WO2018059356A1 - 一种信息传输方法及装置 - Google Patents

一种信息传输方法及装置 Download PDF

Info

Publication number
WO2018059356A1
WO2018059356A1 PCT/CN2017/103221 CN2017103221W WO2018059356A1 WO 2018059356 A1 WO2018059356 A1 WO 2018059356A1 CN 2017103221 W CN2017103221 W CN 2017103221W WO 2018059356 A1 WO2018059356 A1 WO 2018059356A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
ofdm symbol
subcarrier spacing
control signaling
information transmission
Prior art date
Application number
PCT/CN2017/103221
Other languages
English (en)
French (fr)
Inventor
苟伟
毕峰
郝鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018059356A1 publication Critical patent/WO2018059356A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to, but is not limited to, the field of communications technology, and more particularly to an information transmission method and apparatus.
  • New generation mobile communication system NR (New Radio) is being researched and standardized, which is one of the priorities of the current 3GPP (Third Generation Partnership Project).
  • eMBB enhanced Mobile BroadBand
  • URLLC Ultra-Reliable and Low Latency Communications
  • mMTC Massive Machine Type Communications, massive IoT communication
  • eMBB enhanced Mobile BroadBand
  • URLLC Ultra-Reliable and Low Latency Communications
  • mMTC Massive Machine Type Communications, massive IoT communication
  • the NR system will perform system networking on a carrier frequency higher than that used in second generation mobile communication technology (2G), third generation mobile communication technology (3G), and fourth generation mobile communication technology (4G) systems.
  • the frequency bands currently recognized by the industry and recognized by international organizations are mainly 3 GHz to 6 GHz, 6 GHz to 100 GHz, and this frequency band basically belongs to the centimeter band and the millimeter band. Studies have shown that the frequency is between 6GHz and 100GHz, especially at higher frequencies.
  • the phase noise of RF devices is very serious, and the subcarrier width of the Orthogonal Frequency Division Multiple Access system is increased to resist phase noise.
  • the high-frequency propagation characteristics are significantly different from the lower frequency bands.
  • the coverage of the high frequency band is generally much smaller than the coverage of the low frequency band, and the coverage of the channel is generally extended with a small coverage. It is also relatively small, and the corresponding coherence bandwidth is larger than the coherent bandwidth in the low frequency band of 300M to 3000M.
  • the subcarrier width can still satisfy the subcarrier spacing in the coherent bandwidth after the increase of the Long Term Evolution (LTE) system. A design requirement. Therefore, the sub-carrier spacing (SCS, equivalent to the sub-carrier width) needs to be adjusted according to the carrier's level. The whole, and the feasibility of adjustment is present and reasonable.
  • the new generation wireless NR system covers the carrier frequency from 6G up to 100G, and needs to use the basic frame structure parameters such as different subcarrier spacing to adapt to the carrier frequency, that is to say, the frame structure design parameters on each carrier frequency will be different.
  • the closer the frequency is to the core frequency of LTE the closer the typical frame structure parameters such as the subcarrier spacing are to the LTE related parameters, and the higher the frequency, the larger the subcarrier spacing.
  • the subcarrier spacing supported by the NR scheme may be from 3.75KHz, 7.5KHz, 15KHz, 30KHz, 60KHz, 75KHz, 120KHz, 240KHz up to 480KHz, etc.
  • the NR system there will be a plurality of different subcarrier spacing scheduling units (or called time slots, or transmission units, including a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols. ).
  • multiple scheduling units are in one scheduling period (or called a subframe, or called a transmission period) (the scheduling period refers to a larger time range, such as multiple scheduling units (such as time slots) in one scheduling period (such as a subframe) How to perform time division multiplexing transmission within the internal multiplexing) needs to be considered.
  • the OFDM symbol or scheduling unit alignment problem at the time of multiplexing is an important problem to be solved.
  • the embodiment of the present application provides an information transmission method and device, which can clarify the slot division formed by OFDM symbols with different subcarrier spacings and the transmission mechanism of the corresponding control signaling.
  • an embodiment of the present application provides an information transmission method, including:
  • the transmitting end sends control signaling in the first time slot according to the position of the first time slot formed by the OFDM symbol corresponding to the first subcarrier interval, and sends or receives according to the OFDM symbol corresponding to the first subcarrier interval.
  • Business data ;
  • the second subcarrier spacing is greater than the first subcarrier spacing, or the duration of the first time slot is greater than the duration of the second time slot.
  • the information transmission method may further include: the transmitting end determines a location of the first time slot by: constituting an OFDM symbol corresponding to the first subcarrier spacing according to an agreed number One time slot, in the time direction, the first time slot is placed in the order of the duration of the first time slot.
  • the information transmission method may further include: the transmitting end determines a location of the second time slot by: constituting the OFDM symbol corresponding to the second subcarrier spacing according to an agreed number Two time slots, in the time direction, the second time slots are placed in the order of the duration of the second time slot.
  • a start boundary of the first time slot and the second time slot is aligned, or a start position of the second time slot is from a symbol of the first time slot
  • the start boundary is aligned, or the end position of the second time slot is aligned with the end position of one symbol of the first time slot, or the first time slot and the second time slot are within a subframe.
  • the starting boundary is aligned, or both the first time slot and the second time slot start from the boundary of the subframe.
  • the sending the control signaling in the first time slot may include:
  • the OFDM symbol at the beginning of the first time slot adopts a child used in the first time slot and the second time slot Transmitting, by the OFDM symbol corresponding to the smaller subcarrier spacing in the carrier interval, the control signaling; or
  • the OFDM symbol at the beginning of the first time slot or the second time slot transmits the control signal according to an agreed subcarrier interval. make.
  • the transmitting the control signaling according to the agreed subcarrier interval may include: sending the control signaling according to an OFDM symbol corresponding to a smallest subcarrier spacing among system supported subcarrier intervals; or And transmitting the control signaling to the OFDM symbol corresponding to the smallest subcarrier spacing of the different subcarrier intervals according to the subcarrier spacing when the time slot multiplexing of the OFDM symbols corresponding to the different subcarrier spacing is allowed.
  • control signaling may include: control signaling corresponding to the first time slot and control signaling corresponding to the second time slot;
  • the control signaling corresponding to the first time slot is used to indicate which OFDM symbols in the first time slot corresponding to the first subcarrier spacing are used in at least one of the following: sending service data, receiving service Data; or, indicating, in the first time slot, which OFDM symbols are not used to perform at least one of: transmitting service data, receiving service data according to OFDM symbols corresponding to the first subcarrier interval; or indicating the first time slot Which OFDM symbols are used to perform at least one of the following OFDM symbols corresponding to the first subcarrier spacing in the OFDM symbol corresponding to the first subcarrier spacing: transmitting service data, receiving service data;
  • the control signaling corresponding to the second time slot is used to indicate the number of symbols of the OFDM symbol corresponding to the second subcarrier spacing in the second time slot, or the OFDM symbol corresponding to the second time slot according to the second subcarrier spacing Duration or end position.
  • control signaling corresponding to the second time slot is sent by using the same subcarrier spacing as the control signaling corresponding to the first time slot; wherein the same subcarrier spacing is the second time The subcarrier spacing used by the slot.
  • the end position of the second slot is located at one OFDM symbol boundary in the OFDM symbol corresponding to the first subcarrier spacing.
  • the information transmission method may further include: when the second time slot cannot be aligned to one OFDM symbol boundary in an OFDM symbol corresponding to the first subcarrier interval according to an agreed duration or number of symbols, The transmitting end configures and indicates that the number of symbols of the second time slot is increased or decreased to be aligned to one OFDM symbol boundary in the OFDM symbol corresponding to the first subcarrier spacing.
  • the sending end indicates that the number of symbols of the second time slot is increased or decreased
  • the method includes: the sending end increases the number of symbols of the second time slot by using a bit in the control signaling. Or reduce.
  • control signaling includes at least one of the following: a subcarrier spacing information used when the service data corresponding to the control signaling is sent, and a subcarrier spacing information used when the service data corresponding to the control signaling is received. .
  • sending the control signaling in the first time slot may include: before, in the first time slot, the OFDM symbol corresponding to the first subcarrier interval is actually sent or received before the OFDM symbol of the service data. Sending the control signaling;
  • the OFDM symbol that actually sends or receives the service data includes: an OFDM symbol corresponding to the first subcarrier spacing of the part of the first time slot, and the OFDM symbol corresponding to the first subcarrier spacing of the part is not used for
  • the service data corresponding to the first subcarrier interval is sent or received, and is used to send or receive service data according to the OFDM symbol corresponding to the second subcarrier interval.
  • the control signaling may be sent according to an OFDM symbol corresponding to the second subcarrier spacing.
  • the embodiment of the present application further provides an information transmission method, including:
  • the first receiving end determines, according to the control signaling, that an OFDM symbol corresponding to a part or all of the first subcarrier spacing in the first time slot is used to send or receive service data;
  • the first receiving end sends or receives service data according to the OFDM symbol corresponding to the first subcarrier spacing.
  • the first receiving end determines, according to the control signaling, that an OFDM symbol corresponding to a part or all of the first subcarrier spacing in the first time slot is used to send or receive service data
  • the method may include: determining, by the first receiving end, the OFDM symbol used in the first time slot for performing data transmission and data reception according to the first subcarrier interval from the control signaling.
  • the information transmission method may further include: determining, by the first receiving end, a location of a first time slot formed by an OFDM symbol corresponding to the first subcarrier interval by: The OFDM symbols corresponding to the carrier spacing form a first time slot according to the predetermined number, and in the time direction, the first time slot is placed in the order of the duration of the first time slot.
  • the receiving the control signaling may include: receiving, by the OFDM symbol at the beginning of the first time slot, control signaling.
  • control signaling may include at least one of the following: a control signal The subcarrier spacing information used when transmitting the corresponding service data and the subcarrier spacing information used when the service data corresponding to the control signaling is received.
  • control signaling may be used to indicate a number of symbols of the OFDM symbol corresponding to the first subcarrier interval included in the first time slot, a duration of the first time slot, or an end position.
  • the end position of the first slot is located at one OFDM symbol boundary of the OFDM symbol corresponding to the reference subcarrier spacing.
  • the receiving the control signaling may include: receiving, before the OFDM symbol that actually transmits or receives the service data according to the OFDM symbol corresponding to the first subcarrier interval in the first time slot, receiving control Signaling
  • the OFDM symbol that actually sends or receives the service data includes: an OFDM symbol corresponding to the first subcarrier spacing of the part of the first time slot, and the OFDM symbol corresponding to the first subcarrier spacing of the part is not used for
  • the service data corresponding to the first subcarrier interval is sent or received, and is used to send or receive service data according to the OFDM symbol corresponding to the second subcarrier interval.
  • control signaling may be received according to an OFDM symbol corresponding to the second subcarrier spacing.
  • the embodiment of the present application further provides an information transmission method, including:
  • the second receiving end performs control signaling reception according to the position of the second time slot formed by the OFDM symbol corresponding to the second subcarrier interval, and starts at the beginning OFDM symbol of the second time slot, and according to the second subcarrier interval
  • the corresponding OFDM symbol is used to transmit or receive service data.
  • the information transmission method may further include: determining, by the second receiving end, a location of a second time slot formed by an OFDM symbol corresponding to the second subcarrier spacing by:
  • control signaling indicates a number of symbols included in the second time slot, a duration of the second time slot, or an end position of the second time slot.
  • the receiving, at the beginning of the second time slot, the reception of the control signaling may include: the OFDM symbol at the beginning of the second time slot, according to the agreed sub-load The wave interval performs control signaling reception.
  • control signaling may include at least one of the following: a subcarrier spacing information used when the service data corresponding to the control signaling is sent, and a subcarrier spacing used when the service data corresponding to the control signaling is received. information.
  • the end position of the second slot is located at one OFDM symbol boundary of the OFDM symbol corresponding to the reference subcarrier interval or the subcarrier spacing of the time division multiplexed slot.
  • the information transmission method may further include: when the second time slot is according to an agreed duration or number of symbols, cannot be aligned to a reference subcarrier interval or a subcarrier interval of a time division multiplexed time slot.
  • the second receiving end increases or decreases the symbol of the second time slot according to the indication of the transmitting end, to align to the sub-carrier spacing or the sub-time-multiplexed time slot sub-timer One OFDM symbol boundary of the OFDM symbol corresponding to the carrier spacing.
  • the bits in the control signaling can indicate an increase or decrease in the symbols of the second time slot.
  • the embodiment of the present application further provides an information transmission apparatus, which is applied to a transmitting end, where the information transmission apparatus includes:
  • the sending module is configured to send control signaling in the first time slot according to a position of the first time slot formed by the OFDM symbol corresponding to the first subcarrier interval;
  • the first transmission module is configured to send or receive service data according to the OFDM symbol corresponding to the first subcarrier interval
  • the first transmission module is configured to allow to use the OFDM symbol corresponding to the first subcarrier spacing of some or all of the first time slots, and send or receive the second OFDM symbol corresponding to the second subcarrier spacing. a time slot, and transmitting or receiving service data according to an OFDM symbol corresponding to the second subcarrier interval;
  • the second subcarrier spacing is greater than the first subcarrier spacing, or the duration of the first time slot is greater than the duration of the second time slot.
  • the information transmission apparatus may further include: a first processing module, The OFDM symbol corresponding to the first subcarrier spacing is configured to form a first time slot according to an agreed number, and in the time direction, the first time slot is placed in the order of the duration of the first time slot; and the second time zone is The OFDM symbols corresponding to the subcarrier spacing form a second time slot according to the predetermined number, and in the time direction, the second time slot is placed in the order of the duration of the second time slot.
  • the information transmission apparatus may further include: an indication module configured to not be aligned to one of the OFDM symbols corresponding to the first subcarrier spacing when the second time slot is aligned according to a predetermined duration or number of symbols When the OFDM symbol boundary, the number of symbols of the second slot is configured and indicated to be increased or decreased to be aligned to one OFDM symbol boundary in the OFDM symbol corresponding to the first subcarrier spacing.
  • the embodiment of the present application further provides an information transmission apparatus, which is applied to a first receiving end, where the information transmission apparatus includes:
  • the first receiving module is configured to perform control signaling reception according to a position of the first time slot formed by the OFDM symbol corresponding to the first subcarrier interval;
  • a determining module configured to determine, according to the control signaling, that an OFDM symbol corresponding to part or all of the first subcarrier spacing in the first time slot is used to send or receive service data;
  • the second transmission module is configured to send or receive service data according to the OFDM symbol corresponding to the first subcarrier interval.
  • the determining module may be configured to determine, from the control signaling, at least one of data transmission and data reception used in the first time slot according to the first subcarrier interval. OFDM symbol.
  • the information transmission apparatus may further include: a second processing module, configured to form an OFDM symbol corresponding to the first subcarrier interval, and form a first time slot according to an agreed number, in a time direction, The first time slot is placed in the order of the duration of the first time slot.
  • a second processing module configured to form an OFDM symbol corresponding to the first subcarrier interval, and form a first time slot according to an agreed number, in a time direction, The first time slot is placed in the order of the duration of the first time slot.
  • the embodiment of the present application further provides an information transmission apparatus, which is applied to a second receiving end, where the information transmission apparatus includes:
  • the second receiving module is configured to perform control signaling reception in the OFDM symbol at the beginning of the second time slot according to the position of the second time slot formed by the OFDM symbol corresponding to the second subcarrier interval;
  • a third transmission module configured to send according to the OFDM symbol corresponding to the second subcarrier spacing Send or receive business data.
  • the information transmission apparatus may further include: a third processing module, configured to form an OFDM symbol corresponding to the second subcarrier spacing, and form a second time slot according to an agreed number, in a time direction, The second time slot is placed in the order of the duration of the second time slot.
  • a third processing module configured to form an OFDM symbol corresponding to the second subcarrier spacing, and form a second time slot according to an agreed number, in a time direction, The second time slot is placed in the order of the duration of the second time slot.
  • the information transmission apparatus may further include: a fourth processing module configured to: when the second time slot is in accordance with an agreed duration or number of symbols, cannot be aligned to a reference subcarrier interval or after time division multiplexing When the subcarrier spacing of the time slot corresponds to one OFDM symbol boundary of the OFDM symbol, the symbol of the second time slot is increased or decreased according to the indication of the transmitting end to be aligned to the reference subcarrier interval or the time slot of the time division multiplexed One OFDM symbol boundary of the OFDM symbol corresponding to the subcarrier spacing.
  • the embodiment of the present application further provides a computer readable storage medium storing computer executable instructions that implement the information transmission method of the first aspect when executed by the processor.
  • the embodiment of the present application further provides a computer readable storage medium storing computer executable instructions that implement the information transmission method of the second aspect when executed by the processor.
  • the embodiment of the present application further provides a computer readable storage medium storing computer executable instructions that implement the information transmission method of the third aspect when executed by the processor.
  • the embodiment of the present application includes: sending, by the transmitting end, the location of the first time slot formed by the OFDM symbol corresponding to the first subcarrier interval, transmitting control signaling in the first time slot, and transmitting according to the OFDM symbol corresponding to the first subcarrier interval.
  • the transmitting end allows to use the OFDM symbol corresponding to the first subcarrier interval of some or all of the first time slot, and sends or receives the second time slot formed by the OFDM symbol corresponding to the second subcarrier interval, and according to the The second subcarrier spacing corresponds to the OFDM symbol to transmit or receive the service data; wherein, the second subcarrier spacing is greater than the first subcarrier spacing, or the duration of the first time slot is greater than the duration of the second time slot.
  • the scheme of the embodiment of the present application clarifies the division of time slots formed by OFDM symbols with different subcarrier spacings, and the corresponding control signaling sending mechanism, so that when multiplexing, the transmission or reception of service data is not increased by using different subcarrier intervals.
  • the complexity of the terminal allows the multiplexed time slots to have the same control signaling transmission or reception location, thereby avoiding the complexity of receiving control signaling due to more locations due to conventional multiplexing.
  • FIG. 1 is a schematic diagram of multiplexing a time slot formed by OFDM symbols of different subcarrier spacings in one subframe according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram 1 of an information transmission method according to an embodiment of the present application.
  • FIG. 3 is a second schematic diagram of an information transmission method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram 3 of an information transmission method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of time slot division and multiplexing by taking subcarrier spacings of 15 KHz and 30 KHz as an example in the embodiment of the present application;
  • 6 is a schematic diagram of multiplexing time slots formed by OFDM symbols with different subcarrier spacings in one subframe according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a multiplexing case of time slots corresponding to different subcarrier intervals in the embodiment of the present application.
  • FIG. 8 is a schematic diagram 1 of an information transmission apparatus according to an embodiment of the present application.
  • FIG. 9 is a second schematic diagram of an information transmission apparatus according to an embodiment of the present application.
  • FIG. 10 is a third schematic diagram of an information transmission apparatus according to an embodiment of the present application.
  • the OFDM symbol time alignment problem of different subcarrier spacings is currently being discussed. For example, the durations of OFDM symbols of different SCSs are different. Generally, the following relationship is considered between the subcarrier spacing and the symbol duration: the reference subcarrier spacing is assumed to be k. KHz, the corresponding OFDM symbol duration is q milliseconds (ms), then the OFDM symbol duration of (2 n ⁇ k) KHz for the subcarrier spacing is q/2 n ms, and n is an integer.
  • OFDM symbol time domain alignment with different subcarrier spacing is required as much as possible.
  • the corresponding multiplexing rules are designed so as to minimize the interference caused by the inability of the OFDM symbols to be aligned.
  • the time slot mentioned in this application may also be referred to as a transmission unit or a scheduling unit; the scheduling period may also be referred to as a subframe or a transmission period.
  • the time slot formed by the OFDM symbol corresponding to the reference subcarrier interval is referred to as a reference time slot, and the subframe formed by the OFDM symbol corresponding to the reference subcarrier interval is referred to as a reference subframe.
  • the OFDM symbols in each slot have the same subcarrier spacing (SCS), and different slots allow the use of different SCSs.
  • SCS subcarrier spacing
  • the time slot formed by the OFDM symbol corresponding to the subcarrier spacing, the time slot formed by the OFDM symbol of the subcarrier interval, the time slot corresponding to the subcarrier interval, and the time slot of the subcarrier interval have the same meaning.
  • FIG. 1 a schematic diagram of time division multiplexing between time slots formed by OFDM symbols of different subcarrier spacing is shown.
  • the following is an example of time-division multiplexing of a time slot composed of OFDM symbols with 30 kHz subcarrier spacing and OFDM symbols with 15 kHz subcarrier spacing, and is repeated for time slots formed by OFDM symbols of other different subcarrier spacings.
  • the principle is similar, for example, a time slot composed of OFDM symbols of 15KHz subcarrier spacing and OFDM symbols of 60KHz subcarrier spacing; a time slot composed of OFDM symbols of 30KHz subcarrier spacing and a 60KHz subcarrier spacing Time slot multiplexing consisting of OFDM symbols.
  • the subcarrier spacing involved in the present application may be from the following ranges: 3.75 KHz, 7.5 KHz, 15 KHz, 30 KHz, 60 KHz, 120 KHz, 240 KHz, 480 KHz, 75 KHz.
  • the slot multiplexing formed by OFDM symbols of any two different subcarrier spacings can be supported, and the principle is the same, and will not be further described.
  • the present application is also suitable for time slot time division multiplexing of different subcarrier intervals in subbands of one carrier. For example, when one carrier is divided into two sub-bands, time division multiplexing between time slots formed by OFDM symbols with different sub-carrier spacings in each sub-band may also adopt the solution of the present application.
  • An embodiment of the present application provides a new subframe, where one or more time slots are included in a subframe:
  • the time slots formed by the OFDM symbols corresponding to different subcarrier intervals are placed in the time direction in the order of their respective durations.
  • the starting point of the slot is aligned to the start or end boundary of the reference subframe.
  • Slot 1 and Slot 2 are time slots consisting of subcarrier spacing 1 and time slots consisting of subcarrier spacing 2, respectively.
  • Time slot 3 is a time slot formed by subcarrier spacing 3.
  • Subcarrier spacing 1 and subcarrier spacing 2 are both greater than subcarrier spacing 3.
  • One time slot 3 contains at least one of the following: a plurality of complete time slots 1, and a plurality of complete time slots 2.
  • Each of the plurality of time slots allows unequal number of symbols to be configured, and a cyclic prefix (CP, Cyclic Prefix) of symbols included in each of the plurality of time slots allows the configuration to be unequal in length.
  • the subcarrier spacing of the symbols in each of the plurality of time slots allows for unequal configuration.
  • the number of time slots included in each subframe allows for unequal configuration.
  • subframe provided in this embodiment of the present application may be described as:
  • the start position of the different subcarrier interval slots is aligned with the start or end boundary of the reference subframe.
  • the time slots are aligned according to the start or end boundaries of their own time slots.
  • a time slot of a symbol having a larger CP is aligned to a start or end boundary of a reference subframe or time slot.
  • the time slot obtained by scaling the reference subcarrier spacing is aligned to the start or end boundary of the reference subframe or time slot when the scaled subcarrier spacing is less than the reference subcarrier spacing.
  • a time slot with a symbol of a larger CP is aligned to the beginning or end boundary of the reference time slot.
  • subframe provided in this embodiment of the present application may be described as:
  • the time slots corresponding to each subcarrier interval are aligned to the boundary of the reference subframe.
  • the time slots corresponding to each subcarrier interval are placed according to their respective durations and positions.
  • the time slot corresponding to the previous sub-carrier interval is transmitted according to its own duration and position, and the time slot corresponding to the other sub-carrier interval can be determined at the beginning of a certain time slot according to its own duration and position. transmission.
  • FIG. 1 is a schematic diagram of a subframe formed by time slots formed by a plurality of different SCSs.
  • the subframe may include a slot formed by an OFDM symbol having an SCS of 30 kHz, a slot formed by an OFDM symbol having an SCS of 60 kHz, and a slot formed by an OFDM symbol having an SCS of 15 kHz.
  • the reference subcarrier spacing is 15 kHz, and each time slot includes 7 OFDM symbols.
  • the present application provides a manner in which time slots composed of OFDM symbols with different subcarrier spacings are multiplexed in the same subframe, and the division of time slots formed by OFDM symbols with different subcarrier spacings and corresponding control signaling are clarified.
  • the mechanism is such that, when multiplexing, the complexity of the UE transmitting or receiving service data using different subcarrier intervals is not increased, so that the multiplexed time slots have at least one of the same control signaling sending position and receiving position, thereby avoiding The complexity of receiving control signaling is increased due to more locations due to conventional multiplexing.
  • this embodiment provides an information transmission method, including:
  • the transmitting end sends control signaling in the first time slot according to the position of the first time slot formed by the OFDM symbol corresponding to the first subcarrier interval.
  • the sending end sends or receives service data according to an OFDM symbol corresponding to the first subcarrier spacing.
  • the transmitting end allows to use the OFDM symbol corresponding to the first subcarrier spacing of some or all of the first time slots, and send or receive the second time slot formed by the OFDM symbol corresponding to the second subcarrier spacing, and according to the second subcarrier. Interval corresponding OFDM symbols to transmit or receive service data;
  • the second subcarrier spacing is greater than the first subcarrier spacing, or the duration of the first time slot is greater than the duration of the second time slot.
  • the transmitting end includes a base station or a transmitting node end.
  • the base station can be time-division multiplexed according to the requirements of the transmission service, for example, the time slots of the URLLC and the eMBB.
  • the sub-carrier spacing requirements of the services are different, and the base station schedules the time slots corresponding to the two services to perform data transmission according to the transmission requirements.
  • the information transmission method of this embodiment may further include: the transmitting end determines the location of the first time slot by: constituting the OFDM symbol corresponding to the first subcarrier spacing into a first time slot according to an agreed number, in the time direction, according to The duration of the first time slot sequentially places the first time slot.
  • the information transmission method of this embodiment may further include: the transmitting end determines the location of the second time slot by: locating the OFDM symbol corresponding to the second subcarrier spacing according to an agreed number Two time slots, in the time direction, the second time slots are placed in the order of the duration of the second time slot.
  • the start boundaries of the first time slot and the second time slot are aligned, or the start position of the second time slot is aligned with the start boundary of a symbol of the first time slot, or the second time slot
  • the end position is aligned with the end position of one symbol of the first time slot, or the first time slot and the second time slot are aligned at a starting boundary within the subframe, or both the first time slot and the second time slot are slaved
  • the boundary of the frame begins.
  • the sending the control signaling in the first time slot may include:
  • the OFDM symbol at the beginning of the first slot transmits control signaling at an agreed subcarrier spacing
  • the OFDM symbol at the beginning of the first time slot adopts the smaller subcarrier in the subcarrier interval used by the first time slot and the second time slot. Transmitting the control signaling by the OFDM symbol corresponding to the interval; or
  • the OFDM symbol at the beginning of the first time slot or the second time slot transmits the control signaling according to an agreed subcarrier interval.
  • the sending the control signaling according to the agreed subcarrier interval may include:
  • the OFDM symbol corresponding to the smallest subcarrier spacing of the different subcarrier intervals sends the control signaling.
  • the control signaling may include: control signaling corresponding to the first time slot and control signaling corresponding to the second time slot;
  • the control signaling corresponding to the first time slot may be used to indicate, in the OFDM symbol corresponding to the first subcarrier interval in the first time slot, which OFDM symbols are used for at least one of: sending service data, receiving Or the service data; or, indicating, in the first time slot, which OFDM symbols are not used to perform at least one of: transmitting service data, receiving service data according to the OFDM symbol corresponding to the first subcarrier interval; or indicating the first time Among the OFDM symbols corresponding to the first subcarrier spacing in the slot, which OFDM symbols are used to perform at least one of the following: using the OFDM symbol corresponding to the second subcarrier spacing: transmitting service data, receiving service data;
  • the control signaling corresponding to the second time slot may be used to indicate the second subcarrier in the second time slot The number of symbols of the OFDM symbol corresponding to the interval, or the duration or end position of the OFDM symbol corresponding to the second subcarrier spacing.
  • the control signaling corresponding to the second time slot and the control signaling corresponding to the first time slot may be sent using the same subcarrier spacing; wherein the same subcarrier spacing is the subcarrier spacing used by the second time slot. .
  • the end position of the second time slot may be located at one OFDM symbol boundary in the OFDM symbol corresponding to the first subcarrier interval.
  • the information transmission method may further include: when the second time slot cannot be aligned to one OFDM symbol boundary in the OFDM symbol corresponding to the first subcarrier interval according to an agreed duration or number of symbols, the transmitting end can be configured and configured The number of symbols indicating the second slot is increased or decreased to be aligned to one OFDM symbol boundary in the OFDM symbol corresponding to the first subcarrier spacing.
  • the sending end can indicate that the number of symbols in the second time slot is increased or decreased, and the method includes: the sending end can increase or decrease the number of symbols in the second time slot by using a bit in the control signaling.
  • the control signaling may include at least one of the following: a subcarrier spacing information used when the service data corresponding to the control signaling is sent, and subcarrier spacing information used when the service data corresponding to the control signaling is received.
  • the sending the control signaling in the first time slot may include: sending the control signaling before the OFDM symbol of the service data is actually transmitted or received according to the OFDM symbol corresponding to the first subcarrier interval in the first time slot. ;
  • the OFDM symbol that actually sends or receives the service data includes: an OFDM symbol corresponding to a part of the first subcarrier spacing in the first time slot, where the OFDM symbol corresponding to the part of the first subcarrier interval is not used for sending or
  • the service data corresponding to the first subcarrier interval is received, and is used to send or receive service data according to the OFDM symbol corresponding to the second subcarrier interval.
  • the control signaling may be sent according to an OFDM symbol corresponding to the second subcarrier spacing.
  • the embodiment further provides an information transmission method, including:
  • the first receiving end performs control signaling reception according to a position of a first time slot formed by an OFDM symbol corresponding to the first subcarrier spacing.
  • the first receiving end determines, according to the control signaling, part or all of the first time slot.
  • An OFDM symbol corresponding to a subcarrier spacing is used to transmit or receive service data;
  • the first receiving end sends or receives service data according to the OFDM symbol corresponding to the first subcarrier spacing.
  • the first receiving end is configured to perform data reception or transmission of the first time slot formed by the OFDM symbol corresponding to the first subcarrier spacing.
  • Determining, by the first receiving end, that the OFDM symbol corresponding to the first subcarrier spacing in the first time slot is used to send or receive service data, according to the control signaling may include:
  • the first receiving end determines, from the control signaling, an OFDM symbol used in the first time slot for performing at least one of data transmission and data reception according to the first subcarrier interval.
  • the information transmission method may further include: determining, by the first receiving end, a location of a first time slot formed by an OFDM symbol corresponding to the first subcarrier interval by:
  • the OFDM symbols corresponding to the first subcarrier spacing are configured as a first time slot according to an agreed number, and in the time direction, the first time slot is placed in the order of the duration of the first time slot.
  • the receiving the control signaling may include: receiving, by the OFDM symbol at the beginning of the first time slot, control signaling.
  • control signaling may include: receiving, by the OFDM symbol at the beginning of the first time slot, control signaling.
  • the OFDM symbols at the beginning of the first slot are received according to the agreed subcarrier spacing.
  • the control signaling may include at least one of the following: a subcarrier spacing information used when the service data corresponding to the control signaling is sent, and subcarrier spacing information used when the service data corresponding to the control signaling is received.
  • the control signaling may be used to indicate the number of symbols of the OFDM symbol corresponding to the first subcarrier interval included in the first time slot, and the duration or end position of the first time slot.
  • the end position of the first time slot may be located at one OFDM symbol boundary of the OFDM symbol corresponding to the reference subcarrier interval.
  • the receiving the control signaling may include: receiving control signaling before the OFDM symbol of the service data is actually transmitted or received according to the OFDM symbol corresponding to the first subcarrier interval in the first time slot;
  • the OFDM symbol that actually sends or receives the service data includes: corresponding to an OFDM symbol corresponding to a part of the first subcarrier spacing in the first time slot, where the part of the first subcarrier interval corresponds to
  • the OFDM symbol is not used to transmit or receive the service data corresponding to the first subcarrier interval, but is used to transmit or receive the service data according to the OFDM symbol corresponding to the second subcarrier interval.
  • the control signaling may be received according to an OFDM symbol corresponding to the second subcarrier interval.
  • this embodiment provides an information transmission method, including:
  • the second receiving end performs control signaling reception according to a position of a second time slot formed by an OFDM symbol corresponding to the second subcarrier interval, and an OFDM symbol at a beginning of the second time slot.
  • S402. Send or receive service data according to an OFDM symbol corresponding to the second subcarrier spacing.
  • the second receiving end is configured to perform data reception or transmission of the second time slot formed by the OFDM symbol corresponding to the second subcarrier spacing.
  • the information transmission method may further include: determining, by the second receiving end, the location of the second time slot formed by the OFDM symbol corresponding to the second subcarrier spacing by:
  • the OFDM symbols corresponding to the second subcarrier spacing are configured to form a second time slot according to an agreed number, and in the time direction, the second time slot is placed in the order of the duration of the second time slot.
  • the control signaling may indicate the number of symbols included in the second time slot, the duration of the second time slot, or the end position of the second time slot.
  • the receiving, by the OFDM symbol at the beginning of the second time slot, the control signaling may include: receiving, at the beginning of the second time slot, the control signaling according to the agreed subcarrier interval.
  • the control signaling may include at least one of the following: a subcarrier spacing information used when the service data corresponding to the control signaling is sent, and subcarrier spacing information used when the service data corresponding to the control signaling is received.
  • the end position of the second time slot may be located at one OFDM symbol boundary of the OFDM symbol corresponding to the reference subcarrier interval or the subcarrier spacing of the time division multiplexed time slot.
  • the information transmission method may further include: when the second time slot is in accordance with an agreed duration or number of symbols, cannot be aligned to one OFDM of the OFDM symbol corresponding to the reference subcarrier interval or the subcarrier spacing of the time division multiplexed time slot.
  • the second receiving end increases or decreases the symbol of the second time slot according to the indication of the transmitting end to be aligned to the reference subcarrier interval or after The subcarrier spacing of the divided multiplexed slots corresponds to one OFDM symbol boundary of the OFDM symbol.
  • the bits in the control signaling can indicate an increase or decrease of symbols of the second time slot.
  • time slots formed by OFDM symbols with different subcarrier spacings are sequentially placed in the time direction.
  • a time slot having a large duration ie, a small sub-carrier interval
  • a time slot having a short duration ie, a large sub-carrier interval
  • control signaling which symbols in the time slot are used to actually perform at least one of: transmitting data, receiving data according to the subcarrier spacing of the time slot; or, describing which symbols in the time slot are used for other A time slot formed by OFDM symbols of subcarrier spacing.
  • Control signaling is transmitted using OFDM symbols corresponding to fixed subcarrier spacing.
  • the control signaling includes the subcarrier spacing used by the corresponding slot.
  • the embodiment of the present application provides three time slot division and time division multiplexing modes.
  • time slot multiplexing consisting of a time slot composed of OFDM symbols separated by 15 KHz subcarriers and an OFDM symbol separated by 30 KHz subcarriers is taken as an example.
  • the same method can be used for slot multiplexing of other different subcarrier spacings.
  • a time slot composed of OFDM symbols of 15 KHz subcarrier spacing and time division multiplexing of OFDM symbols separated by 60 KHz subcarriers a time slot composed of OFDM symbols separated by 15 KHz subcarriers, and OFDM separated by 30 KHz subcarriers
  • the difference of the slotted time division multiplexing is as follows: according to the mode 1 in FIG. 5, there is no difference; according to the mode 2 in FIG.
  • the difference is: the number of symbols of the time slot formed by the OFDM symbols of the 60KHz subcarrier spacing It may increase by one or two or three. Since the OFDM symbol duration of one 15KHz subcarrier spacing is equal to the OFDM symbol duration of four 60KHz subcarrier spacings, the number of slot symbols formed by the OFDM symbols of the 60KHz subcarrier spacing may be increased by one or two or three (less than 4). Positive integer). That is to say, when a time slot composed of OFDM symbols of M KHz subcarrier spacing is multiplexed after a time slot formed by OFDM symbols of N KHz subcarrier spacing, the number of symbols that may be added in the previous time slot is: less than Positive integer, Indicates rounding down. N is greater than or equal to M.
  • FIG. 5 illustrates the sequence of time slots formed by OFDM symbols corresponding to a subcarrier spacing of 15 kHz.
  • the position and subcarrier spacing are sequential positions of time slots formed by OFDM symbols corresponding to 30 KHz.
  • the time slot A corresponding to the subcarrier spacing of 15 kHz (ie, the first time slot described above) always constitutes a time slot according to the OFDM symbol corresponding to the 15 kHz subcarrier spacing, for example, 7 OFDM symbols constitute a time slot, and the position of the time slot Fixed as shown in Figure 5, for example, the time slot always starts from the sub-frame boundary.
  • the first slot starts from the subframe boundary, and the last slot ends at the subframe boundary.
  • the time slot B corresponding to the subcarrier spacing of 30 KHz (ie, the aforementioned second time slot) always constitutes a time slot according to the OFDM symbol corresponding to the 30 KHz subcarrier spacing, for example, 7 OFDM symbols constitute a time slot, and the position of the time slot Fixed as shown in Figure 5, for example, the time slot always starts from the sub-frame boundary.
  • a subframe includes multiple OFDM symbols corresponding to 30 kHz subcarrier spacing
  • the first slot starts from the subframe boundary, and the last slot ends at the subframe boundary.
  • the base station should flexibly indicate the final number of symbols of the adjusted time slots according to the adjustment, for example, by physical layer signaling (such as Physical Downlink Control Channel (PDCCH), downlink control signaling, etc.)
  • PDCCH Physical Downlink Control Channel
  • RRC radio resource control
  • the former time slot (denoted as the latter time slot) is used.
  • the end position of one slot is the start position of one OFDM symbol sequentially placed in the OFDM symbol with the subcarrier spacing M in a given scheduling period, or the start position of the latter slot is the OFDM symbol with the subcarrier spacing M
  • the start position of one OFDM symbol placed sequentially in a given scheduling period, and the duration before the start position of the latter slot are counted in the previous slot.
  • N is greater than or equal to M.
  • the SCS is a 15 kHz time slot and the SCS is a 30 kHz time slot time division multiplexing, and the time slots in which the SCS is 30 kHz and the SCS is 15 kHz are all started from the boundary of the scheduling period.
  • the duration of the OFDM symbol corresponding to the SCS of 30KHz is sequentially placed in the scheduling period, and the first 8 symbols are intercepted (here, the default slot is assumed to be 7 OFDM symbols, and this time slot is 8 symbols) as a time slot.
  • these 8 symbols are transmitted using a partial OFDM symbol with an SCS of 15 kHz, and are added to the OFDM symbol boundary (or slot boundary) where the SCS is 30 kHz for the slot ending at 30 Hz, so the addition is made. a symbol).
  • the base station uses the SDS to transmit the service data of the SCS to the remaining OFDM symbols of the 15 kHz time slot.
  • the number of OFDM symbols included in the time slot can be changed, and the base station needs to indicate the symbol included in the time slot to the UE by signaling. Number or end position.
  • FIG. 5 shows the sequential positions of the slots formed by the OFDM symbols corresponding to the subcarrier spacing of 15 kHz, and the sequence positions of the OFDM symbols corresponding to the subcarrier spacing of 30 kHz.
  • the time slot A corresponding to the subcarrier spacing of 15 kHz (ie, the first time slot described above) always constitutes a time slot according to the OFDM symbol corresponding to the 15 kHz subcarrier spacing, for example, 7 OFDM symbols constitute a time slot, and the position of the time slot Fixed as shown in Figure 5, for example, the time slot always starts from the sub-frame boundary.
  • the first slot starts from the subframe boundary, and the last slot ends at the subframe boundary.
  • the time slot B corresponding to the subcarrier spacing of 30 KHz (ie, the aforementioned second time slot) always constitutes a time slot according to the OFDM symbol corresponding to the 30 KHz subcarrier spacing, for example, 7 OFDM symbols constitute a time slot, and the position of the time slot Fixed as shown in Figure 5, for example, the time slot always starts from the sub-frame boundary.
  • a subframe includes multiple OFDM symbols corresponding to 30 kHz subcarriers
  • the first slot starts from the subframe boundary, and the last slot ends at the subframe boundary.
  • the same processing is also performed for the time slots formed by the OFDM symbols corresponding to the other subcarrier intervals.
  • the time slots formed by the OFDM symbols corresponding to different subcarrier spacings start from the subframe boundary.
  • the time slots A and 30 KHz formed by the OFDM symbols of the 15 KHz subcarrier spacing are used.
  • the time slots B formed by the OFDM symbols of the subcarrier spacing start from the subframe boundary.
  • the OFDM of the first 4 subcarriers with a slot spacing of 15 kHz is not used for at least one of the following: transmitting data of 15 kHz subcarrier spacing, receiving data of 15 kHz subcarrier spacing, and using the first 3.5 15 kHz subcarriers in slot A.
  • the time length corresponding to the OFDM symbol of the carrier interval becomes the OFDM symbol corresponding to the 30KHz subcarrier interval, and constitutes the time slot B.
  • the time slot B is used for at least one of the following: transmitting data of a 30KHz subcarrier interval, and receiving a 30KHz subcarrier spacing. data. At least one of the following is performed starting from the 5th OFDM symbol of the slot A: a service that transmits a 15 KHz subcarrier interval, and a service that receives a 15 KHz subcarrier interval. Among them, the duration of the OFDM symbol corresponding to half of the 15KHz subcarrier spacing is wasted.
  • control signaling of the slot A and the slot B are both transmitted at the start position of the slot A (or the slot B, the start positions of the slot A and the slot B are aligned).
  • control signaling is transmitted using a predetermined subcarrier spacing, or is transmitted using a subcarrier spacing having a smaller subcarrier spacing in the multiplexed slot.
  • the first receiving end receives the control signaling (ie, the control signaling of the time slot A) at the start position of the time slot A, and the control signaling indicates the first receiving end: the time slot A Which OFDM symbols are used to actually transmit or receive data corresponding to the 15KHz subcarrier spacing. For example, starting with the 5th OFDM symbol.
  • the control signaling may further indicate the subcarrier spacing of the actual transmitted or received data. That is, for the first receiving end, the location of the receiving control signaling is fixed at the beginning of each 15 kHz time slot, but the symbol position of the actual valid data transmission or reception is not necessarily from the time slot.
  • the beginning begins, and it is possible to start from one of the OFDM symbols in the middle of the time slot.
  • the control signaling may notify the first receiving end of the symbol position of the data actually transmitted or received, and may also inform the first receiving end of the subcarrier spacing used for actually transmitting or receiving data.
  • the symbol position information of the actual transmission data may not be included in the control signaling.
  • the second receiving end receives the control signaling (ie, the control signaling of the time slot B) at the start position of the time slot B, and the control signaling notifies the second receiving end from the default symbol It is sufficient to start corresponding data reception at the location, for example, to start data transmission or reception after control signaling.
  • Slot B contains the default number of OFDM symbols, for example seven. Control letter Let OFDM symbol transmission corresponding to the 30KHz subcarrier spacing be used.
  • FIG. 5 shows the sequential positions of the slots formed by the OFDM symbols corresponding to the subcarrier spacing of 15 kHz and the sequence positions of the OFDM symbols corresponding to the subcarrier spacing of 30 kHz.
  • the time slot A corresponding to the subcarrier spacing of 15 kHz (ie, the first time slot described above) always constitutes a time slot according to the OFDM symbol corresponding to the 15 kHz subcarrier spacing, for example, 7 OFDM symbols constitute a time slot, and the position of the time slot Fixed as shown in Figure 5, for example, the time slot always starts from the sub-frame boundary.
  • the first slot starts from the subframe boundary, and the last slot ends at the subframe boundary.
  • the time slot B corresponding to the subcarrier spacing of 30 KHz (ie, the aforementioned second time slot) always constitutes a time slot according to the OFDM symbol corresponding to the 30 KHz subcarrier spacing, for example, 7 OFDM symbols constitute a time slot, and the position of the time slot Fixed as shown in Figure 5, for example, the time slot always starts from the sub-frame boundary.
  • a subframe includes multiple OFDM symbols corresponding to 30 kHz subcarriers
  • the first slot starts from the subframe boundary, and the last slot ends at the subframe boundary.
  • the same processing is also performed for the time slots formed by the OFDM symbols corresponding to the other subcarrier intervals.
  • the time slots formed by the OFDM symbols corresponding to different subcarrier spacings start from the subframe boundary.
  • the constructed time slots B are all started from the sub-frame boundary.
  • the OFDM of the first 4 subcarriers with a slot spacing of 15 kHz is not used for at least one of the following: transmitting data of 15 kHz subcarrier spacing, receiving data of 15 kHz subcarrier spacing, and using the first four 15 kHz subcarriers in slot A.
  • the time length corresponding to the OFDM symbol of the carrier interval becomes the OFDM symbol corresponding to the 30KHz subcarrier, and constitutes the time slot B.
  • the time slot B is used for at least one of the following: transmitting data of a 30KHz subcarrier interval, and receiving data of a 30KHz subcarrier interval. .
  • At least one of the following is performed starting from the 5th OFDM symbol of the slot A: transmitting data of a 30 KHz subcarrier interval, and receiving data of a 30 KHz subcarrier spacing.
  • the above processing increases the number of symbols of the time slot B, and increases from 7 (7 possible default symbols) to 8 in order to align the end position of the time slot B to the time slot A. A symbol boundary to reduce interference, so the number of symbols in slot B can be dynamically adjusted.
  • control signaling of slot A and slot B is both in slot A (or slot B, slot A and slot B are aligned) Sent at the beginning of the location.
  • control signaling for slot A and slot B is transmitted using the agreed subcarrier spacing, or the subcarrier spacing with smaller subcarrier spacing in the multiplexed slot is used for transmission.
  • the first receiving end receives the control signaling (ie, the control signaling of the slot A) at the start position of the slot A, and the control signaling indicates the receiving end: which OFDM in the slot A
  • the symbol is used to actually transmit or receive data corresponding to the 15KHz subcarrier spacing. For example, starting with the 5th OFDM symbol.
  • the control signaling may further indicate the subcarrier spacing of the actual transmitted or received data. That is, for the first receiving end, the location of the receiving control signaling is fixed at the beginning of each 15 kHz time slot, but the symbol position of the actual valid data transmission or reception is not necessarily from the time slot.
  • the beginning begins, and it is possible to start from one of the OFDM symbols in the middle of the time slot.
  • the control signaling may inform the symbol position of the actual transmitted or received data, and may also inform the first receiving end of the subcarrier spacing used to actually transmit or receive the data.
  • the symbol position information of the actual transmission data may not be included in the control signaling.
  • the second receiving end receives the control signaling (ie, the control signaling of the time slot B) at the start position of the time slot B, and the control signaling may use the OFDM symbol corresponding to the 30KHz subcarrier spacing. send.
  • the control signaling informs the second receiving end that the number of symbols included in the time slot B, the time slot duration or the time slot end position.
  • the control signaling may notify the second receiving end, and the time slot B is composed of eight OFDM symbols corresponding to the 30KHz subcarrier spacing. That is, at this time, the slot B is increased by one than the default 7 OFDM symbols (such as the OFDM symbol shaded in the mode 2 of FIG. 5).
  • the mode 1 of FIG. 5 resource waste is avoided.
  • FIG. 5 shows the sequential positions of the slots formed by the OFDM symbols corresponding to the subcarrier spacing of 15 kHz and the sequence positions of the OFDM symbols corresponding to the subcarrier spacing of 30 kHz.
  • the time slot A corresponding to the subcarrier spacing of 15 kHz (ie, the first time slot described above) always forms a time slot according to the OFDM symbol corresponding to the 15 kHz subcarrier spacing, for example, when 7 OFDM symbols are formed.
  • the slot, and the position of the slot is fixed as shown in Figure 5, for example, the slot always starts from the sub-frame boundary.
  • the first slot starts from the subframe boundary, and the last slot ends at the subframe boundary.
  • the time slot B corresponding to the subcarrier spacing of 30 KHz (ie, the aforementioned second time slot) always constitutes a time slot according to the OFDM symbol corresponding to the 30 KHz subcarrier spacing, for example, 7 OFDM symbols constitute a time slot, and the position of the time slot Fixed as shown in Figure 5, for example, the time slot always starts from the sub-frame boundary.
  • a subframe includes multiple OFDM symbols corresponding to 30 kHz subcarriers
  • the first slot starts from the subframe boundary, and the last slot ends at the subframe boundary.
  • the same processing is also performed for the time slots formed by the OFDM symbols corresponding to the other subcarrier intervals.
  • the time slots formed by the OFDM symbols corresponding to different subcarrier spacings start from the subframe boundary.
  • the constructed time slots B are all started from the sub-frame boundary.
  • the duration corresponding to the OFDM of the first 3.5 subcarriers of the slot A of 15 kHz is not used for at least one of the following: transmitting data of a 15 kHz subcarrier interval, receiving data of a 15 kHz subcarrier spacing, and using the first 3.5 of the slot A.
  • the OFDM symbols of the 15KHz subcarrier spacing become the OFDM symbols corresponding to the 30KHz subcarriers, and constitute the time slot B.
  • the time slot B is used for at least one of the following: transmitting data of 30KHz subcarrier spacing, receiving data of 30KHz subcarrier spacing. .
  • At least one of the following is performed from the middle of the fourth OFDM symbol of the slot A: data of a 15 KHz subcarrier interval is transmitted, and data of a 15 KHz subcarrier interval is received.
  • the symbol of the shaded portion in the mode 3 of FIG. 5 is taken as the starting point at which the time slot A actually transmits or receives data.
  • control signaling of the slot A and the slot B are both transmitted at the start position of the slot A (or the slot B, the start positions of the slot A and the slot B are aligned).
  • control signaling for slot A and slot B is transmitted using the agreed subcarrier spacing, or the subcarrier spacing with smaller subcarrier spacing in the multiplexed slot is used for transmission.
  • the first receiving end receives the control signaling (ie, the control signaling of the time slot A) at the start position of the time slot A, and the control signaling indicates the first receiving end: the time slot A Which OFDM symbols are used to actually transmit or receive data corresponding to the 15KHz subcarrier spacing. For example, starting from the middle of the 4th OFDM symbol.
  • the first receiving end does not know which subcarrier spacing to transmit or receive data, the actual signaling may be indicated in the control signaling. Subcarrier spacing.
  • the location at which the first control signaling is received is fixed at the beginning of each 15 kHz time slot, but the symbol position of the actual valid data transmission or reception does not necessarily come from the time slot.
  • the beginning of the beginning begins with the possibility of starting from an OFDM symbol in the middle of the time slot.
  • the control signaling may inform the symbol position of the actual transmitted or received data, and may also inform the first receiving end of the subcarrier spacing used to actually transmit or receive the data.
  • the second receiving end receives the control signaling (ie, the control signaling of the time slot B) at the start position of the time slot B, and the control signaling notifies the second receiving end from the default symbol Starting at the location, corresponding data reception can be performed, for example, starting data transmission or reception after control signaling.
  • Slot B contains the default number of OFDM symbols, for example seven.
  • Control signaling may be transmitted using OFDM symbols corresponding to 30 KHz subcarrier spacing.
  • control signaling of slot A can be placed in the shaded OFDM symbol of Fig. 5 to start transmission.
  • control signaling of the slot A can be placed in the OFDM symbol in the slot A to start actually transmitting or receiving data.
  • This embodiment provides a new slot division and its corresponding usage rules.
  • the slot duration is determined as the duration of the slot corresponding to the reference subcarrier spacing. For example, if the reference subcarrier spacing is 15 kHz, the corresponding duration is 0.5 ms. The length of such a time slot will be 0.5 ms.
  • the duration of the subframe is 1 ms (corresponding to 14 OFDM symbols with subcarrier spacing of 15 kHz), and one subframe includes two 0.5 ms slots (corresponding to OFDM symbols with 7 subcarrier spacing of 15 kHz) .
  • OFDM symbols corresponding to different subcarrier intervals are allowed to be transmitted, and the transmission modes are as follows:
  • Mode A The definition of only the reference subframe and the reference slot in the system, and the transmission is performed according to the number of symbols of the OFDM symbol corresponding to the specified subcarrier spacing. For example, in one reference time slot, data is allowed to be transmitted according to OFDM symbols corresponding to non-reference subcarrier intervals, such as at 30 kHz, The OFDM symbol corresponding to the 60KHz subcarrier spacing is re-divided into part or all of the OFDM symbols of the original 15KHz reference subcarrier spacing. The OFDM symbols of the integer corresponding to the reference subcarrier spacing are always divided into OFDM symbols corresponding to other subcarrier spacings. At this time, the data is transmitted according to the newly divided number of OFDM symbols.
  • this transmission requires 7 OFDM symbols, and then the base station configures 7 OFDM symbols for data transmission.
  • the base station can configure the subcarrier spacing corresponding to the current transmission.
  • the base station can configure the actual data start position of the current transmission (eg, from which symbol to start transmission). For example, in the reference time slot, the base station may convert the OFDM symbols corresponding to the two 15 kHz subcarrier intervals into OFDM symbols corresponding to the subcarrier spacing of 60 kHz for data transmission, and the two symbols may be the former in the reference time slot. 2, or 2 in the middle, or 2 at the end. The base station needs to indicate in the control signaling which two symbols are converted into other subcarrier intervals for data transmission.
  • mode A only the definition of the reference slot is defined, and the slot corresponding to the other subcarrier spacing is not defined, and the data transmission is scheduled according to the number of OFDM symbols. That is, when the number of symbols that the base station needs to be scheduled, the base station performs an instruction as needed.
  • the number of sets of symbols scheduled by the base station can be limited, so that the signaling will be reduced. For example, the number of symbols corresponding to each seed carrier interval is limited to scheduling transmission only according to several symbol data.
  • each transmission cannot span 2 reference slots. For example, one transmission should end at the reference time slot and then another transmission in the next reference time slot. In this way, each transmission is limited to the reference time slot, which facilitates neighboring cell cooperative silence based on the reference time slot.
  • Mode B A reference subframe, a reference slot exists in the system, and a scheduling unit composed of OFDM symbols corresponding to other subcarrier intervals may also be referred to as a non-reference slot.
  • the reference slot and the non-reference slot allow overlapping, for example, the partial symbol of the reference slot is used for the non-reference slot (in this case, the transmission is performed according to the non-reference subcarrier interval), or the partial symbol of the non-reference slot is used for reference. Gap (at this time, the transmission is performed according to the reference subcarrier interval).
  • the non-reference time slot may be aligned with the beginning of the reference time slot, or the non-reference time slot may not be aligned with the reference time slot start, eg, using an intermediate partial OFDM symbol in the reference time slot, and vice versa.
  • the base station can be dynamic. Adjust the number of symbols in the slot. For example, in a reference time slot, the base station transmits data using a time slot in which 2 OFDM symbols are converted into 60KHz subcarrier intervals, then this time slot should contain 7 60KHz OFDM symbols, but since the 60KHz SCS OFDM symbol is It is scaled by the OFDM symbol of the 15KHz SCS, so the OFDM symbol duration of one 15KHz SCS is equal to the duration of the OFDM symbols of four 60KHz SCS.
  • this time slot contains seven 60KHz SCS OFDM symbols, a 60KHz SCS OFDM symbol is wasted.
  • the base station continues to transmit the OFDM symbol of the 15KHz SCS instead of continuously transmitting the 60KHz SCS OFDM symbol.
  • the base station should start transmitting from the OFDM symbol boundary corresponding to the 15KHz SCS in the reference time slot. 15KHz SCS OFDM symbol, which avoids interference caused by symbol misalignment.
  • a 60KHz SCS OFDM symbol is wasted at this time.
  • the base station can send signaling to indicate that the time slot formed by the current 60KHz SCS OFDM symbol is 8 symbols instead of 7. That is, the base station can send signaling to the UE indicating the number of symbols included in the time slot.
  • the time slot formed by the OFDM symbol corresponding to the reference subcarrier interval is referred to as a reference time slot, and the subframe formed by the OFDM symbol corresponding to the reference subcarrier interval is referred to as a reference subframe.
  • a time slot is also referred to as a scheduling unit or a transmission unit.
  • the time slots formed by the OFDM symbols corresponding to different subcarrier intervals are placed in the time direction in the order of their respective durations.
  • the starting point of the slot is aligned to the start or end boundary of the reference subframe.
  • Slot 1 and Slot 2 are time slots consisting of subcarrier spacing 1 and time slots consisting of subcarrier spacing 2, respectively.
  • Time slot 3 is a time slot formed by subcarrier spacing 3.
  • Subcarrier spacing 1 and subcarrier spacing 2 are both greater than subcarrier spacing 3.
  • One time slot 3 contains at least one of the following: a plurality of complete time slots 1, and a plurality of complete time slots 2.
  • the start position of the different subcarrier interval slots is aligned with the start or end boundary of the reference subframe.
  • the time slots are aligned according to the start or end boundaries of their own time slots.
  • a time slot of a symbol with a larger cyclic prefix (CP) is aligned to the start or end boundary of a reference subframe or time slot.
  • the time slot obtained by scaling the reference subcarrier spacing is aligned to the start or end boundary of the reference subframe or time slot when the scaled subcarrier spacing is less than the reference subcarrier spacing.
  • a time slot with a symbol of a larger CP is aligned to the beginning or end boundary of the reference time slot.
  • the time slots formed by the OFDM symbols corresponding to each subcarrier interval are aligned to the boundary of the reference subframe.
  • the time slots formed by the OFDM symbols corresponding to each subcarrier interval are placed according to their respective durations and positions.
  • the time slot formed by the OFDM symbol corresponding to the previous subcarrier interval is transmitted according to its own duration and position, and the time slot formed by the OFDM symbol corresponding to the other subcarrier interval can be in accordance with its own duration.
  • the slot in which the location is placed determines the beginning of a certain time slot for transmission.
  • the start position of the subsequent time slot may be the same as the end position of the previous time slot, or may be separated by a period of time. Alternatively, it may not be described in terms of time slots, and in particular, subsequent time slots may not be described as time slots.
  • the transmission unit formed by the OFDM symbol corresponding to the previous subcarrier interval is transmitted according to its own duration and position, and the transmission unit formed by the OFDM symbol corresponding to the other subcarrier interval can be in accordance with its own duration. And the transmission unit placed in the position determines the transmission at the beginning of a certain transmission unit.
  • the transmission unit is composed of several OFDM symbols.
  • this embodiment further provides rules for slot division and usage of multiplexing.
  • the URLLC service In the time slot formed by the symbols corresponding to the multiple different subcarrier spacings, different subcarrier spacings are generally used for different service type transmissions.
  • the URLLC service generally uses a time slot corresponding to a relatively large subcarrier spacing to transmit. And it is a sudden business.
  • the eMBB service can be transmitted using a time slot corresponding to a subcarrier spacing of 30 KHz or 15 KHz.
  • the time slots corresponding to different subcarrier intervals must be multiplexed and transmitted. The following provides a multiplexed transmission mode for dividing several time slots, and these methods are There are advantages and disadvantages in terms of complexity, scheduling flexibility, and waste of resources.
  • the base station determines the location and multiplexing mode of the time slot as: a plurality of complete time slots with the same subcarrier spacing (ie, the OFDM symbols included in the time slot are the same subcarrier.
  • the control signaling for transmitting the time slot at the start position of the time slot is allowed to be transmitted using other subcarrier intervals, but the subcarrier spacing of the OFDM symbol transmitting the time slot data in the time slot is the same.
  • time division multiplexed into a reference sub-frame according to their respective time slot grid patterns and locations in the time direction. The boundary of a certain time slot is aligned with the boundary of the subframe.
  • the base station determines the location and multiplexing mode of the time slot as: a plurality of complete time slots with different subcarrier intervals, time division multiplexing according to time slot grid patterns and locations in the time direction.
  • a plurality of complete time slots with different subcarrier intervals are aligned with the boundary of the subframe.
  • the plurality of time slots with different subcarrier spacings are not allowed to be nested or overlapped (or partially overlapped).
  • Case3's scheduling flexibility is slightly improved relative to case1 and case2, and is easy to implement. However, in case 3, there is still a potential waste of resources for the same reasons as in case1 and case2.
  • the base station determines the location and multiplexing mode of the time slot as: a plurality of complete time slots with different subcarrier intervals, time division multiplexing according to time slot grid patterns and locations in the time direction.
  • a reference subframe Within a reference subframe. The boundary of a certain time slot is aligned with the boundary of the subframe.
  • the plurality of time slots with different subcarrier spacings are allowed to be nested and multiplexed. Nesting means that one time slot uses some or all of the symbols of another time slot, and each time slot needs to be placed according to the time slot grid pattern and position of each time direction.
  • This approach has good scheduling flexibility and is ideal for bursty services such as URLLC transport.
  • this method sometimes generates the number of adjustment symbols for one of the time slots, in which case the base station needs to send signaling to indicate the number of symbols included in the time slot.
  • the base station determines the location and multiplexing mode of the time slot as: a plurality of complete time slots with different subcarrier intervals, time division multiplexing according to time slot grid patterns and locations in the time direction.
  • a plurality of complete time slots with different subcarrier intervals time division multiplexing according to time slot grid patterns and locations in the time direction.
  • the boundary of a certain time slot is aligned with the boundary of the subframe.
  • the plurality of time slots with different subcarrier spacings allow for multiplexing (including partial overlap) multiplexing.
  • Overlapping means: one The time slot uses part or all of the symbols of another time slot, and one of the time slots (generally a time slot with a shorter duration) does not need to be placed according to the time slot grid pattern and position in the time direction, and the duration can be used. A symbol of any position of a long time slot.
  • This approach has good scheduling flexibility and is ideal for bursty services such as URLLC transport.
  • this method sometimes generates the number of adjustment symbols for one of the time slots, in which case the base station needs to send signaling to indicate the number of symbols included in the time slot.
  • the embodiment of the present application further provides an information transmission apparatus, which is applied to a transmitting end, where the information transmission apparatus includes:
  • the sending module 801 is configured to send control signaling in the first time slot according to the position of the first time slot formed by the OFDM symbol corresponding to the first subcarrier interval;
  • the first transmission module 802 is configured to send or receive service data according to the OFDM symbol corresponding to the first subcarrier interval;
  • the first transmission module 802 is configured to allow the second time slot formed by the OFDM symbol corresponding to the second subcarrier interval to be transmitted or received by using the OFDM symbol corresponding to the first subcarrier spacing of some or all of the first time slots. And transmitting or receiving service data according to the OFDM symbol corresponding to the second subcarrier interval;
  • the second subcarrier spacing is greater than the first subcarrier spacing, or the duration of the first time slot is greater than the duration of the second time slot.
  • the information transmission apparatus may further include: a first processing module 803, configured to configure an OFDM symbol corresponding to the first subcarrier interval to form a first time slot according to an agreed number, and in a time direction, according to a duration of the first time slot The first time slot is placed; and the OFDM symbol corresponding to the second subcarrier interval is configured to form a second time slot according to an agreed number, and in the time direction, the second time slot is placed in the order of the duration of the second time slot.
  • a first processing module 803 configured to configure an OFDM symbol corresponding to the first subcarrier interval to form a first time slot according to an agreed number, and in a time direction, according to a duration of the first time slot The first time slot is placed; and the OFDM symbol corresponding to the second subcarrier interval is configured to form a second time slot according to an agreed number, and in the time direction, the second time slot is placed in the order of the duration of the second time slot.
  • the start boundaries of the first time slot and the second time slot are aligned, or the start position of the second time slot is aligned with the start boundary of a symbol of the first time slot, or the second time slot
  • the end position is aligned with the end position of one symbol of the first time slot, or the first time slot and the second time slot are aligned at a starting boundary within the subframe, or both the first time slot and the second time slot are slaved
  • the boundary of the frame begins.
  • the sending module 801 may be configured to send control signaling in the first time slot by: sending, by the OFDM symbol at the beginning of the first time slot, control signaling according to an agreed subcarrier interval; or When one slot is aligned with the start position of the second slot, the OFDM symbol at the beginning of the first slot corresponds to the smaller subcarrier spacing of the subcarrier spacing used by the first slot and the second slot.
  • the OFDM symbol transmits the control signaling; or, when the first slot and the start position of the second slot are aligned, the OFDM symbol at the beginning of the first slot or the second slot, according to the agreed subcarrier
  • the control signaling is sent at intervals.
  • the sending module 801 may be configured to send the control signaling according to an agreed subcarrier interval by sending the control signaling according to an OFDM symbol corresponding to a minimum subcarrier spacing in a subcarrier interval supported by the system. Or, when the time slot multiplexing of the OFDM symbols corresponding to the different subcarrier spacings is allowed, the control signaling is sent according to the subcarrier spacing for the OFDM symbols corresponding to the smallest subcarrier spacing of the different subcarrier intervals.
  • the control signaling may include: control signaling corresponding to the first time slot and control signaling corresponding to the second time slot;
  • the control signaling corresponding to the first time slot may be used to indicate, in the OFDM symbol corresponding to the first subcarrier interval in the first time slot, which OFDM symbols are used for at least one of: sending service data, receiving Or the service data; or, indicating, in the first time slot, which OFDM symbols are not used to perform at least one of: transmitting service data, receiving service data according to the OFDM symbol corresponding to the first subcarrier interval; or indicating the first time Among the OFDM symbols corresponding to the first subcarrier spacing in the slot, which OFDM symbols are used to perform at least one of the following: using the OFDM symbol corresponding to the second subcarrier spacing: transmitting service data, receiving service data;
  • the control signaling corresponding to the second time slot may be used to indicate the number of symbols of the OFDM symbol corresponding to the second subcarrier spacing in the second time slot, or the second time slot corresponds to the OFDM corresponding to the second subcarrier spacing. The duration or end of the symbol.
  • the control signaling corresponding to the second time slot and the control signaling corresponding to the first time slot may be sent using the same subcarrier spacing; wherein the same subcarrier spacing is the subcarrier spacing used by the second time slot. .
  • the end position of the second time slot may be located at one OFDM symbol boundary in the OFDM symbol corresponding to the first subcarrier interval.
  • the information transmission apparatus may further include: an indication module 804, configured to configure, when the second time slot cannot be aligned to one OFDM symbol boundary in the OFDM symbol corresponding to the first subcarrier spacing according to an agreed duration or number of symbols And indicating that the number of symbols of the second time slot is increased or decreased to be aligned to one OFDM symbol boundary in the OFDM symbol corresponding to the first subcarrier interval.
  • the indication module 804 can be configured to indicate that the number of symbols of the second time slot is increased or decreased by: indicating, by a bit in the control signaling, that the number of symbols of the second time slot is increased or decreased.
  • the control signaling may include at least one of the following: a subcarrier spacing information used when the service data corresponding to the control signaling is sent, and subcarrier spacing information used when the service data corresponding to the control signaling is received.
  • the sending module 801 may be configured to send control signaling in the first time slot by: transmitting or receiving an OFDM symbol of the service data according to the OFDM symbol corresponding to the first subcarrier interval in the first time slot. Sending the control signaling before;
  • the OFDM symbol that actually sends or receives the service data includes: an OFDM symbol corresponding to a part of the first subcarrier spacing in the first time slot, where the OFDM symbol corresponding to the part of the first subcarrier interval is not used for sending or
  • the service data corresponding to the first subcarrier interval is received, and is used to send or receive service data according to the OFDM symbol corresponding to the second subcarrier interval.
  • the control signaling may be sent according to an OFDM symbol corresponding to the second subcarrier spacing.
  • the embodiment of the present application further provides an information transmission apparatus, which is applied to a first receiving end, where the information transmission apparatus includes:
  • the first receiving module 901 is configured to perform control signaling reception according to a position of the first time slot formed by the OFDM symbol corresponding to the first subcarrier interval;
  • the determining module 902 is configured to determine, according to the control signaling, that an OFDM symbol corresponding to a part or all of the first subcarrier spacing in the first time slot is used to send or receive service data;
  • the second transmission module 903 is configured to send or receive service data according to the OFDM symbol corresponding to the first subcarrier interval.
  • the first receiving end is configured to perform data reception or transmission of the first time slot formed by the OFDM symbol corresponding to the first subcarrier spacing.
  • the determining module 902 may be configured to determine, from the control signaling, an OFDM symbol used in the first time slot for performing data transmission and data reception according to the first subcarrier interval.
  • the information transmission apparatus may further include: a second processing module 904, configured to configure an OFDM symbol corresponding to the first subcarrier spacing to form a first time slot according to an agreed number, and in a time direction, according to a duration of the first time slot Place the first time slot.
  • a second processing module 904 configured to configure an OFDM symbol corresponding to the first subcarrier spacing to form a first time slot according to an agreed number, and in a time direction, according to a duration of the first time slot Place the first time slot.
  • the first receiving module 901 may be configured to perform control signaling reception by: receiving, by the OFDM symbol at the beginning of the first time slot, control signaling.
  • control signaling e.g., the OFDM symbols at the beginning of the first slot are received according to the agreed subcarrier spacing.
  • the control signaling may include at least one of the following: a subcarrier spacing information used when the service data corresponding to the control signaling is sent, and subcarrier spacing information used when the service data corresponding to the control signaling is received.
  • the control signaling may be used to indicate the number of symbols of the OFDM symbol corresponding to the first subcarrier interval included in the first time slot, and the duration or end position of the first time slot.
  • the end position of the first time slot may be located at one OFDM symbol boundary of the OFDM symbol corresponding to the reference subcarrier interval.
  • the first receiving module 901 may be configured to perform control signaling reception by: before actually transmitting or receiving the OFDM symbol of the service data according to the OFDM symbol corresponding to the first subcarrier interval in the first time slot, Receiving control signaling;
  • the OFDM symbol that actually sends or receives the service data includes: an OFDM symbol corresponding to a part of the first subcarrier spacing in the first time slot, where the OFDM symbol corresponding to the part of the first subcarrier interval is not used for sending or
  • the service data corresponding to the first subcarrier interval is received, and is used to send or receive service data according to the OFDM symbol corresponding to the second subcarrier interval.
  • the control signaling may be received according to an OFDM symbol corresponding to the second subcarrier interval.
  • the embodiment of the present application further provides an information transmission apparatus, which is applied to a second receiving end, where the information transmission apparatus includes:
  • the second receiving module 1001 is configured to perform control signaling connection at the beginning of the second time slot according to the position of the second time slot formed by the OFDM symbol corresponding to the second subcarrier interval.
  • the third transmission module 1002 is configured to send or receive service data according to the OFDM symbol corresponding to the second subcarrier interval.
  • the second receiving end is configured to perform data reception or transmission of the second time slot formed by the OFDM symbol corresponding to the second subcarrier spacing.
  • the information transmission apparatus may further include: a third processing module 1003, configured to configure an OFDM symbol corresponding to the second subcarrier spacing to form a second time slot according to an agreed number, and in a time direction, according to a duration of the second time slot Place the second time slot.
  • a third processing module 1003 configured to configure an OFDM symbol corresponding to the second subcarrier spacing to form a second time slot according to an agreed number, and in a time direction, according to a duration of the second time slot Place the second time slot.
  • the control signaling may indicate the number of symbols included in the second time slot, the duration of the second time slot, or the end position of the second time slot.
  • the second receiving module 1001 may be configured to perform control signaling reception at an OFDM symbol at a beginning of a second time slot in the following manner: the OFDM symbol at the beginning of the second time slot is performed according to an agreed subcarrier interval. Control signalling is received.
  • the control signaling may include at least one of the following: a subcarrier spacing information used when the service data corresponding to the control signaling is sent, and subcarrier spacing information used when the service data corresponding to the control signaling is received.
  • the end position of the second time slot may be located at one OFDM symbol boundary of the OFDM symbol corresponding to the reference subcarrier interval or the subcarrier spacing of the time division multiplexed time slot.
  • the information transmission apparatus may further include: a fourth processing module configured to: when the second time slot is in accordance with an agreed duration or number of symbols, cannot be aligned to a reference subcarrier interval or a subcarrier interval of a time division multiplexed time slot
  • a fourth processing module configured to: when the second time slot is in accordance with an agreed duration or number of symbols, cannot be aligned to a reference subcarrier interval or a subcarrier interval of a time division multiplexed time slot.
  • the symbol of the second time slot is increased or decreased according to the indication of the transmitting end to align the OFDM symbol corresponding to the subcarrier spacing of the reference subcarrier interval or the time division multiplexed time slot.
  • One OFDM symbol boundary wherein, the bits in the control signaling can indicate an increase or decrease of symbols of the second time slot.
  • An embodiment of the present application further provides an electronic device, including a processor and storing the processor A memory of executable instructions that, when executed by the processor, performs the following operations:
  • the second subcarrier spacing is greater than the first subcarrier spacing, or the duration of the first time slot is greater than the duration of the second time slot.
  • the embodiment of the present application further provides an electronic device, including a processor and a memory storing the processor executable instructions, when the instructions are executed by the processor, performing the following operations:
  • the OFDM symbol is used to transmit or receive service data; the service data is transmitted or received according to the OFDM symbol corresponding to the first subcarrier interval.
  • the embodiment of the present application further provides an electronic device, including a processor and a memory storing the processor executable instructions, when the instructions are executed by the processor, performing the following operations:
  • the embodiment of the present application further provides a computer readable storage medium storing computer executable instructions, which are implemented by a processor to implement an information transmission method applied to a transmitting end.
  • the embodiment of the present application further provides a computer readable storage medium storing computer executable instructions, which are implemented by a processor to implement an information transmission method applied to a first receiving end.
  • the embodiment of the present application further provides a computer readable storage medium storing computer executable instructions, which are implemented by a processor to implement information transmission applied to a second receiving end. Input method.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the embodiment of the present application provides an information transmission method and device, which clarifies the division of time slots formed by OFDM symbols with different subcarrier spacings, and the corresponding control signaling sending mechanism, thereby avoiding more due to conventional multiplexing.
  • the location increases the complexity of receiving control signaling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信息传输方法,包括:发送端按照第一子载波间隔对应的OFDM符号构成的第一时隙的位置,在第一时隙发送控制信令,并按照第一子载波间隔对应的OFDM符号来发送或接收业务数据;发送端允许使用第一时隙中部分或全部的第一子载波间隔对应的OFDM符号,发送或接收第二子载波间隔对应的OFDM符号构成的第二时隙,并按照第二子载波间隔对应的OFDM符号来发送或接收业务数据;其中,第二子载波间隔大于第一子载波间隔,或者,第一时隙的时长大于第二时隙的时长。

Description

一种信息传输方法及装置 技术领域
本申请涉及但不限于通信领域技术,尤指一种信息传输方法及装置。
背景技术
新一代移动通信系统新空口(NR,New Radio)正在被研究,进行标准化工作,这也是目前第三代合作伙伴计划(3GPP,Third Generation Partnership Project)的工作重点之一。
目前能够确定的NR系统中,将来存在三种典型业务类型,包括:eMBB(enhanced Mobile BroadBand,增强移动宽带)、URLLC(Ultra-Reliable and Low Latency Communications,超可靠与低时延通信)和mMTC(massive Machine Type Communications,海量物联网通信)。这些业务对于时延、覆盖和可靠性等要求不尽相同。例如,对于eMBB,主要强调高的峰值传输速率,对时延的要求不高(没有低时延需求),可靠性中等要求;对于URLLC,强调的是低时延、高可靠性传输,对于时延要求非常苛刻;对于mMTC,则强调大量中终端,连接密度大和要求更大的传输覆盖,对时延几乎没有要求。
NR系统将会在比第二代移动通信技术(2G)、第三代移动通信技术(3G)、第四代移动通信技术(4G)系统所用频率更高的载波频率上进行系统组网。目前得到业界广泛共识和国际组织认定的频段主要是3GHz至6GHz、6GHz至100GHz,这一频段基本上属于厘米波段和毫米波段。研究表明,频率在6GHz至100GHz之间,特别是较高频率,射频器件的相位噪声非常严重,而增加正交频分多址系统的子载波宽度可以抵抗相位噪声。高频传播特性与较低频段有明显区别,由于高频段的传播损耗明显大于低频段,高频段的覆盖范围一般远小于低频段的覆盖范围,较小的覆盖范围一般情况下信道的延时扩展也比较小,相应的相干带宽比在300M至3000M的低频段的相干带宽要大,子载波宽度相对于长期演进(LTE,Long Term Evolution)系统增加后仍然可以满足子载波间隔在相干带宽内这一设计要求。因此,子载波间隔(sub-carrier spacing,SCS,等同于子载波宽度)需要根据载波的高低进行调 整,而且调整的可行性是存在且合理的。
新一代无线NR系统覆盖了从6G一直到100G的载波频率,需要使用不同的子载波间距等基础帧结构参数来适应载波频率,也就是说每个载波频率上的帧结构设计参数会有所不同,举例来说,频率越接近LTE的核心频率,其子载波间隔等典型帧结构参数越接近LTE相关的参数,频率越高,其子载波间隔就越大。目前,NR计划支持的子载波间隔从3.75KHz、7.5KHz、15KHz、30KHz、60KHz、75KHz、120KHz、240KHz一直到480KHz等都是可能存在的。
因此,在NR系统中将存在多种不同的子载波间隔构成的调度单元(或称为时隙,或称为传输单元,包括多个正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号)。那么多个调度单元在一个调度周期(或称为子帧,或称为传输周期)(调度周期指更大的时间范围,例如多个调度单元(如时隙)在一个调度周期(如子帧)内复用)内如何进行时分复用传输,是需要考虑的。复用时的OFDM符号或调度单元对齐问题是需要解决的一种重要问题。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请实施例提供了一种信息传输方法及装置,能够明确不同子载波间隔的OFDM符号构成的时隙划分以及对应控制信令的发送机制。
第一方面,本申请实施例提供了一种信息传输方法,包括:
发送端按照第一子载波间隔对应的OFDM符号构成的第一时隙的位置,在所述第一时隙发送控制信令,并按照所述第一子载波间隔对应的OFDM符号来发送或接收业务数据;
所述发送端允许使用所述第一时隙中部分或全部的第一子载波间隔对应的OFDM符号,发送或接收第二子载波间隔对应的OFDM符号构成的第二时隙,并按照所述第二子载波间隔对应的OFDM符号来发送或接收业务数据;
其中,所述第二子载波间隔大于所述第一子载波间隔,或者,所述第一时隙的时长大于所述第二时隙的时长。
在示例性实施方式中,所述信息传输方法还可以包括:所述发送端通过以下方式确定第一时隙的位置:将所述第一子载波间隔对应的OFDM符号,按照约定数量构成一个第一时隙,在时间方向,按照第一时隙的时长顺序放置第一时隙。
在示例性实施方式中,所述信息传输方法还可以包括:所述发送端通过以下方式确定第二时隙的位置:将所述第二子载波间隔对应的OFDM符号,按照约定数量构成一个第二时隙,在时间方向,按照第二时隙的时长顺序放置第二时隙。
在示例性实施方式中,所述第一时隙和所述第二时隙的起始边界对齐,或者,所述第二时隙的起始位置与所述第一时隙的一个符号的起始边界对齐,或者,所述第二时隙的结束位置与所述第一时隙的一个符号的结束位置对齐,或者,所述第一时隙和所述第二时隙在子帧内的起始边界对齐,或者,所述第一时隙和所述第二时隙均从子帧的边界开始。
在示例性实施方式中,所述在所述第一时隙发送控制信令,可以包括:
在所述第一时隙的开始处的OFDM符号,按照约定的子载波间隔发送所述控制信令;或者,
当所述第一时隙和所述第二时隙的起始位置对齐时,在所述第一时隙的开始处的OFDM符号,采用所述第一时隙和第二时隙所用的子载波间隔中较小的子载波间隔对应的OFDM符号发送所述控制信令;或者,
当所述第一时隙和所述第二时隙的起始位置对齐时,在所述第一时隙或第二时隙开始处的OFDM符号,按照约定的子载波间隔发送所述控制信令。
在示例性实施方式中,所述按照约定的子载波间隔发送所述控制信令,可以包括:按照系统支持的子载波间隔中最小的子载波间隔对应的OFDM符号发送所述控制信令;或者,在允许不同子载波间隔对应的OFDM符号构成的时隙时分复用时,按照子载波间隔为所述不同子载波间隔中最小的子载波间隔对应的OFDM符号发送所述控制信令。
在示例性实施方式中,所述控制信令可以包括:对应于第一时隙的控制信令以及对应于第二时隙的控制信令;
所述对应于第一时隙的控制信令,用于指示第一时隙中按照第一子载波间隔对应的OFDM符号中,哪些OFDM符号被用于以下至少之一:发送业务数据、接收业务数据;或者,指示第一时隙中,哪些OFDM符号不被用于按照第一子载波间隔对应的OFDM符号来执行以下至少之一:发送业务数据、接收业务数据;或者,指示第一时隙中按照第一子载波间隔对应的OFDM符号中,哪些OFDM符号被用于采用第二子载波间隔对应的OFDM符号来执行以下至少之一:发送业务数据、接收业务数据;
所述对应于第二时隙的控制信令,用于指示第二时隙中第二子载波间隔对应的OFDM符号的符号数,或者,第二时隙按照第二子载波间隔对应的OFDM符号的时长或结束位置。
在示例性实施方式中,所述第二时隙对应的控制信令与第一时隙对应的控制信令使用相同的子载波间隔进行发送;其中,所述相同的子载波间隔为第二时隙所用的子载波间隔。
在示例性实施方式中,所述第二时隙的结束位置位于第一子载波间隔对应的OFDM符号中的一个OFDM符号边界。
在示例性实施方式中,所述信息传输方法还可以包括:当所述第二时隙按照约定的时长或符号数不能对齐到第一子载波间隔对应的OFDM符号中的一个OFDM符号边界时,所述发送端配置并指示第二时隙的符号数进行增加或减少,以对齐到第一子载波间隔对应的OFDM符号中的一个OFDM符号边界。
在示例性实施方式中,所述发送端指示第二时隙的符号数进行增加或减少,可以包括:所述发送端通过控制信令中的比特指示所述第二时隙的符号数进行增加或减少。
在示例性实施方式中,所述控制信令,包括以下至少之一:控制信令对应的业务数据发送时使用的子载波间隔信息、控制信令对应的业务数据接收时使用的子载波间隔信息。
在示例性实施方式中,在所述第一时隙发送控制信令,可以包括:在所述第一时隙中按照第一子载波间隔对应的OFDM符号实际发送或接收业务数据的OFDM符号之前,发送所述控制信令;
其中,所述实际发送或接收业务数据的OFDM符号包括:除了所述第一时隙中部分的第一子载波间隔对应的OFDM符号,该部分的第一子载波间隔对应的OFDM符号没有用于发送或接收第一子载波间隔对应的业务数据,而被用于按照第二子载波间隔对应的OFDM符号来发送或接收业务数据。
其中,所述控制信令,可以按照第二子载波间隔对应的OFDM符号进行发送。
第二方面,本申请实施例还提供一种信息传输方法,包括:
第一接收端按照第一子载波间隔对应的OFDM符号构成的第一时隙的位置,进行控制信令的接收;
所述第一接收端根据所述控制信令,确定所述第一时隙中部分或全部的第一子载波间隔对应的OFDM符号被用于发送或接收业务数据;
所述第一接收端按照所述第一子载波间隔对应的OFDM符号来发送或接收业务数据。
在示例性实施方式中,所述第一接收端根据所述控制信令,确定所述第一时隙中部分或全部的第一子载波间隔对应的OFDM符号被用于发送或接收业务数据,可以包括:所述第一接收端从所述控制信令中,确定所述第一时隙中被用于按照第一子载波间隔进行数据发送和数据接收中至少一项的OFDM符号。
在示例性实施方式中,所述信息传输方法还可以包括:所述第一接收端通过以下方式确定第一子载波间隔对应的OFDM符号构成的第一时隙的位置:将所述第一子载波间隔对应的OFDM符号,按照约定数量构成一个第一时隙,在时间方向,按照第一时隙的时长顺序放置第一时隙。
在示例性实施方式中,所述进行控制信令的接收,可以包括:在所述第一时隙的开始处的OFDM符号进行控制信令的接收。
在示例性实施方式中,所述控制信令,可以包括以下至少之一:控制信 令对应的业务数据发送时使用的子载波间隔信息、控制信令对应的业务数据接收时使用的子载波间隔信息。
在示例性实施方式中,所述控制信令,可以用于指示所述第一时隙包含的第一子载波间隔对应的OFDM符号的符号数、第一时隙的时长或结束位置。
在示例性实施方式中,所述第一时隙的结束位置位于参考子载波间隔对应的OFDM符号的一个OFDM符号边界。
在示例性实施方式中,所述进行控制信令的接收,可以包括:在所述第一时隙中按照第一子载波间隔对应的OFDM符号实际发送或接收业务数据的OFDM符号之前,接收控制信令;
其中,所述实际发送或接收业务数据的OFDM符号包括:除了所述第一时隙中部分的第一子载波间隔对应的OFDM符号,该部分的第一子载波间隔对应的OFDM符号没有用于发送或接收第一子载波间隔对应的业务数据,而被用于按照第二子载波间隔对应的OFDM符号来发送或接收业务数据。
在示例性实施方式中,所述控制信令,可以按照第二子载波间隔对应的OFDM符号进行接收。
第三方面,本申请实施例还提供一种信息传输方法,包括:
第二接收端按照第二子载波间隔对应的OFDM符号构成的第二时隙的位置,在第二时隙的开始的OFDM符号,进行控制信令的接收,并按照所述第二子载波间隔对应的OFDM符号来发送或接收业务数据。
在示例性实施方式中,所述信息传输方法还可以包括:所述第二接收端通过以下方式确定第二子载波间隔对应的OFDM符号构成的第二时隙的位置:
将所述第二子载波间隔对应的OFDM符号,按照约定数量构成一个第二时隙,在时间方向,按照第二时隙的时长顺序放置第二时隙。
在示例性实施方式中,所述控制信令,指示第二时隙包含的符号数量、第二时隙的时长或第二时隙的结束位置。
在示例性实施方式中,所述在第二时隙的开始的OFDM符号,进行控制信令的接收,可以包括:在第二时隙的开始的OFDM符号,按照约定的子载 波间隔进行控制信令的接收。
在示例性实施方式中,所述控制信令,可以包括以下至少之一:控制信令对应的业务数据发送时使用的子载波间隔信息、控制信令对应的业务数据接收时使用的子载波间隔信息。
在示例性实施方式中,所述第二时隙的结束位置位于参考子载波间隔或者之后时分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界。
在示例性实施方式中,所述信息传输方法还可以包括:当所述第二时隙按照约定的时长或符号数,不能对齐到参考子载波间隔或者之后时分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界时,所述第二接收端根据发送端的指示对第二时隙的符号进行增加或减少,以对齐到参考子载波间隔或者之后时分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界。
在示例性实施方式中,所述控制信令中的比特能够指示对第二时隙的符号进行增加或减少。
第四方面,本申请实施例还提供一种信息传输装置,应用于发送端,所述信息传输装置包括:
发送模块,配置为按照第一子载波间隔对应的OFDM符号构成的第一时隙的位置,在所述第一时隙发送控制信令;
第一传输模块,配置为按照所述第一子载波间隔对应的OFDM符号来发送或接收业务数据;
其中,所述第一传输模块,配置为允许使用所述第一时隙中部分或全部的第一子载波间隔对应的OFDM符号,发送或接收第二子载波间隔对应的OFDM符号构成的第二时隙,并按照所述第二子载波间隔对应的OFDM符号来发送或接收业务数据;
其中,所述第二子载波间隔大于所述第一子载波间隔,或者,所述第一时隙的时长大于所述第二时隙的时长。
在示例性实施方式中,所述信息传输装置还可以包括:第一处理模块, 配置为将所述第一子载波间隔对应的OFDM符号,按照约定数量构成一个第一时隙,在时间方向,按照第一时隙的时长顺序放置第一时隙;以及,将所述第二子载波间隔对应的OFDM符号,按照约定数量构成一个第二时隙,在时间方向,按照第二时隙的时长顺序放置第二时隙。
在示例性实施方式中,所述信息传输装置还可以包括:指示模块,配置为当所述第二时隙按照约定的时长或符号数不能对齐到第一子载波间隔对应的OFDM符号中的一个OFDM符号边界时,配置并指示第二时隙的符号数进行增加或减少,以对齐到第一子载波间隔对应的OFDM符号中的一个OFDM符号边界。
第五方面,本申请实施例还提供一种信息传输装置,应用于第一接收端,所述信息传输装置包括:
第一接收模块,配置为按照第一子载波间隔对应的OFDM符号构成的第一时隙的位置,进行控制信令的接收;
确定模块,配置为根据所述控制信令,确定所述第一时隙中部分或全部的第一子载波间隔对应的OFDM符号被用于发送或接收业务数据;
第二传输模块,配置为按照所述第一子载波间隔对应的OFDM符号来发送或接收业务数据。
在示例性实施方式中,所述确定模块,可以配置为从所述控制信令中,确定所述第一时隙中被用于按照第一子载波间隔进行数据发送和数据接收中至少一项的OFDM符号。
在示例性实施方式中,所述信息传输装置还可以包括:第二处理模块,配置为将所述第一子载波间隔对应的OFDM符号,按照约定数量构成一个第一时隙,在时间方向,按照第一时隙的时长顺序放置第一时隙。
第六方面,本申请实施例还提供一种信息传输装置,应用于第二接收端,所述信息传输装置包括:
第二接收模块,配置为按照第二子载波间隔对应的OFDM符号构成的第二时隙的位置,在第二时隙的开始的OFDM符号,进行控制信令的接收;
第三传输模块,配置为按照所述第二子载波间隔对应的OFDM符号来发 送或接收业务数据。
在示例性实施方式中,所述信息传输装置还可以包括:第三处理模块,配置为将所述第二子载波间隔对应的OFDM符号,按照约定数量构成一个第二时隙,在时间方向,按照第二时隙的时长顺序放置第二时隙。
在示例性实施方式中,所述信息传输装置还可以包括:第四处理模块,配置为当所述第二时隙按照约定的时长或符号数,不能对齐到参考子载波间隔或者之后时分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界时,根据发送端的指示对第二时隙的符号进行增加或减少,以对齐到参考子载波间隔或者之后时分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界。
此外,本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现第一方面的信息传输方法。
本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现第二方面的信息传输方法。
本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现第三方面的信息传输方法。
本申请实施例包括:发送端按照第一子载波间隔对应的OFDM符号构成的第一时隙的位置,在第一时隙发送控制信令,并按照第一子载波间隔对应的OFDM符号来发送或接收业务数据;发送端允许使用第一时隙中部分或全部的第一子载波间隔对应的OFDM符号,发送或接收第二子载波间隔对应的OFDM符号构成的第二时隙,并按照第二子载波间隔对应的OFDM符号来发送或接收业务数据;其中,第二子载波间隔大于第一子载波间隔,或者,第一时隙的时长大于第二时隙的时长。本申请实施例的方案明确了不同子载波间隔的OFDM符号构成的时隙的划分,及其对应的控制信令发送机制,使得复用时,不增加使用不同子载波间隔进行发送或接收业务数据的终端的复杂性,使得复用的时隙具有相同的控制信令发送或接收位置,从而避免了由于常规复用带来的更多的位置而增加接收控制信令的复杂度。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说 明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图概述
图1为本申请实施例中不同子载波间隔的OFDM符号构成的时隙在一个子帧内复用的示意图;
图2为本申请实施例提供的信息传输方法的示意图一;
图3为本申请实施例提供的信息传输方法的示意图二;
图4为本申请实施例提供的信息传输方法的示意图三;
图5为本申请实施例中以15KHz和30KHz的子载波间隔为例进行时隙划分、复用的示意图;
图6为本申请实施例中不同子载波间隔的OFDM符号构成的时隙在一个子帧内复用的示意图;
图7为本申请实施例中不同子载波间隔对应的时隙的复用事例(case)的示意图;
图8为本申请实施例提供的信息传输装置的示意图一;
图9为本申请实施例提供的信息传输装置的示意图二;
图10为本申请实施例提供的信息传输装置的示意图三。
详述
下文中将结合附图对本申请实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤。
目前正在讨论不同子载波间隔的OFDM符号时间对齐问题,例如不同的SCS的OFDM符号的时长是不同的,一般地,认为子载波间隔和符号时长之间满足下面关系:假设参考子载波间隔为k KHz,对应的OFDM符号时长为q毫秒(ms),那么对于子载波间隔为(2n×k)KHz的OFDM符号时长为q/2n ms,n为整数。
在调度时,为了避免OFDM符号之间边界不能对齐带来的干扰问题,则尽可能地要求不同子载波间隔的OFDM符号时域对齐。
下面针对多个不同的SCS对应的调度单元进行复用时,设计对应的复用规则,使得尽可能减少由于OFDM符号不能对齐带来的干扰。
需要说明的是,本申请提及的时隙还可以称为传输单元或者调度单元;调度周期还可以称为子帧或者传输周期。参考子载波间隔对应的OFDM符号构成的时隙称为参考时隙,参考子载波间隔对应的OFDM符号构成的子帧称为参考子帧。每个时隙内的OFDM符号有相同的子载波间隔(SCS),不同时隙允许使用不同的SCS。
另外,在本申请中,子载波间隔对应的OFDM符号构成的时隙、子载波间隔的OFDM符号构成的时隙、子载波间隔对应的时隙、子载波间隔的时隙表述相同的意思。
参考图1,给出了一种不同子载波间隔的OFDM符号构成的时隙之间进行时分复用的示意图。下文以30KHz子载波间隔的OFDM符号构成的时隙和15KHz子载波间隔的OFDM符号构成的时隙进行时分复用为例进行说明,对于其他不同子载波间隔的OFDM符号构成的时隙之间复用原理是类似的,例如15KHz子载波间隔的OFDM符号构成的时隙和60KHz子载波间隔的OFDM符号构成的时隙复用;30KHz子载波间隔的OFDM符号构成的时隙和60KHz子载波间隔的OFDM符号构成的时隙复用。本申请涉及的子载波间隔可以来自下面的范围:3.75KHz、7.5KHz、15KHz、30KHz、60KHz、120KHz、240KHz、480KHz、75KHz。任意两个不同子载波间隔的OFDM符号构成的时隙复用都可以支持,原理是相同的,不再一一赘述。需要说明的是,本申请也适合一个载波的子带内进行不同子载波间隔的时隙时分复用。 例如一个载波分为2个子带,每一个子带内不同子载波间隔的OFDM符号构成的时隙之间时分复用时也可以采用本申请的方案。
本申请实施例提供一种新的子帧,子帧内包括一个或多个时隙:
不同子载波间隔对应的OFDM符号构成的时隙,在时间方向按照各自的时长顺序放置。时隙的起始点对齐到参考子帧的开始或结束边界。
时隙1和时隙2分别为由子载波间隔1构成的时隙和由子载波间隔2构成的时隙。时隙3为由子载波间隔3构成的时隙。子载波间隔1和子载波间隔2均大于子载波间隔3。
一个时隙3中包含以下至少之一:多个完整的时隙1、多个完整的时隙2。
所述多个时隙中每个时隙允许配置不等的符号数,所述多个时隙中每个时隙内包含的符号的循环前缀(CP,Cyclic Prefix)允许配置不等长,所述多个时隙中每个时隙内的符号的子载波间隔允许配置不等。每个子帧中包含的时隙数量允许配置不等。
或者,本申请实施例提供的子帧可以描述为:
不同子载波间隔时隙的起始位置与参考子帧开始或结束边界对齐。
通过缩放参考子载波间隔得到的时隙,当缩放后的子载波间隔大于参考子载波间隔时,所述时隙按照自己时隙的开始或结束边界进行对齐。具有较大CP的符号的时隙对齐到参考子帧或时隙的开始或结束边界。
通过缩放参考子载波间隔得到的时隙,当缩放后的子载波间隔小于参考子载波间隔时,所述时隙对齐到参考子帧或时隙的开始或结束边界。具有较大CP的符号的时隙对齐到参考时隙的开始或结束边界。
或者,本申请实施例提供的子帧可以描述为:
每个子载波间隔对应的时隙,均对齐到参考子帧的边界。
每个子载波间隔对应的时隙按照各自的时长和位置进行放置。
当时分复用时,只有前一个子载波间隔对应的时隙按照自己的时长和位置传输结束后,另一个子载波间隔对应的时隙才能按照自己的时长和位置确定在某一时隙开始处进行传输。
例如,图1所示为多个不同SCS构成的时隙构成的子帧示意图。如图1中,子帧可以包括SCS为30KHz的OFDM符号构成的时隙、SCS为60KHz的OFDM符号构成的时隙以及SCS为15KHz的OFDM符号构成的时隙。其中,参考子载波间隔为15KHz,每个时隙包括7个OFDM符号。
本申请提供了由不同子载波间隔的OFDM符号构成的时隙在同一个子帧内复用的方式,明确了不同子载波间隔的OFDM符号构成的时隙的划分,及其对应的控制信令发送机制,使得复用时,不增加使用不同子载波间隔进行发送或接收业务数据的UE的复杂性,使得复用的时隙具有相同的控制信令发送位置和接收位置中至少一项,从而避免了由于常规复用带来的更多的位置而增加接收控制信令的复杂度。
如图2所示,本实施例提供一种信息传输方法,包括:
S201、发送端按照第一子载波间隔对应的OFDM符号构成的第一时隙的位置,在第一时隙发送控制信令;
S202、发送端按照第一子载波间隔对应的OFDM符号来发送或接收业务数据;
S203、发送端允许使用第一时隙中部分或全部的第一子载波间隔对应的OFDM符号,发送或接收第二子载波间隔对应的OFDM符号构成的第二时隙,并按照第二子载波间隔对应的OFDM符号来发送或接收业务数据;
其中,第二子载波间隔大于第一子载波间隔,或者,第一时隙的时长大于第二时隙的时长。
于本实施例中,发送端包括基站或传输节点端。基站能够根据传输业务的需求,例如URLLC和eMBB的时隙时分复用,这些业务的子载波间隔需求不同,基站根据传输需求时分地调度两个业务对应的时隙进行数据传输。
本实施例的信息传输方法还可以包括:发送端通过以下方式确定第一时隙的位置:将第一子载波间隔对应的OFDM符号,按照约定数量构成一个第一时隙,在时间方向,按照第一时隙的时长顺序放置第一时隙。
本实施例的信息传输方法还可以包括:发送端通过以下方式确定第二时隙的位置:将第二子载波间隔对应的OFDM符号,按照约定数量构成一个第 二时隙,在时间方向,按照第二时隙的时长顺序放置第二时隙。
示例性地,第一时隙和第二时隙的起始边界对齐,或者,第二时隙的起始位置与第一时隙的一个符号的起始边界对齐,或者,第二时隙的结束位置与第一时隙的一个符号的结束位置对齐,或者,第一时隙和第二时隙在子帧内的起始边界对齐,或者,第一时隙和第二时隙均从子帧的边界开始。
其中,在所述第一时隙发送控制信令,可以包括:
在第一时隙的开始处的OFDM符号,按照约定的子载波间隔发送控制信令;或者,
当第一时隙和第二时隙的起始位置对齐时,在第一时隙的开始处的OFDM符号,采用第一时隙和第二时隙所用的子载波间隔中较小的子载波间隔对应的OFDM符号发送所述控制信令;或者,
当第一时隙和第二时隙的起始位置对齐时,在第一时隙或第二时隙开始处的OFDM符号,按照约定的子载波间隔发送所述控制信令。
其中,所述按照约定的子载波间隔发送所述控制信令,可以包括:
按照系统支持的子载波间隔中最小的子载波间隔对应的OFDM符号发送所述控制信令;或者,在允许不同子载波间隔对应的OFDM符号构成的时隙时分复用时,按照子载波间隔为所述不同子载波间隔中最小的子载波间隔对应的OFDM符号发送所述控制信令。
所述控制信令可以包括:对应于第一时隙的控制信令以及对应于第二时隙的控制信令;
所述对应于第一时隙的控制信令,可以用于指示第一时隙中按照第一子载波间隔对应的OFDM符号中,哪些OFDM符号被用于以下至少之一:发送业务数据、接收业务数据;或者,指示第一时隙中,哪些OFDM符号不被用于按照第一子载波间隔对应的OFDM符号来执行以下至少之一:发送业务数据、接收业务数据;或者,指示第一时隙中按照第一子载波间隔对应的OFDM符号中,哪些OFDM符号被用于采用第二子载波间隔对应的OFDM符号来执行以下至少之一:发送业务数据、接收业务数据;
所述对应于第二时隙的控制信令,可以用于指示第二时隙中第二子载波 间隔对应的OFDM符号的符号数,或者,第二时隙按照第二子载波间隔对应的OFDM符号的时长或结束位置。
所述第二时隙对应的控制信令与第一时隙对应的控制信令可以使用相同的子载波间隔进行发送;其中,所述相同的子载波间隔为第二时隙所用的子载波间隔。
所述第二时隙的结束位置可以位于第一子载波间隔对应的OFDM符号中的一个OFDM符号边界。所述信息传输方法还可以包括:当所述第二时隙按照约定的时长或符号数不能对齐到第一子载波间隔对应的OFDM符号中的一个OFDM符号边界时,所述发送端能够配置并指示第二时隙的符号数进行增加或减少,以对齐到第一子载波间隔对应的OFDM符号中的一个OFDM符号边界。其中,所述发送端能够指示第二时隙的符号数进行增加或减少,可以包括:所述发送端能够通过控制信令中的比特指示所述第二时隙的符号数进行增加或减少。
所述控制信令,可以包括以下至少之一:控制信令对应的业务数据发送时使用的子载波间隔信息、控制信令对应的业务数据接收时使用的子载波间隔信息。
在所述第一时隙发送控制信令,可以包括:在所述第一时隙中按照第一子载波间隔对应的OFDM符号实际发送或接收业务数据的OFDM符号之前,发送所述控制信令;
其中,所述实际发送或接收业务数据的OFDM符号包括:除了所述第一时隙中部分第一子载波间隔对应的OFDM符号,该部分第一子载波间隔对应的OFDM符号没有用于发送或接收第一子载波间隔对应的业务数据,而被用于按照第二子载波间隔对应的OFDM符号来发送或接收业务数据。其中,所述控制信令,可以按照第二子载波间隔对应的OFDM符号进行发送。
如图3所示,本实施例还提供一种信息传输方法,包括:
S301、第一接收端按照第一子载波间隔对应的OFDM符号构成的第一时隙的位置,进行控制信令的接收;
S302、第一接收端根据所述控制信令,确定第一时隙中部分或全部的第 一子载波间隔对应的OFDM符号被用于发送或接收业务数据;
S303、第一接收端按照所述第一子载波间隔对应的OFDM符号来发送或接收业务数据。
于本实施例中,第一接收端用于进行第一子载波间隔对应的OFDM符号构成的第一时隙的数据接收或发送。
所述第一接收端根据所述控制信令,确定所述第一时隙中部分或全部的第一子载波间隔对应的OFDM符号被用于发送或接收业务数据,可以包括:
所述第一接收端从所述控制信令中,确定所述第一时隙中被用于按照第一子载波间隔进行数据发送和数据接收中至少一项的OFDM符号。
所述信息传输方法还可以包括:所述第一接收端通过以下方式确定第一子载波间隔对应的OFDM符号构成的第一时隙的位置:
将第一子载波间隔对应的OFDM符号,按照约定数量构成一个第一时隙,在时间方向,按照第一时隙的时长顺序放置第一时隙。
所述进行控制信令的接收,可以包括:在所述第一时隙的开始处的OFDM符号进行控制信令的接收。示例性地,按照约定的子载波间隔,在第一时隙的开始的OFDM符号进行接收。
所述控制信令,可以包括以下至少之一:控制信令对应的业务数据发送时使用的子载波间隔信息、控制信令对应的业务数据接收时使用的子载波间隔信息。
所述控制信令,可以用于指示所述第一时隙包含的第一子载波间隔对应的OFDM符号的符号数、第一时隙的时长或结束位置。
所述第一时隙的结束位置可以位于参考子载波间隔对应的OFDM符号的一个OFDM符号边界。
所述进行控制信令的接收,可以包括:在所述第一时隙中按照第一子载波间隔对应的OFDM符号实际发送或接收业务数据的OFDM符号之前,接收控制信令;
其中,所述实际发送或接收业务数据的OFDM符号包括:除了所述第一时隙中部分第一子载波间隔对应的OFDM符号,该部分第一子载波间隔对应 的OFDM符号没有用于发送或接收第一子载波间隔对应的业务数据,而被用于按照第二子载波间隔对应的OFDM符号来发送或接收业务数据。其中,所述控制信令,可以按照第二子载波间隔对应的OFDM符号进行接收。
如图4所示,本实施例提供一种信息传输方法,包括:
S401、第二接收端按照第二子载波间隔对应的OFDM符号构成的第二时隙的位置,在第二时隙的开始的OFDM符号,进行控制信令的接收;
S402、按照所述第二子载波间隔对应的OFDM符号来发送或接收业务数据。
于本实施例中,第二接收端用于进行第二子载波间隔对应的OFDM符号构成的第二时隙的数据接收或发送。
所述信息传输方法还可以包括:所述第二接收端通过以下方式确定第二子载波间隔对应的OFDM符号构成的第二时隙的位置:
将第二子载波间隔对应的OFDM符号,按照约定数量构成一个第二时隙,在时间方向,按照第二时隙的时长顺序放置第二时隙。
所述控制信令,可以指示第二时隙包含的符号数量、第二时隙的时长或第二时隙的结束位置。
所述在第二时隙的开始的OFDM符号,进行控制信令的接收,可以包括:在第二时隙的开始的OFDM符号,按照约定的子载波间隔进行控制信令的接收。
所述控制信令,可以包括以下至少之一:控制信令对应的业务数据发送时使用的子载波间隔信息、控制信令对应的业务数据接收时使用的子载波间隔信息。
所述第二时隙的结束位置可以位于参考子载波间隔或者之后时分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界。
所述信息传输方法还可以包括:当所述第二时隙按照约定的时长或符号数,不能对齐到参考子载波间隔或者之后时分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界时,所述第二接收端根据发送端的指示对第二时隙的符号进行增加或减少,以对齐到参考子载波间隔或者之后时 分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界。其中,所述控制信令中的比特能够指示对第二时隙的符号进行增加或减少。
在本申请实施例中,不同子载波间隔的OFDM符号构成的时隙,在时间方向顺序放置。多个不同时隙时分复用时,时长较大的时隙(即子载波间隔较小)中把部分或全部符号用于时长较短(即子载波间隔较大)的时隙来执行以下至少之一:发送数据、接收数据。所述两个时隙的起始位置是对齐的。当较短的时隙是多个时,至少较大时隙的控制信令在本时隙的开始位置发送。所述控制信令中描述本时隙中哪些符号被用于实际按照本时隙的子载波间隔来执行以下至少之一:发送数据、接收数据;或者,描述本时隙中哪些符号用于其他子载波间隔的OFDM符号构成的时隙。控制信令采用固定的子载波间隔对应的OFDM符号发送。控制信令中包含对应时隙使用的子载波间隔。
如图5所示,本申请实施例提供三种时隙划分及时分复用方式。
以15KHz子载波间隔的OFDM符号构成的时隙和以30KHz子载波间隔的OFDM符号构成的时隙时分复用为例。对于其他不同子载波间隔的时隙复用,可以使用相同的方式。例如,15KHz子载波间隔的OFDM符号构成的时隙和以60KHz子载波间隔的OFDM符号构成的时隙时分复用,与15KHz子载波间隔的OFDM符号构成的时隙和以30KHz子载波间隔的OFDM符号构成的时隙时分复用,的差别说明如下:按照图5中的方式1,没有差别;按照图5中的方式2,差别在于:60KHz子载波间隔的OFDM符号构成的时隙的符号数量可能会增加1个或2个或3个。因为一个15KHz子载波间隔的OFDM符号时长等于4个60KHz子载波间隔的OFDM符号时长,所以60KHz子载波间隔的OFDM符号构成的时隙符号数量可能会增加1个或2个或3个(小于4的正整数)。也就是说,N KHz子载波间隔的OFDM符号构成的时隙之后复用以M KHz子载波间隔的OFDM符号构成的时隙时,前一个时隙可能增加的符号数为:小于
Figure PCTCN2017103221-appb-000001
的正整数,
Figure PCTCN2017103221-appb-000002
表示向下取整。N大于或大于等于M。
下面通过多个实施例进行详细说明。
实施例一
图5示意出子载波间隔为15KHz对应的OFDM符号构成的时隙的顺序 位置、子载波间隔为30KHz对应的OFDM符号构成的时隙的顺序位置。当这两种不同子载波间隔的时隙复用时,可以按照下面的方式进行处理。
子载波间隔为15KHz对应的时隙A(即前述的第一时隙)总是按照15KHz子载波间隔对应的OFDM符号来构成时隙,例如,7个OFDM符号构成时隙,并且时隙的位置被固定如图5所示,例如,时隙总是从子帧边界开始。当子帧包含多个15KHz子载波间隔对应的OFDM符号构成的时隙,第一个时隙从子帧边界开始,最后一个时隙在子帧边界结束。
子载波间隔为30KHz对应的时隙B(即前述的第二时隙)总是按照30KHz子载波间隔对应的OFDM符号来构成时隙,例如,7个OFDM符号构成时隙,并且时隙的位置被固定如图5所示,例如时隙总是从子帧边界开始。当子帧包含多个30KHz子载波间隔对应的OFDM符号构成的时隙,第一个时隙从子帧边界开始,最后一个时隙在子帧边界结束。
不同子载波间隔(SCS)的时隙时分复用时,当两个时隙按照各自的OFDM符号时长在给定调度周期顺序放置时,如果两个时隙之间存在不被使用的时长,将该时长按照前一个时隙的SCS化作OFDM符号,算在所述前一个时隙内。这种情况一般发生在为了使得某一时隙的结束位置对齐到另一个时隙的结束位置或某一OFDM符号边界,以减少由于符号不能对齐带来的干扰,如此,一些时隙的符号会被动态地调整,基站应该根据调整,灵活地指示这些被调整时隙的最终符号数,例如通过物理层信令(如物理下行控制信道(PDCCH,Physical Downlink Control Channel)、下行控制信令等)或者高层信令中的无线资源控制(RRC,Radio Resource Control)消息来通知终端(UE,User Equipment)。
或者,当子载波间隔为N的OFDM符号构成的时隙(记为前一个时隙)之后复用一个子载波间隔为M的OFDM符号构成的时隙(记为后一个时隙)时,前一个时隙的结束位置为子载波间隔为M的OFDM符号在给定的调度周期内顺序放置的一个OFDM符号的开始位置,或者,后一个时隙的开始位置为子载波间隔为M的OFDM符号在给定的调度周期内顺序放置的一个OFDM符号的开始位置,后一个时隙的开始位置之前的时长都算在前一个时隙内。其中,N大于或大于等于M。
举例而言,在图5所示的方式2中,SCS为15KHz的时隙和SCS为30KHz的时隙时分复用,此时SCS为30KHz和SCS为15KHz的时隙都从调度周期的边界开始,按照SCS为30KHz对应的OFDM符号时长在调度周期内顺序放置,截取前8个符号(这里假设默认的时隙为7个OFDM符号,此时的这个时隙是8个符号)作为一个时隙(此时这8个符号使用的是SCS为15KHz的部分OFDM符号来发送的,并且为了使得SCS为30KHz的时隙结束对齐到SCS为15KHz的OFDM符号边界(或时隙边界),所以增加了一个符号)。之后基站使用SCS为15KHz的时隙剩余的OFDM符号发送SCS为15KHz的业务数据,此时,时隙包含的OFDM符号数是可以变化的,需要基站通过信令为UE指示该时隙包括的符号数或结束位置。
对于其他不同的SCS的时隙进行时分复用时,原则是相同的,这里不再赘述。
实施例二
图5示意子载波间隔为15KHz对应的OFDM符号构成的时隙的顺序位置、子载波间隔为30KHz对应的OFDM符号构成的时隙的顺序位置。当这两种不同子载波间隔的时隙复用时,可以按照下面的方式进行处理。
子载波间隔为15KHz对应的时隙A(即前述的第一时隙)总是按照15KHz子载波间隔对应的OFDM符号来构成时隙,例如,7个OFDM符号构成时隙,并且时隙的位置被固定如图5所示,例如时隙总是从子帧边界开始。当子帧包含多个15KHz子载波对应的OFDM符号构成的时隙,第一个时隙从子帧边界开始,最后一个时隙在子帧边界结束。
子载波间隔为30KHz对应的时隙B(即前述的第二时隙)总是按照30KHz子载波间隔对应的OFDM符号来构成时隙,例如,7个OFDM符号构成时隙,并且时隙的位置被固定如图5所示,例如时隙总是从子帧边界开始。当子帧包含多个30KHz子载波对应的OFDM符号构成的时隙,第一个时隙从子帧边界开始,最后一个时隙在子帧边界结束。
对于其他子载波间隔对应的OFDM符号构成的时隙也是相同的处理。
不同子载波间隔对应的OFDM符号构成的时隙,都是从子帧边界开始的,如图5的方式1中,15KHz子载波间隔的OFDM符号构成的时隙A与30KHz 子载波间隔的OFDM符号构成的时隙B都是从子帧边界开始的。但是时隙A的前4个子载波间隔为15KHz的OFDM没有被用于以下至少之一:发送15KHz子载波间隔的数据、接收15KHz子载波间隔的数据,而是用时隙A中前3.5个15KHz子载波间隔的OFDM符号对应的时长变为了30KHz子载波间隔对应的OFDM符号,并构成了时隙B,时隙B用于以下至少之一:发送30KHz子载波间隔的数据、接收30KHz子载波间隔的数据。从时隙A的第5个OFDM符号开始执行以下至少之一:发送15KHz子载波间隔的业务、接收15KHz子载波间隔的业务。其中,有半个15KHz子载波间隔对应的OFDM符号时长被浪费。
在图5的方式1中,时隙A和时隙B的控制信令都是在时隙A(或时隙B,时隙A和时隙B的开始位置是对齐的)的开始位置处发送。示例性地,控制信令使用约定的子载波间隔进行发送,或者,使用复用时隙中子载波间隔较小的子载波间隔进行发送。
第一接收端(使用15KHz子载波间隔传输数据的UE)在时隙A的开始位置处接收控制信令(即时隙A的控制信令),控制信令指示第一接收端:时隙A中哪些OFDM符号是用来实际发送或接收15KHz子载波间隔对应的数据的。例如,从第5个OFDM符号开始的。当第一接收端不清楚按照哪种子载波间隔发送或接收数据时,控制信令中可以进一步指示实际发送或接收数据的子载波间隔。也就是说,对于第一接收端而言,接收控制信令的位置是固定的,在每个15KHz时隙的开始处,但是实际有效数据发送或接收的符号位置并不一定从该时隙的开始处开始,而有可能从该时隙中间某一个OFDM符号处开始。控制信令可以通知第一接收端实际发送或接收数据的符号位置,也可以告诉第一接收端,实际发送或接收数据使用的子载波间隔。当时隙A中实际数据从规定的位置直接开始时,则控制信令中可以不包含实际传输数据的符号位置信息。
第二接收端(使用30KHz子载波间隔传输数据的UE)在时隙B的开始位置处接收控制信令(即时隙B的控制信令),控制信令通知第二接收端,从默认的符号位置处开始进行对应的数据接收即可,例如在控制信令之后开始数据发送或接收。时隙B包含默认的OFDM符号数,例如7个。控制信 令可以使用30KHz子载波间隔对应的OFDM符号发送。
实施例三
图5示意出子载波间隔为15KHz对应的OFDM符号构成的时隙的顺序位置、子载波间隔为30KHz对应的OFDM符号构成的时隙的顺序位置。当这两种不同子载波间隔的时隙复用时,可以按照下面的方式进行处理。
子载波间隔为15KHz对应的时隙A(即前述的第一时隙)总是按照15KHz子载波间隔对应的OFDM符号来构成时隙,例如,7个OFDM符号构成时隙,并且时隙的位置被固定如图5所示,例如时隙总是从子帧边界开始。当子帧包含多个15KHz子载波对应的OFDM符号构成的时隙,第一个时隙从子帧边界开始,最后一个时隙在子帧边界结束。
子载波间隔为30KHz对应的时隙B(即前述的第二时隙)总是按照30KHz子载波间隔对应的OFDM符号来构成时隙,例如,7个OFDM符号构成时隙,并且时隙的位置被固定如图5所示,例如时隙总是从子帧边界开始。当子帧包含多个30KHz子载波对应的OFDM符号构成的时隙,第一个时隙从子帧边界开始,最后一个时隙在子帧边界结束。
对于其他子载波间隔对应的OFDM符号构成的时隙也是相同的处理。
不同子载波间隔对应的OFDM符号构成的时隙,都是从子帧边界开始的,如图5的方式2中,15KHz子载波间隔的OFDM符号构成的时隙A与30KHz子载波间隔的OFDM符号构成的时隙B都是从子帧边界开始的。但是时隙A的前4个子载波间隔为15KHz的OFDM没有被用于以下至少之一:发送15KHz子载波间隔的数据、接收15KHz子载波间隔的数据,而是用时隙A中前4个15KHz子载波间隔的OFDM符号对应的时长变为了30KHz子载波对应的OFDM符号,并构成了时隙B,时隙B用于以下至少之一:发送30KHz子载波间隔的数据、接收30KHz子载波间隔的数据。从时隙A的第5个OFDM符号开始执行以下至少之一:发送30KHz子载波间隔的数据、接收30KHz子载波间隔的数据。上述的处理增加了时隙B的符号数,由7个(7个可能是默认的符号数)增加到8个,这种方式主要是为了使得时隙B的结束位置对齐到时隙A的某一符号边界,以减少干扰,所以,可以动态调整时隙B的符号数。
在图5的方式2(或方式1)中,时隙A和时隙B的控制信令都是在时隙A(或时隙B,时隙A和时隙B的开始位置是对齐的)的开始位置处发送。示例性地,时隙A和时隙B的控制信令使用约定的子载波间隔进行发送,或者,使用复用时隙中子载波间隔较小的子载波间隔进行发送。
第一接收端(使用15KHz子载波间隔传输数据的UE)在时隙A的开始位置处接收控制信令(即时隙A的控制信令),控制信令指示接收端:时隙A中哪些OFDM符号是用来实际发送或接收15KHz子载波间隔对应的数据的。例如,从第5个OFDM符号开始的。当第一接收端不清楚按照哪种子载波间隔发送或接收数据时,控制信令中可以进一步指示实际发送或接收数据的子载波间隔。也就是说,对于第一接收端而言,接收控制信令的位置是固定的,在每个15KHz时隙的开始处,但是实际有效数据发送或接收的符号位置并不一定从该时隙的开始处开始,而有可能从该时隙中间某一个OFDM符号处开始。控制信令可以通知实际发送或接收数据的符号位置,也可以告诉第一接收端,实际发送或接收数据使用的子载波间隔。当时隙A中实际数据从规定的位置直接开始时,则控制信令中可以不包含实际传输数据的符号位置信息。
第二接收端(使用30KHz子载波间隔传输数据的UE)在时隙B的开始位置处接收控制信令(即时隙B的控制信令),控制信令可以使用30KHz子载波间隔对应的OFDM符号发送。控制信令通知第二接收端,时隙B包含的符号数、时隙时长或时隙结束位置。如图5的方式2中,控制信令可以通知第二接收端,此时时隙B由8个30KHz子载波间隔对应的OFDM符号构成。即,此时时隙B比默认的7个OFDM符号增加了一个(如图5的方式2中阴影的OFDM符号)。如此,相对于图5的方式1,避免了资源浪费。
实施例四
图5示意出子载波间隔为15KHz对应的OFDM符号构成的时隙的顺序位置、子载波间隔为30KHz对应的OFDM符号构成的时隙的顺序位置。当这两种不同子载波间隔的时隙复用时,可以按照下面的方式进行处理。
子载波间隔为15KHz对应的时隙A(即前述的第一时隙)总是按照15KHz子载波间隔对应的OFDM符号来构成时隙,例如,7个OFDM符号构成时 隙,并且时隙的位置被固定如图5所示,例如时隙总是从子帧边界开始。当子帧包含多个15KHz子载波对应的OFDM符号构成的时隙,第一个时隙从子帧边界开始,最后一个时隙在子帧边界结束。
子载波间隔为30KHz对应的时隙B(即前述的第二时隙)总是按照30KHz子载波间隔对应的OFDM符号来构成时隙,例如,7个OFDM符号构成时隙,并且时隙的位置被固定如图5所示,例如时隙总是从子帧边界开始。当子帧包含多个30KHz子载波对应的OFDM符号构成的时隙,第一个时隙从子帧边界开始,最后一个时隙在子帧边界结束。
对于其他子载波间隔对应的OFDM符号构成的时隙也是相同的处理。
不同子载波间隔对应的OFDM符号构成的时隙,都是从子帧边界开始的,如图5的方式3中,15KHz子载波间隔的OFDM符号构成的时隙A与30KHz子载波间隔的OFDM符号构成的时隙B都是从子帧边界开始的。但是时隙A的前3.5个子载波间隔为15KHz的OFDM对应的时长没有被用于以下至少之一:发送15KHz子载波间隔的数据、接收15KHz子载波间隔的数据,而是用时隙A中前3.5个15KHz子载波间隔的OFDM符号变为了30KHz子载波对应的OFDM符号,并构成了时隙B,时隙B用于以下至少之一:发送30KHz子载波间隔的数据、接收30KHz子载波间隔的数据。从时隙A的第4个OFDM符号的中间开始执行以下至少之一:发送15KHz子载波间隔的数据、接收15KHz子载波间隔的数据。其中,图5的方式3中阴影部分的符号被作为时隙A实际发送或接收数据的开始点。
在图5的方式3中,时隙A和时隙B的控制信令都是在时隙A(或时隙B,时隙A和时隙B的开始位置是对齐的)的开始位置处发送。示例性地,时隙A和时隙B的控制信令使用约定的子载波间隔进行发送,或者,使用复用时隙中子载波间隔较小的子载波间隔进行发送。
第一接收端(使用15KHz子载波间隔传输数据的UE)在时隙A的开始位置处接收控制信令(即时隙A的控制信令),控制信令指示第一接收端:时隙A中哪些OFDM符号是用来实际发送或接收15KHz子载波间隔对应的数据的。例如,从第4个OFDM符号中间开始的。当第一接收端不清楚按照哪种子载波间隔发送或接收数据时,控制信令中可以指示实际发送或接收数 据的子载波间隔。也就是说,对于第一接收端而言,接收第一控制信令的位置是固定的,在每个15KHz时隙的开始处,但是实际有效数据发送或接收的符号位置并不一定从时隙的开始处开始,而有可能从时隙中间某一个OFDM符号处开始。控制信令可以通知实际发送或接收数据的符号位置,也可以告诉第一接收端,实际发送或接收数据使用的子载波间隔。
第二接收端(使用30KHz子载波间隔传输数据的UE)在时隙B的开始位置处接收控制信令(即时隙B的控制信令),控制信令通知第二接收端,从默认的符号位置处开始,进行对应的数据接收即可,例如,在控制信令之后开始数据发送或接收。时隙B包含默认的OFDM符号数,例如7个。控制信令可以使用30KHz子载波间隔对应的OFDM符号发送。
实施例五
在实施例四中,时隙A的控制信令可以放在图5中阴影的OFDM符号中开始发送。
在实施例二和三中,时隙A的控制信令可以放置在时隙A中开始实际发送或接收数据的OFDM符号中发送。
关于本实施例的其他说明可以参照实施例二、三及四。
实施例六
本实施例提供一种新的时隙划分及其对应的使用规则。
时隙时长确定为参考子载波间隔对应的时隙的时长。例如,参考子载波间隔如果为15KHz,那么对应的时长为0.5ms。这样时隙的长度将为0.5ms。
参考子载波间隔为15KHz时,子帧的时长为1ms(对应14个子载波间隔为15KHz的OFDM符号),一个子帧包含2个0.5ms的时隙(对应7个子载波间隔为15KHz的OFDM符号)。
在参考时隙内,允许不同子载波间隔对应的OFDM符号进行传输,其中,传输方式有以下两种:
方式A:系统中只有参考子帧、参考时隙的定义,传输是按照指定子载波间隔对应的OFDM符号的符号数进行的。例如,在一个参考时隙内,允许按照非参考子载波间隔对应的OFDM符号来传输数据,如按照30KHz、 60KHz子载波间隔对应的OFDM符号,对原来的15KHz的参考子载波间隔划分的部分或全部OFDM符号进行重新划分。总是将参考子载波间隔对应的整数的OFDM符号划分为其他子载波间隔对应的OFDM符号。此时,数据按照新划分的OFDM符号数量进行传输,例如本次传输需要7个OFDM符号,那么基站就配置7个OFDM符号用于数据传输。示例性地,基站可以配置本次传输对应使用的子载波间隔。示例性地,基站可以配置本次传输的实际数据起始位置(例如从哪个符号开始传输的)。例如在参考时隙内,基站可以把其中2个15KHz的子载波间隔对应的OFDM符号转化为60KHz的子载波间隔对应的OFDM符号来进行数据传输,这2个符号可以是参考时隙中的前2个,或者中间某2个,或者末尾的2个。基站在控制信令中需要指示是哪2个符号被转化为其他子载波间隔进行数据传输。
方式A中,只有参考时隙的定义,其他子载波间隔对应的时隙没有定义,数据传输时是按照OFDM符号的数量进行调度的。即基站需要调度多少个符号数时,基站根据需要进行指示。为了简化信令,可以限制基站调度的符号数量的集合数,这样信令将会被减少。例如,为每一种子载波间隔对应的符号数,分别限制为只能按照几种符号数据进行调度传输。
按照符号数据调度数据传输时,一次传输不能跨2个参考时隙。例如,一次传输应该在参考时隙处结束,然后再在下一个参考时隙内重新另一次传输。这样每一次传输都被限制在参考时隙内,有利于基于参考时隙进行邻近小区协作静默。
方式B:系统中存在参考子帧、参考时隙,另外对于其他子载波间隔对应的OFDM符号构成的调度单元,也可以称为非参考时隙。参考时隙与非参考时隙允许重叠,例如参考时隙的部分符号用于非参考时隙(此时按照非参考子载波间隔进行传输),或者,非参考时隙的部分符号用于参考时隙(此时按照参考子载波间隔进行传输)。
非参考时隙可以与参考时隙的起始对齐,或者,非参考时隙与参考时隙起始不对齐,例如使用参考时隙中的中间的部分OFDM符号,反之亦然。
不管是上述哪种时隙,都是存在默认的或规定的符号数(或可取符号数集合),例如规定时隙包含的符号数为7,对于非参考时隙,基站可以动态 调整时隙的符号数。例如,在一个参考时隙内,基站使用其中2个OFDM符号转化为60KHz子载波间隔的时隙来传输数据,那么这个时隙应该包含7个60KHz的OFDM符号,但是由于60KHz SCS的OFDM符号是由15KHz的SCS的OFDM符号缩放而来的,所以1个15KHz SCS的OFDM符号时长等于4个60KHz SCS的OFDM符号的时长和。那么此时,如果这个时隙包含7个60KHz SCS的OFDM符号,会浪费一个60KHz SCS的OFDM符号,此时基站由于后续不再连续发送60KHz SCS的OFDM符号了而是继续15KHz SCS的OFDM符号发送,为了保证60KHz SCS的时隙与之后传输的15KHz SCS的OFDM之间对齐到参考时隙内15KHz SCS对应的OFDM符号边界,此时基站应该从参考时隙内15KHz SCS对应的OFDM符号边界开始发送15KHz SCS的OFDM符号,这样可以避免符号不对齐引起的干扰。那么,此时就会浪费一个60KHz SCS的OFDM符号,为了避免浪费,基站能够发送信令指示UE,当前的60KHz SCS的OFDM符号构成的时隙是8个符号,而不是7个。即,基站能够发送信令给UE,指示时隙包含的符号数。
实施例七
参考图1和图6。
参考子载波间隔对应的OFDM符号构成的时隙称为参考时隙,参考子载波间隔对应的OFDM符号构成的子帧称为参考子帧。时隙也称为调度单元或传输单元。
不同子载波间隔对应的OFDM符号构成的时隙,在时间方向按照各自的时长顺序放置。时隙的起始点对齐到参考子帧的开始或结束边界。
时隙1和时隙2(可以是更多的不同子载波间隔构成的时隙)分别为由子载波间隔1构成的时隙和由子载波间隔2构成的时隙。时隙3为由子载波间隔3构成的时隙。子载波间隔1和子载波间隔2均大于子载波间隔3。
一个时隙3中包含以下至少之一:多个完整的时隙1、多个完整的时隙2。
或者可以描述为:
不同子载波间隔时隙的起始位置与参考子帧开始或结束边界对齐。
通过缩放参考子载波间隔得到的时隙,当缩放后的子载波间隔大于参考 子载波间隔时,所述时隙按照自己时隙的开始或结束边界进行对齐。具有较大循环前缀(CP)的符号的时隙对齐到参考子帧或时隙的开始或结束边界。
通过缩放参考子载波间隔得到的时隙,当缩放后的子载波间隔小于参考子载波间隔时,所述时隙对齐到参考子帧或时隙的开始或结束边界。具有较大CP的符号的时隙对齐到参考时隙的开始或结束边界。
或者可以描述为:
每个子载波间隔对应的OFDM符号构成的时隙,均对齐到参考子帧的边界。
每个子载波间隔对应的OFDM符号构成的时隙按照各自的时长和位置进行放置。
当(时分)复用时,前一个子载波间隔对应的OFDM符号构成的时隙按照自己的时长和位置传输结束后,另一个子载波间隔对应的OFDM符号构成的时隙才能在按照自己的时长和位置放置的时隙中确定某一时隙开始处进行传输。此时,后面的时隙的起始位置可能是与前一个时隙的结束位置是相同的,或者间隔了一段时长。或者,也可以不按照时隙进行描述,尤其是后面的时隙可以不描述成时隙。当(时分)复用时,前一个子载波间隔对应的OFDM符号构成的传输单元按照自己的时长和位置传输结束后,另一个子载波间隔对应的OFDM符号构成的传输单元才能在按照自己的时长和位置放置的传输单元中确定某一传输单元开始处进行传输。传输单元由若干个OFDM符号构成。
实施例八
参考图7,本实施例进一步提供时隙(slot)划分的规则和复用的使用方法。
在这种多个不同的子载波间隔对应的符号构成的时隙中,不同子载波间隔一般用于不同的业务类型传输,例如URLLC业务一般使用比较大的子载波间隔对应的时隙来传输,并且是突发性业务。eMBB业务可以使用30KHz或15KHz的子载波间隔对应的时隙来传输。不同的子载波间隔对应的时隙必将复用传输,下面提供几种时隙的划分的复用传输方式,同时这些方式在实 现复杂度、调度灵活性、资源浪费方面各有优缺点。
在图7的事例(case)1和case2中,基站确定时隙的位置和复用方式为:多个带有相同子载波间隔的完整的时隙(即时隙中包括的OFDM符号是同一子载波间隔对应的OFDM符号,需要说明的是,时隙的开始位置处发送时隙的控制信令时允许使用其他子载波间隔发送,但是时隙中传输本时隙数据的OFDM符号的子载波间隔相同),按照各自在时间方向的时隙网格图样和位置,时分复用在一个参考子帧内。某一时隙的边界与子帧边界对齐。这种事例便于实现,但是调度灵活度很低,不适合突发性业务URLLC的传输。例如,一个URLLC业务突然到达后,需要等到其他时隙结束后才能被发送。如果此时其他时隙没有对应的业务发送,也不能立即调度URLLC业务,所以存在潜在的资源浪费。
在图7的case3中,基站确定时隙的位置和复用方式为:多个带有不同子载波间隔的完整的时隙,按照各自在时间方向的时隙网格图样和位置,时分复用在一个参考子帧内。某一时隙的边界与子帧边界对齐。所述多个带有不同子载波间隔的时隙不允许以嵌套或重叠(或部分重叠)复用。相对于case1和case2,case3的调度灵活性被略微改善,并且易于实现。但是,case3中,仍然存在潜在的资源浪费,理由与case1和case2中相同。
在图7的case4中,基站确定时隙的位置和复用方式为:多个带有不同子载波间隔的完整的时隙,按照各自在时间方向的时隙网格图样和位置,时分复用在一个参考子帧内。某一时隙的边界与子帧边界对齐。所述多个带有不同子载波间隔的时隙允许以嵌套复用。嵌套是指:一个时隙使用了另一个时隙的部分或全部符号,且每个时隙都需要按照各自在时间方向的时隙网格图样和位置放置。这种方式具有很好地调度灵活性,非常适合突发性业务,例如URLLC的传输。另外,这种方式有时会产生对于其中一个时隙的调整符号数,这时需要基站发送信令指示时隙包括的符号数。
在图7的case4中,基站确定时隙的位置和复用方式为:多个带有不同子载波间隔的完整的时隙,按照各自在时间方向的时隙网格图样和位置,时分复用在一个参考子帧内。某一时隙的边界与子帧边界对齐。所述多个带有不同子载波间隔的时隙允许以重叠(包括部分重叠)复用。重叠是指:一个 时隙使用了另一个时隙的部分或全部符号,且其中一个时隙(一般为时长较短的时隙)不需要按照各自在时间方向的时隙网格图样和位置放置,能够使用时长较长的时隙的任意位置的符号。这种方式具有很好的调度灵活性,非常适合突发性业务,例如URLLC的传输。另外,这种方式有时会产生对于其中一个时隙的调整符号数,这时需要基站发送信令指示时隙包括的符号数。
本申请中,不同实施例中的技术特征,在不冲突的情况下,可以组合在一个实施例中使用。每个实施例仅仅是本申请的示例性实施方式。
如图8所示,本申请实施例还提供一种信息传输装置,应用于发送端,所述信息传输装置包括:
发送模块801,配置为按照第一子载波间隔对应的OFDM符号构成的第一时隙的位置,在第一时隙发送控制信令;
第一传输模块802,配置为按照第一子载波间隔对应的OFDM符号来发送或接收业务数据;
其中,第一传输模块802,配置为允许使用第一时隙中部分或全部的第一子载波间隔对应的OFDM符号,发送或接收第二子载波间隔对应的OFDM符号构成的第二时隙,并按照第二子载波间隔对应的OFDM符号来发送或接收业务数据;
其中,第二子载波间隔大于第一子载波间隔,或者,第一时隙的时长大于第二时隙的时长。
所述信息传输装置还可以包括:第一处理模块803,配置为将第一子载波间隔对应的OFDM符号,按照约定数量构成一个第一时隙,在时间方向,按照第一时隙的时长顺序放置第一时隙;以及,将第二子载波间隔对应的OFDM符号,按照约定数量构成一个第二时隙,在时间方向,按照第二时隙的时长顺序放置第二时隙。
示例性地,第一时隙和第二时隙的起始边界对齐,或者,第二时隙的起始位置与第一时隙的一个符号的起始边界对齐,或者,第二时隙的结束位置与第一时隙的一个符号的结束位置对齐,或者,第一时隙和第二时隙在子帧内的起始边界对齐,或者,第一时隙和第二时隙均从子帧的边界开始。
所述发送模块801可以配置为通过以下方式在所述第一时隙发送控制信令:在第一时隙的开始处的OFDM符号,按照约定的子载波间隔发送控制信令;或者,当第一时隙和第二时隙的起始位置对齐时,在第一时隙的开始处的OFDM符号,采用第一时隙和第二时隙所用的子载波间隔中较小的子载波间隔对应的OFDM符号发送所述控制信令;或者,当第一时隙和第二时隙的起始位置对齐时,在第一时隙或第二时隙开始处的OFDM符号,按照约定的子载波间隔发送所述控制信令。
其中,所述发送模块801,可以配置为通过以下方式按照约定的子载波间隔发送所述控制信令:按照系统支持的子载波间隔中最小的子载波间隔对应的OFDM符号发送所述控制信令;或者,在允许不同子载波间隔对应的OFDM符号构成的时隙时分复用时,按照子载波间隔为所述不同子载波间隔中最小的子载波间隔对应的OFDM符号发送所述控制信令。
所述控制信令可以包括:对应于第一时隙的控制信令以及对应于第二时隙的控制信令;
所述对应于第一时隙的控制信令,可以用于指示第一时隙中按照第一子载波间隔对应的OFDM符号中,哪些OFDM符号被用于以下至少之一:发送业务数据、接收业务数据;或者,指示第一时隙中,哪些OFDM符号不被用于按照第一子载波间隔对应的OFDM符号来执行以下至少之一:发送业务数据、接收业务数据;或者,指示第一时隙中按照第一子载波间隔对应的OFDM符号中,哪些OFDM符号被用于采用第二子载波间隔对应的OFDM符号来执行以下至少之一:发送业务数据、接收业务数据;
所述对应于第二时隙的控制信令,可以用于指示第二时隙中第二子载波间隔对应的OFDM符号的符号数,或者,第二时隙按照第二子载波间隔对应的OFDM符号的时长或结束位置。
所述第二时隙对应的控制信令与第一时隙对应的控制信令可以使用相同的子载波间隔进行发送;其中,所述相同的子载波间隔为第二时隙所用的子载波间隔。
所述第二时隙的结束位置可以位于第一子载波间隔对应的OFDM符号中的一个OFDM符号边界。
所述信息传输装置还可以包括:指示模块804,配置为当所述第二时隙按照约定的时长或符号数不能对齐到第一子载波间隔对应的OFDM符号中的一个OFDM符号边界时,配置并指示第二时隙的符号数进行增加或减少,以对齐到第一子载波间隔对应的OFDM符号中的一个OFDM符号边界。其中,所述指示模块804能够配置为通过以下方式指示第二时隙的符号数进行增加或减少:通过控制信令中的比特指示所述第二时隙的符号数进行增加或减少。
所述控制信令,可以包括以下至少之一:控制信令对应的业务数据发送时使用的子载波间隔信息、控制信令对应的业务数据接收时使用的子载波间隔信息。
所述发送模块801可以配置为通过以下方式在所述第一时隙发送控制信令:在所述第一时隙中按照第一子载波间隔对应的OFDM符号实际发送或接收业务数据的OFDM符号之前,发送所述控制信令;
其中,所述实际发送或接收业务数据的OFDM符号包括:除了所述第一时隙中部分第一子载波间隔对应的OFDM符号,该部分第一子载波间隔对应的OFDM符号没有用于发送或接收第一子载波间隔对应的业务数据,而被用于按照第二子载波间隔对应的OFDM符号来发送或接收业务数据。其中,所述控制信令,可以按照第二子载波间隔对应的OFDM符号进行发送。
如图9所示,本申请实施例还提供一种信息传输装置,应用于第一接收端,所述信息传输装置包括:
第一接收模块901,配置为按照第一子载波间隔对应的OFDM符号构成的第一时隙的位置,进行控制信令的接收;
确定模块902,配置为根据所述控制信令,确定所述第一时隙中部分或全部的第一子载波间隔对应的OFDM符号被用于发送或接收业务数据;
第二传输模块903,配置为按照所述第一子载波间隔对应的OFDM符号来发送或接收业务数据。
于本实施例中,第一接收端用于进行第一子载波间隔对应的OFDM符号构成的第一时隙的数据接收或发送。
所述确定模块902,可以配置为从所述控制信令中,确定所述第一时隙中被用于按照第一子载波间隔进行数据发送和数据接收中至少一项的OFDM符号。
所述信息传输装置还可以包括:第二处理模块904,配置为将第一子载波间隔对应的OFDM符号,按照约定数量构成一个第一时隙,在时间方向,按照第一时隙的时长顺序放置第一时隙。
所述第一接收模块901,可以配置为通过以下方式进行控制信令的接收:在所述第一时隙的开始处的OFDM符号进行控制信令的接收。示例性地,按照约定的子载波间隔,在第一时隙的开始的OFDM符号进行接收。
所述控制信令,可以包括以下至少之一:控制信令对应的业务数据发送时使用的子载波间隔信息、控制信令对应的业务数据接收时使用的子载波间隔信息。
所述控制信令,可以用于指示所述第一时隙包含的第一子载波间隔对应的OFDM符号的符号数、第一时隙的时长或结束位置。
所述第一时隙的结束位置可以位于参考子载波间隔对应的OFDM符号的一个OFDM符号边界。
所述第一接收模块901,可以配置为通过以下方式进行控制信令的接收:在所述第一时隙中按照第一子载波间隔对应的OFDM符号实际发送或接收业务数据的OFDM符号之前,接收控制信令;
其中,所述实际发送或接收业务数据的OFDM符号包括:除了所述第一时隙中部分第一子载波间隔对应的OFDM符号,该部分第一子载波间隔对应的OFDM符号没有用于发送或接收第一子载波间隔对应的业务数据,而被用于按照第二子载波间隔对应的OFDM符号来发送或接收业务数据。其中,所述控制信令,可以按照第二子载波间隔对应的OFDM符号进行接收。
如图10所示,本申请实施例还提供一种信息传输装置,应用于第二接收端,所述信息传输装置包括:
第二接收模块1001,配置为按照第二子载波间隔对应的OFDM符号构成的第二时隙的位置,在第二时隙的开始的OFDM符号,进行控制信令的接 收;
第三传输模块1002,配置为按照所述第二子载波间隔对应的OFDM符号来发送或接收业务数据。
于本实施例中,第二接收端用于进行第二子载波间隔对应的OFDM符号构成的第二时隙的数据接收或发送。
所述信息传输装置还可以包括:第三处理模块1003,配置为将第二子载波间隔对应的OFDM符号,按照约定数量构成一个第二时隙,在时间方向,按照第二时隙的时长顺序放置第二时隙。
所述控制信令,可以指示第二时隙包含的符号数量、第二时隙的时长或第二时隙的结束位置。
所述第二接收模块1001,可以配置为通过以下方式在第二时隙的开始的OFDM符号,进行控制信令的接收:在第二时隙的开始的OFDM符号,按照约定的子载波间隔进行控制信令的接收。
所述控制信令,可以包括以下至少之一:控制信令对应的业务数据发送时使用的子载波间隔信息、控制信令对应的业务数据接收时使用的子载波间隔信息。
所述第二时隙的结束位置可以位于参考子载波间隔或者之后时分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界。
所述信息传输装置还可以包括:第四处理模块,配置为当所述第二时隙按照约定的时长或符号数,不能对齐到参考子载波间隔或者之后时分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界时,根据发送端的指示对第二时隙的符号进行增加或减少,以对齐到参考子载波间隔或者之后时分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界。其中,所述控制信令中的比特能够指示对第二时隙的符号进行增加或减少。
关于上述信息传输装置的处理流程可以参照前述的方法实施例,故于此不再赘述。
本申请实施例还提供一种电子设备,包括处理器以及存储有所述处理器 可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:
按照第一子载波间隔对应的OFDM符号构成的第一时隙的位置,在第一时隙发送控制信令,并按照第一子载波间隔对应的OFDM符号来发送或接收业务数据;
允许使用第一时隙中部分或全部的第一子载波间隔对应的OFDM符号,发送或接收第二子载波间隔对应的OFDM符号构成的第二时隙,并按照第二子载波间隔对应的OFDM符号来发送或接收业务数据;
其中,第二子载波间隔大于第一子载波间隔,或者,第一时隙的时长大于第二时隙的时长。
本申请实施例还提供一种电子设备,包括处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:
按照第一子载波间隔对应的OFDM符号构成的第一时隙的位置,进行控制信令的接收;根据所述控制信令,确定第一时隙中部分或全部的第一子载波间隔对应的OFDM符号被用于发送或接收业务数据;按照第一子载波间隔对应的OFDM符号来发送或接收业务数据。
本申请实施例还提供一种电子设备,包括处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:
按照第二子载波间隔对应的OFDM符号构成的第二时隙的位置,在第二时隙的开始的OFDM符号,进行控制信令的接收,并按照第二子载波间隔对应的OFDM符号来发送或接收业务数据。
本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现应用于发送端的信息传输方法。
本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现应用于第一接收端的信息传输方法。
本申请实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现应用于第二接收端的信息传 输方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块或单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块或单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本申请实施例提供一种信息传输方法及装置,明确了不同子载波间隔的OFDM符号构成的时隙的划分,及其对应的控制信令发送机制,避免了由于常规复用带来的更多的位置而增加接收控制信令的复杂度。

Claims (46)

  1. 一种信息传输方法,包括:
    发送端按照第一子载波间隔对应的正交频分复用OFDM符号构成的第一时隙的位置,在所述第一时隙发送控制信令(S201),并按照所述第一子载波间隔对应的OFDM符号来发送或接收业务数据(S202);
    所述发送端允许使用所述第一时隙中部分或全部的第一子载波间隔对应的OFDM符号,发送或接收第二子载波间隔对应的OFDM符号构成的第二时隙,并按照所述第二子载波间隔对应的OFDM符号来发送或接收业务数据(S203);
    其中,所述第二子载波间隔大于所述第一子载波间隔,或者,所述第一时隙的时长大于所述第二时隙的时长。
  2. 根据权利要求1所述的信息传输方法,所述信息传输方法还包括:所述发送端通过以下方式确定第一时隙的位置:
    将所述第一子载波间隔对应的OFDM符号,按照约定数量构成一个第一时隙,在时间方向,按照第一时隙的时长顺序放置第一时隙。
  3. 根据权利要求1所述的信息传输方法,所述信息传输方法还包括:所述发送端通过以下方式确定第二时隙的位置:
    将所述第二子载波间隔对应的OFDM符号,按照约定数量构成一个第二时隙,在时间方向,按照第二时隙的时长顺序放置第二时隙。
  4. 根据权利要求1所述的信息传输方法,其中,所述第一时隙和所述第二时隙的起始边界对齐,或者,所述第二时隙的起始位置与所述第一时隙的一个符号的起始边界对齐,或者,所述第二时隙的结束位置与所述第一时隙的一个符号的结束位置对齐,或者,所述第一时隙和所述第二时隙在子帧内的起始边界对齐,或者,所述第一时隙和所述第二时隙均从子帧的边界开始。
  5. 根据权利要求1所述的信息传输方法,其中,所述在所述第一时隙发送控制信令,包括:
    在所述第一时隙的开始处的OFDM符号,按照约定的子载波间隔发送所 述控制信令;或者,
    当所述第一时隙和所述第二时隙的起始位置对齐时,在所述第一时隙的开始处的OFDM符号,采用所述第一时隙和第二时隙所用的子载波间隔中较小的子载波间隔对应的OFDM符号发送所述控制信令;或者,
    当所述第一时隙和所述第二时隙的起始位置对齐时,在所述第一时隙或第二时隙开始处的OFDM符号,按照约定的子载波间隔发送所述控制信令。
  6. 根据权利要求5所述的信息传输方法,其中,所述按照约定的子载波间隔发送所述控制信令,包括:
    按照系统支持的子载波间隔中最小的子载波间隔对应的OFDM符号发送所述控制信令;或者,在允许不同子载波间隔对应的OFDM符号构成的时隙时分复用时,按照子载波间隔为所述不同子载波间隔中最小的子载波间隔对应的OFDM符号发送所述控制信令。
  7. 根据权利要求1所述的信息传输方法,其中,所述控制信令包括:对应于第一时隙的控制信令以及对应于第二时隙的控制信令;
    所述对应于第一时隙的控制信令,用于指示第一时隙中按照第一子载波间隔对应的OFDM符号中,哪些OFDM符号被用于以下至少之一:发送业务数据、接收业务数据;或者,指示第一时隙中,哪些OFDM符号不被用于按照第一子载波间隔对应的OFDM符号来执行以下至少之一:发送业务数据、接收业务数据;或者,指示第一时隙中按照第一子载波间隔对应的OFDM符号中,哪些OFDM符号被用于采用第二子载波间隔对应的OFDM符号来执行以下至少之一:发送业务数据、接收业务数据;
    所述对应于第二时隙的控制信令,用于指示第二时隙中第二子载波间隔对应的OFDM符号的符号数,或者,第二时隙按照第二子载波间隔对应的OFDM符号的时长或结束位置。
  8. 根据权利要求7所述的信息传输方法,其中,所述第二时隙对应的控制信令与所述第一时隙对应的控制信令使用相同的子载波间隔进行发送;其中,所述相同的子载波间隔为第二时隙所用的子载波间隔。
  9. 根据权利要求1所述的信息传输方法,其中,所述第二时隙的结束位 置位于第一子载波间隔对应的OFDM符号中的一个OFDM符号边界。
  10. 根据权利要求9所述的信息传输方法,所述信息传输方法还包括:当所述第二时隙按照约定的时长或符号数不能对齐到第一子载波间隔对应的OFDM符号中的一个OFDM符号边界时,所述发送端配置并指示第二时隙的符号数进行增加或减少,以对齐到第一子载波间隔对应的OFDM符号中的一个OFDM符号边界。
  11. 根据权利要求10所述的信息传输方法,其中,所述发送端指示第二时隙的符号数进行增加或减少,包括:所述发送端通过控制信令中的比特指示所述第二时隙的符号数进行增加或减少。
  12. 根据权利要求1所述的信息传输方法,其中,所述控制信令,包括以下至少之一:控制信令对应的业务数据发送时使用的子载波间隔信息、控制信令对应的业务数据接收时使用的子载波间隔信息。
  13. 根据权利要求1所述的信息传输方法,其中,所述在所述第一时隙发送控制信令,包括:在所述第一时隙中按照第一子载波间隔对应的OFDM符号实际发送或接收业务数据的OFDM符号之前,发送所述控制信令;
    其中,所述实际发送或接收业务数据的OFDM符号包括:除了所述第一时隙中部分的第一子载波间隔对应的OFDM符号,该部分的第一子载波间隔对应的OFDM符号没有用于发送或接收第一子载波间隔对应的业务数据,而被用于按照第二子载波间隔对应的OFDM符号来发送或接收业务数据。
  14. 根据权利要求13所述的信息传输方法,其中,所述控制信令,按照第二子载波间隔对应的OFDM符号进行发送。
  15. 一种信息传输方法,包括:
    第一接收端按照第一子载波间隔对应的正交频分复用OFDM符号构成的第一时隙的位置,进行控制信令的接收(S301);
    所述第一接收端根据所述控制信令,确定所述第一时隙中部分或全部的第一子载波间隔对应的OFDM符号被用于发送或接收业务数据(S302);
    所述第一接收端按照所述第一子载波间隔对应的OFDM符号来发送或接收业务数据(S303)。
  16. 根据权利要求15所述的信息传输方法,其中,所述第一接收端根据所述控制信令,确定所述第一时隙中部分或全部的第一子载波间隔对应的OFDM符号被用于发送或接收业务数据,包括:
    所述第一接收端从所述控制信令中,确定所述第一时隙中被用于按照第一子载波间隔进行数据发送和数据接收中至少一项的OFDM符号。
  17. 根据权利要求15所述的信息传输方法,所述信息传输方法还包括:所述第一接收端通过以下方式确定第一子载波间隔对应的OFDM符号构成的第一时隙的位置:
    将所述第一子载波间隔对应的OFDM符号,按照约定数量构成一个第一时隙,在时间方向,按照第一时隙的时长顺序放置第一时隙。
  18. 根据权利要求15所述的信息传输方法,其中,所述进行控制信令的接收,包括:在所述第一时隙的开始处的OFDM符号进行控制信令的接收。
  19. 根据权利要求15所述的信息传输方法,其中,所述控制信令,包括以下至少之一:控制信令对应的业务数据发送时使用的子载波间隔信息、控制信令对应的业务数据接收时使用的子载波间隔信息。
  20. 根据权利要求15所述的信息传输方法,其中,所述控制信令,用于指示所述第一时隙包含的第一子载波间隔对应的OFDM符号的符号数、第一时隙的时长或结束位置。
  21. 根据权利要求15所述的信息传输方法,其中,所述第一时隙的结束位置位于参考子载波间隔对应的OFDM符号的一个OFDM符号边界。
  22. 根据权利要求15所述的信息传输方法,其中,所述进行控制信令的接收,包括:在所述第一时隙中按照第一子载波间隔对应的OFDM符号实际发送或接收业务数据的OFDM符号之前,接收控制信令;
    其中,所述实际发送或接收业务数据的OFDM符号包括:除了所述第一时隙中部分的第一子载波间隔对应的OFDM符号,该部分的第一子载波间隔对应的OFDM符号没有用于发送或接收第一子载波间隔对应的业务数据,而被用于按照第二子载波间隔对应的OFDM符号来发送或接收业务数据。
  23. 根据权利要求22所述的信息传输方法,其中,所述控制信令,按照 第二子载波间隔对应的OFDM符号进行接收。
  24. 一种信息传输方法,包括:
    第二接收端按照第二子载波间隔对应的正交频分复用OFDM符号构成的第二时隙的位置,在第二时隙的开始的OFDM符号,进行控制信令的接收(S401),并按照所述第二子载波间隔对应的OFDM符号来发送或接收业务数据(S402)。
  25. 根据权利要求24所述的信息传输方法,所述信息传输方法还包括:所述第二接收端通过以下方式确定第二子载波间隔对应的OFDM符号构成的第二时隙的位置:
    将所述第二子载波间隔对应的OFDM符号,按照约定数量构成一个第二时隙,在时间方向,按照第二时隙的时长顺序放置第二时隙。
  26. 根据权利要求24所述的信息传输方法,其中,所述控制信令,指示第二时隙包含的符号数量、第二时隙的时长或第二时隙的结束位置。
  27. 根据权利要求24所述的信息传输方法,其中,所述在第二时隙的开始的OFDM符号,进行控制信令的接收,包括:在第二时隙的开始的OFDM符号,按照约定的子载波间隔进行控制信令的接收。
  28. 根据权利要求24所述的信息传输方法,其中,所述控制信令,包括以下至少之一:控制信令对应的业务数据发送时使用的子载波间隔信息、控制信令对应的业务数据接收时使用的子载波间隔信息。
  29. 根据权利要求24所述的信息传输方法,其中,所述第二时隙的结束位置位于参考子载波间隔或者之后时分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界。
  30. 根据权利要求29所述的信息传输方法,所述信息传输方法还包括:当所述第二时隙按照约定的时长或符号数,不能对齐到参考子载波间隔或者之后时分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界时,所述第二接收端根据发送端的指示对第二时隙的符号进行增加或减少,以对齐到参考子载波间隔或者之后时分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界。
  31. 根据权利要求30所述的信息传输方法,其中,所述控制信令中的比特能够指示对第二时隙的符号进行增加或减少。
  32. 一种信息传输装置,应用于发送端,所述信息传输装置包括:
    发送模块(801),配置为按照第一子载波间隔对应的正交频分复用OFDM符号构成的第一时隙的位置,在所述第一时隙发送控制信令;
    第一传输模块(802),配置为按照所述第一子载波间隔对应的OFDM符号来发送或接收业务数据;
    其中,所述第一传输模块(802),配置为允许使用所述第一时隙中部分或全部的第一子载波间隔对应的OFDM符号,发送或接收第二子载波间隔对应的OFDM符号构成的第二时隙,并按照所述第二子载波间隔对应的OFDM符号来发送或接收业务数据;
    其中,所述第二子载波间隔大于所述第一子载波间隔,或者,所述第一时隙的时长大于所述第二时隙的时长。
  33. 根据权利要求32所述的信息传输装置,所述信息传输装置还包括:第一处理模块(803),配置为将所述第一子载波间隔对应的OFDM符号,按照约定数量构成一个第一时隙,在时间方向,按照第一时隙的时长顺序放置第一时隙;以及,将所述第二子载波间隔对应的OFDM符号,按照约定数量构成一个第二时隙,在时间方向,按照第二时隙的时长顺序放置第二时隙。
  34. 根据权利要求32所述的信息传输装置,所述信息传输装置还包括:指示模块(804),配置为当所述第二时隙按照约定的时长或符号数不能对齐到第一子载波间隔对应的OFDM符号中的一个OFDM符号边界时,配置并指示第二时隙的符号数进行增加或减少,以对齐到第一子载波间隔对应的OFDM符号中的一个OFDM符号边界。
  35. 一种信息传输装置,应用于第一接收端,所述信息传输装置包括:
    第一接收模块(901),配置为按照第一子载波间隔对应的正交频分复用OFDM符号构成的第一时隙的位置,进行控制信令的接收;
    确定模块(902),配置为根据所述控制信令,确定所述第一时隙中部分或全部的第一子载波间隔对应的OFDM符号被用于发送或接收业务数据;
    第二传输模块(903),配置为按照所述第一子载波间隔对应的OFDM符号来发送或接收业务数据。
  36. 根据权利要求35所述的信息传输装置,其中,所述确定模块(902),配置为从所述控制信令中,确定所述第一时隙中被用于按照第一子载波间隔进行数据发送和接收中至少一项的OFDM符号。
  37. 根据权利要求35所述的信息传输装置,所述信息传输装置还包括:第二处理模块(904),配置为将所述第一子载波间隔对应的OFDM符号,按照约定数量构成一个第一时隙,在时间方向,按照第一时隙的时长顺序放置第一时隙。
  38. 一种信息传输装置,应用于第二接收端,所述信息传输装置包括:
    第二接收模块(1001),配置为按照第二子载波间隔对应的正交频分复用OFDM符号构成的第二时隙的位置,在第二时隙的开始的OFDM符号,进行控制信令的接收;
    第三传输模块(1002),配置为按照所述第二子载波间隔对应的OFDM符号来发送或接收业务数据。
  39. 根据权利要求38所述的信息传输装置,所述信息传输装置还包括:第三处理模块(1003),配置为将所述第二子载波间隔对应的OFDM符号,按照约定数量构成一个第二时隙,在时间方向,按照第二时隙的时长顺序放置第二时隙。
  40. 根据权利要求38所述的信息传输装置,所述信息传输装置还包括:第四处理模块,配置为当所述第二时隙按照约定的时长或符号数,不能对齐到参考子载波间隔或者之后时分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界时,根据发送端的指示对第二时隙的符号进行增加或减少,以对齐到参考子载波间隔或者之后时分复用的时隙的子载波间隔对应的OFDM符号的一个OFDM符号边界。
  41. 一种电子设备,包括:处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:
    按照第一子载波间隔对应的正交频分复用OFDM符号构成的第一时隙 的位置,在第一时隙发送控制信令,并按照第一子载波间隔对应的OFDM符号来发送或接收业务数据;允许使用第一时隙中部分或全部的第一子载波间隔对应的OFDM符号,发送或接收第二子载波间隔对应的OFDM符号构成的第二时隙,并按照第二子载波间隔对应的OFDM符号来发送或接收业务数据;其中,第二子载波间隔大于第一子载波间隔,或者,第一时隙的时长大于第二时隙的时长。
  42. 一种电子设备,包括:处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:
    按照第一子载波间隔对应的正交频分复用OFDM符号构成的第一时隙的位置,进行控制信令的接收;根据所述控制信令,确定第一时隙中部分或全部的第一子载波间隔对应的OFDM符号被用于发送或接收业务数据;按照第一子载波间隔对应的OFDM符号来发送或接收业务数据。
  43. 一种电子设备,包括:处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:
    按照第二子载波间隔对应的正交频分复用OFDM符号构成的第二时隙的位置,在第二时隙的开始的OFDM符号,进行控制信令的接收,并按照第二子载波间隔对应的OFDM符号来发送或接收业务数据。
  44. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如权利要求1至14中任一项所述的信息传输方法。
  45. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如权利要求15至23中任一项所述的信息传输方法。
  46. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如权利要求24至31中任一项所述的信息传输方法。
PCT/CN2017/103221 2016-09-29 2017-09-25 一种信息传输方法及装置 WO2018059356A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610870419.1A CN107888529A (zh) 2016-09-29 2016-09-29 一种信息传输方法及装置
CN201610870419.1 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018059356A1 true WO2018059356A1 (zh) 2018-04-05

Family

ID=61763732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103221 WO2018059356A1 (zh) 2016-09-29 2017-09-25 一种信息传输方法及装置

Country Status (2)

Country Link
CN (1) CN107888529A (zh)
WO (1) WO2018059356A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111684840B (zh) 2018-05-11 2022-09-27 Oppo广东移动通信有限公司 中继系统同步方法、装置、计算机设备及存储介质
CN113812108B (zh) * 2019-05-16 2023-03-17 华为技术有限公司 一种时分双工通信方法和装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150256308A1 (en) * 2014-03-07 2015-09-10 Huawei Technologies Co., Ltd. Systems and Methods for OFDM with Flexible Sub-Carrier Spacing and Symbol Duration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150256308A1 (en) * 2014-03-07 2015-09-10 Huawei Technologies Co., Ltd. Systems and Methods for OFDM with Flexible Sub-Carrier Spacing and Symbol Duration

Also Published As

Publication number Publication date
CN107888529A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
KR102451082B1 (ko) Nr 시스템에서 광대역 동작 방법 및 장치
US10887883B2 (en) Method and apparatus for aggregating carriers in wireless communication systems
US10602392B2 (en) Wireless communication method and wireless communication apparatus
US11659530B2 (en) Wireless communication method, device and storage medium
WO2019096311A1 (zh) 随机接入方法、终端及网络设备
US20230131212A1 (en) Method and device for transmitting and receiving signals
WO2018059407A1 (zh) 一种调度单元时分复用方法及装置、信息传输方法及装置
US10880069B2 (en) Techniques for processing multiple division duplexing schemes within a transmission time interval
JP2019083567A (ja) 端末装置、基地局、及び方法
KR20220050157A (ko) 리소스 다중화 방법 및 장치
US11864169B2 (en) Method and apparatus for configuring or aquiring transmission bandwidth configuration corresponding to channel bandwidth
JP2019503141A (ja) スケジューリング方法、データ伝送方法及び装置
WO2018059356A1 (zh) 一种信息传输方法及装置
CN114071753A (zh) 发送和接收信号的方法和设备
KR102095047B1 (ko) 시간 분할 듀플렉싱을 지원하는 협대역 IoT 시스템에서 랜덤 액세스 프리앰블을 전송하기 위한 방법 및 이를 위한 장치
KR102510400B1 (ko) 무선 통신 시스템에서 상향링크 제어 정보를 송수신하고 랜덤 액세스를 요청하기 위한 방법 및 장치
JP7513163B2 (ja) 基地局、及び第1の端末装置
US20230300822A1 (en) Scheduling positioning reference signal transmissions across different subcarrier spacings
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质
WO2022126590A1 (en) Methods and apparatuses for a pusch repetition enhancement mechanism for a tdd scenario
JP2022191326A (ja) ユーザ機器及び基地局
CN114765867A (zh) 一种信号的传输方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17854806

Country of ref document: EP

Kind code of ref document: A1