WO2020020006A1 - 下行检测、发送方法、装置及通信系统、终端、基站 - Google Patents

下行检测、发送方法、装置及通信系统、终端、基站 Download PDF

Info

Publication number
WO2020020006A1
WO2020020006A1 PCT/CN2019/096022 CN2019096022W WO2020020006A1 WO 2020020006 A1 WO2020020006 A1 WO 2020020006A1 CN 2019096022 W CN2019096022 W CN 2019096022W WO 2020020006 A1 WO2020020006 A1 WO 2020020006A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
downlink
target
time slot
terminal
Prior art date
Application number
PCT/CN2019/096022
Other languages
English (en)
French (fr)
Inventor
李新彩
赵亚军
徐汉青
杨玲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/262,889 priority Critical patent/US20210168780A1/en
Priority to EP19840564.9A priority patent/EP3829236A4/en
Priority to MX2021000991A priority patent/MX2021000991A/es
Publication of WO2020020006A1 publication Critical patent/WO2020020006A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a method and device for downlink detection and transmission, a communication system, a terminal, and a base station.
  • the base station needs to perform the PDCCH (Physical Downlink Control Channel) detection of the terminal in semi-static configuration through high-level signaling.
  • PDCCH Physical Downlink Control Channel
  • the terminal needs to perform PDCCH detection at the specified time domain position and frequency domain position according to the configuration. For example, the base station instructs the terminal to use m timeslots as the detection period to perform PDCCH detection on the symbols whose serial number is a multiple of 3 in the detection period, and the terminal will only perform PDCCH detection in a specified manner in the subsequent process.
  • the detection granularity of the configured PDCCH detection opportunity strategy is too small, the frequency of terminal detection will be relatively high, which will increase the complexity and power consumption of the PDCCH detection by the terminal; if the detection granularity of the configured PDCCH detection opportunity strategy is too large, It will reduce the opportunity for the base station to perform downlink transmission, and will cause the base station to wait for a long time to obtain a transmission opportunity when there is downlink information to be transmitted.
  • the downlink detection and transmission method, device, communication system, terminal, and base station provided by the embodiments of the present disclosure mainly solve the technical problem: since the terminal can only perform blind PDCCH detection according to the unified detection opportunity policy configured by the base station, it is easy to configure the The detection granularity is too large, resulting in a large delay in the downlink transmission of the base station, or the configured detection granularity is too small, resulting in a large detection workload and high power consumption of the terminal.
  • an embodiment of the present disclosure provides a downlink detection method, including:
  • the downlink detection is performed according to the target detection opportunity strategy corresponding to the target time slot.
  • the detection granularity of the target detection opportunity strategy is smaller than that of the ordinary detection opportunity strategy.
  • the common detection opportunity strategy is the detection opportunity strategy of other time slots in the COT except the target time slot.
  • An embodiment of the present disclosure further provides a downlink sending method, including:
  • the starting time-frequency position of the downlink information is determined based on the target detection opportunity strategy corresponding to the target time slot.
  • the target detection opportunity strategy is used to indicate the downlink detection of the terminal. Detection granularity of detection opportunity strategy;
  • An embodiment of the present disclosure further provides a downlink detection device, including:
  • a timeslot determining module configured to determine a current timeslot as a target timeslot in a channel occupation period COT;
  • the information detection module is configured to perform downlink detection according to the target detection opportunity policy corresponding to the target time slot.
  • the detection granularity of the target detection opportunity policy is smaller than that of the ordinary detection opportunity policy.
  • the common detection opportunity policy is when the COT except the target time slot Gap detection opportunity strategy.
  • An embodiment of the present disclosure further provides a downlink detection device, including:
  • a sending determination module configured to determine that there is a need to send downlink information to the terminal in a target time slot of the COT;
  • a position determination module is configured to determine a start time-frequency position of sending downlink information based on a target detection opportunity strategy corresponding to a target time slot.
  • the target detection opportunity strategy is used to indicate a downlink detection of a terminal.
  • the detection granularity of the target detection opportunity strategy is smaller than that of the COT. Detection granularity of common detection opportunity policies outside the target time slot;
  • An information sending module is configured to send downlink information to a terminal at a transmission start time-frequency position.
  • An embodiment of the present disclosure further provides a terminal including a first processor, a first memory, and a first communication bus; the first communication bus is used to implement connection and communication between the first processor and the first memory;
  • the first processor is configured to execute one or more programs stored in the first memory to implement the steps of the downlink detection method as above.
  • An embodiment of the present disclosure further provides a base station including a second processor, a second memory, and a second communication bus; the second communication bus is used to implement connection and communication between the second processor and the second memory;
  • the second processor is configured to execute one or more programs stored in the second memory, so as to implement the steps of the downlink sending method above.
  • An embodiment of the present disclosure further provides a communication system including the above-mentioned terminal and the above-mentioned base station.
  • An embodiment of the present disclosure further provides a storage medium. At least one of a downlink detection program and a downlink transmission program is stored in the storage medium.
  • the downlink detection program may be executed by one or more processors to implement the above-mentioned downlink detection method. Steps:
  • the downlink sending program may be executed by one or more processors to implement the steps of the downlink sending method as above.
  • the target detection corresponding to the target time slot can be performed.
  • Opportunity strategy to determine the starting time-frequency position of sending downlink information, and then send the downlink information to the terminal at the determined time-frequency position.
  • the terminal it performs downlink detection in the target time slot according to the target detection opportunity policy, so the downlink information sent by the base station can be detected by the terminal.
  • the terminal since the terminal has two different detection opportunity strategies for time slots in the COT, for ordinary time slots in the COT, the terminal can use the ordinary detection opportunity strategy to detect, and target terminals in the COT. , The terminal can use the target detection opportunity strategy for detection.
  • the detection granularity of the target detection opportunity strategy is smaller than the detection granularity of the ordinary detection opportunity strategy, that is, the detection density is greater, so the base station has a denser transmission opportunity in the target time slot.
  • the downlink information transmission can be completed at the corresponding time-frequency position.
  • the detection granularity of the terminal is large and the detection density is small. Therefore, the detection workload of the terminal is relatively small, which is conducive to reducing the power consumption caused by the downlink detection to the terminal.
  • FIG. 1 is a schematic diagram of the total number of symbols and the actual number of detected symbols in a detection period shown in Embodiment 1 of the present disclosure
  • FIG. 2 is a flowchart of a downlink detection method provided in Embodiment 1 of the present disclosure
  • FIG. 3 is a flowchart of a downlink sending method provided in Embodiment 2 of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a downlink detection device provided in Embodiment 4 of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a downlink sending apparatus provided in Embodiment 5 of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a downlink detection device provided in Embodiment 6 of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a downlink sending apparatus provided in Embodiment 6 of the present disclosure.
  • Embodiment 8 is a schematic diagram of a communication system provided in Embodiment 7 of the present disclosure.
  • FIG. 9 is a schematic diagram of a hardware structure of a terminal provided in Embodiment 7 of the present disclosure.
  • FIG. 10 is a schematic diagram of a hardware structure of a base station provided in Embodiment 7 of the present disclosure.
  • Example 11 is a schematic diagram of a time-domain detection pattern provided in Example 2 of Embodiment 8 of the present disclosure.
  • FIG. 12 is a schematic diagram of a frequency domain detection pattern provided in Example 3 of Embodiment 8 of the present disclosure.
  • unlicensed spectrum resources With the explosive growth of communication demand, spectrum resources are becoming increasingly tight. In order to meet the exponentially increasing demand, additional spectrum resources need to be added. Because licensed spectrum resources are limited, communication providers need to seek out unlicensed spectrum resources, that is, unlicensed spectrum resources, to solve the problem. Compared with licensed carriers, unlicensed carriers have the advantages of free / low cost, low access requirements, shareable resources, multiple wireless access technologies, and multiple sites. At present, 3GPP (3rd Generation Partnership Project, 3rd Generation Partnership Project) The technology has conducted research on the transmission operation of unlicensed carriers.
  • LBT Listen Before Talk
  • CCA Clear Channel Assessment
  • the base station For downlink transmission, the base station sends downlink information after LBT is successful. For the terminal, it cannot accurately determine when and on what frequency band the base station performs downlink information transmission. It can only perform detection according to the detection opportunity policy configured by the base station through high-level signaling in advance. For the base station, since the time-frequency position at which the terminal starts downlink detection, that is, the detection start position is determined, the time-frequency position at which the base station starts downlink information transmission, that is, the transmission start time-frequency position is also determined.
  • the base station uses the CORESET (control resource set) parameters and the search space (search space) parameters. Entity) indicates to the terminal a detection opportunity policy.
  • the search space parameter can indicate the time domain location to be detected.
  • the search space parameter includes monitoring, Period, and Offset parameters, and monitoring Symbols Within slots. Parameter. Through these two parameters, the base station can indicate to the terminal how many time slots are used as the detection period, and which symbols of which time slot need to be detected in the detection period.
  • the CORESET parameter can indicate the frequency domain position to be detected and the length of the downlink control information.
  • the detection granularity of this detection opportunity strategy is fixed, and the transmission opportunity granularity of the corresponding base station side for downlink transmission is also fixed.
  • the base station and the terminal can only perform downlink transmission and downlink detection according to the fixed granularity, respectively.
  • the detection granularity of the detection opportunity policy configured by the base station in the related technology has nothing to do with whether the base station turns on a COT, and has nothing to do with each time slot in the COT.
  • the base station may Sending downlink information, but for the terminal, the detection complexity, detection workload will be large, and the power consumption is also high.
  • the detection granularity configured by the base station is too large, for example, the terminal is instructed to use two time slots as a cycle, and only the last symbol in the latter time slot is detected in this detection cycle. In this way, the burden of the terminal's downlink detection is really small.
  • this embodiment provides a downlink detection method, which is applied to a terminal side and executed by the terminal:
  • the terminal no longer performs downlink detection based on the semi-statically configured detection opportunity policy of the base station that is independent of each time slot in the COT.
  • the granularity of the terminal's downlink detection is related to the time slot in the COT: Time slots can be divided into target time slots and ordinary time slots. For target time slots, the terminal can perform downlink detection according to the target detection opportunity strategy. For other time slots in the COT except the target time slot, the terminal can use ordinary detection opportunities. Strategy for downlink detection. The detection granularity in the target detection opportunity strategy is smaller than the detection granularity in the ordinary detection opportunity strategy. Therefore, when the terminal performs downlink detection according to the target detection opportunity strategy, the detection density is greater.
  • the detection density is relatively high. small. It can be understood that the smaller the detection granularity, the greater the corresponding detection density, the greater the detection intensity, and the more detailed the downstream detection; otherwise, the larger the detection granularity, the smaller the corresponding detection density and the smaller the detection intensity. The rougher the downstream detection. Therefore, in this embodiment, the terminal performs more vigorous and detailed detection for the target time slot in the COT, while for the ordinary time slot, the terminal performs only a lesser detection.
  • the base station side has a relatively dense downlink transmission opportunity in the target time slot of the COT, and in the ordinary time slot, the downlink transmission opportunity is relatively sparse.
  • the above-mentioned target slot detection opportunity strategy includes, but is not limited to, detecting even-numbered symbols in the target slot, or detecting odd-numbered symbols in the target slot, or 0 in the target slot. , 2, 4, 7 symbols are detected.
  • the above common time slot detection opportunity strategy includes, but is not limited to, detecting the first symbol of each common time slot, or detecting the number of 0 symbols and the number of 7 symbols in each common time slot, or Detection is performed every two ordinary time slots.
  • the detection granularity may include time-domain detection granularity and frequency-domain detection granularity.
  • the detection granularity of the target detection opportunity strategy is smaller than that of the ordinary detection opportunity strategy. This may be because the time-domain detection granularity of the target detection opportunity strategy is less than
  • the time-domain detection granularity of the common detection opportunity strategy may also be because the frequency-domain detection granularity of the target detection opportunity strategy is smaller than the frequency-domain detection granularity of the ordinary detection opportunity strategy, or it may be because of the time-domain detection granularity and frequency domain of the target detection opportunity strategy.
  • the detection granularity is smaller than the granularity corresponding to the common detection opportunity strategy.
  • the time-domain detection granularity refers to the ratio of the total number of symbols to the actual number of detected symbols, where the total number of symbols refers to the number of all symbols remaining in the detection period when PDCCH detection is started in one detection period.
  • the detection period includes a total of 28 symbols, and the symbols to be detected include the serial number in the first time slot slot1 (assuming In this embodiment, all the symbols in the timeslot start from 0) are all odd symbols and the symbols in the second timeslot slot2 are 2, 4, 6, and 8 respectively. Therefore, there are actually 18 symbols that the terminal will perform downlink detection, and the detection granularity is 28/18, that is, 14/9.
  • the time slots included in the detection period are not necessarily all complete time slots.
  • the terminal determines to enter the target time slot half of the target time slot has passed. In this case, the total number of symbols in the detection period is seven.
  • the frequency domain detection granularity is the ratio of the total frequency band value to the actual detected frequency band value.
  • the total frequency band is the sum of the frequency bands of the candidate frequency bands used for downlink transmission.
  • the downlink information is sent, so the total frequency band sum is the sum of the three BWP frequency bands, and it is assumed here that the total frequency band sum is 80 MHz. It can be understood that the terminal does not necessarily perform downlink detection on all frequency positions in the three BWPs. Assuming that the terminal performs downlink detection only on 20MHz in BWP1 and 20MHz in BWP2 during the detection period, the actual frequency band detected The value is 40MHz, so the frequency domain detection granularity is 80/40, which is 2.
  • S202 The terminal determines that the current time slot is a target time slot in the COT.
  • the target time slot refers to a time slot in which the base station in the COT has a high demand for downlink transmission.
  • These time slots may be designated by the management in the COT according to experience, for example, the first time slot after the COT is turned on.
  • One time slot for example, the last time slot before the end of the COT. Therefore, in an example of this embodiment, the target time slot may include the first time slot and / or the last time slot in the COT. In this case, the position of the target slot in the COT is fixed.
  • the base station may notify the terminal whether the subsequent time slot is the target time slot according to the requirements of its own downlink transmission. In this case, the relative position of the target slot in the COT is not fixed.
  • the base station and the terminal predetermined the relative position of the target time slot in the COT, and then the base station sends the COT start instruction information to the terminal after the successful execution of the LBT to notify the terminal that the COT has been turned on.
  • the terminal can determine whether the current time is the target time slot. For example, the base station and the terminal determine in advance that the first time slot in the COT is a target time slot for detailed detection. After the terminal receives the COT start instruction information sent by the base station, as long as the current time is away from receiving the start of the COT The time of the indication information is less than one time slot, then the terminal may determine that it is currently in the target time slot.
  • the COT start indication information mentioned herein may include one or a combination of a preamble signal, a demodulation reference signal, a measurement reference signal, a synchronization signal, and a predefined sequence signal.
  • the preamble signal, the demodulation reference signal, and the synchronization signal are all relatively common signals at present, and the predefined sequence signal is information pre-agreed by the base station and the terminal and used to notify the COT to be turned on.
  • the terminal determines that the resource mapping type corresponding to the PDSCH (Physical Downlink Shared Channel) in the downlink control information DCI recently detected is the second mapping type (mapping type B) .
  • the time domain resource allocation indication in the DCI information sent by the base station to the terminal indicates that the resource mapping type corresponding to the PDSCH is the first mapping type (mapping type A)
  • the base station may only The first three symbols of the slot send downlink information to the terminal.
  • the terminal only needs to perform downlink detection for the first three symbols of each slot.
  • the base station may send downlink information to the terminal at any symbol position in a time slot in the subsequent process, and the terminal needs to perform downlink detection is not limited to the first three of each time slot Symbol, so the terminal's downlink detection detection granularity is usually smaller than the detection granularity corresponding to the first mapping type. Therefore, when the terminal receives DCI information indicating that the resource mapping type is the second mapping type, the terminal can determine that the target slot is currently entered Until the terminal receives the time domain resource allocation indication that the resource mapping type corresponding to the PDSCH is the first mapping type DCI date information.
  • the terminal receives a handover instruction when performing downlink detection using a common detection opportunity strategy.
  • the handover instruction is used to instruct the terminal to switch the detection opportunity policy based on the downlink detection to another detection opportunity policy. For example, if the currently used detection opportunity policy is a target detection opportunity policy, the terminal needs to switch to the normal detection opportunity policy. Downlink detection is performed. On the contrary, if the terminal currently uses a common detection opportunity policy, the terminal needs to switch to the target detection opportunity policy for downlink detection according to the handover instruction. Therefore, in this embodiment, if the terminal receives a handover instruction when performing downlink detection using a common detection opportunity strategy, the terminal may determine that the target time slot of the COT is currently entered. The target time slot will be consistent until the terminal receives the handover instruction again.
  • a specific RNTI Radio Network Temporary Identifier
  • a 1 bit can be set in the DCI signaling to indicate whether the detection opportunity currently used is required.
  • the policy switches to another detection opportunity policy for detection. For example, take “0" as the handover identifier. If the DCI signaling carries the handover identifier "0", it means that the detection opportunity strategy used for downlink detection needs to be switched: If the current detection opportunity strategy is used, the terminal needs Use the target detection opportunity strategy for downstream detection at subsequent times. If the terminal currently uses the target detection opportunity strategy, the terminal needs to use the ordinary detection opportunity strategy for downstream detection at subsequent times.
  • S204 The terminal performs downlink detection according to the target detection opportunity policy corresponding to the target time slot.
  • the terminal After the terminal determines that the current time slot is the target time slot in the COT, it performs downlink detection at the corresponding detection start time-frequency position according to the target detection opportunity strategy corresponding to the target time slot. Of course, if the terminal determines that the current time slot is not the target time slot, the terminal may directly perform downlink detection at the corresponding detection start time-frequency position according to a common detection opportunity strategy.
  • the base station After the base station successfully executes LBT and starts a COT, it will first send DCI (Downlink Control Information) to the terminal. Therefore, the downlink detection of the terminal can be performed by PDCCH detection to detect the downlink sent by the base station. Control information.
  • the base station may also send data to the terminal directly after COT is turned on, that is, the data is sent first without sending downlink control information. In this case, the downlink detection of the terminal is aimed at Blind detection of downlink data.
  • the terminal performs downlink detection by determining that the current time slot is a target time slot in the COT, and then performing a target detection opportunity strategy corresponding to the target time slot.
  • the base station needs more downlink transmission in some timeslots of the COT, while in other timeslots, there is less need for downlink transmissions, so the terminal and the base station can transfer the
  • the base station performs timeslots with a high probability of downlink transmission (for example, the first and / or last timeslots in the COT) as the target timeslots.
  • the detection granularity of the target detection opportunity strategy is smaller than that of the ordinary detection opportunity strategy.
  • the feature allows the terminal to perform relatively detailed detection on these target time slots when performing downlink detection, thereby providing the base station side with more downlink transmission opportunities; for other time slots in the COT except the target time slot, the terminal can Detection is performed according to a common detection opportunity strategy, thereby reducing the burden of downlink detection on the terminal side and reducing terminal power consumption.
  • This embodiment provides a downlink transmission method corresponding to the downlink detection method in Embodiment 1.
  • the downlink transmission method is applied to a base station side and may be executed by the base station. Because the downlink detection of the terminal is blind detection, when the base station sends the downlink information, it cannot determine the time-frequency position of the downlink transmission at will. It needs to ensure that the time-frequency position of the downlink information transmission is the time when the terminal performs the downlink detection. Frequency position. Therefore, when the base station determines the time-frequency position of the start of sending the downlink information, it will perform it according to the detection opportunity strategy of the terminal side for downlink detection. The following describes the downlink sending method with reference to the flowchart shown in FIG. 3:
  • the base station determines that there is a need to send downlink information to the terminal in a target time slot of the COT.
  • each time slot in the COT is divided into a target time slot and an ordinary time slot.
  • the base station determines that it currently needs to send downlink information to the terminal, the base station can determine that the current transmission requirement for sending downlink information is It belongs to the downlink transmission demand of the target time slot or the downlink transmission demand of the ordinary time slot. Therefore, when the base station determines whether there is a need to send downlink information to the terminal in the target time slot of the COT, it first needs to determine which time slot or slots are the target time slots.
  • Target time slots refer to the time slots in the COT where the base station's downlink transmission requirements are more intensive. These time slots can be designated by the management personnel in the COT based on experience, such as the first time slot after the COT is turned on. For example, The last time slot before the end of the COT, so in some examples, the target time slot may include the first time slot and / or the last time slot in the COT. In this case, the position of the target slot in the COT is fixed. However, in some other examples of this embodiment, the base station may notify the terminal whether the subsequent time slot is the target time slot according to its downlink transmission requirements. Since the downlink transmission requirements of the base station are not fixed, in this case, the target time The relative position of the gap in the COT is not fixed.
  • the base station can notify the terminal of the relative position of the target time slot in the COT through high-level signaling in advance, or the management personnel can configure the base station and the terminal respectively in advance, so that The base station and the terminal determine the relative position of the target time slot within the COT.
  • the base station and the terminal determine in advance that the target time slot is the first time slot in the COT.
  • the base station can determine whether it is currently in the target time slot according to the time of the current time and the start time of the COT.
  • the base station After the base station successfully executes LBT and turns on the COT, it can send COT start instruction information to the terminal so that the terminal can also know the start time of the COT. Therefore, the position of the target time slot is determined by combining the start time of the COT and the predetermined relative position of the target time slot in the COT.
  • the COT start indication information mentioned herein may include one or a combination of a preamble signal, a demodulation reference signal, a measurement reference signal, a synchronization signal, and a predefined sequence signal.
  • the preamble signal, the demodulation reference signal, and the synchronization signal are all relatively common signals at present, and the predefined sequence signal is information pre-agreed by the base station and the terminal and used to notify the COT to be turned on.
  • the base station can determine whether it is the current target time slot according to whether its current transmission demand is dense. For example, at a certain time, the base station judges that the time slot from the current time is a period of time. If it needs to send downlink information to the terminal more frequently, the base station can determine that the time slots in this period belong to the target time slot. In this case, the base station needs to instruct the terminal before the terminal can determine that the current time slot belongs to the target time slot:
  • the base station and the terminal agree in advance that the terminal receives DCI information whose resource mapping type corresponding to the PDSCH is the second mapping type at time t1 and receives the time at time t2.
  • the time domain resource allocation indicates that the resource mapping type corresponding to the PDSCH is DCI information of the first mapping type, and then all time slots between t1 and t2 belong to the target time slot. Therefore, in this case, when the base station determines that the target slot is currently entered, it may send to the terminal a DCI indicating that the resource mapping type corresponding to the PDSCH is the second mapping type.
  • the base station and the terminal have agreed in advance that if the terminal originally used a common detection opportunity strategy for downlink detection and received a handover instruction sent by the terminal at a certain time, the terminal may determine from the current At this moment, it enters the target time slot until it receives the handover instruction from the base station again.
  • the base station can scramble the DCI signaling through a specific RNTI as a handover instruction, and 1 bit can be set in the DCI signaling to indicate whether it is necessary to switch from the currently used detection opportunity strategy to another detection opportunity strategy for detection. . For example, take "0" as the handover identifier.
  • the DCI signaling carries the handover identifier "0"
  • the detection opportunity strategy used for downlink detection needs to be switched: If the current detection opportunity strategy is used, the terminal needs Use the target detection opportunity strategy for downstream detection at subsequent times. If the terminal currently uses the target detection opportunity strategy, the terminal needs to use the ordinary detection opportunity strategy for downstream detection at subsequent times.
  • "1" may also be set as the switching identifier.
  • the base station determines a start time and frequency position of sending downlink information based on a target detection opportunity policy corresponding to a target time slot.
  • the base station can determine the starting time-frequency position of the downlink information according to the target detection opportunity strategy. Obviously, the starting time-frequency position of the transmission includes information transmission. Time domain location and frequency domain location of the message. If the base station determines that it needs to send downlink information to the terminal in the ordinary time slot, it can determine the start time and frequency position of the downlink information according to the ordinary detection opportunity policy corresponding to the ordinary time slot.
  • the base station determines the starting time-frequency position of sending downlink information according to the target detection opportunity strategy or determines the sending position of downlink information according to the common detecting opportunity strategy, the starting time-frequency position determined by the base station must be the target detection.
  • Opportunity strategy / general detection opportunity strategy indicates the starting time-frequency position to be detected.
  • the detection granularity in the target detection opportunity strategy is smaller than the detection granularity in the ordinary detection opportunity strategy. Therefore, when the terminal performs downlink detection according to the target detection opportunity strategy, the detection density is greater. When the terminal performs detection according to the ordinary detection opportunity strategy, the detection density is relatively high. small. It can be understood that the smaller the detection granularity of the terminal, the greater the corresponding detection density, and the more opportunities for the base station to send downlink information; conversely, the larger the detection granularity of the terminal, the smaller the corresponding detection density. The sparser the opportunities available for the base station to send downlink information.
  • the above detection granularity may include time-domain detection granularity and frequency-domain detection granularity.
  • the detection granularity of the target detection opportunity strategy is smaller than that of the ordinary detection opportunity strategy. This may be because the time-domain detection granularity of the target detection opportunity strategy is smaller than that of the ordinary detection opportunity strategy.
  • the time-domain detection granularity may also be because the frequency-domain detection granularity of the target detection opportunity strategy is smaller than the frequency-domain detection granularity of the ordinary detection opportunity strategy, or it may be because the time-domain detection granularity and frequency-domain detection granularity of the target detection opportunity strategy are smaller than ordinary The granularity corresponding to the detection opportunity strategy.
  • the time-domain detection granularity refers to the ratio of the total number of symbols to the actual number of detected symbols, where the total number of symbols refers to the number of all symbols remaining in the detection period when PDCCH detection is started in one detection period. If there are two time slots in a detection period, there is no doubt that the detection period includes a total of 28 symbols, and the symbols to be detected include all symbols with odd sequence numbers in the first time slot and the second time slot.
  • the internal serial numbers are symbols of 1, 3, 5, 9 respectively. Therefore, there are actually 18 symbols that the terminal will perform downlink detection, and the detection granularity is 28/18, that is, 14/9.
  • the time slots included in the detection period are not necessarily all complete time slots. For example, in an example of this embodiment, when the terminal determines to enter the target time slot, half of the target time slot has passed. In this case, the total number of symbols in the detection period is seven.
  • the frequency domain detection granularity is the ratio of the total frequency band value to the actual detected frequency band value.
  • the total frequency band is the sum of the frequency bands of the candidate frequency bands for downlink transmission.
  • the base station Take the base station as the terminal to configure three BWPs as an example. Since the base station may use at least one of BWP1, BWP2, and BWP3 to send downlink information to the terminal, the total frequency band The sum is the sum of the three BWP frequency bands, and it is assumed here that the total frequency band sum is 80 MHz. It can be understood that the terminal does not necessarily perform downlink detection on all frequency positions in the three BWPs. Assuming that the terminal performs downlink detection only on 20MHz in BWP1 and 20MHz in BWP2 during the detection period, the actual frequency band detected The value is 40MHz, so the frequency domain detection granularity is 80/40, which is 2.
  • the base station sends downlink information to the terminal at the transmission start time-frequency position.
  • the base station After the base station determines the transmission start time-frequency position according to the target detection opportunity strategy, it can send downlink information to the terminal at the transmission start time-frequency position. Generally, after the base station successfully executes LBT and starts a COT, it first sends DCI information to the terminal. Therefore, the downlink information sent by the base station to the terminal at the determined transmission start time-frequency position may be DCI information. Of course, in some special cases, the base station may also send data directly to the terminal after COT is turned on, that is, the data is sent first without sending downlink control information. In this case, the base station starts the corresponding transmission. The downlink information sent to the terminal at the starting time-frequency position is the downlink data.
  • the base station determines the starting time-frequency position of sending the downlink information based on the target detection opportunity policy corresponding to the target time slot, and then Send downlink information to the terminal at the determined transmission start time-frequency position.
  • the base station and the terminal can respectively perform downlink information transmission and downlink detection according to two detection opportunity policies with different detection granularities, so that the base station can obtain more timely and frequent timeslots for downlink transmission in a timely manner.
  • the downlink sending method provided in this embodiment considers both the downlink transmission efficiency of the base station and the power consumption on the terminal side. Compared with the methods in related technologies, it can effectively improve the user experience on the terminal side.
  • the terminal detects the target time slot in the COT according to the target detection opportunity policy, and In the COT, downlink detection is performed on other common time slots except the target time slot.
  • the base station needs to send downlink information in the target time slot, the base station needs to determine the time and frequency position of the downlink information transmission based on the target detection opportunity policy. If the base station needs to send downlink information to the terminal in other common time slots except the target time slot in the COT, the base station needs to determine the transmission start time-frequency position of the downlink transmission based on the common detection opportunity strategy.
  • the terminal needs to determine the target detection opportunity strategy.
  • the terminal Before the terminal adopts the common detection opportunity strategy for downlink detection, the terminal needs to determine the common detection opportunity strategy; correspondingly, the base station based on the target Before the detection opportunity strategy performs downlink transmission, the base station needs to determine the target detection opportunity strategy. Before the base station performs downlink transmission based on the ordinary detection opportunity strategy, the base station needs to determine the ordinary detection opportunity strategy.
  • the target detection opportunity strategy Before the base station performs downlink transmission based on the ordinary detection opportunity strategy, the base station needs to determine the ordinary detection opportunity strategy.
  • the base station may configure the target detection opportunity strategy to the terminal in a semi-static form through high-level signaling: the base station first determines the first semi-static configuration information, which may indicate the target detection opportunity strategy. After determining the first semi-static configuration information, the base station may send the first semi-static configuration information to the terminal, and then both the base station and the terminal may determine the target detection opportunity policy according to the first semi-static configuration information. In some examples of this embodiment, the base station may send the first semi-static configuration information to the terminal at the first symbol in the first time slot in the COT.
  • the first semi-static configuration information may include a symbol indication and / or a frequency band indication, where the symbol indication is used to indicate whether each symbol in the target time slot needs to be detected in the downlink, and the frequency band indication is used It is used to indicate whether candidate frequency bands are needed for downlink detection in the target time slot.
  • the symbol indication may be a symbol bitmap bitmap corresponding to each symbol in the target slot. For example, if n symbols are included in the target slot, the symbol bitmap will also include n bits, each bit uniquely corresponds to a symbol .
  • the frequency band indication may also be a frequency band bitmap. Each candidate frequency band corresponds to a bit in the frequency band bitmap, and is used to indicate whether downlink detection is required for the candidate frequency band in the target time slot.
  • the first semi-static configuration information may include a CORESET parameter and a search space parameter.
  • the meaning of the search space parameter and the base station in the related technology are sent to the base station through high-level signaling.
  • the meaning of the terminal search space parameter is somewhat different: in this example, the slot offset indicated by the search space parameter is the slot offset relative to the start time of the COT.
  • this embodiment also provides a solution that allows the terminal and the base station to determine the target detection opportunity policy.
  • the terminal and the base station determine the target detection opportunity strategy in a predefined manner.
  • the base station may receive the first and defined configuration parameters, and then determine the target detection opportunity strategy according to the first predefined configuration parameter.
  • the first predefined configuration parameter may be input to the base station by a base station manager.
  • the terminal can also determine the target detection opportunity strategy by acquiring the first predefined configuration parameter.
  • the terminal receives and stores the first predefined configuration parameter input by the programmer during the design and production phases; of course, the terminal can also be used by the user during the use phase.
  • the programmer sends the first predefined configuration parameter to the terminal in the form of a network, for example, when the system is upgraded, the first predefined configuration parameter is carried in the upgrade file and sent to the terminal.
  • the two methods of determining the target detection opportunity strategy by the base station and the terminal have been introduced before.
  • the base station and terminal Similar to the target detection opportunity strategy, the base station and terminal also have the following two methods when determining the common detection opportunity strategy:
  • Method 1 The base station determines the second semi-static configuration information, then determines a common detection opportunity policy according to the second semi-static configuration information, and sends the second semi-static configuration information to the terminal. After receiving the second predefined configuration parameter, the terminal may determine a common detection opportunity strategy for detecting ordinary time slots in the OT according to the second semi-static configuration information.
  • Manner 2 The base station and the terminal respectively receive a second predefined configuration parameter, and then determine a common detection opportunity policy according to the second predefined configuration parameter.
  • the second semi-static configuration information may also include a symbol indication and a frequency band indication.
  • the second semi-static configuration information includes a symbol bitmap corresponding to a symbol in a common time slot, and / or the second semi-static configuration information also includes a frequency band bitmap corresponding to the same candidate frequency band.
  • the second semi-static configuration information may also indicate the time-frequency position to be detected in an ordinary time slot by using the CORESET parameter and the search space parameter.
  • the second semi-static configuration information The time slot offset indicated by the search space parameter is the time slot offset relative to the start time of the COT.
  • Case 1 The two use the first semi-static configuration information and the second semi-static configuration information to determine the target detection opportunity policy and the common detection opportunity policy; in this case, the first semi-static configuration information and the second semi-static configuration Information can be sent from the base station to the terminal at the same time.
  • the target time slot is the first time slot in the COT
  • the ordinary time slot is a time slot other than the first time slot in the COT.
  • the base station can configure two detection opportunity policies to the terminal through high-level signaling.
  • the detection granularity belongs to the target time slot, that is, the first time slot in the COT, and the other has a larger detection granularity.
  • the detection opportunity strategy belongs to the ordinary time slot and is a general detection opportunity strategy.
  • Case two The two use the first predefined configuration parameter and the second predefined configuration parameter to determine the target detection opportunity strategy and the ordinary detection opportunity strategy. It is understandable that when the ordinary detection opportunity strategy and the target detection opportunity strategy both pass the pre-defined When the defined manner is configured on the terminal side and the base station side, the first predefined configuration parameter and the second predefined parameter may be input to the terminal / base station together, or may be input to the terminal / base station separately. It is also assumed that the target time slot is the first time slot in the COT. Then the base station and the terminal can configure two detection opportunity policies with different detection granularities in a predefined manner. The smaller detection granularity is the target detection opportunity policy. The big one is the common detection opportunity strategy.
  • Case 3 Both determine the target detection opportunity strategy through the first semi-static configuration information, and determine the common detection opportunity strategy through the second predefined configuration parameter; if the first time slot and the last time slot of the COT are target time slots, the terminal
  • the target detection opportunity strategy determined by the first semi-static configuration information can be used to perform downlink detection on the first time slot and the last time slot in the COT
  • the common detection opportunity strategy determined by the second predefined configuration parameter is used to remove the COT. Detection is performed on time slots other than the first time slot and the last time slot.
  • Case 4 The two determine the target detection opportunity strategy through the first predefined configuration parameter, and determine the ordinary detection opportunity strategy through the second semi-static configuration information.
  • the base station and the terminal can configure the target detection opportunity policy and the common detection opportunity policy by means of semi-static configuration and predefined settings of high-level signaling.
  • the base station and the terminal may determine in advance A granularity threshold, and then the target detection opportunity strategy and the ordinary detection opportunity strategy are determined according to the granularity threshold. For the target time slot, the detection granularity is smaller than the granularity threshold, while for other common time slots, the detection granularity is greater than the granularity threshold.
  • the terminal may need to try to detect opportunities based on multiple targets.
  • the downlink information sent by the base station can be successfully detected only after the policy performs downlink detection.
  • the downlink detection method and the downlink transmission method provided in this embodiment may determine a target detection opportunity policy and a common detection opportunity policy through a method of semi-static configuration and / or a predefined configuration of high-level signaling, and provide a target detection opportunity policy and a common detection opportunity.
  • the configuration of policies provides a more flexible way.
  • the cooperation of the downlink detection method and the downlink transmission method not only ensures that the base station side has sufficient opportunity to transmit downlink information to the terminal in time, but also ensures that the detection complexity of the terminal is not too high, which improves the user experience on the terminal side.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the downlink detection device 40 includes a time slot determination module 402 and an information detection module 404, where the time slot determination module 402 is used to determine that the current time slot is the target in the COT. And the information detection module 404 is configured to perform downlink detection according to the target detection opportunity policy corresponding to the target time slot.
  • the information detection module 404 of the downlink detection device 40 no longer performs downlink detection based on the semi-statically configured detection opportunity policy of the base station that is independent of each time slot in the COT.
  • the granularity of the downlink detection of the information detection module 404 and the COT Internal time slots are related: For each time slot in a COT, it can be divided into target time slots and ordinary time slots. For the target time slots, the information detection module 404 can perform downlink detection according to the target detection opportunity strategy. For time slots other than time slots, the information detection module 404 may perform a downlink detection using a common detection opportunity strategy. The detection granularity in the target detection opportunity strategy is smaller than the detection granularity in the ordinary detection opportunity strategy.
  • the detection density is greater.
  • the detection density is relatively small. It can be understood that the smaller the detection granularity, the greater the corresponding detection density, the greater the detection intensity, and the more detailed the downstream detection; otherwise, the larger the detection granularity, the smaller the corresponding detection density and the smaller the detection intensity. The rougher the downstream detection. Therefore, in this embodiment, the information detection module 404 performs a more vigorous and detailed detection on the target time slot in the COT, while for an ordinary time slot, the information detection module 404 only performs a lesser detection.
  • the base station side has a relatively dense downlink transmission opportunity in the target time slot of the COT, and in the ordinary time slot, the downlink transmission opportunity is relatively sparse.
  • the detection granularity may include time-domain detection granularity and frequency-domain detection granularity.
  • the detection granularity of the target detection opportunity strategy is smaller than that of the ordinary detection opportunity strategy. This may be because the time-domain detection granularity of the target detection opportunity strategy is less than
  • the time-domain detection granularity of the common detection opportunity strategy may also be because the frequency-domain detection granularity of the target detection opportunity strategy is smaller than the frequency-domain detection granularity of the ordinary detection opportunity strategy, or it may be because of the time-domain detection granularity and frequency domain of the target detection opportunity strategy.
  • the detection granularity is smaller than the granularity corresponding to the common detection opportunity strategy.
  • the time-domain detection granularity refers to the ratio of the total number of symbols to the actual number of detected symbols, where the total number of symbols refers to the number of all symbols remaining in the detection period when PDCCH detection is started in one detection period.
  • the detection period includes a total of 28 symbols, and the symbols to be detected include all the serial numbers with odd numbers in the first time slot.
  • the symbols and symbols with serial numbers in the second time slot are 1, 3, 5, 9 respectively. Therefore, the number of symbols that will be actually detected by the information detection module 404 is 18, and the detection granularity is 28/18, that is, 14/9.
  • the time slots included in the detection cycle are not necessarily complete time slots. For example, in an example of this embodiment, when the time slot determination module 402 determines that the target time slot is entered, the target time slot has already In the past half, in this case, the total number of symbols in the detection period is seven.
  • the frequency domain detection granularity is the ratio of the total frequency band value to the actual detected frequency band value.
  • the total frequency band is the sum of the frequency bands of the candidate frequency bands used for downlink transmission.
  • the base station is configured with three BWPs as the downlink detection device 40 as an example. Since the base station may use at least one of BWP1, BWP2, and BWP3 to perform downlink detection to the downlink detection device 40 Information is sent, so the total frequency band sum is the sum of the three BWP frequency bands, and it is assumed here that the total frequency band sum is 80 MHz. It can be understood that the information detection module 404 does not necessarily perform downlink detection on all frequency positions in the three BWPs.
  • the information detection module 404 performs downlink detection only on 20MHz in BWP1 and 20MHz in BWP2 during the detection period.
  • the actual value of the detected frequency band is 40MHz, so the frequency domain detection granularity is 80/40, which is 2.
  • the target time slot refers to a time slot in which the base station in the COT has a high demand for downlink transmission.
  • These time slots may be designated by the management in the COT according to experience, for example, the first time slot after the COT is turned on.
  • One time slot for example, the last time slot before the end of the COT. Therefore, in an example of this embodiment, the target time slot may include the first time slot and / or the last time slot in the COT. In this case, the position of the target slot in the COT is fixed.
  • the base station may notify the downlink detection device 40 whether the subsequent time slot is the target time slot according to the requirements of its own downlink transmission. In this case, the relative position of the target slot in the COT is not fixed.
  • the base station and the downlink detection device 40 predetermine the relative position of the target time slot in the COT, and then the base station sends the COT start instruction information to the downlink detection device 40 after the successful execution of the LBT, notifying the time slot determination module 402 that the COT has been started. .
  • the terminal can determine whether the current time is the target time slot.
  • the base station and the downlink detection device 40 determine in advance that the first time slot in the COT is a target time slot for detailed detection, and the time slot determination module 402 receives the COT start instruction information sent by the base station as long as the current time The time slot when the COT start indication information is received is less than one time slot, the time slot determination module 402 may determine that it is currently in the target time slot.
  • the COT start indication information mentioned herein may include one or a combination of a preamble signal, a demodulation reference signal, a measurement reference signal, a synchronization signal, and a predefined sequence signal.
  • the preamble signal, the demodulation reference signal, and the synchronization signal are all relatively common signals at present, and the predefined sequence signal is information that is specifically agreed in advance by the base station and the downlink detection device 40 to notify the COT to be turned on.
  • the time slot determination module 402 determines that the resource mapping type corresponding to the PDSCH in the recently detected downlink control information DCI indicates that the resource mapping type corresponding to the PDSCH is the second mapping type (mapping type B). It can be understood that if the time domain resource allocation indication PDSCH in the DCI information sent by the base station to the downlink detection device 40 is the first mapping type (mapping type A), then in the subsequent process, the base station may only The first three symbols of each time slot send downlink information to the downlink detection device 40.
  • the information detection module 404 only needs to perform downlink detection for the first three symbols of each time slot;
  • the time domain resource allocation indicates that the resource mapping type corresponding to the PDSCH is the second mapping type.
  • the base station may send downlink information to the downlink detection device 40 at any symbol position in a time slot, and the information is detected.
  • the downlink detection required by the module 404 must be more than the first three symbols of each time slot. Therefore, the granularity of the downlink detection of the information detection module 404 is usually smaller than the detection granularity corresponding to the first mapping type.
  • the timeslot determining module 402 may determine Before it has entered the destination slot until detecting device 40 receives the downlink time-domain resource allocation type indicates a resource mapping for PDSCH corresponding to a first type of mapping until the DCI information.
  • the downlink detection device 40 receives a handover instruction when the information detection module 404 performs a downlink detection using a common detection opportunity strategy.
  • the switch instruction is used to instruct the information detection module 404 to switch the detection opportunity policy on which the downlink detection is based to another detection opportunity policy. For example, if the currently used detection opportunity policy is a target detection opportunity policy, the information detection module 404 needs to switch Downstream detection is performed according to the common detection opportunity strategy. On the contrary, if the information detection module 404 is currently using the common detection opportunity strategy, the information detection module 404 needs to switch to perform downlink detection according to the target detection opportunity strategy according to the switching instruction.
  • the time slot determination module 402 may determine a target time slot that has currently entered the COT. The target time slot will be consistent until the downlink detection device 40 receives the handover instruction again.
  • a specific RNTI scrambled DCI signaling can be used as a handover instruction, and 1 bit can be set in the DCI signaling to indicate whether it is necessary to switch from the currently used detection opportunity strategy to another detection opportunity strategy for detection. .
  • the handover identifier if “0” is used as the handover identifier, if the DCI signaling carries the handover identifier “0”, it means that the detection opportunity strategy used for downlink detection needs to be switched: if the current detection opportunity strategy is used, the information detection The module 404 needs to use the target detection opportunity strategy for downstream detection at a subsequent time. If the information detection module 404 currently uses the target detection opportunity strategy, it needs to use a common detection opportunity strategy for downstream detection at a subsequent time.
  • the information detection module 404 After the time slot determination module 402 determines that the current time slot is the target time slot in the COT, the information detection module 404 starts downlink detection at the corresponding time-frequency position according to the target detection opportunity strategy corresponding to the target time slot. Of course, if the time slot determination module 402 determines that the current time slot is not the target time slot, the information detection module 404 may directly perform target detection at the corresponding time-frequency position according to a common detection opportunity strategy.
  • the downlink detection of the information detection module 404 may be PDCCH detection to detect downlink control information sent by the base station.
  • the base station may also directly send data to the downlink detection device 40 after COT is turned on, that is, the data is sent first without sending downlink control information.
  • the information detection module 404 downlink detection is blind detection for downlink data.
  • the downlink detection device 40 provided in this embodiment may be deployed on a terminal.
  • the functions of the time slot determination module 402 and the information detection module 404 may be implemented by a processor of the terminal and a communication device of the terminal.
  • the time slot determination module determines that the current time slot is a target time slot in the COT, and then the information detection module performs downlink detection according to the target detection opportunity policy corresponding to the target time slot.
  • the base station needs more downlink transmission in some timeslots of the COT, while in other timeslots, there is less need for downlink transmissions, so the downlink detection device and the base station can convert the COT
  • the base station within the base station performs timeslots with a higher probability of downlink transmission (such as the first and / or last timeslots in the COT) as the target timeslots.
  • the detection granularity of the target detection opportunity strategy is smaller than that of the ordinary detection opportunity strategy.
  • the granularity feature allows the information detection module to perform relatively detailed detection on these target time slots when performing downlink detection, thereby providing more downlink transmission opportunities for the base station side; for other time slots in the COT other than the target time slot
  • the information detection module can perform detection according to a common detection opportunity strategy, thereby reducing the burden of downlink detection on the terminal side and reducing the power consumption of the downlink detection device.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the downlink sending device 50 includes a sending determining module 502, a location determining module 504, and an information sending module 506.
  • the sending determining module 502 is configured to determine a target time slot in a COT. There is a need to send downlink information to the terminal; the position determination module 504 is used to determine the starting time-frequency position of the downlink information based on the target detection opportunity strategy corresponding to the target time slot; the information sending module 506 is used to The terminal sends downlink information.
  • each time slot in the COT is divided into a target time slot and an ordinary time slot.
  • the transmission determining module 502 may determine that it is currently transmitting
  • the downlink information transmission requirement belongs to the downlink transmission requirement of the target time slot or the downlink transmission requirement of the ordinary time slot. Therefore, when the transmission determining module 502 determines whether there is a need to send downlink information to the terminal in the target time slot of the COT, it first needs to determine which time slot or slots are the target time slots.
  • the target time slot refers to a time slot in which the downlink transmission device 50 in the COT has a high demand for downlink transmission.
  • These time slots may be specified by the management in the COT according to experience, such as the first time slot after the COT is turned on.
  • the last time slot before the end of the COT so in some examples, the target time slot may include the first time slot and / or the last time slot in the COT.
  • the position of the target slot in the COT is fixed.
  • the transmission determining module 502 may notify the terminal whether the subsequent time slot is the target time slot according to the downlink transmission requirement of the terminal. Since the downlink transmission requirement of the downlink transmission device 50 is not fixed, here In this case, the relative position of the target slot in the COT is not fixed.
  • the downlink sending device 50 may notify the terminal of the relative position of the target time slot in the COT through high-level signaling in advance, or the management personnel may separately pre-determine the downlink sending device 50 side and The terminal side performs configuration so that the downlink transmitting device 50 and the terminal determine the relative position of the target time slot in the COT. It is assumed that, in an example of this embodiment, the downlink sending device 50 and the terminal determine in advance that the target time slot is the first time slot in the COT.
  • the transmission determining module 502 may determine whether it is currently in the target time slot according to the time of the current time and the start time of the COT.
  • the downlink sending device 50 after the downlink sending device 50 successfully executes LBT and turns on the COT, it can send the COT start instruction information to the terminal, so that the terminal can also know the start of the COT.
  • the start time thereby determining the position of the target time slot by combining the start time of the COT and the predetermined relative position of the target time slot in the COT.
  • the COT start indication information mentioned herein may include one or a combination of a preamble signal, a demodulation reference signal, a measurement reference signal, a synchronization signal, and a predefined sequence signal.
  • the preamble signal, the demodulation reference signal, and the synchronization signal are all relatively common signals at present, and the predefined sequence signal is information that is specifically agreed in advance by the downlink sending device 50 and the terminal to notify the COT to be turned on.
  • the transmission determination module 502 may determine whether the current time slot is the target time slot according to whether its current transmission demand is dense. For example, at a certain time, the transmission determination module 502 determines that the current time slot For a period of time from time to time, if the user needs to send downlink information to the terminal more frequently, the sending determination module 502 may determine that the time slots in this period belong to the target time slot. In this case, the determination module 502 needs to send an instruction to the terminal so that the terminal can determine that the current time slot belongs to the target time slot:
  • the downlink sending device 50 agrees with the terminal in advance, assuming that the terminal receives the time domain resource allocation indication PDSCH corresponding to the second mapping type DCI information at time t1, and at t2
  • the time domain resource allocation indication that the resource mapping type corresponding to the PDSCH is received at the moment is DCI information of the first mapping type
  • all time slots between t1 and t2 belong to the target time slot. Therefore, in this case, when the transmission determining module 502 determines that the target slot is currently entered, it may send to the terminal a DCI indicating that the resource mapping type corresponding to the PDSCH is the second mapping type.
  • the downlink sending device 50 agrees with the terminal in advance. If the terminal originally uses a common detection opportunity strategy for downlink detection and receives a handover instruction sent by the terminal at a certain time, the terminal may It is determined that the target time slot is entered from the current moment until the handover instruction sent by the downlink sending device 50 is received again.
  • the downlink transmitting device 50 may scramble DCI signaling as a switching indication through a specific RNTI. A 1 bit may be set in the DCI signaling to indicate whether it is necessary to switch from the currently used detection opportunity policy to another detection opportunity.
  • Strategy for detection For example, take "0" as the handover identifier.
  • the DCI signaling carries the handover identifier "0"
  • the detection opportunity strategy used for downlink detection needs to be switched: If the current detection opportunity strategy is used, the terminal needs Use the target detection opportunity strategy for downstream detection at subsequent times. If the terminal currently uses the target detection opportunity strategy, the terminal needs to use the ordinary detection opportunity strategy for downstream detection at subsequent times.
  • "1" may also be set as the switching identifier.
  • the position determination module 504 can determine the time and frequency position of the transmission start of the downlink information according to the target detection opportunity strategy. Obviously, the transmission start time The frequency location includes the time domain location where the information is sent and the frequency domain location where the information is sent. If the downlink sending device 50 determines that it needs to send downlink information to the terminal in the ordinary time slot, it may determine the start time and frequency position of the downlink information according to the common detection opportunity strategy corresponding to the ordinary time slot.
  • the downlink sending device 50 determines the sending time and frequency position of the downlink information according to the target detection opportunity policy or the sending location of the downlink information according to the common detection opportunity policy, the sending start time determined by the position determination module 504
  • the frequency position must be in the starting time-frequency position to be detected indicated by the target detection opportunity strategy / common detection opportunity strategy.
  • the detection granularity in the target detection opportunity strategy is smaller than the detection granularity in the ordinary detection opportunity strategy. Therefore, when the terminal performs downlink detection according to the target detection opportunity strategy, the detection density is greater. When the terminal performs detection according to the ordinary detection opportunity strategy, the detection density is relatively high. small. It can be understood that the smaller the detection granularity of the terminal, the greater the corresponding detection density, and the more opportunities for the information sending module 506 side to send downlink information; conversely, the larger the detection granularity of the terminal, the greater the corresponding detection density. The smaller, the rarer the opportunity available for the information sending module 506 to send downlink information.
  • the above detection granularity may include time-domain detection granularity and frequency-domain detection granularity.
  • the detection granularity of the target detection opportunity strategy is smaller than that of the ordinary detection opportunity strategy. This may be because the time-domain detection granularity of the target detection opportunity strategy is smaller than that of the ordinary detection opportunity strategy.
  • the time-domain detection granularity may also be because the frequency-domain detection granularity of the target detection opportunity strategy is smaller than the frequency-domain detection granularity of the ordinary detection opportunity strategy, or it may be because the time-domain detection granularity and frequency-domain detection granularity of the target detection opportunity strategy are smaller than ordinary The granularity corresponding to the detection opportunity strategy.
  • the time-domain detection granularity refers to the ratio of the total number of symbols to the actual number of detected symbols, where the total number of symbols refers to the number of all symbols remaining in the detection period when PDCCH detection is started in one detection period. If there are two time slots in a detection period, there is no doubt that the detection period includes a total of 28 symbols, and the symbols to be detected include all symbols with odd sequence numbers in the first time slot and the second time slot.
  • the internal serial numbers are symbols of 1, 3, 5, 9 respectively. Therefore, there are actually 18 symbols that the terminal will perform downlink detection, and the detection granularity is 28/18, that is, 14/9.
  • the time slots included in the detection period are not necessarily all complete time slots. For example, in an example of this embodiment, when the terminal determines to enter the target time slot, half of the target time slot has passed. In this case, the total number of symbols in the detection period is seven.
  • the frequency domain detection granularity is the ratio of the total frequency band value to the actual detected frequency band value.
  • the total frequency band is the sum of the frequency bands of the candidate frequency bands used for downlink transmission.
  • the following transmission device 50 configures three BWPs for the terminal as an example. Because the information transmission module 506 may use at least one of BWP1, BWP2, and BWP3 to perform downlink to the terminal. Information is sent, so the total frequency band sum is the sum of the three BWP frequency bands, and it is assumed here that the total frequency band sum is 80 MHz. It can be understood that the terminal does not necessarily perform downlink detection on all frequency positions in the three BWPs. Assuming that the terminal performs downlink detection only on 20MHz in BWP1 and 20MHz in BWP2 during the detection period, the actual frequency band detected The value is 40MHz, so the frequency domain detection granularity is 80/40, which is 2.
  • the information transmission module 506 may send downlink information to the terminal at the transmission start time-frequency position.
  • the downlink sending device 50 sends DCI information to the terminal first after successfully performing LBT and turning on a COT. Therefore, the downlink information sent by the information sending module 506 to the terminal at the determined transmission start time-frequency position may be DCI information.
  • the information sending module 506 may also send data to the terminal directly after COT is turned on, that is, the data is sent first without sending downlink control information. In this case, the information sending module 506 The downlink information sent to the terminal at the corresponding transmission start time-frequency position is downlink data.
  • the downlink sending device 50 may be deployed on the base station side, for example, on the base station.
  • the functions of the transmission determination module 502 and the position determination module 504 may be implemented by the base station processor, and the functions of the information transmission module 506 may be implemented by the base station. Communication unit.
  • the downlink sending device determines that there is a need to send downlink information to a terminal in a target time slot of a COT, and determines a starting time-frequency position of sending downlink information based on a target detection opportunity policy corresponding to the target time slot, and then Send downlink information to the terminal at the determined transmission start time-frequency position.
  • the downlink transmitting device and the terminal can respectively perform downlink information transmission and downlink detection according to two detection opportunity policies with different detection granularities, so that the downlink transmitting device can send more and more frequent time slots in the downlink.
  • the downlink sending method provided in this embodiment considers both the downlink transmission efficiency of the downlink sending device and the power consumption on the terminal side. Compared with the methods in related technologies, it can effectively improve the user experience on the terminal side.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • This embodiment will provide a downlink detection device and a downlink sending device. Please refer to a schematic structural diagram of the downlink detecting device 60 shown in FIG. 6 and a schematic structural diagram of the downlink sending device 70 shown in FIG. 7:
  • the downlink detection device 60 includes, in addition to a time slot determination module 602 for determining that the current time slot is a target time slot in the COT, and an information detection module 604 for performing downlink detection according to a target detection opportunity policy corresponding to the target time slot. It includes a first configuration module 606, which is configured to determine a target detection opportunity policy.
  • the downlink sending device 70 includes a sending determination module 702 for determining that there is a need to send downlink information to the terminal in a target time slot of the COT, and a method for determining the start of sending downlink information based on a target detection opportunity policy corresponding to the target time slot.
  • the second configuration module 708 is also included, where the second configuration module 708 is used to determine target detection Opportunity strategy.
  • the information detection module 604 in this embodiment matches the target time slot in the COT according to the target detection opportunity policy Perform detection, and perform downlink detection on other common time slots except the target time slot in the COT according to the common detection opportunity strategy.
  • the transmission determination module 702 determines that the information transmission module 706 needs to send downlink information in the target time slot
  • the position determination module 704 needs to determine the starting time-frequency position of the downlink information transmission based on the target detection opportunity strategy, and if the information transmission module 706 needs to send the downlink information to the downlink detection device 60 in a common time slot other than the target time slot in the COT, Then, the position determination module 704 needs to determine a transmission start time-frequency position of the downlink transmission based on a common detection opportunity strategy. Therefore, before the information detection module 604 uses the target detection opportunity strategy for downlink detection, the first configuration module 606 needs to determine the target detection opportunity strategy.
  • the information detection module 604 uses a common detection opportunity strategy for downlink. Before detection, the first configuration module 606 needs to determine a common detection opportunity policy. Correspondingly, before the information sending module 706 performs downlink transmission based on the target detection opportunity policy, the second configuration module 708 needs to determine a target detection opportunity policy. Before the module 706 performs downlink transmission based on the common detection opportunity strategy, the second configuration module 708 needs to determine the common detection opportunity strategy.
  • the manner in which the first configuration module 606 and the second configuration module 708 determine the target detection opportunity policy is described first:
  • the second configuration module 708 may configure the target detection opportunity policy to the downlink detection device 60 in a semi-static manner through high-level signaling.
  • the second configuration module 708 first determines the first semi-static configuration information, which may indicate target detection. Opportunity strategy. After determining the first semi-static configuration information, the downlink sending device 70 may send the first semi-static configuration information to the downlink detection device 60. Subsequently, the second configuration module 708 and the first configuration module 606 may both The static configuration information determines the target detection opportunity strategy. In some examples of this embodiment, the downlink sending device 70 may send the first semi-static configuration information to the downlink detection device 60 in the first symbol in the first time slot in the COT.
  • the first semi-static configuration information may include a symbol indication and / or a frequency band indication, where the symbol indication is used to indicate whether each symbol in the target time slot needs to be detected in the downlink, and the frequency band indication is used It is used to indicate whether candidate frequency bands are needed for downlink detection in the target time slot.
  • the symbol indication may be a symbol bitmap bitmap corresponding to each symbol in the target slot. For example, if n symbols are included in the target slot, the symbol bitmap will also include n bits, each bit uniquely corresponds to a symbol .
  • the frequency band indication may also be a frequency band bitmap. Each candidate frequency band corresponds to a bit in the frequency band bitmap, and is used to indicate whether downlink detection is required for the candidate frequency band in the target time slot.
  • the first semi-static configuration information may include a CORESET parameter and a search space parameter.
  • the meaning of the search space parameter is related to the downlink sending device 70 in the related art through high-level information. Let the meaning of the search space parameter sent to the downlink detection device 60 be somewhat different: in this example, the time slot offset indicated by the search space parameter is the time slot offset relative to the start time of the COT.
  • this embodiment also provides A scheme that allows the first configuration module 606 and the second configuration module 708 to determine a target detection opportunity strategy:
  • the first configuration module 606 and the second configuration module 708 determine the target detection opportunity policy in a predefined manner.
  • the second configuration module 708 may receive the first and defined configuration parameters, and then determine the target detection opportunity according to the first predefined configuration parameter.
  • the first predefined configuration parameter may be input to the second configuration module 708 by a manager.
  • the first configuration module 606 may also determine the target detection opportunity strategy by acquiring the first predefined configuration parameters.
  • the first configuration module 606 receives the first predefined configuration parameters input by a program personnel during the design and production stages of the downlink detection device 60 and performs Storage; of course, the first predefined configuration parameters can also be sent by the programmer to the first configuration module 606 in the form of a network during the user use phase, such as carrying the first predefined configuration parameters in the upgrade file during system upgrade Middle sends to the first configuration module 606.
  • the second configuration module 708 and the first configuration module 606 also have the following two methods when determining the general detection opportunity strategy:
  • the second configuration module 708 determines the second semi-static configuration information, then determines a common detection opportunity policy according to the second semi-static configuration information, and sends the second semi-static configuration information to the first configuration module 606. After receiving the second predefined configuration parameter, the first configuration module 606 can determine a common detection opportunity policy for detecting a common time slot in the OT according to the second semi-static configuration information.
  • Manner 2 The second configuration module 708 and the first configuration module 606 respectively receive a second predefined configuration parameter, and then determine a common detection opportunity policy according to the second predefined configuration parameter.
  • the second semi-static configuration information may also include a symbol indication and a frequency band indication.
  • the second semi-static configuration information includes a symbol bitmap corresponding to a symbol in a common time slot, and / or the second semi-static configuration information also includes a frequency band bitmap corresponding to the same candidate frequency band.
  • the second semi-static configuration information may also indicate the time-frequency position to be detected in an ordinary time slot by using the CORESET parameter and the search space parameter.
  • the second semi-static configuration information The time slot offset indicated by the search space parameter is the time slot offset relative to the start time of the COT.
  • Case 1 The two use the first semi-static configuration information and the second semi-static configuration information to determine the target detection opportunity policy and the common detection opportunity policy; in this case, the first semi-static configuration information and the second semi-static configuration
  • the information may be sent by the downlink sending device 70 to the downlink detecting device 60 at the same time. It is assumed that the target time slot is the first time slot in the COT, and the ordinary time slot is a time slot other than the first time slot in the COT. In this case, the downlink sending device 70 may configure two detection opportunity policies to the downlink detection device 60 through high-level signaling.
  • the detection granularity belongs to the target time slot, that is, the first time slot in the COT.
  • a larger detection opportunity strategy belongs to the ordinary time slot, which is an ordinary detection opportunity strategy.
  • Case two The two use the first predefined configuration parameter and the second predefined configuration parameter to determine the target detection opportunity strategy and the ordinary detection opportunity strategy. It is understandable that when the ordinary detection opportunity strategy and the target detection opportunity strategy both pass the pre-defined
  • the first predefined configuration parameter and the second predefined parameter may be input to the downlink detection device 60 / downlink transmission device 70 together, or may be input to the downlink separately.
  • the second configuration module 708 and the first configuration module 606 can configure two detection opportunity policies with different detection granularities in a predefined manner.
  • the target detection opportunity strategy, the larger detection granularity is the ordinary detection opportunity strategy.
  • Case 3 Both determine the target detection opportunity strategy through the first semi-static configuration information, and determine the common detection opportunity strategy through the second predefined configuration parameter; if the first time slot and the last time slot of the COT are the target time slots, the first A configuration module 606 may perform downlink detection on the first time slot and the last time slot in the COT according to the target detection opportunity policy determined by the first semi-static configuration information, and use the common detection opportunity policy determined by the second predefined configuration parameter. Detect other time slots in the COT except the first time slot and the last time slot.
  • Case 4 The two determine the target detection opportunity strategy through the first predefined configuration parameter, and determine the ordinary detection opportunity strategy through the second semi-static configuration information.
  • the second configuration module 708 and the first configuration module 606 can configure the target detection opportunity policy and the general detection opportunity policy by means of semi-static configuration and predefined settings of high-level signaling, but in some examples of this embodiment Among them, the second configuration module 708 and the first configuration module 606 may determine a granularity threshold in advance, and then determine the target detection opportunity strategy and the ordinary detection opportunity strategy according to the granularity threshold. For the target time slot, the detection granularity is smaller than the granularity threshold, while for other common time slots, the detection granularity is greater than the granularity threshold.
  • the downlink detection device 60 may need to try The downlink information sent by the downlink sending device 70 can be successfully detected only after downlink detection is performed according to multiple target detection opportunity strategies. These multiple target detection opportunity strategies are determined based on a predetermined granularity threshold.
  • the downlink detection device 60 in this embodiment may be deployed on a terminal.
  • the functions of the time slot determination module 602 and the information detection module 604 may be implemented by the processor of the terminal and the communication unit.
  • the functions of the first configuration module 606 may be It is implemented by the processor of the terminal, and may also be implemented by the processor of the terminal and the communication unit.
  • the downlink sending device 70 may be deployed on a base station.
  • the functions of the transmission determining module 702 and the position determining module 704 may be implemented by a base station processor, and the functions of the information sending module 706 may be implemented by a communication unit of the base station.
  • the function of the second configuration module 708 may be implemented by the processor of the base station, or may be implemented by the processor and the communication unit of the base station together.
  • the downlink detection device and the downlink transmission device provided in this embodiment may determine a target detection opportunity policy and a common detection opportunity policy by means of semi-static configuration and / or a predefined configuration of high-level signaling, and provide a target detection opportunity policy and a common detection opportunity.
  • the configuration of policies provides a more flexible way.
  • the cooperation of the downlink detection method and the downlink transmission method not only ensures that the downlink transmitting device side has sufficient opportunities to transmit downlink information to the downlink detection device in time, but also ensures that the detection complexity of the downlink detection device is not too high, which improves User experience on the downlink detection device side.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • the storage medium may store one or more computer programs that can be read, compiled, and executed by one or more processors.
  • the storage medium may store downlink data.
  • the downlink sending program may be used by one or more processors to execute the steps of implementing any one of the downlink sending methods described in the foregoing second to third embodiments.
  • the communication system 8 includes a terminal 90 and a base station 10. The following briefly describes the structure of the terminal 90 and the structure of the base station 10 with reference to FIGS. 9 and 10, respectively:
  • the terminal 90 includes a first processor 91, a first memory 92, and a first communication bus 93 for connecting the first processor 91 and the first memory 92.
  • the first memory 92 may be the foregoing storage medium storing a downlink detection program.
  • the first processor 91 may read the downlink detection program stored in the first memory 92, compile it, and execute steps for implementing any one of the downlink detection methods described in the first or third embodiment.
  • the terminal 90 in the first or third embodiment For details of the method for implementing the downlink detection by the terminal 90 in the first or third embodiment, refer to the description of the foregoing embodiment, and details are not described herein again.
  • the base station 10 includes a second processor 11, a second memory 12, and a second communication bus 13 for connecting the second processor 11 and the second memory 12.
  • the second memory 12 may be the foregoing storage medium storing a downlink sending program.
  • the second processor 11 may read the downlink transmission program stored in the second memory 12, compile it, and execute steps for implementing any one of the downlink transmission methods described in the second or third embodiment.
  • This embodiment provides a communication system, a terminal, a base station, and a storage medium.
  • the terminal can use the common detection opportunity strategy to detect, and for target time slots in the COT, the terminal can use the target detection opportunity strategy for detection.
  • the detection granularity of the target detection opportunity strategy is smaller than the detection granularity of the ordinary detection opportunity strategy, that is, the detection density is greater, so the base station has a denser transmission opportunity in the target time slot. You can get a transmission opportunity by waiting time, and you can complete the sending of downlink information at the corresponding time-frequency position.
  • the detection granularity of the terminal is large and the detection density is small. Therefore, the detection workload of the terminal is relatively small, which is conducive to reducing the power consumption caused by the downlink detection to the terminal.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • This embodiment will describe a communication system, a base station, a terminal, and a downlink transmission method and a terminal-side downlink detection method provided in the present disclosure with several specific examples:
  • the downlink information sent by the base station to the terminal in this embodiment is downlink control information, that is, the downlink detection on the terminal side is actually downlink PDCCH detection.
  • the base station and the terminal agree in advance that the target time slot is the first time slot in the COT.
  • the detection opportunity policy mentioned here may include the detection opportunity policy of the first time slot in the COT, or it may include the first division of the COT. Detection opportunity policies for time slots other than one time slot, or both detection opportunity policies.
  • the base station configures the time-frequency position of the PDCCH detection by the terminal through high-level signaling.
  • the specific configuration includes the following situations:
  • Case 2 This configuration includes two PDCCH detection opportunity strategies.
  • the first detection opportunity strategy (target detection opportunity strategy) is used for the first time slot in the COT, and the second detection opportunity strategy (general detection opportunity strategy) is used for COT internal division. Time slots other than the first time slot.
  • the base station may configure a time-frequency domain position to be detected through high-level signaling including a CORESET parameter and a search space parameter.
  • the base station can perform CORESET configuration in units of 20 MHz, that is, one CORESET is configured on each 20 MHz bandwidth.
  • the base station can configure the detection period to be 1 ms, and at the same time indicate that each symbol in the detection period is a symbol to be detected downstream.
  • the base station may also be configured to indicate that it may only perform downlink transmission on symbols with an odd sequence number in the detection period, or indicate that the terminal itself may only have symbols with an even number in the detection period.
  • the DCI information is transmitted.
  • the base station may send a symbol bitmap to the terminal at the first symbol position of the first time slot after the LBT processing is successfully performed, so as to indicate to the terminal which symbols need to be subjected to PDCCH detection.
  • the base station can use special high-level signaling to configure the candidate symbol positions for the base station to perform downlink transmission on the first time slot in the COT;
  • the time slot can be configured by the base station through the configuration parameters of the existing PDCCH resources.
  • the base station After the base station configures the detection opportunity policy to the terminal, it can successfully perform LBT and send DCI information, and then select the nearest symbol from the configured candidate symbol positions for DCI information transmission.
  • the base station since the target time slot refers to the first time slot in the COT, after the first time slot of the COT ends, the base station will switch to using the second detection opportunity strategy to determine the DCI transmission start time frequency. Position, at that time, the terminal should also switch to PDCCH detection according to the second detection opportunity policy:
  • the base station may send the COT start instruction information to the terminal at the moment when the COT is turned on, so that the terminal may determine when to switch to the second detection opportunity policy according to the COT start instruction information.
  • the COT start indication information may include at least one of a preamble signal, a demodulation reference signal, a measurement reference signal, a synchronization signal, and a predefined sequence signal.
  • the base station may also send a handover instruction to the terminal in the last symbol of the first time slot of the COT or the first symbol of the second time slot, so that the terminal can use the first detection opportunity strategy. Switch to the second detection opportunity strategy.
  • the base station uses a special DCI format or a proprietary RNTI scrambled DCI to notify the terminal to switch the detection opportunity policy, or sets 1 bit in the DCI information to specifically instruct the switching between the two detection opportunity policies.
  • the base station may also send DCI information indicating that the resource mapping type corresponding to the PDSCH is the first mapping type to the terminal to instruct the terminal to switch to using the second detection opportunity policy for PDCCH detection. .
  • the first mapping type that is, mapping type A.
  • the base station may only use the first three symbols of each time slot. The downlink information is transmitted. Therefore, in this example, the terminal needs to perform downlink detection on the first three symbols of each time slot according to the second detection opportunity policy.
  • the base station can ensure that the base station can send downlink control information as soon as possible after the LBT processing is successful, thereby improving spectrum utilization; on the other hand, it can also ensure that the base station can flexibly adjust the candidate symbol positions in other time slots in the COT. .
  • the detection opportunity strategy here may include the detection opportunity strategy of the first time slot in the COT, or it may include the first time division within the COT. Detection opportunity policies for time slots other than time slots, or both detection opportunity policies.
  • the terminal obtains the start time-frequency position to be detected by the PDCCH through high-level signaling.
  • the terminal obtains the detection opportunity policy for the first time slot in the COT through high-level signaling; for example, the base station configures the terminal with the PDCCH detection start time of the first time slot in the COT by defining a proprietary parameter. Frequency position. For example, if the high-level signaling configures the starting symbol position parameter as 10100101001010, the terminal can position the symbols in the first time slot of the symbol with the symbol positions of 0, 2, 5, 7, 10, and 12 to be detected by the PDCCH.
  • the base station specifies the detection opportunity strategy for the first time slot by using the PDCCH parameters of the existing NR authorized carrier: the terminal determines the detection period to be 10 ms by receiving the monitoring space corresponding to the search space configured by the high-level signaling and the IE Peridicity And Offset parameter.
  • the time slot offset is 0, and the terminal blindly detects the PDCCH in the first time slot in which the base station starts to send data.
  • the terminal may obtain two detection opportunity policies through high-level signaling, where one with a small detection granularity is used for the first time slot in the COT, and the other is used for other time slots in the COT.
  • the PDCCH detection with one set of parameters has a small time-frequency granularity, which is used to detect the first time slot after the base station has successfully completed LBT, and the PDCCH detection with the other set of parameters has a large granularity, which is used for the second time after the base station has successfully performed LBT.
  • PDCCH detection in time slots and subsequent time slots are examples of the PDCCH detection with one set of parameters.
  • a base station configures two search spaces for a terminal, one monitoring space in Internet Explorer, and the Period parameter indicates that the detection period is 10 ms, the time slot offset is 0, and the bitmap in the Monitoring Symbol Within slot parameter is 01010101010101. , Indicates that the detected symbol is a sequence number in the time slot (assuming that the sequence number of the symbol in the time slot starts from 0 in this embodiment) is an odd number of symbols.
  • the Monitoring and SlotPeriodicity and Offset parameters in IE indicate that the detection period is 2ms, the slot offset is 1, and the bitmap in the MonitoringSymbolsWithin Slot parameter is 10000001000000, indicating that the detected symbols are symbol 0 and symbol 7.
  • the former configuration is used for the first time slot in the COT, and the latter configuration is used for other time slots in the COT.
  • the terminal may also obtain the detection opportunity policy for the other time slots in the COT except for the first time slot through high-level signaling.
  • the terminal may obtain another detection opportunity policy in a predefined manner.
  • the base station can configure multiple CORESETs at different frequency domain locations, and then the base station determines the number of CORESETs that are ultimately used for downlink transmission according to the results of the LBT. For other time slots in the COT, the number of configured CORESETs in the same frequency domain is less than the number of CORESETs in the first time slot.
  • the base station configures four CORESETs through high-level signaling.
  • the four CORESETs may belong to different BWPs, that is, the BWP IDs are different, but the frequency domain positions of the CORESETs do not overlap, that is, each CORESET is located in a different frequency domain of 20MHz.
  • the base station performs LBT processing on this 80MHz bandwidth, and the granularity of each execution can be 20MHz.
  • the base station finally determines the number and location of CORESETs to be sent according to the CORESET corresponding to the frequency domain position of the successful 20MHz bandwidth of the LBT. Assuming that the 20 MHz bandwidth base stations corresponding to the first and third CORESETs perform LBT successfully, the base station performs downlink transmission on these two CORESETs.
  • the CORESET in the first three time slots of a channel occupation period that is, the set of downlink control channel search patterns is shown in Figure 12:
  • the base station configures CORESET1 in the first 20MHz on a BWP through high-level signaling.
  • CORESET2 is in the second 20MHz on the BWP
  • CORESET3 is in the third 20MHz on the BWP; in the time domain, the base station configures search1 space1 corresponding to CORESET1, the sending cycle is 1ms, and the slot offset is 0;
  • Example 3 can also increase the downlink transmission opportunity of the first time slot after the base station successfully performs LBT, reduce the complexity of PDCCH detection by the terminal in subsequent time slots, and thus reduce the power consumption of the terminal.
  • the downlink detection method, downlink transmission method, device, base station, terminal, and storage medium provided in the embodiments of the present disclosure can be applied not only to 5G communication systems, but also to any future communication. System.
  • Such software may be distributed on a computer-readable medium, executed by a computing device, and in some cases, the steps shown or described may be performed in a different order than described here, and the computer-readable medium may include computer storage Medium (or non-transitory medium) and communication medium (or transient medium).
  • computer storage Medium includes volatile and non-volatile implemented in any method or technology used to store information such as computer-readable instructions, data structures, program modules or other data. Removable, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • a communication medium typically contains computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium . Therefore, the present disclosure is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种下行检测、发送方法、装置及通信系统、终端、基站,由于终端针对COT内的时隙有两种不同的检测机会策略,针对COT内的普通时隙,终端可以采用普通检测机会策略进行检测,而针对COT内的目标时隙,终端则可以采用目标检测机会策略进行检测,目标检测机会策略的检测粒度比普通检测机会策略的检测粒度更小,也就是检测密度更大,所以基站在目标时隙中拥有较为密集的发送机会,在需要进行下行发送时,不用长时间地等待就能获得发送机会,就可以在对应的时频位置完成下行信息发送。在COT内其他时隙,终端的检测粒度大,检测密度小,因此,终端的检测工作量相对较小,这有利于降低下行检测给终端带来的功耗。

Description

下行检测、发送方法、装置及通信系统、终端、基站 技术领域
本公开涉及通信领域,尤其涉及一种下行检测、发送方法、装置及通信系统、终端、基站。
背景技术
在NR(New Radio,新空口)中,基站需要通过高层信令为终端半静态配置进行PDCCH(Physical Downlink Control Channel,物理下行链路控制信道)检测的时频位置,即为终端配置PDCCH检测机会策略。基站一旦完成PDCCH检测机会策略的配置,终端就需要按照配置在指定的时域位置以及频域位置进行PDCCH检测。例如基站指示终端以m个时隙作为检测周期,对检测周期内序号为3的倍数的符号进行PDCCH检测,则终端在后续过程中只会按照指定的方式进行PDCCH检测。如果所配置PDCCH检测机会策略的检测粒度过小,则终端检测的频率就会比较高,这会增加终端进行PDCCH检测的复杂度和功耗;如果所配置PDCCH检测机会策略的检测粒度过大,则会减少基站进行下行发送的机会,会导致基站在存在待发送的下行信息时需要等待较长时间才能得到下发机会。
发明内容
本公开实施例提供的下行检测、发送方法、装置及通信系统、终端、基站,主要解决的技术问题是:由于终端只能按照基站配置的统一的检测机会策略进行PDCCH盲检,容易因配置的检测粒度过大而导致基站下行发送时延大,或因配置的检测粒度过小而导致终端检测工作量大,功耗高的问题。
为解决上述技术问题,本公开实施例提供一种下行检测方法,包括:
确定当前时隙为信道占用期COT中的目标时隙;
根据目标时隙对应的目标检测机会策略进行下行检测,目标检测机会策略的检测粒度小于普通检测机会策略的检测粒度,普通检测机会策略为COT中除目标时隙外其他时隙的检测机会策略。
本公开实施例还提供一种下行发送方法,包括:
确定在COT的目标时隙存在向终端发送下行信息的需求;
基于目标时隙对应的目标检测机会策略确定下行信息的发送起始时频位置,目标检测机会策略用于指示终端的下行检测,目标检测机会策略的检测粒度小于COT中除目标时隙外的普通检测机会策略的检测粒度;
在发送起始时频位置向终端发送下行信息。
本公开实施例还提供一种下行检测装置,包括:
时隙确定模块,用于确定当前时隙为信道占用期COT中的目标时隙;
信息检测模块,用于根据目标时隙对应的目标检测机会策略进行下行检测,目标检测机会策略的检测粒度小于普通检测机会策略的检测粒度,普通检测机会策略为COT中除目标时隙外其他时隙的检测机会策略。
本公开实施例还提供一种下行检测装置,包括:
发送确定模块,用于确定在COT的目标时隙存在向终端发送下行信息的需求;
位置确定模块,用于基于目标时隙对应的目标检测机会策略确定下行信息的发送起始时频位置,目标检测机会策略用于指示终端的下行检测,目标检测机会策略的检测粒度小于COT中除目标时隙外的普通检测机会策略的检测粒度;
信息发送模块,用于在发送起始时频位置向终端发送下行信息。
本公开实施例还提供一种终端,包括第一处理器、第一存储器及第一通信总线;第一通信总线用于实现第一处理器和第一存储器之间的连接通信;
第一处理器用于执行第一存储器中存储的一个或者多个程序,以实现如上的下行检测方法的步骤。
本公开实施例还提供一种基站,包括第二处理器、第二存储器及第二通信总线;第二通信总线用于实现第二处理器和第二存储器之间的连接通信;
第二处理器用于执行第二存储器中存储的一个或者多个程序,以实现如上的下行发送方法的步骤。
本公开实施例还提供一种通信系统,包括如上的终端以及如上的基站。
本公开实施例还提供一种存储介质,存储介质中至少存储有下行检测程序和下行发送程序中的至少一个,下行检测程序可被一个或者多个处理器执行,以实现如上的下行检测方法的步骤;下行发送程序可被一个或者多个处理器执行,以实现如上的下行发送方法的步骤。
本公开的有益效果是:
根据本公开实施例提供的检测、发送方法、装置、系统、终端、基站及存储介质,通过当基站确定需要在COT的目标时隙向终端进行下行传输时,可以基于目标时隙对应的目标检测机会策略来确定下行信息的发送起始时频位置,然后在确定出的时频位置向终端发送下行信息。对于终端而言,其会在目标时隙中会根据目标检测机会策略进行下行检测,因此基站发送的下行信息可以被终端检测到。在本公开实施例中,由于终端针对COT内的时隙有两种不同的检测机会策略,针对COT内的普通时隙,终端可以采用普通检测机会策略进行检测,而针对COT内的目标时隙,终端则可以采用目标检测机会策略进行检测,目标检测机会策略的检测粒度比普通检测机会策略的检测粒度更小,也就是检测密度更大,所以基站在目标时隙中拥有较为密集的发送机会,在需要进行下行发送时,不用长时间地等待就能获得发送机会,就可以在对应的时频位置完成下行信息发送。在COT内其他时隙,终端的检测粒度大,检测密度小,因此,终端的检测工作量相对较小,这有利于降低下行检测给终端带来的功耗。
本公开其他特征和相应的有益效果在说明书的后面部分进行阐述说明,且应当理解,至少部分有益效果从本公开说明书中的记载变的显而易见。
附图说明
图1为本公开实施例一中示出的检测周期内总符号数与实际被检符号数示意图;
图2为本公开实施例一中提供的下行检测方法的一种流程图;
图3为本公开实施例二中提供的下行发送方法的一种流程图;
图4为本公开实施例四中提供的下行检测装置的一种结构示意图;
图5为本公开实施例五中提供的下行发送装置的一种结构示意图;
图6为本公开实施例六中提供的下行检测装置的一种结构示意图;
图7为本公开实施例六中提供的下行发送装置的一种结构示意图;
图8为本公开实施例七中提供的通信系统的一种示意图;
图9为本公开实施例七中提供的终端的一种硬件结构示意图;
图10为本公开实施例七中提供的基站的一种硬件结构示意图;
图11为本公开实施例八示例2中提供的一种时域检测图样示意图;
图12为本公开实施例八示例3中提供的一种频域检测图样示意图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,下面通过具体实施方式结合附图对本公开实施例作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
实施例一:
随着通信需求的爆发式增长,频谱资源越来越紧张,为了满足呈指数型趋势增长的需求,需要增加额外的频谱资源。由于授权频谱资源有限,因此通讯提供者需要寻求免执照频谱资源,即非授权频谱资源来解决问题。相较于授权载波,非授权载波具备免费/低费用、准入要求低、资源可共享以及无线接入技术多、站点多等优点,目前3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)技术已经对非授权载波的传输操作进行了立项研究。
通常,通信设备在使用非授权载波进行传输之前,需要进行会话前侦听(Listen Before Talk,LBT),LBT也称为先听后说,或者空闲信道评估(Clear Channel Assessment,CCA)。LBT处理是指对拟将用来业务传输的载波进行侦听,确定该载波是否空闲可用的过程。只有LBT处理结果成功后,设备才能开一个信道占用期COT,并在COT内使用该非授权载波发送数据。
对于下行传输,基站在LBT成功后会进行下行信息发送。对于终端而言,其并不能准确确定基站在何时、何种频段上进行下行信息传输,其只能根据基站预先通过高层信令 配置的检测机会策略进行检测。对于基站而言,由于终端开始进行下行检测的时频位置,即检测起始位置确定,则基站开始进行下行信息发送的时频位置,也即发送起始时频位置也确定。
由于终端侧进行下行检测所依据的检测机会策略是基站预先通过高层信令半静态配置完成,例如基站通过CORESET(控制资源集)参数以及search space(搜索空间)参数两个IE(Information Entity,信息实体)向终端指示检测机会策略。其中search space参数可以指示待检测的时域位置,在search space参数中包括monitoring Slot Periodicity And Offset(检测时隙周期和时隙偏移量)参数和monitoring Symbols Within Slot(时隙内待检测符号)参数,通过这两个参数,基站可以向终端指示以多少个时隙为检测周期,在该检测周期内需要对哪一个时隙的哪些符号进行下行检测。CORESET参数可以指示待检测的频域位置,以及下行控制信息的长度。可见这种检测机会策略的检测粒度是固定的,对应的基站侧进行下行发送的传输机会粒度也固定,基站和终端只能分别按照该固定粒度进行下行发送与下行检测。相关技术中基站所配置检测机会策略的检测粒度大小与基站是否开启一个COT无关,与COT内各时隙也无关,
可以理解的是,如果基站配置的检测粒度过小,例如基站指示终端在检测周期内每个时隙的每个符号上都进行PDCCH检测,则在LBT执行成功后,基站可以在最短的时间内发送下行信息,但这对于终端而言,检测复杂度、检测工作量就会很大,功耗也高。但如果基站配置的检测粒度过大,例如指示终端以两个时隙为周期,在这个检测周期内仅对后一个时隙中最后一个符号进行下行检测,这样终端下行检测的负担确实比较小,但这对于基站的下行发送则非常不利,因为如果基站执行LBT成功的时刻正好处于检测周期的起始位置,则基站需要等待差不多两个时隙才能得到一个发送机会,下行传输效率将受到极大的影响。
对此,本实施例提供一种下行检测方法,该下行检测方法应用于终端侧,由终端执行:
在本实施例中,终端不会再仅仅根据基站半静态配置的与COT内各时隙无关的检测机会策略进行下行检测,终端下行检测的粒度与COT内时隙有关:对于一个COT中的各时隙,可以被分为目标时隙与普通时隙,对于目标时隙,终端可以按照目标检测机会策略进行下行检测,对于COT内除目标时隙以外的其他时隙,终端可以采用普通检测机会策略进行下行检测。目标检测机会策略中的检测粒度小于普通检测机会策略中的检测粒度,所以终端根据目标检测机会策略进行下行检测时,检测密度更大,当终端按照普通检测机会策略进行检测时,检测密度相对较小。可以理解的是,检测粒度越小,对应的检测密度越大,检测力度也越大,下行检测就越细致;反之检测粒度越大,对应的检测密度就越小,检测力度也就越小,下行检测也就越粗略。所以,在本实施例中,终端针对COT中的目标时隙会进行较大力度、较为细致的检测,而针对普通时隙,终端仅会进行较小力度的检测。对应地,基站侧在COT的目标时隙内拥有较为密集的下行发送机会,而在普通时隙内,下行发送机会就会相对稀疏一些。
例如,上述目标时隙检测机会策略包括但不限于:对目标时隙中序号为偶数的符号进行检测,或者对目标时隙内序号为奇数的符号进行检测,或者对目标时隙中序号为0,2,4,7的符号进行检测。上述普通时隙检测机会策略包括但不限于:在每个普通时隙的第一个符号进行检测,或者在每个普通时隙中对序号为0的符号和序号为7的符号进行检测,或者每两个普通时隙进行一次检测。
检测粒度可以包括时域检测粒度和频域检测粒度,在本实施例中,目标检测机会策略的检测粒度小于普通检测机会策略的检测粒度,这可以是因为目标检测机会策略的时域检测粒度小于普通检测机会策略的时域检测粒度,也可以是因为目标检测机会策略的频域检测粒度小于普通检测机会策略的频域检测粒度,还可能是因为目标检测机会策略的时域检测粒度和频域检测粒度均小于普通检测机会策略对应的粒度。
在一种示例中,时域检测粒度指的是总符号数与实际被检符号数的比值,其中总符号数是指在一个检测周期内开始PDCCH检测时该检测周期内剩余的所有符号数。如图1所示,在该检测周期T内包括两个时隙,毫无疑义的是,该检测周期中一共包括28个符号,其中待检测的符号包括第一个时隙slot1内序号(假定本实施例中时隙内符号的序号从0开始)为奇数的所有符号以及第二时隙slot2内序号分别为2、4、6、8的符号。所以,实际会被终端执行下行检测的符号有18,检测粒度即为28/18,即14/9。可以理解的是,检测周期中所包含的时隙不一定都是完整的时隙,例如,在本实施例的一种示例中,当终端确定进入目标时隙时,目标时隙已经过去一半,则在这种情况下,检测周期内的总符号数为7。
与时域检测粒度类似,频域检测粒度为总频段值与实际被检频段值的比值。其中总频段值为进行下行传输的各候选频段的频段总和,以基站为终端配置三个BWP(Bandwidth Parts,部分带宽)为例,由于基站可能采用BWP1、BWP2以及BWP3中的至少一个向终端进行下行信息发送,所以总频段和为这三个BWP频段的总和,这里假定总频段和为80MHz。可以理解的是,终端不一定会对这三个BWP中的所有频率位置均进行下行检测,假定终端在检测周期内仅针对BWP1中的20MHz以及BWP2内的20MHz进行下行检测,则实际被检频段值为40MHz,所以频域检测粒度为80/40,即2。
下面请参见图2示出的下行检测方法的一种流程图:
S202:终端确定当前时隙为COT中的目标时隙。
可以理解的是,由于终端采用目标检测机会策略进行下行检测时,可以对对应的目标时隙进行较为细致的检测,这样可以向基站提供较为密集的下行发送机会。所以,在本实施例中,目标时隙是指COT中基站下行发送需求较为密集的时隙,这些时隙可以是由管理人员根据经验在COT中指定某些时隙,例如COT开启后的第一个时隙,又例如,COT结束前的最后一个时隙,所以,本实施例的一种示例中,目标时隙可以包括COT中的第一个时隙和/或最后一个时隙。在这种情况下,目标时隙在COT的位置是固定的。不过,在本实施例的其他一些示例当中,基站可以根据自己下行发送的需求通知终端后续时隙是 否是目标时隙。在这种情况下,目标时隙在COT内的相对位置并不是固定的。
下面对终端确定目标时隙的几种方式进行介绍:
第一种,基站和终端预定约定目标时隙在COT内的相对位置,然后由基站在执行LBT成功之后向终端发送COT起始指示信息,通知终端COT已经开启。通过COT起始指示信息以及预先约定确定的目标时隙在该COT内的相对位置,则终端可以确定当前时刻是否是目标时隙。例如,基站与终端预先确定COT内的第一个时隙为需要进行细致检测的目标时隙,则终端在接收到基站发送的COT起始指示信息之后,只要当前时刻距离接收到该COT起始指示信息的时刻不足一个时隙,则终端可以确定当前是处于目标时隙内。
这里所说的COT起始指示信息可以包括前导信号、解调参考信号、测量参考信号、同步信号以及预定义序列信号中的一种或几种的组合。前导信号、解调参考信号、同步信号都是目前比较常见的信号,而预定义序列信号则是由基站和终端预先约定的专门用于通知COT开启的信息。
第二种,终端确定最近检测到的下行链路控制信息DCI中的时域资源分配指示PDSCH(Physical Downlink Shared Channel,物理下行共享信道)对应的资源映射类型为第二映射类型(映射类型B)。可以理解的是,如果基站向终端发送的DCI信息中时域资源分配指示PDSCH对应的资源映射类型为第一映射类型(映射类型A),则在后续过程中,基站只可能会在每个时隙的前三个符号向终端发送下行信息,对应的,终端也只需要针对每个时隙的前三个符号进行下行检测;但是如果基站向终端发送的DCI信息中时域资源分配指示PDSCH对应的资源映射类型为第二映射类型,则基站在后续过程中可能在一个时隙的任意符号位置上向终端发送下行信息,则终端需要进行下行检测的必定不仅仅是各时隙的前三个符号,因此终端下行检测检测粒度通常会小于第一映射类型所对应的检测粒度,所以,当终端接收到指示资源映射类型为第二映射类型的DCI信息时,终端可以确定当前已经进入目标时隙,直到终端接收到时域资源分配指示PDSCH对应的资源映射类型为第一映射类型的DCI信息为止。
第三种,终端在使用普通检测机会策略进行下行检测时接收到切换指示。该切换指示用于指示终端将下行检测所依据的检测机会策略切换到另一检测机会策略,例如,如果当前所使用的检测机会策略是目标检测机会策略,则终端需要切换到根据普通检测机会策略进行下行检测,相反,如果终端当前使用的是普通检测机会策略,则终端需要根据该切换指示切换到根据目标检测机会策略进行下行检测。所以,在本实施例中,如果终端在使用普通检测机会策略进行下行检测的时候接收到切换指示,则终端可以确定当前进入了COT的目标时隙。该目标时隙一致会持续到终端再次接收到切换指示为止。
在本实施例中,可以通过特定的RNTI(Radio Network Temporary Identifier,无线网络临时标识)加扰DCI信令作为切换指示,在该DCI信令中可以设置1bit来指示是否需要从当前使用的检测机会策略切换到另一种检测机会策略进行检测。例如以“0”作为切换标识,如果在该DCI信令中携带有切换标识“0”,则表征需要切换下行检测所使用的 检测机会策略:如果当前使用的是普通检测机会策略,则终端需要在后续时刻使用目标检测机会策略进行下行检测,如果终端当前使用的是目标检测机会策略,则终端需要在后续时刻使用普通检测机会策略进行下行检测。
S204:终端根据目标时隙对应的目标检测机会策略进行下行检测。
在终端确定当前时隙为COT中的目标时隙后,根据目标时隙对应的目标检测机会策略在对应的检测起始时频位置开始进行下行检测。当然,如果终端确定当前时隙不是目标时隙,则终端可以直接根据普通检测机会策略在对应的检测起始时频位置开始进行下行检测。
通常,基站在执行LBT成功,开启一个COT之后,会先向终端发送DCI(Downlink Control Information,下行链路控制信息),因此,终端的下行检测可以是进行PDCCH检测,检测基站发送的下行链路控制信息。当然,在一些特殊情况下,基站也有可能在开启COT之后直接向终端发送数据,也即在不发送下行链路控制信息的情况下先发送数据,在这种情况下,终端的下行检测就是针对下行数据的盲检测。
本公开实施例提供的下行检测方法,终端通过确定当前时隙为COT中的目标时隙,然后根据目标时隙对应的目标检测机会策略进行下行检测。考虑到基站在开启一个COT之后,在该COT的某些时隙下行发送的需求较多,而在另一些时隙中,进行下行发送的需求则较少,所以终端和基站可以将COT内的基站进行下行发送概率较大的时隙(例如COT内的第一个时隙和/或最后一个时隙)作为目标时隙,利用目标检测机会策略的检测粒度小于普通检测机会策略的检测粒度的特点,让终端在进行下行检测时,针对这些目标时隙作为相对更细致的检测,从而给基站侧提供更多的下行发送机会;针对COT内除目标时隙以外的其他时隙,终端则可以根据普通检测机会策略进行检测,从而减小终端侧进行下行检测的负担,降低终端功耗。
实施例二:
本实施例提供一种与实施例一中下行检测方法对应的下行发送方法,该下行发送方法应用于基站侧,可以由基站执行。由于终端的下行检测是盲检测,因此,基站在发送下行信息的时候,不可以随意的确定开始下行发送的时频位置,其需要保证下行信息发送的时频位置是终端进行下行检测的的时频位置中的某一个。所以,基站确定下行信息的发送起始时频位置时,会依据终端侧进行下行检测的检测机会策略进行。下面结合图3示出的流程图对该下行发送方法进行介绍:
S302:基站确定在COT的目标时隙存在向终端发送下行信息的需求。
在本实施例中,将COT内的各时隙分为目标时隙与普通时隙,当基站确定自己当前存在向终端发送下行信息的需求时,基站可以确定自己当前发送下行信息的发送需求是属于目标时隙的下行发送需求,还是属于普通时隙的下行发送需求。所以,基站在确定自己在COT的目标时隙是否存在向终端发送下行信息的需求时,首先需要确定哪个或哪些时 隙是目标时隙。
目标时隙是指COT中基站下行发送需求较为密集的时隙,这些时隙可以是由管理人员根据经验在COT中指定某些时隙,例如COT开启后的第一个时隙,又例如,COT结束前的最后一个时隙,所以,一些示例中,目标时隙可以包括COT中的第一个时隙和/或最后一个时隙。在这种情况下,目标时隙在COT的位置是固定的。不过,在本实施例的其他一些示例当中,基站可以根据自己下行发送的需求通知终端后续时隙是否是目标时隙,由于基站的下行发送需求并不固定所以,在这种情况下,目标时隙在COT内的相对位置并不是固定的。
对于目标时隙在COT中相对位置确定的情况,基站可以预先通过高层信令的方式告知终端目标时隙在COT内的相对位置,或者由管理人员预先分别在基站侧和终端侧进行配置,让基站和终端确定目标时隙在COT内的相对位置。假定在本实施例的一种示例中,基站和终端预先确定目标时隙是COT内的第一个时隙。在后续过程中,基站在执行LBT成功,开启一个COT后,当存在下行发送需求时,基站可以根据当前时刻与COT起始时刻的时间确定当前是否处于目标时隙内。为了让终端侧也能确定出目标时隙,在本实施例中,基站在执行LBT成功,并开启COT之后,可以向终端发送COT起始指示信息,让终端也能获知COT的起始时刻,从而结合COT的起始时刻以及预先确定的目标时隙在COT内的相对位置确定出目标时隙的位置。
这里所说的COT起始指示信息可以包括前导信号、解调参考信号、测量参考信号、同步信号以及预定义序列信号中的一种或几种的组合。前导信号、解调参考信号、同步信号都是目前比较常见的信号,而预定义序列信号则是由基站和终端预先约定的专门用于通知COT开启的信息。
对于目标时隙在COT内相对位置不确定的情况,基站可以根据自己当前的发送需求是否密集来确定当前是否是目标时隙,例如,在某一时刻,基站判断从当前时刻起的一段时间内,自己需要较为频繁地向终端发送下行信息,则基站可以确定这一段时间内的时隙均属于目标时隙。对于这种情况,需要基站向终端进行指示,终端才能确定当前所处的时隙属于目标时隙:
例如,在本实施例的一种示例当中,基站与终端预先约定,假定终端在t1时刻接收到时域资源分配指示PDSCH对应的资源映射类型为第二映射类型的DCI信息,在t2时刻接收到时域资源分配指示PDSCH对应的资源映射类型为第一映射类型的DCI信息,则在t1~t2之间的所有时隙均属于目标时隙。所以,在这种情况,当基站确定当前已进入目标时隙时,可以向终端发送指示PDSCH对应的资源映射类型为第二映射类型的DCI。
又例如,在本实施例的另一种示例当中,基站与终端预先约定,如果终端原本采用普通检测机会策略进行下行检测,在某一时刻接收到终端发送的切换指示,则终端可以确定从当前时刻其即进入目标时隙,直到再次接收到基站发送的切换指示为止。在该示例中,基站可以通过特定的RNTI加扰DCI信令作为切换指示,在该DCI信令中可以设置1bit 来指示是否需要从当前使用的检测机会策略切换到另一种检测机会策略进行检测。例如以“0”作为切换标识,如果在该DCI信令中携带有切换标识“0”,则表征需要切换下行检测所使用的检测机会策略:如果当前使用的是普通检测机会策略,则终端需要在后续时刻使用目标检测机会策略进行下行检测,如果终端当前使用的是目标检测机会策略,则终端需要在后续时刻使用普通检测机会策略进行下行检测。毫无疑义的是,在本实施例的其他一些示例当中,也可以设置“1”作为切换标识。
S304:基站基于目标时隙对应的目标检测机会策略确定下行信息的发送起始时频位置。
在基站确定自己在目标时隙中有向终端进行下行信息发送的需求时,基站可以根据目标检测机会策略确定下行信息的发送起始时频位置,显然,发送起始时频位置中包括信息发送的时域位置以及信息发送的频域位置。如果基站确定自己在普通时隙中有向终端进行下行信息发送的需求,则其可以根据普通时隙对应的普通检测机会策略来确定下行信息的发送起始时频位置。可以理解的是,基站无论是根据目标检测机会策略确定下行信息的发送起始时频位置还是根据普通检测机会策略确定下行信息的发送位置,基站确定出的发送起始时频位置一定是目标检测机会策略/普通检测机会策略所指示的待检测起始时频位置中的。
目标检测机会策略中的检测粒度小于普通检测机会策略中的检测粒度,所以终端根据目标检测机会策略进行下行检测时,检测密度更大,当终端按照普通检测机会策略进行检测时,检测密度相对较小。可以理解的是,终端的检测粒度越小,对应的检测密度越大,基站侧可以进行下行信息发送的机会就越多;反之,终端的检测粒度越大,对应的检测密度就越小,则可供基站进行下行信息发送的机会就越稀疏。
上述检测粒度可以包括时域检测粒度和频域检测粒度,目标检测机会策略的检测粒度小于普通检测机会策略的检测粒度,这可以是因为目标检测机会策略的时域检测粒度小于普通检测机会策略的时域检测粒度,也可以是因为目标检测机会策略的频域检测粒度小于普通检测机会策略的频域检测粒度,还可能是因为目标检测机会策略的时域检测粒度和频域检测粒度均小于普通检测机会策略对应的粒度。
在一种示例中,时域检测粒度指的是总符号数与实际被检符号数的比值,其中总符号数是指在一个检测周期内开始PDCCH检测时该检测周期内剩余的所有符号数。如果一个检测周期内包括两个时隙,毫无疑义的是,该检测周期中一共包括28个符号,其中待检测的符号包括第一个时隙内序号为奇数的所有符号以及第二时隙内序号分别为1、3、5、9的符号。所以,实际会被终端执行下行检测的符号有18,检测粒度即为28/18,即14/9。可以理解的是,检测周期中所包含的时隙不一定都是完整的时隙,例如,在本实施例的一种示例中,当终端确定进入目标时隙时,目标时隙已经过去一半,则在这种情况下,检测周期内的总符号数为7。
与时域检测粒度类似,频域检测粒度为总频段值与实际被检频段值的比值。其中总频 段值为进行下行传输的各候选频段的频段总和,以基站为终端配置三个BWP为例,由于基站可能采用BWP1、BWP2以及BWP3中的至少一个向终端进行下行信息发送,所以总频段和为这三个BWP频段的总和,这里假定总频段和为80MHz。可以理解的是,终端不一定会对这三个BWP中的所有频率位置均进行下行检测,假定终端在检测周期内仅针对BWP1中的20MHz以及BWP2内的20MHz进行下行检测,则实际被检频段值为40MHz,所以频域检测粒度为80/40,即2。
S306:基站在发送起始时频位置向终端发送下行信息。
在基站根据目标检测机会策略确定出发送起始时频位置之后,可以在该发送起始时频位置向终端发送下行信息。通常,基站在执行LBT成功,开启一个COT之后,会先向终端发送DCI信息,因此,基站在确定出的发送起始时频位置向终端发送的下行信息可以是DCI信息。当然,在一些特殊情况下,基站也有可能在开启COT之后直接向终端发送数据,也即在不发送下行链路控制信息的情况下先发送数据,在这种情况下,基站在对应的发送起始时频位置上向终端发送的下行信息就是下行数据。
本公开实施例提供的下行发送方法,基站确定在COT的目标时隙存在向终端发送下行信息的需求后,基于目标时隙对应的目标检测机会策略确定下行信息的发送起始时频位置,然后在确定出的发送起始时频位置上向终端发送下行信息。针对一个COT,基站和终端可以分别按照两种检测粒度不同的检测机会策略来进行下行信息发送与下行检测,从而使得在基站在下行发送需求较多、较频繁的时隙能够较为及时的获取到下行发送的机会,从而快速完成下行信息的发送,保证下行信息的传输效率;而在基站下行发送需求较少的其他时隙,终端可以不必频繁的进行下行检测,从而降低终端的检测负担与检测功耗。本实施例提供的下行发送方法,兼顾了基站下行传输的效率以及终端侧的功耗,相对相关技术中的做法,能够有效提升终端侧的用户体验。
实施例三:
本实施例将继续对前述实施例中的下行检测方法、下行发送方法进行介绍:
毫无疑义的是,为了保证基站侧下行发送与终端侧下行检测的时频位置匹配,所以,本实施例中终端按照目标检测机会策略对COT内目标时隙进行检测,按照普通检测机会策略对COT内除目标时隙以外的其他普通时隙进行下行检测,对应的,基站如果需要在目标时隙内进行下行信息发送,则基站需要基于目标检测机会策略确定下行信息的发送起始时频位置,而如果基站需在COT内除目标时隙以外的其他普通时隙向终端发送下行信息,则基站需要基于普通检测机会策略确定下行发送的发送起始时频位置。所以,终端采用目标检测机会策略进行下行检测之前,终端需要确定出目标检测机会策略,在终端采用普通检测机会策略进行下行检测之前,终端需要确定出普通检测机会策略;对应地,在基站基于目标检测机会策略进行下行发送之前,基站需要确定出目标检测机会策略,在基站基于普通检测机会策略进行下行发送之前,基站需要确定出普通检测机会策略。这里先对 终端和基站确定目标检测机会策略的方式进行说明:
基站可以通过高层信令以半静态的形式向终端配置目标检测机会策略:基站先确定第一半静态配置信息,该第一半静态配置信息可以指示目标检测机会策略。在确定出第一半静态配置信息之后,基站可以将该第一半静态配置信息发送给终端,随后,基站和终端均可以依据第一半静态配置信息确定目标检测机会策略。在本实施例的一些示例当中,基站可以在COT中第一个时隙内的第一个符号向终端发送第一半静态配置信息。
在本实施例的一种示例中,第一半静态配置信息中可以包括符号指示和/或频段指示,其中符号指示用于指示目标时隙中的各符号是否需要进行下行检测,频段指示则用于指示在目标时隙中是否需要个候选频段进行下行检测。例如,符号指示可以是与目标时隙中各符号对应的符号位图bitmap,例如,在目标时隙中包括n个符号,则符号位图中也会包括n位,每一位唯一对应一个符号。类似地,频段指示也可以是频段位图,每一个候选频段对应该频段bitmap中的一位,用于指示在目标时隙内是否需要对该候选频段进行下行检测。
在本实施例的另一种示例中,第一半静态配置信息中可以包括CORESET参数和search space参数,不过,在该示例当中,search space参的含义与相关技术中基站通过高层信令发送给终端search space参数的含义有些不同:在本示例当中,search space参数所指示的时隙偏移量为相对COT起始时刻的时隙偏移量。
除了这种通过基站向终端发送第一半静态配置信息的方式让终端和基站确定相同的目标检测机会策略的方案以外,本实施例还提供一种可以让终端和基站确定目标检测机会策略的方案:
终端和基站通过预定义的方式确定目标检测机会策略,例如基站可以接收第一与定义配置参数,然后根据第一预定义配置参数确定出目标检测机会策略。第一预定义配置参数可以由基站管理人员输入给基站。终端也可以通过获取第一预定义配置参数确定目标检测机会策略,例如,终端在设计、生产阶段接收程序人员输入的第一预定义配置参数并进行存储;当然,终端也可以在用户使用阶段,由程序人员将第一预定义配置参数以网络等形式发送给终端,如在系统升级的时候将第一预定义配置参数携带在升级文件中发送给终端。
在前面已经介绍了基站和终端确定目标检测机会策略的两种方式,下面对基站与终端分别确定普通检测机会策略的过程进行介绍:
和确定目标检测机会策略类似,基站、终端在确定普通检测机会策略的时候,也有以下两种方式:
方式一、基站确定第二半静态配置信息,然后根据第二半静态配置信息确定出普通检测机会策略,并将该第二半静态配置信息发送给终端。终端在接收到第二预定义配置参数后,可以根据第二半静态配置信息确定出用于对擦OT内普通时隙进行检测的普通检测机会策略。
方式二:基站和终端分别接收第二预定义配置参数,然后根据第二预定义配置参数确定普通检测机会策略。
和第一半静态配置信息类似,第二半静态配置信息中也可以包括符号指示和频段指示。例如第二半静态配置信息中包括同普通时隙内符号对应的符号bitmap,和/或第二半静态配置信息中还包括同个候选频段对应的频段bitmap。在本实施例的另一些示例当中,第二半静态配置信息中也可以通过CORESET参数和search space参数来指示普通时隙中待检测的时频位置,同样地,第二半静态配置信息中的search space参数所指示的时隙偏移量为相对COT起始时刻的时隙偏移量。
所以,在本实施例中基站和终端在确定目标检测机会策略和普通检测机会策略的时候可以存在这种几种情况:
情况一:二者分别通过第一半静态配置信息和第二半静态配置信息来确定目标检测机会策略与普通检测机会策略;在这种情况下,第一半静态配置信息和第二半静态配置信息可以由基站同时发送给终端。假定目标时隙为COT中的第一个时隙,普通时隙为COT中除了第一时隙以外的其他时隙。在这种情况下,基站可以通过高层信令向终端配置两种检测机会策略,其中检测粒度较小的属于目标时隙,也即COT中的第一时隙,检测粒度较大的另一种检测机会策略属于普通时隙,为普通检测机会策略。
情况二:二者分别通过第一预定义配置参数和第二预定义配置参数来确定目标检测机会策略与普通检测机会策略;可以理解的是,当普通检测机会策略和目标检测机会策略均通过预定义的方式配置到终端侧和基站侧时,第一预定义配置参数和第二预定义参数可以一起输入给终端/基站,也可以分别输入给终端/基站。同样假定目标时隙是COT中的第一时隙,则基站和终端可以通过预定义的方式配置两种检测粒度不同的检测机会策略,其中检测粒度较小的为目标检测机会策略,检测粒度较大的为普通检测机会策略。
情况三:二者通过第一半静态配置信息确定目标检测机会策略,通过第二预定义配置参数确定普通检测机会策略;如果COT的第一时隙和最后一个时隙为目标时隙,则终端可以根据第一半静态配置信息确定出的目标检测机会策略对COT中的第一个时隙和最后一个时隙进行下行检测,采用第二预定义配置参数确定的普通检测机会策略对COT中除第一时隙和最后一个时隙以外的其他时隙进行检测。
情况四:二者通过第一预定义配置参数确定目标检测机会策略,通过第二半静态配置信息确定普通检测机会策略。
在前述示例中,基站和终端可以通过高层信令半静态配置和预定义设置的方式来配置目标检测机会策略和普通检测机会策略,不过在本实施例的一些示例当中,基站和终端可以预先确定一个粒度阈值,然后根据粒度阈值确定目标检测机会策略与普通检测机会策略。针对目标时隙,检测粒度小于该粒度阈值,而针对其他普通时隙,则检测粒度大于该粒度阈值。不过在这种方案中,针对基站根据粒度阈值确定出一个目标检测机会策略,并根据该目标检测机会策略确定出下行信息的发送起始时频位置后,终端可能需要尝试依据 多种目标检测机会策略进行下行检测后,才能成功检测到基站发送的下行信息,这多种目标检测机会策略都是依据预先确定的粒度阈值确定出来的。
本实施例提供的下行检测方法和下行发送方法,可以通过高层信令半静态配置和/或预定义配置的方式来确定目标检测机会策略和普通检测机会策略,为目标检测机会策略和普通检测机会策略的配置提供了较为灵活的方式。通过该下行检测方法和下行发送方法的配合,既保证了基站侧有足够的机会及时向终端进行下行信息的传输,也保证终端的检测复杂度不会太高,提升了终端侧的用户体验。
实施例四:
本实施例提供一种下行检测装置,请参见图4,该下行检测装置40包括时隙确定模块402、信息检测模块404,其中时隙确定模块402用于确定当前时隙为COT中的目标时隙,而信息检测模块404则用于根据目标时隙对应的目标检测机会策略进行下行检测。
在本实施例中,下行检测装置40的信息检测模块404不会再仅仅根据基站半静态配置的与COT内各时隙无关的检测机会策略进行下行检测,信息检测模块404下行检测的粒度与COT内时隙有关:对于一个COT中的各时隙,可以被分为目标时隙与普通时隙,对于目标时隙,信息检测模块404可以按照目标检测机会策略进行下行检测,对于COT内除目标时隙以外的其他时隙,信息检测模块404可以采用普通检测机会策略进行下行检测。目标检测机会策略中的检测粒度小于普通检测机会策略中的检测粒度,所以信息检测模块404根据目标检测机会策略进行下行检测时,检测密度更大,当信息检测模块404按照普通检测机会策略进行检测时,检测密度相对较小。可以理解的是,检测粒度越小,对应的检测密度越大,检测力度也越大,下行检测就越细致;反之检测粒度越大,对应的检测密度就越小,检测力度也就越小,下行检测也就越粗略。所以,在本实施例中,信息检测模块404针对COT中的目标时隙会进行较大力度、较为细致的检测,而针对普通时隙,信息检测模块404仅会进行较小力度的检测。对应地,基站侧在COT的目标时隙内拥有较为密集的下行发送机会,而在普通时隙内,下行发送机会就会相对稀疏一些。
检测粒度可以包括时域检测粒度和频域检测粒度,在本实施例中,目标检测机会策略的检测粒度小于普通检测机会策略的检测粒度,这可以是因为目标检测机会策略的时域检测粒度小于普通检测机会策略的时域检测粒度,也可以是因为目标检测机会策略的频域检测粒度小于普通检测机会策略的频域检测粒度,还可能是因为目标检测机会策略的时域检测粒度和频域检测粒度均小于普通检测机会策略对应的粒度。
在一种示例中,时域检测粒度指的是总符号数与实际被检符号数的比值,其中总符号数是指在一个检测周期内开始PDCCH检测时该检测周期内剩余的所有符号数。如图1所示,在该检测周期内包括两个时隙,毫无疑义的是,该检测周期中一共包括28个符号,其中待检测的符号包括第一个时隙内序号为奇数的所有符号以及第二时隙内序号分别为1、3、5、9的符号。所以,实际会被信息检测模块404执行下行检测的符号有18,检测 粒度即为28/18,即14/9。可以理解的是,检测周期中所包含的时隙不一定都是完整的时隙,例如,在本实施例的一种示例中,当时隙确定模块402确定进入目标时隙时,目标时隙已经过去一半,则在这种情况下,检测周期内的总符号数为7。
与时域检测粒度类似,频域检测粒度为总频段值与实际被检频段值的比值。其中总频段值为进行下行传输的各候选频段的频段总和,以基站为下行检测装置40配置三个BWP为例,由于基站可能采用BWP1、BWP2以及BWP3中的至少一个向下行检测装置40进行下行信息发送,所以总频段和为这三个BWP频段的总和,这里假定总频段和为80MHz。可以理解的是,信息检测模块404不一定会对这三个BWP中的所有频率位置均进行下行检测,假定信息检测模块404在检测周期内仅针对BWP1中的20MHz以及BWP2内的20MHz进行下行检测,则实际被检频段值为40MHz,所以频域检测粒度为80/40,即2。
可以理解的是,由于信息检测模块404采用目标检测机会策略进行下行检测时,可以对对应的目标时隙进行较为细致的检测,这样可以向基站提供较为密集的下行发送机会。所以,在本实施例中,目标时隙是指COT中基站下行发送需求较为密集的时隙,这些时隙可以是由管理人员根据经验在COT中指定某些时隙,例如COT开启后的第一个时隙,又例如,COT结束前的最后一个时隙,所以,本实施例的一种示例中,目标时隙可以包括COT中的第一个时隙和/或最后一个时隙。在这种情况下,目标时隙在COT的位置是固定的。不过,在本实施例的其他一些示例当中,基站可以根据自己下行发送的需求通知下行检测装置40后续时隙是否是目标时隙。在这种情况下,目标时隙在COT内的相对位置并不是固定的。
下面对时隙确定模块402确定目标时隙的几种方式进行介绍:
第一种,基站和下行检测装置40预定约定目标时隙在COT内的相对位置,然后由基站在执行LBT成功之后向下行检测装置40发送COT起始指示信息,通知时隙确定模块402COT已经开启。通过COT起始指示信息以及预先约定确定的目标时隙在该COT内的相对位置,则终端可以确定当前时刻是否是目标时隙。例如,基站与下行检测装置40预先确定COT内的第一个时隙为需要进行细致检测的目标时隙,则时隙确定模块402在接收到基站发送的COT起始指示信息之后,只要当前时刻距离接收到该COT起始指示信息的时刻不足一个时隙,则时隙确定模块402可以确定当前是处于目标时隙内。
这里所说的COT起始指示信息可以包括前导信号、解调参考信号、测量参考信号、同步信号以及预定义序列信号中的一种或几种的组合。前导信号、解调参考信号、同步信号都是目前比较常见的信号,而预定义序列信号则是由基站和下行检测装置40预先约定的专门用于通知COT开启的信息。
第二种,时隙确定模块402确定最近检测到的下行链路控制信息DCI中的时域资源分配指示PDSCH对应的资源映射类型为第二映射类型(映射类型B)。可以理解的是,如果基站向下行检测装置40发送的DCI信息中时域资源分配指示PDSCH对应的资源映射类型为第一映射类型(映射类型A),则在后续过程中,基站只可能会在每个时隙的前 三个符号向下行检测装置40发送下行信息,对应的,信息检测模块404也只需要针对每个时隙的前三个符号进行下行检测;但是如果基站向下行检测装置40发送的DCI信息中时域资源分配指示PDSCH对应的资源映射类型为第二映射类型,则基站在后续过程中可能在一个时隙的任意符号位置上向下行检测装置40发送下行信息,则信息检测模块404需要进行下行检测的必定不仅仅是各时隙的前三个符号,因此信息检测模块404下行检测检测粒度通常会小于第一映射类型所对应的检测粒度,所以,当下行检测装置40接收到指示资源映射类型为第二映射类型的DCI信息时,时隙确定模块402可以确定当前已经进入目标时隙,直到下行检测装置40接收到时域资源分配指示PDSCH对应的资源映射类型为第一映射类型的DCI信息为止。
第三种,下行检测装置40在信息检测模块404使用普通检测机会策略进行下行检测时接收到切换指示。该切换指示用于指示信息检测模块404将下行检测所依据的检测机会策略切换到另一检测机会策略,例如,如果当前所使用的检测机会策略是目标检测机会策略,则信息检测模块404需要切换到根据普通检测机会策略进行下行检测,相反,如果信息检测模块404当前使用的是普通检测机会策略,则信息检测模块404需要根据该切换指示切换到根据目标检测机会策略进行下行检测。所以,在本实施例中,如果信息检测模块404在使用普通检测机会策略进行下行检测的时候接收到切换指示,则时隙确定模块402可以确定当前进入了COT的目标时隙。该目标时隙一致会持续到下行检测装置40再次接收到切换指示为止。
在本实施例中,可以通过特定的RNTI加扰DCI信令作为切换指示,在该DCI信令中可以设置1bit来指示是否需要从当前使用的检测机会策略切换到另一种检测机会策略进行检测。例如以“0”作为切换标识,如果在该DCI信令中携带有切换标识“0”,则表征需要切换下行检测所使用的检测机会策略:如果当前使用的是普通检测机会策略,则信息检测模块404需要在后续时刻使用目标检测机会策略进行下行检测,如果信息检测模块404当前使用的是目标检测机会策略,则需要在后续时刻使用普通检测机会策略进行下行检测。
在时隙确定模块402确定当前时隙为COT中的目标时隙后,信息检测模块404根据目标时隙对应的目标检测机会策略在对应的时频位置开始进行下行检测。当然,如果时隙确定模块402确定当前时隙不是目标时隙,则信息检测模块404可以直接根据普通检测机会策略在对应的时频位置开始进行目标检测。
通常,基站在执行LBT成功,开启一个COT之后,会先向下行检测装置40发送DCI,因此,信息检测模块404的下行检测可以是进行PDCCH检测,检测基站发送的下行链路控制信息。当然,在一些特殊情况下,基站也有可能在开启COT之后直接向下行检测装置40发送数据,也即在不发送下行链路控制信息的情况下先发送数据,在这种情况下,信息检测模块404的下行检测就是针对下行数据的盲检测。
本实施例提供的下行检测装置40可以部署在终端上,其中时隙确定模块402和信息 检测模块404的功能可以由终端的处理器和终端的通信装置共同实现。
本公开实施例提供的下行检测装置,时隙确定模块通过确定当前时隙为COT中的目标时隙,然后信息检测模块根据目标时隙对应的目标检测机会策略进行下行检测。考虑到基站在开启一个COT之后,在该COT的某些时隙下行发送的需求较多,而在另一些时隙中,进行下行发送的需求则较少,所以下行检测装置和基站可以将COT内的基站进行下行发送概率较大的时隙(例如COT内的第一个时隙和/或最后一个时隙)作为目标时隙,利用目标检测机会策略的检测粒度小于普通检测机会策略的检测粒度的特点,让信息检测模块在进行下行检测时,针对这些目标时隙作为相对更细致的检测,从而给基站侧提供更多的下行发送机会;针对COT内除目标时隙以外的其他时隙,信息检测模块则可以根据普通检测机会策略进行检测,从而减小终端侧进行下行检测的负担,降低下行检测装置功耗。
实施例五:
本实施例提供一种下行发送装置,请参见图5:下行发送装置50包括发送确定模块502、位置确定模块504以及信息发送模块506,其中,发送确定模块502用于确定在COT的目标时隙存在向终端发送下行信息的需求;位置确定模块504用于基于目标时隙对应的目标检测机会策略确定下行信息的发送起始时频位置;信息发送模块506用于在发送起始时频位置向终端发送下行信息。
在本实施例中,将COT内的各时隙分为目标时隙与普通时隙,当发送确定模块502确定自己当前存在向终端发送下行信息的需求时,发送确定模块502可以确定自己当前发送下行信息的发送需求是属于目标时隙的下行发送需求,还是属于普通时隙的下行发送需求。所以,发送确定模块502在确定自己在COT的目标时隙是否存在向终端发送下行信息的需求时,首先需要确定哪个或哪些时隙是目标时隙。
目标时隙是指COT中下行发送装置50下行发送需求较为密集的时隙,这些时隙可以是由管理人员根据经验在COT中指定某些时隙,例如COT开启后的第一个时隙,又例如,COT结束前的最后一个时隙,所以,一些示例中,目标时隙可以包括COT中的第一个时隙和/或最后一个时隙。在这种情况下,目标时隙在COT的位置是固定的。不过,在本实施例的其他一些示例当中,发送确定模块502可以根据自己下行发送的需求通知终端后续时隙是否是目标时隙,由于下行发送装置50的下行发送需求并不固定所以,在这种情况下,目标时隙在COT内的相对位置并不是固定的。
对于目标时隙在COT中相对位置确定的情况,下行发送装置50可以预先通过高层信令的方式告知终端目标时隙在COT内的相对位置,或者由管理人员预先分别在下行发送装置50侧和终端侧进行配置,让下行发送装置50和终端确定目标时隙在COT内的相对位置。假定在本实施例的一种示例中,下行发送装置50和终端预先确定目标时隙是COT内的第一个时隙。在后续过程中,下行发送装置50在执行LBT成功,开启一个COT后, 当存在下行发送需求时,发送确定模块502可以根据当前时刻与COT起始时刻的时间确定当前是否处于目标时隙内。为了让终端侧也能确定出目标时隙,在本实施例中,下行发送装置50在执行LBT成功,并开启COT之后,可以向终端发送COT起始指示信息,让终端也能获知COT的起始时刻,从而结合COT的起始时刻以及预先确定的目标时隙在COT内的相对位置确定出目标时隙的位置。
这里所说的COT起始指示信息可以包括前导信号、解调参考信号、测量参考信号、同步信号以及预定义序列信号中的一种或几种的组合。前导信号、解调参考信号、同步信号都是目前比较常见的信号,而预定义序列信号则是由下行发送装置50和终端预先约定的专门用于通知COT开启的信息。
对于目标时隙在COT内相对位置不确定的情况,发送确定模块502可以根据自己当前的发送需求是否密集来确定当前是否是目标时隙,例如,在某一时刻,发送确定模块502判断从当前时刻起的一段时间内,自己需要较为频繁地向终端发送下行信息,则发送确定模块502可以确定这一段时间内的时隙均属于目标时隙。对于这种情况,需要发送确定模块502向终端进行指示,终端才能确定当前所处的时隙属于目标时隙:
例如,在本实施例的一种示例当中,下行发送装置50与终端预先约定,假定终端在t1时刻接收到时域资源分配指示PDSCH对应的资源映射类型为第二映射类型的DCI信息,在t2时刻接收到时域资源分配指示PDSCH对应的资源映射类型为第一映射类型的DCI信息,则在t1~t2之间的所有时隙均属于目标时隙。所以,在这种情况,当发送确定模块502确定当前已进入目标时隙时,可以向终端发送指示PDSCH对应的资源映射类型为第二映射类型的DCI。
又例如,在本实施例的另一种示例当中,下行发送装置50与终端预先约定,如果终端原本采用普通检测机会策略进行下行检测,在某一时刻接收到终端发送的切换指示,则终端可以确定从当前时刻其即进入目标时隙,直到再次接收到下行发送装置50发送的切换指示为止。在该示例中,下行发送装置50可以通过特定的RNTI加扰DCI信令作为切换指示,在该DCI信令中可以设置1bit来指示是否需要从当前使用的检测机会策略切换到另一种检测机会策略进行检测。例如以“0”作为切换标识,如果在该DCI信令中携带有切换标识“0”,则表征需要切换下行检测所使用的检测机会策略:如果当前使用的是普通检测机会策略,则终端需要在后续时刻使用目标检测机会策略进行下行检测,如果终端当前使用的是目标检测机会策略,则终端需要在后续时刻使用普通检测机会策略进行下行检测。毫无疑义的是,在本实施例的其他一些示例当中,也可以设置“1”作为切换标识。
在发送确定模块502确定自己在目标时隙中有向终端进行下行信息发送的需求时,位置确定模块504可以根据目标检测机会策略确定下行信息的发送起始时频位置,显然,发送起始时频位置中包括信息发送的时域位置以及信息发送的频域位置。如果下行发送装置50确定自己在普通时隙中有向终端进行下行信息发送的需求,则其可以根据普通时隙对应的普通检测机会策略来确定下行信息的发送起始时频位置。可以理解的是,下行发送装 置50无论是根据目标检测机会策略确定下行信息的发送起始时频位置还是根据普通检测机会策略确定下行信息的发送位置,位置确定模块504确定出的发送起始时频位置一定是目标检测机会策略/普通检测机会策略所指示的待检测起始时频位置中的。
目标检测机会策略中的检测粒度小于普通检测机会策略中的检测粒度,所以终端根据目标检测机会策略进行下行检测时,检测密度更大,当终端按照普通检测机会策略进行检测时,检测密度相对较小。可以理解的是,终端的检测粒度越小,对应的检测密度越大,信息发送模块506侧可以进行下行信息发送的机会就越多;反之,终端的检测粒度越大,对应的检测密度就越小,则可供信息发送模块506进行下行信息发送的机会就越稀疏。
上述检测粒度可以包括时域检测粒度和频域检测粒度,目标检测机会策略的检测粒度小于普通检测机会策略的检测粒度,这可以是因为目标检测机会策略的时域检测粒度小于普通检测机会策略的时域检测粒度,也可以是因为目标检测机会策略的频域检测粒度小于普通检测机会策略的频域检测粒度,还可能是因为目标检测机会策略的时域检测粒度和频域检测粒度均小于普通检测机会策略对应的粒度。
在一种示例中,时域检测粒度指的是总符号数与实际被检符号数的比值,其中总符号数是指在一个检测周期内开始PDCCH检测时该检测周期内剩余的所有符号数。如果一个检测周期内包括两个时隙,毫无疑义的是,该检测周期中一共包括28个符号,其中待检测的符号包括第一个时隙内序号为奇数的所有符号以及第二时隙内序号分别为1、3、5、9的符号。所以,实际会被终端执行下行检测的符号有18,检测粒度即为28/18,即14/9。可以理解的是,检测周期中所包含的时隙不一定都是完整的时隙,例如,在本实施例的一种示例中,当终端确定进入目标时隙时,目标时隙已经过去一半,则在这种情况下,检测周期内的总符号数为7。
与时域检测粒度类似,频域检测粒度为总频段值与实际被检频段值的比值。其中总频段值为进行下行传输的各候选频段的频段总和,以下行发送装置50为终端配置三个BWP为例,由于信息发送模块506可能采用BWP1、BWP2以及BWP3中的至少一个向终端进行下行信息发送,所以总频段和为这三个BWP频段的总和,这里假定总频段和为80MHz。可以理解的是,终端不一定会对这三个BWP中的所有频率位置均进行下行检测,假定终端在检测周期内仅针对BWP1中的20MHz以及BWP2内的20MHz进行下行检测,则实际被检频段值为40MHz,所以频域检测粒度为80/40,即2。
在位置确定模块504根据目标检测机会策略确定出发送起始时频位置之后,信息发送模块506可以在该发送起始时频位置向终端发送下行信息。通常,下行发送装置50在执行LBT成功,开启一个COT之后,会先向终端发送DCI信息,因此,信息发送模块506在确定出的发送起始时频位置向终端发送的下行信息可以是DCI信息。当然,在一些特殊情况下,信息发送模块506也有可能在开启COT之后直接向终端发送数据,也即在不发送下行链路控制信息的情况下先发送数据,在这种情况下,信息发送模块506在对应的发送起始时频位置上向终端发送的下行信息就是下行数据。
本实施例中下行发送装置50可以部署在基站侧,例如部署在基站上,其发送确定模块502、位置确定模块504的功能可以通过基站处理器实现,而信息发送模块506的功能则可以通过基站的通信单元实现。
本公开实施例提供的下行发送装置,确定在COT的目标时隙存在向终端发送下行信息的需求后,基于目标时隙对应的目标检测机会策略确定下行信息的发送起始时频位置,然后在确定出的发送起始时频位置上向终端发送下行信息。针对一个COT,下行发送装置和终端可以分别按照两种检测粒度不同的检测机会策略来进行下行信息发送与下行检测,从而使得在下行发送装置在下行发送需求较多、较频繁的时隙能够较为及时的获取到下行发送的机会,从而快速完成下行信息的发送,保证下行信息的传输效率;而在下行发送装置下行发送需求较少的其他时隙,终端可以不必频繁的进行下行检测,从而降低终端的检测负担与检测功耗。本实施例提供的下行发送方法,兼顾了下行发送装置下行传输的效率以及终端侧的功耗,相对相关技术中的做法,能够有效提升终端侧的用户体验。
实施例六:
本实施例将提供一种下行检测装置以及一种下行发送装置,请参见图6示出的下行检测装置60的结构示意图和图7示出的下行发送装置70的结构示意图:
下行检测装置60除了包括用于确定当前时隙为COT中的目标时隙的时隙确定模块602,和用于根据目标时隙对应的目标检测机会策略进行下行检测的信息检测模块604以外,还包括第一配置模块606,第一配置模块606用于确定目标检测机会策略。
下行发送装置70中除了包括用于确定在COT的目标时隙存在向终端发送下行信息的需求的发送确定模块702、用于用于基于目标时隙对应的目标检测机会策略确定下行信息的发送起始时频位置的位置确定模块704以及用于在发送起始时频位置向终端发送下行信息的信息发送模块706以外,还包括第二配置模块708,其中第二配置模块708用于确定目标检测机会策略。
毫无疑义的是,为了保证下行发送装置70侧下行发送与下行检测装置60侧下行检测的时频位置匹配,所以,本实施例中信息检测模块604按照目标检测机会策略对COT内目标时隙进行检测,按照普通检测机会策略对COT内除目标时隙以外的其他普通时隙进行下行检测,对应的,如果发送确定模块702确定信息发送模块706需要在目标时隙内进行下行信息发送,则位置确定模块704需要基于目标检测机会策略确定下行信息的发送起始时频位置,而如果信息发送模块706需在COT内除目标时隙以外的其他普通时隙向下行检测装置60发送下行信息,则位置确定模块704需要基于普通检测机会策略确定下行发送的发送起始时频位置。所以,信息检测模块604采用目标检测机会策略进行下行检测之前,第一配置模块606需要确定出目标检测机会策略;在本实施例的一些示例中,在信息检测模块604采用普通检测机会策略进行下行检测之前,第一配置模块606需要确定出普通检测机会策略;对应地,在信息发送模块706基于目标检测机会策略进行下行发送之 前,第二配置模块708需要确定出目标检测机会策略,在信息发送模块706基于普通检测机会策略进行下行发送之前,第二配置模块708需要确定出普通检测机会策略。这里先对第一配置模块606和第二配置模块708确定目标检测机会策略的方式进行说明:
第二配置模块708可以通过高层信令以半静态的形式向下行检测装置60配置目标检测机会策略第二配置模块708先确定第一半静态配置信息,该第一半静态配置信息可以指示目标检测机会策略。在确定出第一半静态配置信息之后,下行发送装置70可以将该第一半静态配置信息发送给下行检测装置60,随后,第二配置模块708和第一配置模块606均可以依据第一半静态配置信息确定目标检测机会策略。在本实施例的一些示例当中,下行发送装置70可以在COT中第一个时隙内的第一个符号向下行检测装置60发送第一半静态配置信息。
在本实施例的一种示例中,第一半静态配置信息中可以包括符号指示和/或频段指示,其中符号指示用于指示目标时隙中的各符号是否需要进行下行检测,频段指示则用于指示在目标时隙中是否需要个候选频段进行下行检测。例如,符号指示可以是与目标时隙中各符号对应的符号位图bitmap,例如,在目标时隙中包括n个符号,则符号位图中也会包括n位,每一位唯一对应一个符号。类似地,频段指示也可以是频段位图,每一个候选频段对应该频段bitmap中的一位,用于指示在目标时隙内是否需要对该候选频段进行下行检测。
在本实施例的另一种示例中,第一半静态配置信息中可以包括CORESET参数和search space参数,不过,在该示例当中,search space参的含义与相关技术中下行发送装置70通过高层信令发送给下行检测装置60search space参数的含义有些不同:在本示例当中,search space参数所指示的时隙偏移量为相对COT起始时刻的时隙偏移量。
除了这种通过下行发送装置70向下行检测装置60发送第一半静态配置信息的方式让第一配置模块606和第二配置模块708确定相同的目标检测机会策略的方案以外,本实施例还提供一种可以让第一配置模块606和第二配置模块708确定目标检测机会策略的方案:
第一配置模块606和第二配置模块708通过预定义的方式确定目标检测机会策略,例如第二配置模块708可以接收第一与定义配置参数,然后根据第一预定义配置参数确定出目标检测机会策略。第一预定义配置参数可以由管理人员输入给第二配置模块708。第一配置模块606也可以通过获取第一预定义配置参数确定目标检测机会策略,例如,第一配置模块606在下行检测装置60设计、生产阶段接收程序人员输入的第一预定义配置参数并进行存储;当然,也可以在用户使用阶段,由程序人员将第一预定义配置参数以网络等形式发送给第一配置模块606,如在系统升级的时候将第一预定义配置参数携带在升级文件中发送给第一配置模块606。
在前面已经介绍了第二配置模块708和第一配置模块606确定目标检测机会策略的两种方式,下面对第二配置模块708与第一配置模块606分别确定普通检测机会策略的过程 进行介绍:
和确定目标检测机会策略类似,第二配置模块708、第一配置模块606在确定普通检测机会策略的时候,也有以下两种方式:
方式一、第二配置模块708确定第二半静态配置信息,然后根据第二半静态配置信息确定出普通检测机会策略,并将该第二半静态配置信息发送给第一配置模块606。第一配置模块606在接收到第二预定义配置参数后,可以根据第二半静态配置信息确定出用于对擦OT内普通时隙进行检测的普通检测机会策略。
方式二:第二配置模块708和第一配置模块606分别接收第二预定义配置参数,然后根据第二预定义配置参数确定普通检测机会策略。
和第一半静态配置信息类似,第二半静态配置信息中也可以包括符号指示和频段指示。例如第二半静态配置信息中包括同普通时隙内符号对应的符号bitmap,和/或第二半静态配置信息中还包括同个候选频段对应的频段bitmap。在本实施例的另一些示例当中,第二半静态配置信息中也可以通过CORESET参数和search space参数来指示普通时隙中待检测的时频位置,同样地,第二半静态配置信息中的search space参数所指示的时隙偏移量为相对COT起始时刻的时隙偏移量。
所以,在本实施例中第二配置模块708和第一配置模块606在确定目标检测机会策略和普通检测机会策略的时候可以存在这种几种情况:
情况一:二者分别通过第一半静态配置信息和第二半静态配置信息来确定目标检测机会策略与普通检测机会策略;在这种情况下,第一半静态配置信息和第二半静态配置信息可以由下行发送装置70同时发送给下行检测装置60。假定目标时隙为COT中的第一个时隙,普通时隙为COT中除了第一时隙以外的其他时隙。在这种情况下,下行发送装置70可以通过高层信令向下行检测装置60配置两种检测机会策略,其中检测粒度较小的属于目标时隙,也即COT中的第一时隙,检测粒度较大的另一种检测机会策略属于普通时隙,为普通检测机会策略。
情况二:二者分别通过第一预定义配置参数和第二预定义配置参数来确定目标检测机会策略与普通检测机会策略;可以理解的是,当普通检测机会策略和目标检测机会策略均通过预定义的方式配置到下行检测装置60侧和下行发送装置70侧时,第一预定义配置参数和第二预定义参数可以一起输入给下行检测装置60/下行发送装置70,也可以分别输入给下行检测装置60/下行发送装置70。同样假定目标时隙是COT中的第一时隙,则第二配置模块708和第一配置模块606可以通过预定义的方式配置两种检测粒度不同的检测机会策略,其中检测粒度较小的为目标检测机会策略,检测粒度较大的为普通检测机会策略。
情况三:二者通过第一半静态配置信息确定目标检测机会策略,通过第二预定义配置参数确定普通检测机会策略;如果COT的第一时隙和最后一个时隙为目标时隙,则第一配置模块606可以根据第一半静态配置信息确定出的目标检测机会策略对COT中的第一个时隙和最后一个时隙进行下行检测,采用第二预定义配置参数确定的普通检测机会策略 对COT中除第一时隙和最后一个时隙以外的其他时隙进行检测。
情况四:二者通过第一预定义配置参数确定目标检测机会策略,通过第二半静态配置信息确定普通检测机会策略。
在前述示例中,第二配置模块708和第一配置模块606可以通过高层信令半静态配置和预定义设置的方式来配置目标检测机会策略和普通检测机会策略,不过在本实施例的一些示例当中,第二配置模块708和第一配置模块606可以预先确定一个粒度阈值,然后根据粒度阈值确定目标检测机会策略与普通检测机会策略。针对目标时隙,检测粒度小于该粒度阈值,而针对其他普通时隙,则检测粒度大于该粒度阈值。不过在这种方案中,针对下行发送装置70根据粒度阈值确定出一个目标检测机会策略,并根据该目标检测机会策略确定出下行信息的发送起始时频位置后,下行检测装置60可能需要尝试依据多种目标检测机会策略进行下行检测后,才能成功检测到下行发送装置70发送的下行信息,这多种目标检测机会策略都是依据预先确定的粒度阈值确定出来的。
本实施例中的下行检测装置60可以被部署在终端上,其中,时隙确定模块602和信息检测模块604的功能可以由终端的处理器与通信单元共同实现;第一配置模块606的功能可以由终端的处理器实现,也可以有终端的处理器和通信单元共同实现。
下行发送装置70可以被部署在基站上,发送确定模块702、位置确定模块704的功能可以通过基站处理器实现,而信息发送模块706的功能则可以通过基站的通信单元实现。第二配置模块708的功能可以由基站的处理器实现,也可以有基站的处理器和通信单元共同实现。
本实施例提供的下行检测装置和下行发送装置,可以通过高层信令半静态配置和/或预定义配置的方式来确定目标检测机会策略和普通检测机会策略,为目标检测机会策略和普通检测机会策略的配置提供了较为灵活的方式。通过该下行检测方法和下行发送方法的配合,既保证了下行发送装置侧有足够的机会及时向下行检测装置进行下行信息的传输,也保证下行检测装置的检测复杂度不会太高,提升了下行检测装置侧的用户体验。
实施例七:
本实施例提供一种存储介质,该存储介质中可以存储有一个或多个可供一个或多个处理器读取、编译并执行的计算机程序,在本实施例中,该存储介质可以存储下行检测程序、下行发送程序中的至少一个,其中下行检测程序可供一个或多个处理器执行实现前述实施例一或三中介绍的任意一种下行检测方法的步骤。下行发送程序可供一个或多个处理器执行实现前述实施例二至三中介绍的任意一种下行发送方法的步骤。
本实施例还提供一种通信系统,请参见图8,该通信系统8包括终端90与基站10,下面分别结合图9和图10对终端90的结构和基站10的结构进行简单介绍:
终端90包括第一处理器91、第一存储器92以及用于连接第一处理器91与第一存储器92的第一通信总线93,其中第一存储器92可以为前述存储有下行检测程序的存储介 质。第一处理器91可以读取第一存储器92中存储的下行检测程序,进行编译并执行实现实施例一或三中介绍的任意一种下行检测方法的步骤。终端90实现实施例一或三中下行检测方法的细节可以参见前述实施例的介绍,这里不再赘述。
基站10包括第二处理器11、第二存储器12以及用于连接第二处理器11与第二存储器12的第二通信总线13,其中第二存储器12可以为前述存储有下行发送程序的存储介质。第二处理器11可以读取第二存储器12中存储的下行发送程序,进行编译并执行实现实施例二或三中介绍的任意一种下行发送方法的步骤。基站10实现实施例二或三中下行发送方法的细节可以参见前述实施例的介绍,这里不再赘述。
本实施例提供通信系统、终端、基站及存储介质,针对COT内的普通时隙,终端可以采用普通检测机会策略进行检测,而针对COT内的目标时隙,终端则可以采用目标检测机会策略进行检测,目标检测机会策略的检测粒度比普通检测机会策略的检测粒度更小,也就是检测密度更大,所以基站在目标时隙中拥有较为密集的发送机会,在需要进行下行发送时,不用长时间地等待就能获得发送机会,就可以在对应的时频位置完成下行信息发送。在COT内其他时隙,终端的检测粒度大,检测密度小,因此,终端的检测工作量相对较小,这有利于降低下行检测给终端带来的功耗。
实施例八:
本实施例将结合几个具体的示例对本公开中提供的通信系统、基站、终端以及基站侧的下行发送方法、终端侧的下行检测方法进行说明:
假定本实施例中基站向终端发送的下行信息是下行链路控制信息,也即终端侧的下行检测实际是下行PDCCH检测。同时假定基站与终端预先约定目标时隙为COT中的第一时隙。
示例1:
本示例将从基站侧的角度介绍基站通过高层信令向终端配置检测机会策略的过程,这里所说的检测机会策略可以包括COT内第一时隙的检测机会策略,也可以包括COT内除第一时隙以外的其他时隙的检测机会策略,或者同时包括这两种检测机会策略。
首先,基站通过高层信令配置待终端进行PDCCH检测的时频位置。具体配置包括下面几种情况:
情况一:该配置仅用于COT中的第一时隙;
情况二:该配置包含两种PDCCH检测机会策略,第一检测机会策略(目标检测机会策略)用于COT中的第一时隙,第二检测机会策略(普通检测机会策略)用于COT内除第一时隙以外的其他时隙。
在本示例中,基站可以通过包括CORESET参数和search space参数的高层信令配置待检测的时频域位置。对于频域位置,基站可以以20MHz为单位进行CORESET配置,即每20MHz的带宽上配置一个CORESET。对于时域位置,基站可以配置检测周期为1ms, 同时指示检测周期内的每个符号均为待下行检测的符号。当然在本实施例的其他一些示例当中,基站也可以配置指示自己仅可能会在检测周期中序号为奇数的符号上进行下行发送,或者指示终端自己仅可能会在检测周期内序号为偶数的符号上进行DCI信息的发送。在本实施例的一种示例当中,基站可以在执行LBT处理成功后的第一个时隙的第一个符号位置向终端发送符号bitmap,从而向终端指示哪些符号为需要进行PDCCH检测的符号。
假定基站会向终端配置针对COT中全部时隙的下行检测机会策略,则基站可以通过专门的高层信令来配置基站在COT内第一时隙上进行下行发送的候选符号位置;针对COT内其他时隙,基站可以通过现有的PDCCH资源的配置参数来进行配置。
在基站向终端配置了检测机会策略之后,其可以在执行LBT成功,并有进行DCI信息发送的时候,从配置的这些候选符号位置中选择最近的一个符号进行DCI信息发送。
在本实施例中,由于目标时隙是指COT中的第一时隙,因此在COT的第一时隙结束后,基站将会切换到采用第二检测机会策略确定DCI的发送起始时频位置,届时,终端也应当切换到根据第二检测机会策略进行PDCCH检测:
在本实施例的一些示例中,基站可以在COT开启的时刻向终端发送收COT起始指示信息,让终端可以根据收COT起始指示信息确定在何时切换到第二检测机会策略。可以理解的是,COT起始指示信息可以包括前导信号、解调参考信号、测量参考信号、同步信号、预定义序列信号中的至少一种。
在本实施例的另一种示例当中,基站还可以COT第一个时隙的最后一个符号或者第二个时隙的第一个符号向终端发送切换指示,让终端从采用第一检测机会策略切换到采用第二检测机会策略。例如基站通过一种专门的DCI格式,或者专有的RNTI加扰的DCI来通知终端进行检测机会策略的切换,或者在DCI信息中设置1比特来专门指示两种检测机会策略之间切换。
在本实施例的又一种示例当中,基站还可以向终端发送时域资源分配指示PDSCH对应的资源映射类型为第一映射类型的DCI信息来指示终端切换到采用第二检测机会策略进行PDCCH检测。第一映射类型,即映射类型A,由于基站向终端发送时域资源分配指示PDSCH对应的资源映射类型为第一映射类型的DCI信息后,基站仅可能会在每个时隙的前三个符号进行下行信息发送,所以,在这种示例当中,根据第二检测机会策略终端最多需要对各时隙的前三个符号进行下行检测。
通过本示例的方案,一方面可以保证基站在LBT处理成功后能尽快发送下行控制信息,从而提高频谱利用率;另一方面也保证基站可以对COT中其他时隙中候选符号位置进行灵活的调整。
示例2:
本示例将从终端侧的角度介绍终端侧确定监测机会策略并进行下行检测的过程,这里所说的检测机会策略可以包括COT内第一时隙的检测机会策略,也可以包括COT内除第 一时隙以外的其他时隙的检测机会策略,或者同时包括这两种检测机会策略。
首先,终端通过高层信令获取待PDCCH检测的起始时频位置。
在一些示例当中,终端通过高层信令获取的是针对COT内第一时隙的检测机会策略;例如,基站通过定义专有的参数来向终端配置COT内第一时隙的PDCCH检测起始时频位置。例如高层信令配置起始符号位置参数为10100101001010,则终端就可以将符号第一时隙内序号分别为0,2,5,7,10,12的符号待PDCCH检测的符号位置。又例如,基站通过NR现有授权载波的PDCCH参数来指定针对第一时隙的检测机会策略:终端通过接收高层信令配置的search space IE对应的monitoring Slot Periodicity And Offset参数确定检测周期为10ms,时隙偏移量为0,则终端在基站开始发送数据的第一个时隙盲检PDCCH。
在另一些示例中,终端可以通过高层信令获取到两种检测机会策略,其中检测粒度小的一种用于COT内的第一时隙,另一种用于COT内的其他时隙。其中,一套参数配置的PDCCH检测的时频粒度小,用于检测基站LBT成功后的第一个时隙,另一套参数配置的PDCCH检测的粒度大,用于基站LBT成功后第二个时隙及以后时隙的PDCCH检测。
例如,基站给某个终端配置两个search space IE,一个search space IE里面的monitoring Slot Periodicity And Offset参数指示检测周期为10ms,时隙偏移量为0,monitoring Symbols Within Slot参数中的bitmap为01010101010101,指示检测的符号为时隙内的序号(假定本实施例中时隙内符号的序号从0开始)奇数符号。另外一个search space IE里面的monitoring Slot Periodicity And Offset参数指示检测周期为2ms,时隙偏移量为1,monitoring Symbols Within Slot参数中的bitmap为10000001000000,指示检测的符号为符号0和符号7。前一个配置用于COT内的第一时隙,后一个配置用于COT内的其他时隙,通过上面的配置可以得到如图11所示的检测图样。
不过本领域技术人员可以明白的是,终端也可以仅通过高层信令获取针对COT内除第一时隙以外其他时隙的检测机会策略。对于终端仅通过高层信令获取一种检测机会策略的情况,终端可以通过预定义的方式获取到另一种检测机会策略。
示例3:
在前述两个示例中,主要介绍了基站与终端确定检测机会策略中待PDCCH检测时域位置的方案,本示例将对确定待PDCCH检测的频域位置进行介绍:
对于COT内第一时隙,为了提高基站发送的概率,基站可以配置多个不同频域位置的CORESET,然后基站根据LBT的结果确定最终用于下行发送的CORESET的数目。对于COT内其他时隙,在相同频域范围内,所配置的CORESET的数目少于第一时隙上CORESET的数目。
例如,在80MHz的带宽内,基站通过高层信令配置四个CORESET。进一步的,这四个CORESET可以属于不同的BWP,即BWP ID不同,但CORESET之间的频域位置不重叠,也就是说,每个CORESET位于不同的20MHz的频域范围内。然后基站在这80MHz带宽上执行LBT处理,每次执行的粒度可以是20MHz,基站根据LBT成功的 20MHz带宽的频域位置对应的CORESET,最终确定发送的CORESET的数目及位置。假设第一个和第三个CORESET对应的20MHz带宽基站执行LBT成功了,则基站在这两个CORESET上进行下行发送。
在一个示例中,一个信道占用期前三个时隙的CORESET,即下行控制信道搜索的集合的图样如图12所示:基站通过高层信令配置CORESET1在某一BWP上的第一个20MHz中,CORESET2在该BWP上的第二个20MHz中,CORESET3在该BWP上的第三个20MHz内;在时域上,基站配置search space1对应CORESET1,发送周期为1ms,时隙偏移量为0;配置search space2对应CORESET2,发送周期为5ms,时隙偏移量为0;配置search space3对应CORESET3,发送周期为1ms,时隙偏移量为2。
示例3的方案也能增加基站在执行LBT成功后第一时隙的下行发送机会,减少后续时隙中终端进行PDCCH检测的复杂度,从而降低终端功耗。
本领域技术人员应当明白的是,本公开各实施例中提供的下行检测方法、下行发送方法、装置及基站、终端、存储介质,不仅可以应用于5G通信系统,也可以应用于未来任何一个通信系统中。
显然,本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM,ROM,EEPROM、闪存或其他存储器技术、CD-ROM,数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本公开不限制于任何特定的硬件和软件结合。
以上内容是结合具体的实施方式对本公开实施例所作的进一步详细说明,不能认定本公开的具体实施只局限于这些说明。对于本公开所属技术领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本公开的保护范围。

Claims (23)

  1. 一种下行检测方法,包括:
    确定当前时隙为信道占用期COT中的目标时隙;
    根据所述目标时隙对应的目标检测机会策略进行下行检测,所述目标检测机会策略的检测粒度小于普通检测机会策略的检测粒度,所述普通检测机会策略为所述COT中除所述目标时隙外其他时隙的检测机会策略。
  2. 如权利要求1所述的下行检测方法,其特征在于,所述根据所述目标时隙对应的目标检测机会策略进行下行检测之前,还包括:
    接收基站发送的第一半静态配置信息,根据所述第一半静态配置信息确定所述目标检测机会策略;
    或,
    接收第一预定义配置参数,根据所述第一预定义配置参数确定所述目标检测机会策略。
  3. 如权利要求2所述的下行检测方法,其特征在于,所述第一半静态配置信息中包括用于指示所述目标时隙中的各符号是否需要进行下行检测的符号指示和/或用于指示在所述目标时隙中是否需要对各候选频段进行下行检测的频段指示;
    或,
    所述第一半静态配置信息中包括控制资源集CORESET参数和搜索空间search space参数,所述search space参数所指示的时隙偏移量为相对所述COT起始时刻的时隙偏移量。
  4. 如权利要求3所述的下行检测方法,其特征在于,所述符号指示为同所述目标时隙中各符号对应的符号位图bitmap;所述频段指示为同各候选频段对应的频段bitmap。
  5. 如权利要求2所述的下行检测方法,其特征在于,所述根据所述目标时隙对应的目标检测机会策略进行下行检测之前,还包括:
    接收所述基站发送的第二半静态配置信息,根据所述第二半静态配置信息确定所述普通检测机会策略;
    或,
    接收第二预定义配置参数,根据所述第二预定义配置参数确定所述普通检测机会策略。
  6. 如权利要求1所述的下行检测方法,其特征在于,所述根据所述目标时隙对应的目标检测机会策略进行下行检测包括:根据所述目标时隙对应的目标检测机会策略进行物理下行链路控制信道PDCCH检测。
  7. 如权利要求1所述的下行检测方法,其特征在于,检测粒度包括时域检测粒度和频域检测粒度;所述目标检测机会策略的时域检测粒度小于所述普通检测机会策略的时域检测粒度,和/或,所述目标检测机会策略的频域检测粒度小于所述普通检测机会策略的 频域检测粒度。
  8. 如权利要求1-7任一项所述的下行检测方法,其特征在于,所述目标时隙包括所述COT中的第一个时隙和/或所述COT中的最后一个时隙。
  9. 如权利要求1-7任一项所述的下行检测方法,其特征在于,所述确定当前时隙为信道占用期COT中的目标时隙的方式包括以下几种中的任意一种:
    第一种:根据接收COT起始指示信息的时刻以及预先确定的目标时隙在所述COT内的相对位置确定当前时刻处于所述COT中的目标时隙;
    第二种:确定最近检测到的下行链路控制信息中的时域资源分配指示物理下行共享信道PDSCH对应的资源映射类型为第二映射类型;
    第三种:在使用普通检测机会策略进行下行检测时接收到指示切换检测机会策略的切换指示。
  10. 如权利要求9所述的下行检测方法,其特征在于,所述COT起始指示信息包括前导信号、解调参考信号、测量参考信号、同步信号、预定义序列信号中的至少一种。
  11. 一种下行发送方法,包括:
    确定在COT的目标时隙存在向终端发送下行信息的需求;
    基于所述目标时隙对应的目标检测机会策略确定下行信息的发送起始时频位置,所述目标检测机会策略用于指示终端的下行检测,所述目标检测机会策略的检测粒度小于所述COT中除所述目标时隙外的普通检测机会策略的检测粒度;
    在所述发送起始时频位置向所述终端发送下行信息。
  12. 如权利要求11所述的下行发送方法,其特征在于,所述基于所述目标时隙对应的目标检测机会策略确定下行信息的发送起始时频位置之前,还包括:
    确定第一半静态配置信息,根据所述第一半静态配置信息确定所述目标检测机会策略,并将所述第一半静态配置信息发送给所述终端。
  13. 如权利要求12所述的下行发送方法,其特征在于,所述第一半静态配置信息中包括用于指示所述目标时隙中的各符号是否需要进行下行检测的符号指示和/或用于指示在所述目标时隙中是否需要对各候选频段进行下行检测的频段指示;
    或,
    所述第一半静态配置信息中包括控制资源集CORESET参数和搜索空间search space参数,所述search space参数所指示的时隙偏移量为相对所述COT起始时刻的时隙偏移量。
  14. 如权利要求13所述的下行发送方法,其特征在于,所述基于所述目标时隙对应的目标检测机会策略确定下行信息的发送起始时频位置之前,还包括:
    确定第二半静态配置信息,根据所述第二半静态配置信息确定所述普通检测机会策略,并将所述第二半静态配置信息发送给所述终端;
    或,
    接收第二预定义配置参数,根据所述第二预定义配置参数确定所述普通检测机会策略。
  15. 如权利要求11所述的下行发送方法,其特征在于,所述在所述发送起始时频位置向所述终端发送下行信息包括:在所述发送起始时频位置通过PDCCH向所述终端发送下行链路控制信息。
  16. 如权利要求11所述的下行发送方法,其特征在于,检测粒度包括时域检测粒度和频域检测粒度;所述目标检测机会策略的时域检测粒度小于所述普通检测机会策略的时域检测粒度,和/或,所述目标检测机会策略的频域检测粒度小于所述普通检测机会策略的频域检测粒度。
  17. 如权利要求11-16任一项所述的下行发送方法,其特征在于,所述目标时隙包括所述COT中的第一个时隙和/或所述COT中的最后一个时隙。
  18. 如权利要求11-16任一项所述的下行发送方法,其特征在于,所述基于所述目标时隙对应的目标检测机会策略确定下行信息的发送起始时频位置之前,还包括:
    在所述COT的起始时刻向所述终端发送COT起始指示信息,所述COT起始指示信息用于终端确定目标时隙;
    或,
    向所述终端发送下行链路控制信息,所述下行链路控制信息中的时域资源分配指示PDSCH对应的资源映射类型为第二映射类型;
    或,
    向所述终端发送切换指示,所述切换指示用于指示所述终端从采用普通检测机会策略进行下行检测切换到采用目标检测机会策略进行下行检测。
  19. 一种下行检测装置,所述下行检测装置包括:
    时隙确定模块,用于确定当前时隙为信道占用期COT中的目标时隙;
    信息检测模块,用于根据所述目标时隙对应的目标检测机会策略进行下行检测,所述目标检测机会策略的检测粒度小于普通检测机会策略的检测粒度,所述普通检测机会策略为所述COT中除所述目标时隙外其他时隙的检测机会策略。
  20. 一种下行发送装置,包括:
    发送确定模块,用于确定在COT的目标时隙存在向终端发送下行信息的需求;
    位置确定模块,用于基于所述目标时隙对应的目标检测机会策略确定下行信息的发送起始时频位置,所述目标检测机会策略用于指示终端的下行检测,所述目标检测机会策略的检测粒度小于所述COT中除所述目标时隙外的普通检测机会策略的检测粒度;
    信息发送模块,用于在所述发送起始时频位置向所述终端发送下行信息。
  21. 一种终端,其特征在于,包括第一处理器、第一存储器及第一通信总线;所述第一通信总线用于实现第一处理器和第一存储器之间的连接通信;
    所述第一处理器用于执行第一存储器中存储的一个或者多个程序,以实现如权利要求 1至10中任一项所述的下行检测方法的步骤。
  22. 一种基站,其特征在于,包括第二处理器、第二存储器及第二通信总线;所述第二通信总线用于实现第二处理器和第二存储器之间的连接通信;
    所述第二处理器用于执行第二存储器中存储的一个或者多个程序,以实现如权利要求11至18中任一项所述的下行发送方法的步骤。
  23. 一种通信系统,其特征在于,包括如权利要求21所述的终端以及如权利要求22所述的基站。
PCT/CN2019/096022 2018-07-25 2019-07-15 下行检测、发送方法、装置及通信系统、终端、基站 WO2020020006A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/262,889 US20210168780A1 (en) 2018-07-25 2019-07-15 Downlink Monitoring and Transmission Methods and Devices, Communication System, Terminal and Base Station
EP19840564.9A EP3829236A4 (en) 2018-07-25 2019-07-15 METHOD AND DEVICE FOR DOWNLINK DETECTION AND TRANSFER, COMMUNICATION SYSTEM, TERMINAL DEVICE AND BASE STATION
MX2021000991A MX2021000991A (es) 2018-07-25 2019-07-15 Dispositivos y procedimientos de transmisión y monitorización del enlace descendente, sistema de comunicación, terminal y estación base.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810825221.0A CN110769501B (zh) 2018-07-25 2018-07-25 下行检测、发送方法、装置及通信系统、终端、基站
CN201810825221.0 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020020006A1 true WO2020020006A1 (zh) 2020-01-30

Family

ID=69181268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096022 WO2020020006A1 (zh) 2018-07-25 2019-07-15 下行检测、发送方法、装置及通信系统、终端、基站

Country Status (5)

Country Link
US (1) US20210168780A1 (zh)
EP (1) EP3829236A4 (zh)
CN (1) CN110769501B (zh)
MX (1) MX2021000991A (zh)
WO (1) WO2020020006A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113038623A (zh) * 2021-03-02 2021-06-25 桂林电子科技大学 一种分布式tdma邻近节点感知与入网机制的改进方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112929975B (zh) * 2018-09-14 2023-04-07 Oppo广东移动通信有限公司 一种资源确定及配置方法、装置、终端、网络设备
EP3895497A1 (en) * 2019-02-12 2021-10-20 Apple Inc. Frame-based equipment mode of operation for new radio-unlicensed systems and networks
WO2021028080A1 (en) * 2019-08-14 2021-02-18 Huawei Technologies Co., Ltd. Apparatus and method for flexible control channel monitoring
US11483860B2 (en) * 2020-01-15 2022-10-25 Qualcomm Incorporated Wideband control signal transmission
WO2021244413A1 (en) * 2020-06-02 2021-12-09 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
CN113810994A (zh) * 2020-06-11 2021-12-17 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN111641935B (zh) * 2020-06-12 2023-06-20 河南工学院 基于低延时技术的轨道交通零件的智能制造方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612643A (zh) * 2017-08-30 2018-01-19 宇龙计算机通信科技(深圳)有限公司 信道检测方法及信道检测设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107734666B (zh) * 2016-08-11 2021-07-06 中国移动通信有限公司研究院 控制信道传输指示方法、检测方法、基站及用户设备
KR102364200B1 (ko) * 2016-08-11 2022-02-17 삼성전자 주식회사 무선 통신 시스템에서 하향링크 제어 정보를 송수신하기 위한 방법 및 장치
CN106455103B (zh) * 2016-11-30 2022-12-20 宇龙计算机通信科技(深圳)有限公司 资源配置方法和资源配置装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612643A (zh) * 2017-08-30 2018-01-19 宇龙计算机通信科技(深圳)有限公司 信道检测方法及信道检测设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA: "Frame structure for NR-U operation", 3GPP TSG RAN WG1 MEETING #93 R1-1806105, 20 May 2018 (2018-05-20), XP051441317 *
NOKIA: "On DL Signals and Channels for NR-U", 3GPP TSG RAN WG1 MEETING #93 R1-1806106, 20 May 2018 (2018-05-20), XP051441318 *
ZTE; SANECHIPS: "Considerations on DL reference signals and channels design for NR- U", 3GPP TSG RAN WG1 MEETING #96BIS R1-1903871, 7 April 2019 (2019-04-07), XP051699307 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113038623A (zh) * 2021-03-02 2021-06-25 桂林电子科技大学 一种分布式tdma邻近节点感知与入网机制的改进方法

Also Published As

Publication number Publication date
MX2021000991A (es) 2021-04-12
US20210168780A1 (en) 2021-06-03
CN110769501A (zh) 2020-02-07
CN110769501B (zh) 2023-09-29
EP3829236A4 (en) 2021-10-13
EP3829236A1 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2020020006A1 (zh) 下行检测、发送方法、装置及通信系统、终端、基站
US11968623B2 (en) Method and apparatus having a discontinuous reception configuration
EP3829245A1 (en) Information determination method, apparatus and storage medium
CN113767681B (zh) 用于下行链路控制信令的系统和方法
KR102185715B1 (ko) 비인가된 캐리어 상에서 동작하는 scell에서의 제어 시그널링의 수신을 위한 방법 및 장치
US20240089946A1 (en) Scheduling in license assisted access
CN110519853B (zh) 切换指示方法、切换方法、装置、服务节点、终端及介质
WO2017076344A1 (zh) 信道干净评估检测方法和装置
CN107371274B (zh) 传输数据的方法及设备
WO2021000858A1 (zh) 发送方法及装置、接收方法及装置、终端、存储介质
EP3729898B1 (en) Managing pdcch blind searches in new radio unlicensed band scenario
RU2746801C1 (ru) Улучшенный контроль канала управления
CN110121869B (zh) 一种切换方法、基站及终端
WO2016070704A1 (zh) 一种在非授权频段上的数据传输方法及装置
WO2019157912A1 (zh) 一种信道资源分配方法及计算机可读存储介质和终端
US11259225B2 (en) Apparatus and method for cell frequency change procedure signal timing selection
WO2019029640A1 (zh) 信息发送方法以及相关设备
WO2021031958A1 (zh) 一种指示节能信息的方法、基站以及用户终端
CN111436085B (zh) 通信方法及装置
WO2019137143A1 (zh) 调度处理方法及装置、存储介质、电子设备
WO2017015787A1 (zh) 进行pdcch监听的方法、装置以及通信系统
KR102137529B1 (ko) 식별자 관리 방법, 장치 및 시스템
KR20210063411A (ko) 리소스 정보 결정 방법 및 장치, 저장 매체, 및 사용자 기기
CN116321444A (zh) 通信方法、设备和存储介质
WO2018059356A1 (zh) 一种信息传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019840564

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019840564

Country of ref document: EP

Effective date: 20210225