,定子106位于转子108的外周,例如定子106被构造为多个等间隔地设置的永磁体或电磁线圈绕组。类似地,转子108也可以被构造为一个或多个永磁体或电磁线圈绕组。定子106与转子108相互配合,使得转子108被驱动而绕其中心轴线转动。
在一些实施例中,直接驱动电机102是永磁同步电机。例如,转子108被构造为一永磁体,而定子106则被构造为电磁线圈绕组。在工作时,电磁线圈绕组定子106接入电流,例如三相对称电流,从而在电机壳体104内部产生旋转磁场。相应地,永磁体转子108在该旋转磁场中受到电磁力作用而绕其中心轴转动。采用永磁体来构造转子108的一个优点是可以将转子108构造为相对扁平的圆盘式形状,这有利于减小转子108以及直接驱动电机102整体的轴向尺寸。不同于常规电机的径向磁场,盘式电机产生的磁场是轴向磁场。轴向磁场电机具有较大的功率重量比和直径长度比,因而能够有效地减小压铆装置的总体重量和轴向长度。在一些实施例中,转子108的直径-轴向长度比可以为1:1至10:1,优选为2:1至4:1。在一些实施例中,转子108的直径为100至500毫米,优选为250至350毫米,例如300毫米。在一些实施例中,转子108的轴向长度为50至250毫米,优选为80至150毫米,例如100毫米。在一些实施例中,转子108的轴向长度与压铆装置100的轴向长度之比可以为1:5至1:20,优选为1:8至1:15。
压铆装置100还包括驱动杆110,其具有第一端112以及与该第一端112相对的第二端114。根据所在位置的不同,驱动杆110至少包括靠近第一端112的驱动部分116、靠近第二端114的丝杠部分118以及位于驱动部分116和丝杠部分118之间的连接部分120。
具体地,驱动部分116被固定地连接到转子108上,从而使得驱动杆114能够被 直接驱动电机102直接驱动,并跟随转子108转动而同步地绕其自身的转动轴线转动。这种直接驱动设置可以避免例如齿轮组、减速机、皮带等传动机构的使用,力和能量的传递路径较短,因而可以有效地提高传动效率。此外,较短的传递路径也可以减小压铆装置的轴向长度。在如图2所示的实施例中,转子108具有位于其中心区域的中心孔,而驱动部分116即被通过紧固机构固定在该中心孔中。紧固机构例如为设置在中心孔一侧的紧固螺母或螺帽122,其具有与驱动杆110的第一端112相匹配的螺纹。在这种连接方式下,转子108的中心轴与驱动杆110的转动轴线共线。
除了大体位于直接驱动电机102内的驱动部分116之外,驱动杆110的连接部分120和丝杠部分118均位于直接驱动电机102外部。压铆装置100可以包括套筒124,其被固定地连接到直接驱动电机102。套筒124具有中空内腔,驱动杆110的连接部分120和丝杠部分118均被设置于该中空内腔中。在一些实施例中,套筒124具有圆柱形的形状,其直径小于直接驱动电机102的直径。在另一些实施例中,套筒124也可以在其靠近直接驱动电机102的一端具有扩大部分,该扩大部分的直径大体与直接驱动电机102的电机壳体104的直径相匹配,以使得套筒124可以更稳定地固定在电机壳体104上。
套筒124一方面用来保护并封闭驱动杆110,另一方面在套筒124的内壁上还可以设置轴承组件126。轴承组件126位于驱动杆110与套筒124之间,用于支撑驱动杆110绕转动轴线的旋转。轴承组件126可以降低驱动杆110旋转时的摩擦系数,并且可以保证驱动杆110的转动精度和稳定性。
在图2所述的实施例中,驱动杆110是一体成型的。一体化结构有助于降低整体结构的复杂度,从而缩短压铆装置100的轴向长度。在一些其他的实施例中,驱动杆110也可以不是一体化结构,而是由两段分开的杆连接在一起。例如,驱动杆110的驱动部分116可以是直接驱动电机102的输出轴,从而与直接驱动电机102一起提供。这样,根据压铆装置的具体规格的不同,可以配备不同功率的直接驱动电机102。在一些实施例中,驱动部分可以与连接部分通过联轴器相互固定地连接在一起,并且这两部分共轴,也即均以转动轴线为其轴线。
为了减小压铆装置100的轴向长度,驱动杆110仅从转子108的一侧延伸出,例如驱动杆110的连接部分120与丝杠部分118从图2所示的转子108的右侧延伸出。可以理解,在一些实施中,驱动杆110也可以从转子108的两侧延伸出。在这种情况下,优选地,丝杠部分118从第一侧延伸出,而与轴承组件对应的另一部分从第二侧 延伸出来并与轴承组件相配合。这种结构可以避免驱动杆110轴向长度的浪费。
参考图1,压铆装置100的套筒124位于直接驱动电机102的一侧,其中容纳有驱动杆(未示出)的一部分,以及压铆头组件130。可以看出,这种设计结构紧凑,有利地缩短压铆装置100的轴向长度。
仍参考图2所示,压铆装置100还包括螺母128,其被可操作地安装到驱动杆110的丝杠部分118。当驱动杆110绕转动轴线转动时,螺母128可以相应地沿丝杠部分118轴向地移动,从而将直接驱动电机102的转动运动转换为轴向的线性运动。可以理解,受限于丝杠部分118的长度,螺母128的轴向运动的行程是有限的。在图2中,螺母128大体位于其初始位置,未进行压铆处理;而在图3中,螺母128向驱动杆110的第二端114移动,并且大体达到其行程的终点位置(取决于丝杠部分118的长度),这时压铆装置100可以通过压铆头组件130对待加工件进行压铆处理。
压铆头组件130被固定地连接在螺母128上,从而其可以跟随螺母128沿丝杠部分118的轴向移动而移动,进而实现对待加工件的压铆处理。具体地,压铆头组件130包括内管132,其被固定在螺母128上。在图2所示的实施例中,内管132套接到丝杠部分118的外周,并且包括沿其轴向方向相对的第一端134和第二端136。其中,第一端134被固定地连接到螺母128上,而第一端136则用于安装压铆头138。内管132的第一端134具有相对较大的直径,并且基本占据套筒124与螺母128之间的空间;而内管132的第二端136不直接连接螺母128,因而其可以具有相对较小的直径,例如第二端136可以靠近丝杠部分118以及驱动杆110的第二端114的外壁。在一些实施例中,内管136可以具有渐缩部分140来连接其第一端134和第二端136。这样,在内管132的第二端136处,内管132的外壁与套筒124之间留有一定长度的间隙142。
在一些实施例中,压铆头组件130用于在压铆处理前压紧待加工件的预紧组件。该预紧组件可以在压铆头组件130开始移动时直到压铆处理的时刻持续地向待加工件施加预紧力,从而避免因待加工件移动而导致的压铆位置错误。具体地,该预紧组件包括外管144,其被可移动地套接于套筒124与内管132之间,也即位于间隙142中。外管144与内管132可以在转动轴线的轴向至少部分地重叠。
预紧组件还包括导套146,其被固定在外管144靠近压铆头138的一端,并且具有用于容纳压铆头138并且引导压铆头138轴向移动的导向孔。内管132还具有位于其外壁并沿内管132周向设置的限位板148,其中限位板148距离内管132的第二端136预定距离。在一些实施例中,限位板148可以被设置为环形的形状。预紧组件还 包括位于限位板148与导套146之间的弹性件150,具体地,该弹性件150的两端分别抵靠在限位板148与导套146上。由于弹性件150的弹性,内管132可以相对于外管144轴向地在弛豫位置和压紧位置之间移动。在压紧位置时,由于内管132以及限位板148的移动,弹性件150经由导套146向待加工件施加预紧力。在弛豫位置,弹性件150处于弛豫状态,因而预紧组件不向待加工件施加预紧力。
可以看出,对于图2所示的实施例,其所采用的预紧组件与安装压铆头130的内管132至少部分地在轴向重叠,也即这两者是并联地连接。相比于传统压铆装置所采用的串联式预紧组件,这种并联连接有助于进一步缩短压铆装置100的轴向长度,并且稳定性也更好。
在一些实施例中,导套146上还可以可拆卸地连接有端盖(图中未示出),其用于将导套146套设在其中,并且在压铆处理时直接抵靠在待加工件上。
在一些实施例中,弹性件150可以包括一组沿内管132的周向间隔地分布的弹簧,每个弹簧的两端分别抵靠在限位板148与导套146上。这些弹簧可以提供轴向的预紧力。在一些优选的实施例中,弹性件150还可以包括与弹簧对应的导柱152,其中每个弹簧被套设在对应的导柱152上。具体地,限位板148包括与弹簧对应的间隔分布的多个通孔154;每个导柱152的一端被固定地连接在导套146上,而另一端可滑动地穿过限位板148上对应多个通孔154。这样,当弹簧被压缩时,弹簧的轴向长度缩短,导柱152可以穿过通孔154而向内管132的第一端134移动,但导柱152不会接触内管132的渐缩部分140。在一些实施例中,导柱152的外侧可以套设有聚氨酯外套,以增加其耐磨性。
需要说明的是,在图2和图3所示的实施例中,导套146的前部未安装端盖。在实际应用中,导套146的前部会安装端盖,并且在弹性件150处于弛豫状态时,端盖应沿轴向超出压铆头138,从而可以提前压紧待加工构件以提供预紧作用。
仍参考图2,在一些实施例中,套筒124上开设有沿其轴向延伸的导向槽,螺母128上固定地连接有限位件,该限位件滑动配合地插设在导向槽中,这样能够保证螺母128在丝杠部分118上运动时不会绕自身轴线旋转,从而确保压铆头组件130随螺母128的运动而作沿轴向往复运动。优选地,可以在套筒124和螺母128的周向间隔地设置多个相互配合的限位件与导向槽。
在一些实施中,压铆装置100还包括位移传感器,其包括传感器本体158与磁环160。传感器本体158位于套筒124外部,并且被构造为长杆状结构。磁环160固接 于螺母128而随螺母128移动而移动。这样,可以通过位移传感器可以确定螺母128在套筒124中的位置,从而获知压铆头138的位置。在一些实施例中,压铆装置100还包括压力传感器(图中未示出),其用于监测驱动杆110沿轴向的受力状态,从而获知压铆头138输出的轴向压力。根据位移传感器与压力传感器对压铆头138的位移与输出力的检测,能够获知压铆装置的工作状态,对压铆加工质量进行监测。
以下具体阐述下本实施例的工作过程:
参见图2和图3所示,当需要对待加工件进行压铆加工时,将压铆装置100的压铆头138对准待加工件上的待加工位置。直接驱动电机102工作,其动子108旋转带动驱动杆110同步旋转,使得螺母128沿丝杠部分118的长度方向朝向待加工工件向前运动,带动内管132与压铆头138随之同步地向前直线运动。在此期间,在弹性件150的作用下,外管144被不断地向前推动而逐渐相对套筒124向前滑出,直至外管144前端的端盖(图中未示出)抵靠在待加工件上。之后,驱动杆110继续转动并驱使螺母128继续向前运动,弹性件150被不断压缩变形,使得端盖与外管144持续地向待加工件施加压紧力,使得待加工件被压紧固定。最后,螺母128继续向前运动,使得压铆头138继续向前运动接触待加工件而实现压铆处理。
当压铆完成后,直接驱动电机102反向旋转而驱使螺母128沿丝杠部分118远离待加工件向后运动,内管134与工作头138向后回退运动,弹性件150逐渐向其弛豫位置回复,从而使得外管144与端盖松开对待加工件的压紧作用。之后,螺母128继续回退,并通过弹性件150带动外管144向套筒124中缩回复位至图2所示的初始状态。
在一些实施例中,取决于直接驱动电机102功率的不同,以及其他结构参数设计,压铆装置可以提供例如1吨至20吨,或者优选5吨至15吨的压铆力。在一些实施例中,取决于弹性件的弹性等参数,压铆装置可以提供200至1000千克的预紧力,优选为400至1000千克的预紧力。可以看出,相比于现有的压铆装置,本发明的压铆装置在减小轴向长度的同时,能够提供与现有技术相当甚至更大的力。
图5至图6示出了根据本申请另一个实施例的压铆装置200的示意图;其中,图5是该压铆装置200的轴向剖面示意图;图6是该压铆装置200的爆炸图。
如图5和图6所示,不同于图1至图4所示的压铆装置100,该压铆装置200的驱动杆210的驱动部分216与丝杠部分218是分别的两个部件,其在驱动杆210的连接部分220通过联轴器221相互连接在一起。相应地,压铆装置200的套筒也被构造 为两个部分224a和224b,其中第一部分224a连接在直接驱动电机202的电机机壳204上,而第二部分224b则用于容纳驱动杆210的丝杠部分218、连接部分216、轴承组件226以及压铆头组件230。关于压铆装置200的其他构件以及其工作方式,可以参考图1至图4所示的压铆装置100的对应描述,在此不再赘述。
图7至图9示出了根据本申请又一个实施例的压铆装置300的示意图;其中,图7和图8是该压铆装置300分别处于初始状态和压铆状态的轴向剖面示意图;图9是该压铆装置300的爆炸图。
如图7至图9所示,不同于图1至图4所示的压铆装置100中采用周向间隔分布的多个弹簧作为弹性件,该压铆装置300采用单个弹簧来作为弹性件。具体地,压铆装置300的套筒324中设置有丝杠318,其被直接驱动电机302驱动绕其旋转轴旋转。丝杠318上套设有螺母328,当丝杠318旋转时,螺母328会沿旋转轴线移动。这样,固定连接在螺母328上的内管332能够一同轴向移动。
弹簧350套设在内管332与外管344之间,用于在内管332和外管344之间弹性地传递力。在图7至8所示的例子中,弹簧350大体呈中空管状结构,并且内管332、弹簧350以及外管344的外径递增。其中,内管332的外壁上具有凸出部333,例如环形凸出部,而外管344的内壁具有凸出部345,弹簧350的两端即分别安装在这两个凸出部333和345上。这样,当螺母328被驱动朝向待加工件(图中未示出)移动时,例如从图7所示的初始状态开始移动时,内管332、弹簧350以及外管344可以一同轴向移动,直至达到图8所示的压铆状态。如图8所示,内管332和外管344从套筒324伸出一段距离,此时外管344端部的导套346接触待加工件,并且随着内管332进一步的轴向移动而逐渐压紧待加工件。此时,外管344停止朝向待加工件移动,而内管332则继续被驱动朝向待加工件轴向移动,并且压缩弹簧350,直至压铆头338穿过其前端的导向孔接触待加工件并对其进行压铆处理。可以理解,当停止压铆处理时,内管332远离待加工件移动,弹簧350逐渐恢复到其弛豫状态,并且之后外管344也远离待加工件移动。
在一些实施例中,弹簧350可以采用螺旋弹簧。在另一些实施例中,弹簧350也可以是碟簧。特别地,对于碟簧,可以通过减少或增加其中碟片的数量和/或厚度来调整其最大压缩距离以及对应的弹性力,因此特别适合压铆头组件使用。
应当注意,尽管在上文详细描述中提及了压铆装置的若干模块或子模块,但是这种划分仅仅是示例性的而非强制性的。实际上,根据本申请的实施例,上文描述的两 个或更多模块的特征和功能可以在一个模块中具体化。反之,上文描述的一个模块的特征和功能可以进一步划分为由多个模块来具体化。
那些本技术领域的一般技术人员可以通过研究说明书、公开的内容及附图和所附的权利要求书,理解和实施对披露的实施方式的其他改变。在权利要求中,措词“包括”不排除其他的元素和步骤,并且措辞“一”、“一个”不排除复数。在本申请的实际应用中,一个零件可能执行权利要求中所引用的多个技术特征的功能。权利要求中的任何附图标记不应理解为对范围的限制。

Claims (12)

  1. 一种压铆装置,其特征在于,所述压铆装置包括:
    直接驱动电机,所述直接驱动电机具有相互配合的定子和转子,并且所述定子位于所述转子的外周以可操作地驱动所述转子转动;
    驱动杆,所述驱动杆具有固定地连接到所述转子的驱动部分,以及位于所述直接驱动电机外部的丝杠部分;其中,所述驱动杆具有转动轴线,并且所述驱动杆能够被所述直接驱动电机驱动而绕所述转动轴线转动;
    螺母,所述螺母被可操作地安装到所述驱动杆的丝杠部分,并且被配置为响应于所述驱动杆绕所述转动轴线的转动而沿所述丝杠部分轴向地移动;以及
    压铆头组件,所述压铆头组件被固定地连接到所述螺母上,并且被配置为跟随所述螺母沿所述丝杠部分的轴向移动而移动,从而进行压铆处理。
  2. 根据权利要求1所述的压铆装置,其特征在于,所述驱动杆是一体成型的。
  3. 根据权利要求1所述的压铆装置,其特征在于,所述驱动杆还包括位于所述驱动部分与所述丝杠部分之间的连接部分,所述驱动杆的驱动部分与所述连接部分通过联轴器相互固定地连接在一起。
  4. 根据权利要求1所述的压铆装置,其特征在于,所述驱动杆仅从所述转子的一侧延伸出,所述丝杠部分位于所述驱动杆从所述转子延伸出的部分。
  5. 根据权利要求1所述的压铆装置,其特征在于,所述直接驱动电机是永磁同步电机。
  6. 根据权利要求1所述的压铆装置,其特征在于,所述驱动杆还包括位于所述驱动部分与所述丝杠部分之间的连接部分,并且所述压铆装置还包括:
    套筒,所述套筒被固定地连接到所述直接驱动电机,并且具有用于容纳所述驱动杆的所述连接部分和丝杠部分的中空内腔;以及
    轴承组件,所述轴承组件位于所述驱动杆与所述套筒之间,用于支撑所述驱动杆 绕所述转动轴线旋转。
  7. 根据权利要求6所述的压铆装置,其特征在于,所述压铆头组件包括:
    内管,所述内管套接到所述驱动杆的丝杠部分的外周,所述内管具有沿其轴向方向相对的第一端与第二端,其中,所述第一端固定地连接到所述螺母上,而所述第二端用于安装压铆头。
  8. 根据权利要求7所述的压铆装置,其特征在于,所述内管具有位于其外壁并沿所述内管周向设置的限位板,所述限位板距离所述内管的第二端预定距离,所述压铆头组件还包括:
    外管,所述外管被可移动地嵌套于所述套筒与所述内管之间,所述外管与所述内管在所述转动轴线的轴向至少部分地重叠;
    导套,所述导套被固定于所述外管靠近所述压铆头的一端,并且具有导向孔,所述导向孔被配置容纳所述压铆头并且引导所述压铆头的轴向移动;
    弹性件,其位于所述外管的导套与所述内管的限位板之间,所述弹性件用于使得所述内管相对于所述外管在弛豫位置和压紧位置之间移动;在所述压紧位置,所述弹性件向所述导套施加预紧力。
  9. 根据权利要求8所述的压铆装置,其特征在于,所述弹性件包括位于所述外管与所述内管之间的沿所述内管的周向间隔地分布的多组弹簧及导柱,并且所述限位板包括对应的间隔分布的多个通孔,其中每个弹簧被套设在对应的导柱外周;每个导柱的一端被固定地连接在所述导套上而其另一端可滑动地穿过所述限位板上对应的通孔,并且每个弹簧的两端分别抵靠在所述限位板与所述导套上。
  10. 根据权利要求7所述的压铆装置,其特征在于,所述压铆头组件还包括:
    外管,所述外管被可移动地嵌套于所述套筒与所述内管之间,所述外管与所述内管在所述转动轴线的轴向至少部分地重叠;
    导套,所述导套被固定于所述外管靠近所述压铆头的一端,并且具有导向孔,所述导向孔被配置容纳所述压铆头并且引导所述压铆头的轴向移动;
    弹性件,其位于所述外管与所述内管之间,所述弹性件用于使得所述内管相对于 所述外管在弛豫位置和压紧位置之间移动;在所述压紧位置,所述弹性件向所述导套施加预紧力。
  11. 根据权利要求10所述的压铆装置,其特征在于,所述外管的内壁和所述内管的外壁分别具有凸起部,所述弹性件的两端分别安装在所述凸起部上。
  12. 根据权利要求11所述的压铆装置,其特征在于,所述弹性件是碟簧。
PCT/CN2019/097412 2018-07-27 2019-07-24 压铆装置 WO2020020199A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810844208.X 2018-07-27
CN201810844208.XA CN109396319B (zh) 2018-07-27 2018-07-27 压铆装置

Publications (1)

Publication Number Publication Date
WO2020020199A1 true WO2020020199A1 (zh) 2020-01-30

Family

ID=65464286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097412 WO2020020199A1 (zh) 2018-07-27 2019-07-24 压铆装置

Country Status (2)

Country Link
CN (1) CN109396319B (zh)
WO (1) WO2020020199A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109396319B (zh) * 2018-07-27 2024-04-05 宾科精密部件(中国)有限公司 压铆装置
CN113134563A (zh) * 2021-04-13 2021-07-20 浙江晟克科技有限公司 铆压机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1462172A (en) * 1973-01-12 1977-01-19 Avdel Ltd Fastener placing apparatus
CN103170570A (zh) * 2013-03-27 2013-06-26 大连四达高技术发展有限公司 数字化机械自动压铆系统
CN204975182U (zh) * 2015-09-28 2016-01-20 东莞市谊科数控科技有限公司 一种伺服驱动压铆机
CN105618659A (zh) * 2016-02-24 2016-06-01 浙江大学 一种自动钻铆机的插钉压铆单元
CN208483168U (zh) * 2018-07-27 2019-02-12 宾科精密部件(中国)有限公司 压铆装置
CN109396319A (zh) * 2018-07-27 2019-03-01 宾科精密部件(中国)有限公司 压铆装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB587938A (en) * 1944-05-19 1947-05-09 Carl William Cherry A riveting device
CH396585A (fr) * 1961-09-28 1965-07-31 Stein Raphael Riveteuse
GB1201769A (en) * 1966-12-17 1970-08-12 Tucker Eyelet Co George Improvements in or relating to tools for use in blind riveting
GB1248411A (en) * 1968-06-26 1971-10-06 Tucker Eyelet Co George Improvements in or relating to fastener setting machines
US3774437A (en) * 1972-03-02 1973-11-27 D Young Rivet setting apparatus with axially movable collar
SU1279790A1 (ru) * 1985-05-20 1986-12-30 Предприятие П/Я В-8916 Устройство дл сборки деталей завальцовкой
IL112214A (en) * 1995-01-02 1997-06-10 Avraham Danino Riveting device
DE19819251B4 (de) * 1998-04-29 2006-12-21 M.H. Honsel Beteiligungs-Gmbh Handnietgerät zum Setzen von Blindnietmuttern
ATE396805T1 (de) * 2004-05-27 2008-06-15 Trumpf Werkzeugmaschinen Gmbh Stanzmaschine mit elektrischem dreh-/hubantrieb
CN201455170U (zh) * 2009-06-11 2010-05-12 天津天德减震器有限公司 压缩阀总成装配铆接装置
JP5597432B2 (ja) * 2010-04-06 2014-10-01 ポップリベット・ファスナー株式会社 電動ブラインドリベット締結装置
CN203155930U (zh) * 2013-03-27 2013-08-28 大连四达高技术发展有限公司 数字化机械自动压铆系统
FR3016417B1 (fr) * 2014-01-14 2016-01-22 Lisi Aerospace Rivet pour fixation aveugle, outil de pose associe et methode de pose d'un tel rivet
DE102015108621B4 (de) * 2015-06-01 2023-12-28 Tox Pressotechnik Gmbh & Co. Kg Vorrichtung und Verfahren zum Anbringen eines Fügeelements an einem Bauteilabschnitt
CN105618656B (zh) * 2015-12-10 2017-10-13 贵州红林机械有限公司 一种组合冲压铆接方法及其装置
CN108368924B (zh) * 2016-11-04 2021-07-16 昆山铆足劲工具有限公司 电动铆接传动装置及电动铆钉枪
CN106623564B (zh) * 2016-12-02 2018-06-22 江苏尚诚精密模具科技有限公司 一种压铆机
CN107282801A (zh) * 2017-07-31 2017-10-24 成都市阿李科技有限公司 一种压铆机及固定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1462172A (en) * 1973-01-12 1977-01-19 Avdel Ltd Fastener placing apparatus
CN103170570A (zh) * 2013-03-27 2013-06-26 大连四达高技术发展有限公司 数字化机械自动压铆系统
CN204975182U (zh) * 2015-09-28 2016-01-20 东莞市谊科数控科技有限公司 一种伺服驱动压铆机
CN105618659A (zh) * 2016-02-24 2016-06-01 浙江大学 一种自动钻铆机的插钉压铆单元
CN208483168U (zh) * 2018-07-27 2019-02-12 宾科精密部件(中国)有限公司 压铆装置
CN109396319A (zh) * 2018-07-27 2019-03-01 宾科精密部件(中国)有限公司 压铆装置

Also Published As

Publication number Publication date
CN109396319B (zh) 2024-04-05
CN109396319A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2020020199A1 (zh) 压铆装置
CN208483168U (zh) 压铆装置
CN109352675B (zh) 一种空间机械臂用机电一体化快速更换接口
CN101517870B (zh) 多面镜扫描仪电机及其制造方法
CN115070816B (zh) 机器人关节模组及机器人
US20180145558A1 (en) Direct drive actuator with switched reluctance motor
CN112204851A (zh) 转子单元、电动马达以及电动致动器
CN114977616A (zh) 电动机
US20230188020A1 (en) Power tool with compact outer-rotor motor assembly
JP4730256B2 (ja) モータの軸受保持構造
US20140102231A1 (en) Threaded rod reciprocation inner rotor direct drive mechanism
KR102008839B1 (ko) 모터
CN113753008A (zh) 一种压力控制模块及电液伺服制动系统
CN209046444U (zh) 抱闸结构及直驱旋转式电机
JP5110466B2 (ja) 直動アクチュエータ
CN106451932B (zh) 一种新型空心杯碳刷永磁电动机及其制造方法
CN107276321B (zh) 一种电磁开关内置式起动电机
CN218000313U (zh) 同轴往复机构的装配结构
JPH10123399A (ja) レンズ駆動機構
CN220791537U (zh) 一种风扇及车辆
CN211830524U (zh) 一种斯特林直线电机
CN220234321U (zh) 机芯结构和电动牙刷
CN219832731U (zh) 极片压紧装置和多工位极片压紧系统
CN210734279U (zh) 电动助力转向系统
CN220122721U (zh) 一种电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841036

Country of ref document: EP

Kind code of ref document: A1