WO2021000858A1 - 发送方法及装置、接收方法及装置、终端、存储介质 - Google Patents

发送方法及装置、接收方法及装置、终端、存储介质 Download PDF

Info

Publication number
WO2021000858A1
WO2021000858A1 PCT/CN2020/099288 CN2020099288W WO2021000858A1 WO 2021000858 A1 WO2021000858 A1 WO 2021000858A1 CN 2020099288 W CN2020099288 W CN 2020099288W WO 2021000858 A1 WO2021000858 A1 WO 2021000858A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
channel
specific
signal
domain resource
Prior art date
Application number
PCT/CN2020/099288
Other languages
English (en)
French (fr)
Inventor
杨玲
赵亚军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021000858A1 publication Critical patent/WO2021000858A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]

Definitions

  • This application relates to notification of the availability of time-frequency resources in a new wireless access technology, for example, it relates to a sending method and device, a receiving method and device, a terminal, and a storage medium.
  • NR-based Access to Unlicensed Spectrum NR-U
  • ETSI European Telecommunications Standards Institute
  • LBT listen before talk
  • the device can implement a broadband-based LBT mechanism on the entire bandwidth. If the implementation of the LBT mechanism is successful, the resources on the entire bandwidth can be fully utilized. On the contrary, once the implementation of the LBT mechanism fails, the device cannot perform transmission on the entire bandwidth. For example, if the implementation of the LBT mechanism fails on any subband of the broadband, the LBT mechanism on the entire broadband will be determined as a failure. Doing so will cause the utilization of system resources to become very low.
  • the sub-band-based LBT mechanism on the broadband.
  • the LBT operation is performed based on the sub-band.
  • the device can use those sub-bands that successfully perform the LBT mechanism for information transmission. .
  • This method makes the actual transmission bandwidth dynamically change on the broadband, and this characteristic will affect the transmission of downlink (uplink) control information, downlink (uplink) data channels, etc.
  • this feature makes it impossible for the terminal to know the subband information of the successful implementation of the LBT mechanism on the base station side, thereby increasing some useless busy check operations and power loss.
  • This application provides a sending method and device, a receiving method and device, a terminal, and a storage medium, which can implement the base station side to indicate the frequency domain resource occupancy status to the terminal side.
  • the embodiment of the present invention provides a sending method, including at least one of the following:
  • a specific channel/signal is sent on a specific frequency domain resource.
  • the embodiment of the present invention also provides a receiving method, including:
  • the embodiment of the present invention provides a sending device, including at least one of the following:
  • Information acquisition module for acquiring specific information
  • the sending module is used to send a specific channel/signal on a specific frequency domain resource based on specific information.
  • the embodiment of the present invention provides a receiving device, including:
  • the receiving module is used to receive a specific channel/signal on a specific frequency domain resource.
  • the embodiment of the present invention provides a computer-readable storage medium that stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, the foregoing sending method is implemented.
  • the embodiment of the present invention provides a sending terminal, which is characterized in that it includes:
  • Memory used to store computer executable instructions
  • the processor is configured to execute the computer-executable instructions to implement the aforementioned sending method.
  • the embodiment of the present invention provides a computer-readable storage medium that stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, the receiving method as described above is implemented.
  • the embodiment of the present invention provides a receiving terminal, including:
  • Memory used to store computer executable instructions
  • the processor is configured to execute the computer-executable instructions to implement the receiving method as described above.
  • the embodiments of the present invention include at least one of the following: acquiring specific information; and transmitting a specific channel/signal on a specific frequency domain resource based on the specific information.
  • the embodiment of the present invention can realize that the base station side indicates the frequency domain resource occupation condition to the terminal side.
  • FIG. 1 is a flowchart of a sending method provided by an embodiment of the present invention
  • FIG. 2 is a flowchart of a receiving method provided by an embodiment of the present invention.
  • FIG. 3 is a block diagram of a sending device provided by an embodiment of the present invention.
  • FIG. 4 is a block diagram of a receiving device provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a CORESET configuration method provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another CORESET configuration method provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another CORESET configuration method provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another CORESET configuration method provided by an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of another CORESET configuration provided by an embodiment of the present invention.
  • the embodiment of the present invention provides a sending method, as shown in FIG. 1, including:
  • S101 obtains specific information.
  • a specific channel/signal is sent on a specific frequency domain resource based on specific information.
  • the sending method may also include acquiring specific information, or transmitting a specific channel/signal on a specific frequency domain resource based on the specific information.
  • the "/" in this embodiment means "and/or”.
  • the method further includes:
  • the LBT mechanism Before performing a specific channel/signal transmission, the LBT mechanism is performed after listening; when the LBT mechanism is successfully performed or the channel is judged to be idle, the specific channel/signal transmission is performed on the specific frequency domain resource.
  • the method further includes at least one of the following:
  • the specific channel/signal transmission on the specific frequency domain resource is abandoned; or, when the execution of the LBT mechanism fails or the channel is judged to be busy, and the current frequency domain resource is configured with
  • the specific channel/signal is switched to the frequency domain resource on which the LBT mechanism is successfully executed or the channel is idle according to a specific rule.
  • the specific rule includes at least one of the following:
  • the specific rule in the case of a frequency domain resource group, further includes at least one of the following:
  • Switch to the frequency domain resource in the frequency domain resource group with good channel conditions switch to the first frequency domain resource in the frequency domain resource group; switch to the last frequency domain resource in the frequency domain resource group; switch to the predefined Frequency domain resources in the frequency domain resource group; randomly switch to frequency domain resources in the frequency domain resource group.
  • the specific channel/signal includes at least one of the following:
  • DCI Downlink Control Information
  • GC-PDCCH Downlink Common-Physical Downlink Control Channel
  • PDCCH Downlink Control Channel
  • DMRS Demodulation reference for demodulated data Signal
  • CSI-RS channel state information reference signal
  • synchronous broadcast block SSB discovery reference signal DRS; physical broadcast channel PBCH containing DMRS; primary synchronization signal PSS; secondary synchronization signal SSS; downlink physical shared channel PDSCH; Uplink Control Channel (Physical Uplink Control Channel, PUCCH); Sounding Reference Signal (Sounding Reference Signal, SRS); Uplink Physical Shared Channel (Physical Uplink Shared Channel, PUSCH).
  • At least one of CORESET, DCI signaling, GC-PDCCH, and PDCCH carries at least one of the following information:
  • Time domain transmission structure information the time includes a period of time, and/or, the current time, and/or, the subsequent time; the current time, and/or, the channel occupancy of frequency domain resources in the subsequent time; frequency domain resources If the LBT mechanism is executed successfully or the channel is idle, or the LBT mechanism fails or the channel is busy; the number of time domain resources; the number of symbols occupied by time domain resources; the time domain resource configuration of the downlink control channel; the period of the downlink control channel; The number of symbols occupied by the downlink control channel; the time-domain position of the feedback feedback; the number of the time-domain symbols fed back; the PDSCH or PDSCH group index of the downlink feedback; the hybrid automatic repeat reQuest (Hybrid Automatic Repeat reQuest, HARQ) process or HARQ of the downlink feedback Process group.
  • Hybrid Automatic Repeat reQuest Hybrid Automatic Repeat reQuest, HARQ
  • DMRS in the control resource set CORESET DMRS in the downlink common control channel GC-PDCCH, DMRS in the downlink control channel PDCCH, DMRS for demodulation data, channel state information reference signal CSI-RS, synchronous broadcast block SSB, discovery reference signal DRS, including At least one of DMRS physical broadcast channel PBCH, primary synchronization signal PSS, secondary synchronization signal SSS, uplink control channel PUCCH, sounding reference signal SRS, and/or, the phase rotation of the corresponding channel/signal, and/or, the corresponding channel/ The frequency domain comb of the signal, and the time domain transmission structure of at least one of the current time and subsequent time within a period of time, and at least one of the channel occupancy conditions of the frequency domain resources of at least one of the current time and the subsequent time There is a correspondence between one.
  • the method further includes:
  • the listen-and-speak LBT mechanism Before sending a specific channel/signal, execute the listen-and-speak LBT mechanism; if the implementation of the LBT mechanism succeeds or the channel is judged to be idle, perform a specific channel/signal transmission on a specific frequency domain resource; perform other LBT mechanisms successfully or It is determined that the content carried in the specific channel/signal is no longer sent on the frequency domain resource where the channel is idle.
  • the specific channel/signal, or the control resource set CORESET, or, the GC-PDCCH, or the configuration mode of the PDCCH on the frequency domain resources includes at least one of the following:
  • a specific channel/signal, or, control resource set CORESET, or, GC-PDCCH, or, PDCCH is configured on each frequency domain resource; multiple specific channels/signals, or, multiple control resource sets CORESET, or , Multiple GC-PDCCHs, or multiple PDCCHs are respectively configured on continuous frequency domain resources; multiple specific channels/signals, or, multiple control resource sets CORESET, or, multiple GC-PDCCHs, or, Multiple PDCCHs are respectively configured on discrete frequency domain resources; a specific channel/signal, or, a control resource set CORESET, or, a GC-PDCCH, or, a PDCCH is configured to span multiple frequency domain resources Above; specific channel/signal, or, control resource set CORESET, or, GC-PDCCH, or, PDCCH is repeatedly configured on all frequency domain resources.
  • the repeated configuration includes at least one of the following: a single specific channel/signal, or a single control resource set CORESET, or, a single GC-PDCCH, or, a single PDCCH is repeatedly configured on all frequency domain resources; multiple specific channels /Signal, or, multiple control resource sets CORESET, or, multiple GC-PDCCH, or, multiple PDCCHs as a whole are repeated on all frequency domain resources.
  • Radio Resource Control Radio Resource Control
  • DCI Downlink control information
  • the specific information includes at least one of the following:
  • Scheduling information listen first and then talk about the LBT mechanism type; listen first and then talk about the priority level of the LBT mechanism; listen first and then talk about the parameter information corresponding to the LBT mechanism; the number of specific channels/signals; frequency domain resource information; time domain resource information; Time domain structure information; frequency domain resource switching information or switching trigger signaling; signaling to trigger feedback feedback; time domain position of feedback feedback; number of time domain symbols fed back; downlink physical shared channel PDSCH or PDSCH group index for downlink feedback; Downlink feedback hybrid automatic repeat request HARQ process or HARQ process group; specific channel/signal time domain resource location information; specific channel/signal frequency domain resource location information; specific channel/signal, and its phase rotation , And, at least one of its frequency domain combs, and, within a period of time, the current and subsequent time-domain transmission structure of at least one of the following, and, currently, the channel occupancy of at least one of the following frequency domain resources Correspondence or correspondence index between at least one of them.
  • the specific frequency domain resource includes at least one of the following:
  • the specific information is obtained through at least one of the following methods:
  • High-level radio resource control RRC signaling physical layer downlink control information DCI signaling; previous physical layer downlink control information DCI signaling; predefined method.
  • the embodiment of the present invention can realize that the base station side indicates the frequency domain resource occupation condition to the terminal side.
  • the embodiment of the present invention also provides a receiving method, as shown in FIG. 2, including:
  • S201 receives a specific channel/signal on a specific frequency domain resource.
  • the specific channel/signal includes: explicit downlink control information DCI signaling.
  • the method also includes:
  • the specific channel/signal received on the specific frequency domain resource determine or obtain the time domain transmission structure information of at least one of the current and subsequent ones within a period of time, and/or, the current and subsequent ones Channel occupancy status of at least one of the frequency domain resources.
  • the method further includes:
  • the implicit determination or acquisition of the current and subsequent time-domain transmission structure information for a period of time, and/or the current and subsequent frequency-domain resource channel occupancy conditions Including at least one of the following:
  • the reference signal DRS includes at least one of the DMRS physical broadcast channel PBCH, the primary synchronization signal PSS, the secondary synchronization signal SSS, the uplink control channel PUCCH, and the sounding reference signal SRS, and/or the phase rotation of the corresponding channel/signal, and/or , Corresponding to the frequency domain comb of the channel/signal, implicitly determine the current and subsequent time-domain transmission structure for a period of time, and/or the current and subsequent frequency domain resource channel occupancy .
  • the specific channel/signal includes at least one of the following:
  • Control resource set CORESET downlink control information DCI signaling; downlink common control channel GC-PDCCH; downlink control channel PDCCH; demodulated data DMRS; channel state information reference signal CSI-RS; synchronous broadcast block SSB; discovery reference signal DRS; physical broadcast channel PBCH containing DMRS; primary synchronization signal PSS; secondary synchronization signal SSS; downlink physical shared channel PDSCH; uplink control channel PUCCH; sounding reference signal SRS; uplink physical shared channel PUSCH.
  • the specific frequency domain resource includes at least one of the following:
  • the embodiment of the present invention can realize that the terminal side learns the frequency domain resource occupation situation from the base station side.
  • the embodiment of the present invention also provides a sending device, as shown in FIG. 3, including:
  • the information obtaining module 301 is used to obtain specific information; the sending module 302 is used to send a specific channel/signal on a specific frequency domain resource based on the specific information.
  • the sending device described in the embodiment of the present invention may also include an information acquisition module 301 or a sending module 302; "/" in the embodiment of the present invention means “and/or”.
  • the sending module 302 is also used to execute the listen-and-speak LBT mechanism before sending a specific channel/signal; when the LBT mechanism is successfully executed or the channel is judged to be idle, in the specific frequency Specific channel/signal transmission is performed on domain resources.
  • the sending module 302 is further configured to perform at least one of the following:
  • the specific channel/signal transmission on the specific frequency domain resource is abandoned; or, when the execution of the LBT mechanism fails or the channel is judged to be busy, and the current frequency domain resource is configured with
  • the specific channel/signal is switched to the frequency domain resource on which the LBT mechanism is successfully executed or the channel is idle according to a specific rule.
  • the specific rule includes at least one of the following:
  • the specific rule further includes at least one of the following:
  • Switch to the frequency domain resource in the frequency domain resource group with good channel conditions switch to the first frequency domain resource in the frequency domain resource group; switch to the last frequency domain resource in the frequency domain resource group; switch to the predefined Frequency domain resources in the frequency domain resource group; randomly switch to frequency domain resources in the frequency domain resource group.
  • the specific channel/signal includes at least one of the following:
  • Control resource set CORESET downlink control information DCI signaling, downlink common control channel GC-PDCCH, downlink control channel PDCCH; demodulation reference signal DMRS for demodulated data; channel state information reference signal CSI-RS; synchronous broadcast block SSB Discovery reference signal DRS; physical broadcast channel PBCH containing DMRS; primary synchronization signal PSS; secondary synchronization signal SSS; downlink physical shared channel PDSCH; uplink control channel PUCCH; sounding reference signal SRS; uplink physical shared channel PUSCH.
  • At least one of CORESET, DCI signaling, GC-PDCCH, and PDCCH carries at least one of the following information:
  • Time domain transmission structure information the time includes a period of time, and/or, the current time, and/or, the subsequent time; the current time, and/or, the channel occupancy of frequency domain resources in the subsequent time; frequency domain resources If the LBT mechanism is executed successfully or the channel is idle, or the LBT mechanism fails or the channel is busy; the number of time domain resources; the number of symbols occupied by time domain resources; the time domain resource configuration of the downlink control channel; the period of the downlink control channel; The number of symbols occupied by the downlink control channel; the time domain position of the feedback feedback; the number of the time domain symbols fed back; the PDSCH or PDSCH group index of the downlink feedback; the hybrid automatic repeat request HARQ process or the HARQ process group of the downlink feedback.
  • DMRS in the control resource set CORESET DMRS in the downlink common control channel GC-PDCCH, DMRS in the downlink control channel PDCCH, DMRS for demodulation data, channel state information reference signal CSI-RS, synchronous broadcast block SSB, discovery reference signal DRS, including At least one of DMRS physical broadcast channel PBCH, primary synchronization signal PSS, secondary synchronization signal SSS, uplink control channel PUCCH, sounding reference signal SRS, and/or, the phase rotation of the corresponding channel/signal, and/or, the corresponding channel/ The frequency domain comb of the signal, and the time domain transmission structure of at least one of the current time and subsequent time within a period of time, and at least one of the channel occupancy conditions of the frequency domain resources of at least one of the current time and the subsequent time There is a correspondence between one.
  • the sending module 302 is also used to execute the LBT mechanism before the specific channel/signal is sent; if the LBT mechanism is executed successfully or the channel is judged to be idle, it is used on a specific frequency domain resource Perform specific channel/signal transmission; no longer transmit the content carried in the specific channel/signal on other frequency domain resources where the LBT mechanism is successfully executed or the channel is judged to be idle.
  • the specific channel/signal, or the control resource set CORESET, or, the GC-PDCCH, or the configuration mode of the PDCCH on the frequency domain resources includes at least one of the following:
  • a specific channel/signal, or, control resource set CORESET, or, GC-PDCCH, or, PDCCH is configured on each frequency domain resource; multiple specific channels/signals, or, multiple control resource sets CORESET, or , Multiple GC-PDCCHs, or multiple PDCCHs are respectively configured on continuous frequency domain resources; multiple specific channels/signals, or, multiple control resource sets CORESET, or, multiple GC-PDCCHs, or, Multiple PDCCHs are respectively configured on discrete frequency domain resources; a specific channel/signal, or, a control resource set CORESET, or, a GC-PDCCH, or, a PDCCH is configured to span multiple frequency domain resources Above; specific channel/signal, or, control resource set CORESET, or, GC-PDCCH, or, PDCCH is repeatedly configured on all frequency domain resources.
  • the repeated configuration includes at least one of the following: a single specific channel/signal, or a single control resource set CORESET, or, a single GC-PDCCH, or, a single PDCCH is repeatedly configured on all frequency domain resources; multiple specific channels /Signal, or, multiple control resource sets CORESET, or, multiple GC-PDCCH, or, multiple PDCCHs as a whole are repeated on all frequency domain resources.
  • High-level radio resource control RRC signaling downlink control information DCI signaling; trigger determination or adjustment based on the number of failures or successes of performing LBT; determination based on the result of performing LBT.
  • the specific information includes at least one of the following:
  • Scheduling information listen first and then talk about the LBT mechanism type; listen first and then talk about the priority level of the LBT mechanism; listen first and then talk about the parameter information corresponding to the LBT mechanism; the number of specific channels/signals; frequency domain resource information; time domain resource information; Time domain structure information; frequency domain resource switching information or switching trigger signaling; signaling to trigger feedback feedback; time domain position of feedback feedback; number of time domain symbols fed back; downlink physical shared channel PDSCH or PDSCH group index for downlink feedback; Downlink feedback hybrid automatic repeat request HARQ process or HARQ process group; specific channel/signal time domain resource location information; specific channel/signal frequency domain resource location information; specific channel/signal, and its phase rotation , And, at least one of its frequency domain combs, and, within a period of time, the current and subsequent time-domain transmission structure of at least one of the following, and, currently, the channel occupancy of at least one of the following frequency domain resources Correspondence or correspondence index between at least one of them.
  • the specific frequency domain resource includes at least one of the following:
  • the information obtaining module 301 is configured to obtain specific information in at least one of the following ways:
  • High-level radio resource control RRC signaling physical layer downlink control information DCI signaling; previous physical layer downlink control information DCI signaling; predefined method.
  • the embodiment of the present invention can realize that the base station side indicates the frequency domain resource occupation condition to the terminal side.
  • the embodiment of the present invention also provides a receiving device, as shown in FIG. 4, including:
  • the receiving module 401 is configured to receive a specific channel/signal on a specific frequency domain resource.
  • the specific channel/signal includes: explicit downlink control information DCI signaling.
  • the receiving module 401 further includes: determining or acquiring at least one of the current and subsequent time-domain transmission structure information for a period of time through explicit DCI signaling carried in a specific channel/signal received on a specific frequency domain resource , And/or, at least one of the channel occupancy status of the frequency domain resources in the current and subsequent periods.
  • the receiving module 401 further includes: by receiving information carried by a specific channel/signal on a specific frequency domain resource, implicitly determining or acquiring at least one of the current and subsequent time domains within a period of time Transmission structure information, and/or, current and subsequent channel occupancy of at least one of the frequency domain resources.
  • the receiving module 401 is configured to implicitly determine or obtain the current and subsequent time-domain transmission structure information for a period of time, and/or the current and subsequent frequencies of at least one
  • the channel occupation status of domain resources includes at least one of the following:
  • the reference signal DRS includes at least one of the DMRS physical broadcast channel PBCH, the primary synchronization signal PSS, the secondary synchronization signal SSS, the uplink control channel PUCCH, and the sounding reference signal SRS, and/or the phase rotation of the corresponding channel/signal, and/or , Corresponding to the frequency domain comb of the channel/signal, implicitly determine the current and subsequent time-domain transmission structure for a period of time, and/or the current and subsequent frequency domain resource channel occupancy .
  • the specific channel/signal includes at least one of the following:
  • Control resource set CORESET downlink control information DCI signaling; downlink common control channel GC-PDCCH; downlink control channel PDCCH; demodulated data DMRS; channel state information reference signal CSI-RS; synchronous broadcast block SSB; discovery reference signal DRS; physical broadcast channel PBCH containing DMRS; primary synchronization signal PSS; secondary synchronization signal SSS; downlink physical shared channel PDSCH; uplink control channel PUCCH; sounding reference signal SRS; uplink physical shared channel PUSCH.
  • the specific frequency domain resource includes at least one of the following:
  • the embodiment of the present invention can realize that the terminal side learns the frequency domain resource occupation situation from the base station side.
  • the embodiment of the present invention provides a computer-readable storage medium that stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, the foregoing sending method is implemented.
  • the embodiment of the present invention provides a sending terminal, including:
  • the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions to implement the sending method as described above.
  • the embodiment of the present invention provides a computer-readable storage medium that stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, the receiving method as described above is implemented.
  • the embodiment of the present invention provides a receiving terminal, including:
  • the memory is used to store computer-executable instructions; the processor is used to execute the computer-executable instructions to implement the receiving method as described above.
  • This embodiment provides a control resource set (Control Resource Set, CORESET), or a downlink control channel (Physical Downlink Control Channel, PDCCH) configuration method.
  • the configuration method includes at least one of the following: (semi) static configuration, dynamic configuration, and predefined.
  • a CORESET or PDCCH configuration mode in a (semi) static mode is mainly provided. That is, CORESET, or, at least one of the time domain resource position and frequency domain resource position configured by the PDCCH is fixed, or is periodically updated, or is dynamically updated based on DCI.
  • the frequency domain in the frequency domain resource location includes at least one of the following: carrier (group), BWP (group), and subband (group).
  • BWP as an example to illustrate CORESET, or PDCCH transmission position in BWP.
  • CORESET or a fixed configuration relationship between each subband in the PDCCH and the BWP.
  • Rule 1 CORESET, or PDCCH is configured on consecutive subbands.
  • the configured CORESET is sequentially configured on the corresponding subbands in the BWP. That is, CORESET index (index)#0, CORESET index#1,..., CORESET index#A1-1, corresponding to subband index#j, subband index#j+1,..., subband index# in turn j+A1-1, or, in turn correspond to subband index#A2, #A2-1,..., subband index#A2-A1+1.
  • the number of CORESET configured in a BWP is 3, the BWP is 100MHz, and the BWP contains 5 20MHz subbands.
  • its CORESET index#1, CORESET index#2, CORESET index #3 is sequentially arranged on the subbands index#1, index#2, and index#3.
  • the above method is also applicable to BWP (group), and/or CORESET on the carrier (group), or PDCCH correspondence.
  • CORESET, or PDCCH is configured on discrete subbands, or, in a discrete manner, transmitted on corresponding subbands. That is, CORESET, or PDCCH, determines the position of the subband (group) for transmission between subbands (groups) according to the start index and/or the offset parameter. Wherein, the subband here can be replaced with BWP (group), and/or carrier (group).
  • CORESET, or, PDCCH is configured on the subband with even index, or, on the subband with odd index; or, CORESET, or, PDCCH is configured in the subband group with even index, or, on the subband with odd index Within the sub-band group.
  • the position of CORESET in the sub-band group can be at least one of the following: randomly selected; in accordance with the principle of the smallest sub-band index of the sub-band; in accordance with the principle of largest sub-band index of the sub-band; in accordance with the default/predefined method.
  • the above-mentioned start index and/or the offset parameter can be configured by at least one of the following: high-layer RRC signaling, dynamic DCI, and predefined.
  • CORESET index#1 is configured in subband group index#1 (including subband index#1 and subband index#2)
  • CORESET index#2 is configured in subband group index#2 (including subband index#3 and subband index#4)
  • CORESET index#3 is configured in subband group index#3 (including subband index#5).
  • a CORESET, or PDCCH spans multiple subbands.
  • a CORESET contains one or more search spaces. Each search space is composed of a set of candidate PDCCHs at a specific aggregation level.
  • the position information of the PDCCH set of the frequency domain candidates can be introduced in the CORESET or in the search space.
  • a CORESET is configured in a BWP, and a CORESET contains a search space, which is composed of a set of candidate PDCCHs with aggregation level 4.
  • the frequency domain in the search space includes a control channel element (CCE) with a set level of 4, and each CCE includes 6 resource element groups (REG).
  • CCEs with an aggregation level of 4 can be restricted to each subband.
  • a repetitive approach can also be introduced.
  • the terminal UE detection can determine whether the LBT mechanism on the subband is successful by detecting the DMRS in the PDCCH in each subband.
  • the method in this embodiment is applicable to at least one of subband (group), BWP (group), carrier (group), subcarrier (group), and resource block (group).
  • CORESET or PDCCH can be repeatedly configured on all subbands.
  • the frequency domain repetition here can be that the CORESET is repeated on all subbands as a whole, as shown in Figure 9, or each CORESET is repeated individually.
  • the number of repetitions and the repetition mode may be determined by at least one of the following methods: high-layer RRC signaling, dynamic DCI, and predefined.
  • This embodiment provides a control resource set CORESET (Control Resource Set, control resource set), or a downlink control channel PDCCH (Physical Downlink Control Channel, downlink control channel) configuration method.
  • the configuration method includes at least one of the following: pre-defined, (semi) static configuration, dynamic configuration, and pre-defined.
  • a CORESET or PDCCH configuration mode in a dynamic mode is mainly provided.
  • the device can update/learn the CORESET or PDCCH transmission location based on at least one of the following methods: high-level RRC signaling, dynamic DCI, triggered based on the number of failures/successes of the LBT mechanism, and based on the result of the execution of the LBT mechanism.
  • high-level RRC signaling high-level RRC signaling
  • dynamic DCI triggered based on the number of failures/successes of the LBT mechanism, and based on the result of the execution of the LBT mechanism.
  • the corresponding DCI needs to introduce CORESET/PDCCH number, CORESET/PDCCH index and subband (group) correspondence/index, starting subband (group), interval/ Offset, at least one parameter in subband (group) information.
  • the corresponding relationship between the CORESET and the successful subband of the LBT mechanism can refer to the method in Embodiment 1.
  • the number of CORESET is at least one of the following: high-level RRC signaling configuration, predefined, determined according to the number of frequency bands, and determined according to the bandwidth and the bandwidth of the implementation of the LBT mechanism.
  • the frequency band includes at least one of the following: subband (group), BWP (group), carrier (group).
  • This embodiment provides a channel/signal transmission method. For example, CORESET, or PDCCH.
  • the device performs CORESET or PDCCH transmission on the configured CORESET or PDCCH resource location.
  • the device For the unlicensed carrier scenario, before the device performs transmission, it needs to execute the listen-before-speak LBT mechanism to obtain the right to use the unlicensed carrier. On the premise of obtaining the right to use the unlicensed carrier, the device performs signal and/or channel transmission. On the contrary, if the right to use the unlicensed carrier is not obtained, the device cannot transmit, or it needs to transmit according to other design rules.
  • LBT fails, it can be handled in at least one of the following ways: Method 1: In the LBT mechanism No transmission is performed on the failed subband (group). Optionally, the device on the subband where the LBT mechanism succeeds can perform transmission; mode 2: CORESET on the subband (group) where the LBT mechanism fails, or the PDCCH can be transferred to the subband where the LBT mechanism succeeds for transmission.
  • CORESET or PDCCH migration rules are based on at least one of the following methods: Rule 1: Migrate to the nearest subband (group) principle.
  • the new CORESET and PDCCH transmission subband determine the new CORESET and PDCCH transmission subband according to the principle of the subband (group) closest to the subband implementing the LBT mechanism; Rule 2: Randomly select the migration position on the subband (group) where the LBT mechanism is successful; Rule 3 : On the sub-bands (groups) where the LBT mechanism succeeds in sequence, or, the CORESET is determined by the start position, and/or the offset offset, or the sub-band (group) position of PDCCH migration; you can also refer to the implementation The way in example one or two. Among them, there is no CORESET or PDCCH previously configured in the new subband (group) to be migrated.
  • the CORESET position between the sub-band groups is determined first, and the CORESET position in the sub-band group is determined.
  • the manner of determining CORESET, or, which subband group the PDCCH is migrated to, is similar to the above manner.
  • the determination of the PDCCH position is based on the principle of best channel conditions, or, the principle of the first subband in the subband group, or, the principle of randomly selecting a subband, or, within the subband group The last sub-band principle.
  • CORESET or PDCCH
  • CORESET or PDCCH is sent on the subband where the LBT mechanism succeeds.
  • CORESET or PDCCH carries structural information indicating channel occupation time (Channel Occupation Time, COT) in the time domain, and/or, indicating result information of the frequency domain LBT mechanism.
  • COT Channel Occupation Time
  • the above method is also applicable to multiple carriers (groups) and/or multiple BWPs (groups).
  • This embodiment provides a way for the terminal UE to learn the downlink transmission bandwidth situation.
  • the base station due to the unavailability of the channel, it is possible for the base station to perform downlink transmission on one or more subbands in the activated BWP (Bandwidth Part) (due to the failure of the LBT mechanism on other subbands) (Or, the right to access the channel is not obtained.)
  • the terminal UE knows which subbands the LBT mechanism succeeded or failed, it will help avoid the terminal from receiving or detecting the subband where the LBT mechanism fails. It is also helpful for the UE to know which subbands are available for uplink transmission.
  • the above subbands can also be replaced with subbands (groups), BWP (groups), carriers (groups), subcarriers (groups), and resource blocks (groups). At least one.
  • Manner 1 The base station informs the UE of the current subbands (groups), and/or BWP (groups), and/or, the success or failure of the LBT mechanism on the carrier (group) through explicit signaling.
  • Solution 1 Notify the UE of the subband status of the LBT mechanism of success/failure through DCI.
  • the DCI may use signaling indicating the COT time domain structure. That is, the signaling indicating the COT time domain structure also carries the occupancy of the frequency domain channel.
  • the DCI in addition to indicating the uplink and/or downlink signal/channel structure in a COT, the number of time domain subframes (time slots/mini-slot), the number of symbols occupied, and the time domain resource configuration of the downlink control channel, In addition to at least one of cycle, number of symbols occupied, time domain position of feedback feedback, number of time domain symbols of feedback feedback, PDSCH (group) index for downlink feedback, and HARQ process (group) index for downlink feedback, you can also Indicate the subband (group) of the success/failure of the LBT mechanism in the frequency domain, and/or, BWP (group), and/or, carrier (group) information.
  • the signaling can also indicate subsequent structure in the time domain, and/or channel availability in the frequency domain.
  • the aforementioned COT can also be replaced with a period of time T, or, subframe, or, time slot, mini-slot.
  • Solution 2 Use the downlink common control channel GC-PDCCH or the downlink control channel PDCCH to indicate the channel occupancy in the frequency domain.
  • a field similar to CFI can be introduced in DCI, or a new field can be introduced to indicate current and/or subsequent downlink transmission time domain and/or frequency domain resource information .
  • the frequency domain resource is at least one of subband (group), BWP (group), carrier (group), subcarrier (group), and resource block (group).
  • the aforementioned downlink transmission can also be replaced by the success of the LBT mechanism, or the failure of the LBT mechanism.
  • Solution 3 Design a new format to indicate the time domain and/or frequency domain resource information of the current and/or subsequent downlink transmission.
  • the frequency domain resource is at least one of subband (group), BWP (group), carrier (group), subcarrier (group), and resource block (group).
  • the aforementioned downlink transmission can also be replaced by the success of the LBT mechanism, or the failure of the LBT mechanism.
  • the frequency domain resource information can be determined by means of at least one of the start position and/or the end frequency domain position (or the number of continuously occupied frequency domain resources) through a bitmap.
  • the start position and the end position may be one or more.
  • the subband (group) of the successful LBT mechanism, and/or the BWP (group), and/or, the time domain transmission structure on the carrier (group) is the same.
  • the UE recognizes the occupancy status of at least one of subband (group), BWP (group), carrier (group), subcarrier (group), and resource block (group) by detecting specific channels and/or signals.
  • the aforementioned specific channel and/or signal may be at least one of the following: DMRS for demodulating data, or CSI-RS (Channel State Information Reference Signal), or SSB (Synchronization Signal/PBCH Block) , Synchronous broadcast block), or, DRS (Discovery Reference Signal), or, DMRS in PBCH (Physical Broadcast Channel), or, PSS (Primary Synchronization Signal), or, At least one of SSS (Secondary Synchronization Signal).
  • the busy detection complexity on the UE side is reduced to a certain extent.
  • the DMRS can be configured as broadband or narrowband.
  • PDCCH or PDSCH may be further decoded.
  • the failure or success of the LBT mechanism on the subband can also be determined by the correspondence between the DMRS sequence and the subband.
  • the subband here is also replaced with at least one of subband (group), BWP (group), carrier (group), subcarrier (group), and resource block (group).
  • the DMRS sequence can also indicate the time domain structure of the COT, for example, the uplink and/or downlink signals in the COT, or the channel structure, the number of time domain subframes (slots/mini-slots), the number of symbols occupied, and the downlink At least one of the time domain resource configuration, period, and number of symbols occupied by the control channel. That is, a corresponding relationship is established between the DMRS sequence and the COT structure.
  • DMRS sequence and/or phase rotation, and/or frequency domain shift (or comb) and COT time domain and/or frequency domain information can also be established.
  • a BWP is 80 MHz and contains four 20 MHz subbands.
  • the relationship between DMRS sequence and subband is shown in Table 1:
  • the number of DMRS sequences is not enough to characterize the subband information, it can be indicated by combining the frequency domain comb and/or phase rotation of the DMRS. As shown in table 2. For example, the number of DMRS sequences is 8, and the number of comb teeth is 4.
  • the above-mentioned indication channel/signal may also indicate the occupancy status of the subbands in the subband group, or the occupancy status of the subbands in the BWP group, the subband group, and the BWP, and other processes are the same.
  • the above-mentioned explicit or implicit manner may indicate the failure or success of LBT in one or all subbands (groups) or subband groups in a BWP.
  • group subbands
  • group carrier
  • the PDCCH may carry the above-mentioned information used to indicate the time domain structure, and/or the unavailable or available channel conditions in the frequency domain.
  • the information used to indicate the time domain structure and/or the unavailable or available channel conditions in the frequency domain may also not be carried.
  • This embodiment provides a PDSCH (Physical Downlink Shared Channel, downlink physical shared channel) mapping method.
  • PDSCH Physical Downlink Shared Channel, downlink physical shared channel
  • the start position of the PDSCH time domain on the subband can be avoided to the CORESET time domain position on the adjacent subband, and ends at the time domain from CORESET The location starts PDSCH transmission.
  • the PDSCH can be transmitted on the subbands scheduled according to the PDCCH.
  • the frequency domain position of PDSCH transmission is dynamically determined.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • This embodiment provides a method for determining the number of CORESET control resource sets and/or the frequency domain mapping mode of CORESET.
  • the method in this embodiment is applicable to at least one of subband (group), BWP (group), carrier (group), subcarrier (group), and resource block (group).
  • the number of CORESET is determined according to the number of subbands. That is, in order to solve that the number of CORESETs (3) is sufficient to meet the requirements of broadband operation scenarios and/or the impact of the LBT mechanism, each subband is configured with one CORESET, and the configuration of CORESET is limited to one subband.
  • the number of CORESET is determined according to the number of subband groups. This method is to ensure that at least one subband group can be configured with a CORESET, which is used to indicate the time domain and/or frequency domain resource configuration of the subbands in the subband group. For example, the result of the LBT mechanism of the subband in the frequency domain (occupancy), and the downlink/uplink (Downlink/Uplink, DL/UL) in the current/subsequent COT (within a period of time T/subframe/slot/mini-slot) in the time domain ) Structure, occupied time domain resources, number of occupied symbols, start slot/subframe/mini slot/symbol position, end subframe/mini slot/symbol position, etc.
  • the number of CORESET is determined according to the number of subbands (subband groups) that have succeeded in the LBT mechanism.
  • the upper layer can configure a set of CORESET numbers, and the selection of the number of CORESETs is determined based on the number of subbands (subband groups) succeeded by the actual LBT mechanism.
  • the number of CORESET is based on the number of subbands (subband groups) succeeded by the current LBT mechanism, and the previous COT (within a period of time/subframe/slot/minislot) indicates CORESET (available subband or subband group) Availability) OK. That is to say, for example, the BWP contains 5 subbands, and the currently successful subbands are #1, #3, #5, where the previous information indicating the availability of the subband is continuously enabled to the current time domain resources, for example, According to the previous channel availability indication, there is always data/signal transmission on subband #5, so there is no need to configure CORESET on subband #5 this time. Based on this, the number of CORESETs that need to be configured currently is only 2. To a certain extent, the number of CORESET is reduced, thereby reducing the number of busy checks of the UE.
  • the number of CORESET can be based on the frequency domain mapping method of CORESET, and/or the search space contained in CORESET, and/or the aggregation level contained in the search space, and/or the number of aggregation levels, and/or , The number of repetitions in the frequency domain, and/or the granularity of the repetition, and/or the position of the candidate PDCCH is determined. If the frequency domain discrete method is used for mapping into the subband, only one CORESET is required at this time, or a small number of CORESETs can satisfy the situation that the subband or subband group contains the PDCCH.
  • the mapping method of CORESET in the frequency domain includes at least one of the following: CORESET is mapped in the subband; CORESET is repeatedly mapped on all (or part) of the subband; one or more CORESET is discretely mapped on all (or part) of the subband. Bring it.
  • the specific frequency domain mapping method, the number of repetitions, and the interval between repetitive resources can be obtained through at least one of the following methods: physical layer DCI notification, high-level RRC signaling configuration, through bitmap The method is determined and the configuration is predefined.
  • the functional modules/units in the system, and the device can be implemented as software, firmware, hardware, and appropriate combinations thereof.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, a physical component may have multiple functions, or a function or step may consist of multiple The physical components cooperate to execute.
  • Some or all components may be implemented as software executed by a processor, such as a digital signal processor or a microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit.
  • Such software may be distributed on a computer-readable medium, and the computer-readable medium may include a computer storage medium (or non-transitory medium) and a communication medium (or transitory medium).
  • Computer storage medium includes volatile and non-volatile, removable and non-removable implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data) medium.
  • Computer storage media include but are not limited to Random Access Memory (RAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory, EEPROM) , Flash memory or other memory technology, compact disc read-only memory (CD-ROM), digital versatile disc (Digital Video Disc, DVD) or other optical disc storage, magnetic cassettes, tapes, magnetic disk storage or other magnetic A storage device, or any other medium that can be used to store desired information and can be accessed by a computer.
  • Communication media usually contain computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了一种发送方法及装置、接收方法及装置、终端、存储介质。所述发送方法包括以下至少之一:获取特定信息;基于特定信息,在特定的频域资源上进行特定的信道/信号的发送。

Description

发送方法及装置、接收方法及装置、终端、存储介质
本申请要求在2019年07月01日提交中国专利局、申请号为201910586536.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及新无线接入技术中时频资源的可用性通知,例如涉及一种发送方法及装置、接收方法及装置、终端、存储介质。
背景技术
在新无线接入(New Radio,NR)协助接入非授权频谱(NR-based Access to Unlicensed Spectrum,NR-U)中,按照欧洲电信标准化协会(European Telecommunications Standards Institute,ETSI)的管制要求,设备在非授权频谱上进行传输之前需要执行一个先听后说(Listen Before Talk,LBT)机制。若通过执行LBT机制评估到信道空闲,设备在该信道上进行传输。反之,若执行LBT机制评估到信道忙,设备不能在当前的信道上进行传输。
在NR-U宽带(Wide-band,WB)操作,和/或,多个载波场景中,为了在带宽上进行传输,设备可以在整个带宽上执行一个基于宽带的LBT机制。如果执行LBT机制成功,则整个带宽上的资源可以被充分的利用。相反,一旦执行LBT机制失败,则整个带宽上设备都无法进行传输,例如,如果在宽带的任何一个子带上执行LBT机制失败,则整个宽带上的LBT机制将被确定为失败。这样做会导致系统资源的利用率变得非常低。
为了解决上述问题,提出了在宽带上采用基于子带的LBT机制,LBT操作是基于子带执行的,哪些子带上LBT机制成功,设备就可以利用那些执行LBT机制成功的子带进行信息传输。这种方式使得实际传输带宽在宽带上是动态变化的,该特性将会影响下行(上行)控制信息、下行(上行)数据信道等的传输。对终端侧来说,该特性使得终端无法获知基站侧实际执行LBT机制成功的子带信息,进而增加一些无用的忙检操作和功率损耗。
发明内容
本申请提供了一种发送方法及装置、接收方法及装置、终端、存储介质,能够实现基站侧向终端侧指示频域资源占用情况。
本发明实施例提供了一种发送方法,包括以下至少之一:
获取特定信息;
基于特定信息,在特定的频域资源上进行特定的信道/信号的发送。
本发明实施例还提供了一种接收方法,包括:
在特定的频域资源上接收特定的信道/信号。
本发明实施例提供了一种发送装置,包括以下至少之一:
信息获取模块,用于获取特定信息;
发送模块,用于基于特定信息,在特定的频域资源上进行特定的信道/信号的发送。
本发明实施例提供了一种接收装置,包括:
接收模块,用于在特定的频域资源上接收特定的信道/信号。
本发明实施例提供了一种计算机可读存储介质,所述介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如前所述的发送方法。
本发明实施例提供了一种发送终端,其特征在于,包括:
存储器,用于存储计算机可执行指令;
处理器,用于执行所述计算机可执行指令,以实现如前所述的发送方法。
本发明实施例提供了一种计算机可读存储介质,所述介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如前所述的接收方法。
本发明实施例提供了一种接收终端,包括:
存储器,用于存储计算机可执行指令;
处理器,用于执行所述计算机可执行指令,以实现如前所述的接收方法。
与相关技术相比,本发明实施例包括以下至少之一:获取特定信息;基于特定信息,在特定的频域资源上进行特定的信道/信号的发送。本发明实施例能够实现基站侧向终端侧指示频域资源占用情况。
附图说明
图1为本发明实施例提供的发送方法流程图;
图2为本发明实施例提供的接收方法流程图;
图3为本发明实施例提供的发送装置模块图;
图4为本发明实施例提供的接收装置模块图;
图5为本发明实施例提供的CORESET配置方式示意图;
图6为本发明实施例提供的又一CORESET配置方式示意图;
图7为本发明实施例提供的又一CORESET配置方式示意图;
图8为本发明实施例提供的又一CORESET配置方式示意图;
图9为本发明实施例提供的又一CORESET配置方式示意图。
具体实施方式
下文中将结合附图对本发明实施例进行说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在一些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本发明实施例提供了一种发送方法,如图1所示,包括:
S101获取特定信息。
S102基于特定信息,在特定的频域资源上进行特定的信道/信号的发送。
本发明实施例中,所述发送方法也可以包括获取特定信息,或基于特定信息,在特定的频域资源上进行特定的信道/信号的发送。
本实施例中的“/”表示“和/或”的含义。
本发明实施例中,所述方法还包括:
在进行特定的信道/信号发送之前,执行先听后说LBT机制;当执行LBT机制成功或判断信道空闲时,在所述特定的频域资源上进行特定的信道/信号发送。
本发明实施例中,所述方法还包括以下至少之一:
在进行信息发送之前,执行先听后说LBT机制。
当执行LBT机制失败或判断信道忙时,放弃在所述特定的频域资源上进行特定的信道/信号发送;或者,当执行LBT机制失败或判断信道忙,且,当前频域资源上配置有特定的信道/信号,则将所述特定的信道/信号按照特定规则切换到执行LBT机制成功或信道空闲的频域资源上发送。
所述特定规则包括以下至少一种:
切换到无配置特定的信道/信号,且,执行LBT机制成功或信道空闲的频域资源上;切换到无配置特定的信道/信号,且,执行LBT机制成功或信道空闲, 且,信道条件好的频域资源上;切换到距离所述当前频域资源最近的执行LBT机制成功或信道空闲的频域资源上;切换到执行LBT机制成功或信道空闲的最小频域资源索引对应的频域资源上;切换到执行LBT机制成功或信道空闲的最大频域资源索引对应的频域资源上;随机切换到一个执行LBT机制成功或信道空闲的频域资源上;若存在多个频域资源上执行LBT机制失败或信道忙,且,每个频域资源上都配置有特定信道/信号,则所述多个配置的特定的信道/信号依次切换到连续的多个执行LBT机制成功或信道空闲,和/或,信道条件较好的频域资源上;若存在多个频域资源上执行LB机制T失败或信道忙,且,每个频域资源上都配置有特定信道/信号,则所述多个配置的特定的信道/信号依次切换到执行LBT机制成功或信道空闲的频域资源索引最小的多个频域资源上;若存在多个频域资源上执行LBT机制失败或信道忙,且,每个频域资源上都配置有特定信道/信号,则所述多个配置的特定的信道/信号依次切换到执行LBT机制成功或信道空闲的频域资源索引最大的多个频域资源上;若存在多个频域资源上执行LBT机制失败或信道忙,且,每个频域资源上都配置有特定信道/信号,则根据频域资源起始位置参数,和/或,偏移量参数确定切换的频域资源位置。
本发明实施例中,对于存在频域资源组的情况,在频域资源组内,所述特定规则还包括以下至少一种:
切换到频域资源组内信道条件好的频域资源上;切换到频域资源组内第一个频域资源上;切换到频域资源组内最后一个频域资源上;切换到预定义的频域资源组内的频域资源上;随机切换到频域资源组内的频域资源上。
本发明实施例中,所述特定的信道/信号,包括以下至少之一:
控制资源集合CORESET;下行链路控制信息(Downlink Control Information,DCI)信令、下行公共控制信道(Group Common-Physical Downlink Control Channel,GC-PDCCH)、下行控制信道PDCCH;解调数据的解调参考信号(Demodulation Reference Signal,DMRS);信道状态信息参考信号CSI-RS;同步广播块SSB;发现参考信号DRS;包含DMRS的物理广播信道PBCH;主同步信号PSS;辅同步信号SSS;下行物理共享信道PDSCH;上行控制信道(Physical Uplink Control Channel,PUCCH);探测参考信号(Sounding Reference Signal,SRS);上行物理共享信道(Physical Uplink Shared Channel,PUSCH)。
本发明请实施例中,所述CORESET,DCI信令,GC-PDCCH,PDCCH中至少之一,携带以下信息中的至少之一:
时间的时域传输结构信息,所述时间包括一段时间内,和/或,当前时间,和/或,后续时间;当前时间,和/或,后续时间中频域资源的信道占用情况;频域资源上的执行LBT机制成功或信道空闲,或,执行LBT机制失败或信道忙的 情况;时域资源数目;时域资源占用的符号数目;下行控制信道的时域资源配置;下行控制信道的周期;下行控制信道占用的符号数目;反馈feedback的时域位置;反馈的时域符号数目;下行反馈的PDSCH或PDSCH组索引;下行反馈的混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程或HARQ进程组。
本发明实施例中,包括以下至少之一:
控制资源集合CORESET中DMRS,下行公共控制信道GC-PDCCH中DMRS,下行控制信道PDCCH中DMRS,解调数据的DMRS,信道状态信息参考信号CSI-RS,同步广播块SSB,发现参考信号DRS,包含DMRS的物理广播信道PBCH,主同步信号PSS,辅同步信号SSS,上行控制信道PUCCH,探测参考信号SRS中至少之一,和/或,对应信道/信号的相位旋转,和/或,对应信道/信号的频域梳齿,与,一段时间内,当前时间,后续时间中至少之一的时域传输结构,和,当前时间,后续时间中至少之一的频域资源的信道占用情况中至少之一之间存在对应关系。
本发明实施例中,所述方法还包括:
在进行特定的信道/信号发送之前,执行先听后说LBT机制;如果执行LBT机制成功或判断信道空闲,在特定的频域资源上进行特定的信道/信号发送;在其他执行LBT机制成功或判断信道空闲的频域资源上不再发送所述特定的信道/信号中携带的内容。
本发明实施例中,所述特定的信道/信号,或,控制资源集合CORESET,或,GC-PDCCH,或,PDCCH在频域资源上的配置方式,包括以下至少之一:
特定的信道/信号,或,控制资源集合CORESET,或,GC-PDCCH,或,PDCCH被配置在每个频域资源上;多个特定的信道/信号,或,多个控制资源集合CORESET,或,多个GC-PDCCH,或,多个PDCCH分别被配置在连续的频域资源上;多个特定的信道/信号,或,多个控制资源集合CORESET,或,多个GC-PDCCH,或,多个PDCCH分别被配置在离散的频域资源上;一个特定的信道/信号,或,一个控制资源集合CORESET,或,一个GC-PDCCH,或,一个PDCCH被配置横跨在多个频域资源上;特定的信道/信号,或,控制资源集合CORESET,或,GC-PDCCH,或,PDCCH在所有频域资源上重复配置。所述重复配置包括以下至少之一:单个特定的信道/信号,或,单个控制资源集合CORESET,或,单个GC-PDCCH,或,单个PDCCH在所有频域资源上重复配置;多个特定的信道/信号,或,多个控制资源集合CORESET,或,多个GC-PDCCH,或,多个PDCCH作为一个整体在所有频域资源上重复。
本发明实施例中,所述特定的信道/信号,或,控制资源集合CORESET,或,GC-PDCCH,或,PDCCH在频域资源上的配置方式,和/或,配置的数目,和/或,频域资源位置信息,和/或,频域位置起始位置,和/或,频域位置间的偏移量,和/或,频域资源之间的切换规则,通过以下至少之一方式确定或获得:
高层无线资源控制(Radio Resource Control,RRC)信令;下行链路控制信息DCI信令;基于执行LBT失败或成功的次数触发确定或调整;基于执行LBT的结果确定。
本发明实施例中,所述特定信息,包括以下至少之一:
调度信息;先听后说LBT机制类型;先听后说LBT机制优先级等级;先听后说LBT机制对应的参数信息;特定的信道/信号的数目;频域资源信息;时域资源信息;时域结构信息;频域资源切换信息或切换触发信令;触发反馈feedback的信令;反馈feedback的时域位置;反馈的时域符号数目;下行反馈的下行物理共享信道PDSCH或PDSCH组索引;下行反馈的混合自动重传请求HARQ进程或HARQ进程组;特定的信道/信号的时域资源位置信息;特定的信道/信号的频域资源位置信息;特定的信道/信号,和,其相位旋转,和,其频域梳齿中至少之一,与,一段时间内,当前,后续中至少之一的时域传输结构,和,当前,后续中至少之一的频域资源的信道占用情况中至少之一之间的对应关系或对应关系索引。
本发明实施例中,所述特定的频域资源,包括以下至少之一:
一个或多个子带;一个或多个子带组;一个或多个部分带宽BWP;一个或多个BWP组;一个或多个载波;一个或多个载波组。
本发明实施例中,所述特定信息,通过以下至少之一方式获取:
高层无线资源控制RRC信令;物理层下行链路控制信息DCI信令;之前的物理层下行链路控制信息DCI信令;预定义方式。
本发明实施例能够实现基站侧向终端侧指示频域资源占用情况。
本发明实施例还提供了一种接收方法,如图2所示,包括:
S201在特定的频域资源上接收特定的信道/信号。
本发明实施例中,所述特定的信道/信号包括:显式下行链路控制信息DCI信令。
所述方法还包括:
通过在特定频域资源上接收的特定信道/信号携带的显式DCI信令,确定或获取一段时间内,当前,后续中至少之一的时域传输结构信息,和/或,当前, 后续中至少之一的频域资源的信道占用情况。
本发明实施例中,所述方法还包括:
通过在特定频域资源上接收特定信道/信号携带的信息,隐式确定或获取一段时间内,当前,后续中至少之一的时域传输结构信息,和/或,当前,后续中至少之一的频域资源的信道占用情况。
本发明实施例中,所述隐式确定或获取一段时间内,当前,后续中至少之一的时域传输结构信息,和/或,当前,后续中至少之一的频域资源的信道占用情况,包括以下至少之一:
基于控制资源集合CORESET中解调参考信号DMRS,下行公共控制信道GC-PDCCH中DMRS,下行控制信道PDCCH中DMRS,解调数据的DMRS,信道状态信息参考信号CSI-RS,同步广播块SSB,发现参考信号DRS,包含DMRS物理广播信道PBCH,主同步信号PSS,辅同步信号SSS,上行控制信道PUCCH,探测参考信号SRS中至少之一,和/或,对应信道/信号的相位旋转,和/或,对应信道/信号的频域梳齿,隐式确定一段时间内,当前,后续中至少之一的时域传输结构,和/或,当前,后续中至少之一的频域资源的信道占用情况。
本发明实施例中,所述特定的信道/信号,包括以下至少之一:
控制资源集合CORESET;下行链路控制信息DCI信令;下行公共控制信道GC-PDCCH;下行控制信道PDCCH;解调数据的DMRS;信道状态信息参考信号CSI-RS;同步广播块SSB;发现参考信号DRS;包含DMRS的物理广播信道PBCH;主同步信号PSS;辅同步信号SSS;下行物理共享信道PDSCH;上行控制信道PUCCH;探测参考信号SRS;上行物理共享信道PUSCH。
本发明实施例中,所述特定的频域资源,包括以下至少之一:
一个或多个子带;一个或多个子带组;一个或多个部分带宽BWP;一个或多个BWP组;一个或多个载波;一个或多个载波组。
本发明实施例能够实现终端侧从基站侧获知频域资源占用情况。
本发明实施例还提供了一种发送装置,如图3所示,包括:
信息获取模块301,用于获取特定信息;发送模块302,用于基于特定信息,在特定的频域资源上进行特定的信道/信号的发送。
本发明实施例所述的发送装置也可以包括信息获取模块301或发送模块302;本发明实施例中的“/”表示“和/或”的含义。
本发明实施例中,所述发送模块302,还用于在进行特定的信道/信号发送之前,执行先听后说LBT机制;当执行LBT机制成功或判断信道空闲时,在所 述特定的频域资源上进行特定的信道/信号发送。
本发明实施例中,所述发送模块302,还用于执行以下至少之一:
在进行信息发送之前,执行先听后说LBT机制。
当执行LBT机制失败或判断信道忙时,放弃在所述特定的频域资源上进行特定的信道/信号发送;或者,当执行LBT机制失败或判断信道忙,且,当前频域资源上配置有特定的信道/信号,则将所述特定的信道/信号按照特定规则切换到执行LBT机制成功或信道空闲的频域资源上发送。
所述特定规则包括以下至少一种:
切换到无配置特定的信道/信号,且,执行LBT机制成功或信道空闲的频域资源上;切换到无配置特定的信道/信号,且,执行LBT机制成功或信道空闲,且,信道条件好的频域资源上;切换到距离所述当前频域资源最近的执行LBT成功或信道空闲的频域资源上;切换到执行LBT机制成功或信道空闲的最小频域资源索引对应的频域资源上;切换到执行LBT机制成功或信道空闲的最大频域资源索引对应的频域资源上;随机切换到一个执行LBT机制成功或信道空闲的频域资源上;若存在多个频域资源上执行LBT机制失败或信道忙,且,每个频域资源上都配置有特定信道/信号,则所述多个配置的特定的信道/信号依次切换到连续的多个执行LBT机制成功或信道空闲,和/或,信道条件较好的频域资源上;若存在多个频域资源上执行LBT机制失败或信道忙,且,每个频域资源上都配置有特定信道/信号,则所述多个配置的特定的信道/信号依次切换到执行LBT机制成功或信道空闲的频域资源索引最小的多个频域资源上;若存在多个频域资源上执行LBT机制失败或信道忙,且,每个频域资源上都配置有特定信道/信号,则所述多个配置的特定的信道/信号依次切换到执行LBT机制成功或信道空闲的频域资源索引最大的多个频域资源上;若存在多个频域资源上执行LBT机制失败或信道忙,且,每个频域资源上都配置有特定信道/信号,则根据频域资源起始位置参数,和/或,偏移量参数确定切换的频域资源位置。
对于存在频域资源组的情况,在频域资源组内,所述特定规则还包括以下至少一种:
切换到频域资源组内信道条件好的频域资源上;切换到频域资源组内第一个频域资源上;切换到频域资源组内最后一个频域资源上;切换到预定义的频域资源组内的频域资源上;随机切换到频域资源组内的频域资源上。
本发明实施例中,所述特定的信道/信号,包括以下至少之一:
控制资源集合CORESET;下行链路控制信息DCI信令、下行公共控制信道GC-PDCCH、下行控制信道PDCCH;解调数据的解调参考信号DMRS;信道状 态信息参考信号CSI-RS;同步广播块SSB;发现参考信号DRS;包含DMRS的物理广播信道PBCH;主同步信号PSS;辅同步信号SSS;下行物理共享信道PDSCH;上行控制信道PUCCH;探测参考信号SRS;上行物理共享信道PUSCH。
本发明实施例中,所述CORESET,DCI信令,GC-PDCCH,PDCCH中至少之一,携带以下信息中的至少之一:
时间的时域传输结构信息,所述时间包括一段时间内,和/或,当前时间,和/或,后续时间;当前时间,和/或,后续时间中频域资源的信道占用情况;频域资源上的执行LBT机制成功或信道空闲,或,执行LBT机制失败或信道忙的情况;时域资源数目;时域资源占用的符号数目;下行控制信道的时域资源配置;下行控制信道的周期;下行控制信道占用的符号数目;反馈feedback的时域位置;反馈的时域符号数目;下行反馈的PDSCH或PDSCH组索引;下行反馈的混合自动重传请求HARQ进程或HARQ进程组。
本发明实施例中,包括以下至少之一:
控制资源集合CORESET中DMRS,下行公共控制信道GC-PDCCH中DMRS,下行控制信道PDCCH中DMRS,解调数据的DMRS,信道状态信息参考信号CSI-RS,同步广播块SSB,发现参考信号DRS,包含DMRS的物理广播信道PBCH,主同步信号PSS,辅同步信号SSS,上行控制信道PUCCH,探测参考信号SRS中至少之一,和/或,对应信道/信号的相位旋转,和/或,对应信道/信号的频域梳齿,与,一段时间内,当前时间,后续时间中至少之一的时域传输结构,和,当前时间,后续时间中至少之一的频域资源的信道占用情况中至少之一之间存在对应关系。
本发明实施例中,所述发送模块302,还用于在进行特定的信道/信号发送之前,执行先听后说LBT机制;如果执行LBT机制成功或判断信道空闲,在特定的频域资源上进行特定的信道/信号发送;在其他执行LBT机制成功或判断信道空闲的频域资源上不再发送所述特定的信道/信号中携带的内容。
本发明实施例中,所述特定的信道/信号,或,控制资源集合CORESET,或,GC-PDCCH,或,PDCCH在频域资源上的配置方式,包括以下至少之一:
特定的信道/信号,或,控制资源集合CORESET,或,GC-PDCCH,或,PDCCH被配置在每个频域资源上;多个特定的信道/信号,或,多个控制资源集合CORESET,或,多个GC-PDCCH,或,多个PDCCH分别被配置在连续的频域资源上;多个特定的信道/信号,或,多个控制资源集合CORESET,或,多个GC-PDCCH,或,多个PDCCH分别被配置在离散的频域资源上;一个特定的信道/信号,或,一个控制资源集合CORESET,或,一个GC-PDCCH,或, 一个PDCCH被配置横跨在多个频域资源上;特定的信道/信号,或,控制资源集合CORESET,或,GC-PDCCH,或,PDCCH在所有频域资源上重复配置。所述重复配置包括以下至少之一:单个特定的信道/信号,或,单个控制资源集合CORESET,或,单个GC-PDCCH,或,单个PDCCH在所有频域资源上重复配置;多个特定的信道/信号,或,多个控制资源集合CORESET,或,多个GC-PDCCH,或,多个PDCCH作为一个整体在所有频域资源上重复。
本发明实施例中,所述特定的信道/信号,或,控制资源集合CORESET,或,GC-PDCCH,或,PDCCH在频域资源上的配置方式,和/或,配置的数目,和/或,频域资源位置信息,和/或,频域位置起始位置,和/或,频域位置间的偏移量,和/或,频域资源之间的切换规则,通过以下至少之一方式确定或获得:
高层无线资源控制RRC信令;下行链路控制信息DCI信令;基于执行LBT失败或成功的次数触发确定或调整;基于执行LBT的结果确定。
本发明实施例中,所述特定信息,包括以下至少之一:
调度信息;先听后说LBT机制类型;先听后说LBT机制优先级等级;先听后说LBT机制对应的参数信息;特定的信道/信号的数目;频域资源信息;时域资源信息;时域结构信息;频域资源切换信息或切换触发信令;触发反馈feedback的信令;反馈feedback的时域位置;反馈的时域符号数目;下行反馈的下行物理共享信道PDSCH或PDSCH组索引;下行反馈的混合自动重传请求HARQ进程或HARQ进程组;特定的信道/信号的时域资源位置信息;特定的信道/信号的频域资源位置信息;特定的信道/信号,和,其相位旋转,和,其频域梳齿中至少之一,与,一段时间内,当前,后续中至少之一的时域传输结构,和,当前,后续中至少之一的频域资源的信道占用情况中至少之一之间的对应关系或对应关系索引。
本发明实施例中,所述特定的频域资源,包括以下至少之一:
一个或多个子带;一个或多个子带组;一个或多个部分带宽BWP;一个或多个BWP组;一个或多个载波;一个或多个载波组。
本发明实施例中,信息获取模块301,用于通过以下至少之一方式获取特定信息:
高层无线资源控制RRC信令;物理层下行链路控制信息DCI信令;之前的物理层下行链路控制信息DCI信令;预定义方式。
本发明实施例能够实现基站侧向终端侧指示频域资源占用情况。
本发明实施例还提供了一种接收装置,如图4所示,包括:
接收模块401,用于在特定的频域资源上接收特定的信道/信号。
本发明实施例中,所述特定的信道/信号包括:显式下行链路控制信息DCI信令。
所述接收模块401,还包括:通过在特定频域资源上接收的特定信道/信号携带的显式DCI信令,确定或获取一段时间内,当前,后续中至少之一的时域传输结构信息,和/或,当前,后续中至少之一的频域资源的信道占用情况。
本发明实施例中,所述接收模块401,还包括:通过在特定频域资源上接收特定信道/信号携带的信息,隐式确定或获取一段时间内,当前,后续中至少之一的时域传输结构信息,和/或,当前,后续中至少之一的频域资源的信道占用情况。
本发明实施例中,所述接收模块401,用于隐式确定或获取一段时间内,当前,后续中至少之一的时域传输结构信息,和/或,当前,后续中至少之一的频域资源的信道占用情况,包括以下至少之一:
基于控制资源集合CORESET中解调参考信号DMRS,下行公共控制信道GC-PDCCH中DMRS,下行控制信道PDCCH中DMRS,解调数据的DMRS,信道状态信息参考信号CSI-RS,同步广播块SSB,发现参考信号DRS,包含DMRS物理广播信道PBCH,主同步信号PSS,辅同步信号SSS,上行控制信道PUCCH,探测参考信号SRS中至少之一,和/或,对应信道/信号的相位旋转,和/或,对应信道/信号的频域梳齿,隐式确定一段时间内,当前,后续中至少之一的时域传输结构,和/或,当前,后续中至少之一的频域资源的信道占用情况。
本发明实施例中,所述特定的信道/信号,包括以下至少之一:
控制资源集合CORESET;下行链路控制信息DCI信令;下行公共控制信道GC-PDCCH;下行控制信道PDCCH;解调数据的DMRS;信道状态信息参考信号CSI-RS;同步广播块SSB;发现参考信号DRS;包含DMRS的物理广播信道PBCH;主同步信号PSS;辅同步信号SSS;下行物理共享信道PDSCH;上行控制信道PUCCH;探测参考信号SRS;上行物理共享信道PUSCH。
本发明实施例中,所述特定的频域资源,包括以下至少之一:
一个或多个子带;一个或多个子带组;一个或多个部分带宽BWP;一个或多个BWP组;一个或多个载波;一个或多个载波组。
本发明实施例能够实现终端侧从基站侧获知频域资源占用情况。
本发明实施例提供了一种计算机可读存储介质,所述介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如前所述的发送方法。
本发明实施例提供了一种发送终端,包括:
存储器,用于存储计算机可执行指令;处理器,用于执行所述计算机可执行指令,以实现如前所述的发送方法。
本发明实施例提供了一种计算机可读存储介质,所述介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如前所述的接收方法。
本发明实施例提供了一种接收终端,包括:
存储器,用于存储计算机可执行指令;处理器,用于执行所述计算机可执行指令,以实现如前所述的接收方法。
下面通过具体的实施例对本申请进行说明。
实施例一:
本实施例提供一种控制资源集合(Control Resource Set,CORESET),或,下行控制信道(Physical Downlink Control Channel,PDCCH)的配置方式。其配置方法,包括以下至少之一:(半)静态配置,动态配置,预定义。本实施例中主要提供一种(半)静态方式下的CORESET,或,PDCCH配置方式。也就是说,CORESET,或,PDCCH配置的时域资源位置,频域资源位置中至少之一是固定不变的,或者,是周期性更新的,或者,基于DCI动态更新的。其中,频域资源位置中的频域,包括以下至少之一:载波(组)、BWP(组)、子带(组)。
这里,以BWP为例,说明CORESET,或者,PDCCH在BWP中传输位置。其中,假定CORESET,或者,PDCCH与BWP中各子带之间具有固定的配置关系。
规则1:CORESET,或者,PDCCH被配置在连续的子带上。
假定一个BWP上允许配置的CORESET数目为A1,一个BWP中包含的子带数目为A2。其中,A1,或者,A2为正整数。A1可以不大于A2。按照规则1,配置的CORESET依次被配置在BWP中的对应子带上。即CORESET索引(index)#0,CORESET index#1,...,CORESET index#A1-1,依次对应在子带index#j,子带index#j+1,...,子带index#j+A1-1,或者,依次对应在子带index#A2,#A2-1,...,子带index#A2-A1+1。其他一切连续配置的相关方案也属于本申请保护的范围,这里将不一一罗列赘述。例如,如图5所示,一个BWP中配置的CORESET数目为3,BWP为100MHz,BWP中包含5个20MHz子带,按照规则1的方式,其CORESET index#1,CORESET index#2,CORESET index#3依次配置在子带index#1,index#2,index#3上。上述方法也适用于BWP(组),和/或,载波(组)上的CORESET,或者,PDCCH对应关系。
规则2:CORESET,或者,PDCCH被配置在离散的子带上,或者,按照离散的方式在对应的子带上传输。即,CORESET,或者,PDCCH在子带(组)间按照起始索引,和/或,偏移offset参数确定传输的子带(组)位置。其中,这里的子带可以替换为BWP(组),和/或,载波(组)。可选地,CORESET,或者,PDCCH被配置偶数index的子带上,或,奇数index的子带上;或者,CORESET,或者,PDCCH被配置在偶数index的子带组内,或,奇数index的子带组内。CORESET在子带组内的位置可以为以下至少之一:随机选择;按照子带sub-band索引最小原则;按照子带sub-band索引最大原则;按照默认/预定义的方式。上述起始索引,和/或,偏移量offset参数可以通过以下至少之一配置:高层RRC信令,动态DCI,预定义。
如图6所示,假定一个BWP中配置的CORESET数目为3,BWP为100MHz,BWP中包含5个20MHz子带,按照规则2所述的方法,假定CORESET依次对应在奇数子带上映射,则CORESET index#1,CORESET index#2,CORESET Index#3依次配置在子带index#1,index#3,index#5上。
另一种情况为,如果CORESET,或者,PDCCH是固定配置在子带组内,例如,CORESET index#1配置在子带组index#1(包含子带index#1和子带index#2),CORESET index#2配置在子带组index#2(包含子带index#3和子带index#4),CORESET index#3配置在子带组index#3(包含子带index#5)。如图7所示。
规则3:一个CORESET,或者,PDCCH横跨在多个子带上。如图8所示,一个CORESET内包含一个或多个搜索空间。每个搜索空间是有特定的聚合等级下候选的PDCCH的集合构成。为了实现指示用户设备(User Equipment,UE)实际传输的下行子带情况,可以在CORESET或在搜索空间内引入频域候选的PDCCH集合的位置信息。例如:一个BWP内配置了一个CORESET,一个CORESET中包含了一个搜索空间,该搜索空间为聚合等级为4的候选的PDCCH集合组成。即该搜索空间内频域上包含一个集合等级为4的控制信道单元(Control Channel Element,CCE),每个CCE中包含6个资源粒子组(Resource Element Group,REG)。基于上述方案,集合等级为4的CCE可以限制在每个子带内。进一步扩展,如果一个CORESET中包含多个搜索空间,则这多个搜索空间以子带为粒度依次映射。可选地,还可以引入重复方式。终端UE检测可以通过检测每个子带中PDCCH中的DMRS来确定是否子带上LBT机制成功。本实施例中的方法适用于子带(组),BWP(组),载波(组),子载波(组),资源块(组)中至少之一。
规则4:CORESET,或者,PDCCH可以在所有子带上重复配置。这里的频 域重复可以是CORESET在所有子带上整体重复,如图9所示,或者,每个CORESET单独重复。所述重复次数,以及,重复方式,可以通过以下至少之一方式确定:高层RRC信令,动态DCI,预定义。
实施例二:
本实施例提供一种控制资源集CORESET(Control Resource Set,控制资源集),或,下行控制信道PDCCH(Physical Downlink Control Channel,下行控制信道)的配置方式。其配置方法,包括以下至少之一:预定义,(半)静态配置,动态配置,预定义。本实施例中主要提供一种动态方式下的CORESET,或,PDCCH配置方式。
设备可以基于以下至少之一方式更新/获知CORESET,或者,PDCCH的传输位置:高层RRC信令,动态DCI,基于LBT机制失败/成功的次数触发,基于LBT机制执行的结果。CORESET,或者,PDCCH对应传输的子带(组)调整规则见后续实施例。
如果通过DCI通知CORESET,或者,PDCCH的传输位置,则对应的DCI中需引入CORESET/PDCCH数目,CORESET/PDCCH index与子带(组)对应关系/索引,起始子带(组),间隔/偏移量,子带(组)信息中至少之一参数。
如果基于LBT机制结果确定CORESET,或,PDCCH传输的频域位置,则CORESET与LBT机制成功子带上的对应关系可以参考实施例一中的方式。
本申请中,所述的CORESET数目由以下至少之一:高层RRC信令配置,预定义,根据频带数目确定,根据带宽和执行LBT机制带宽确定。所述频带包括以下至少之一:子带(组),BWP(组),载波(组)。
实施例三:
本实施例提供一种信道/信号的传输方式。例如,CORESET,或,PDCCH。在授权载波场景,设备在配置的CORESET,或,PDCCH资源位置上进行CORESET,或,PDCCH的传输。对于非授权载波场景,设备进行传输之前,需要先执行先听后说LBT机制,获取非授权载波的使用权。在获得非授权载波的使用权的前提下,设备进行信号和/或信道的传输。反之,如果没有获得非授权载波的使用权,则设备不能进行传输,或,需要根据其他设计规则进行传输。
对于多个LBT子带(组)场景,如果设备在至少之一个配置有CORESET,或,PDCCH的子带(组)上LBT失败,则可以按照以下至少之一方式处理:方式一:在LBT机制失败的子带(组)上不进行传输。可选地,LBT机制成功的子带上设备可以进行传输;方式二:LBT机制失败的子带(组)上的CORESET,或,PDCCH可以迁移到LBT机制成功的子带上进行传输。其中,CORESET, 或,PDCCH迁移的规则,按照以下至少之一方式:规则1:迁移到最近子带(组)原则。例如,按照与执行LBT机制的子带最近的子带(组)原则确定新的CORESET,PDCCH传输子带;规则2:在LBT机制成功的子带(组)上随机选择迁移的位置;规则3:在LBT机制成功的子带(组)上按照依次连续,或,通过起始位置,和/或,偏移量offset确定CORESET,或,PDCCH迁移的子带(组)位置;也可以参考实施例一或二中的方式。其中,迁移的新子带(组)中之前没有配置有CORESET,或,PDCCH。特殊情况,对于子带组,原则上是,先确定子带组之间的CORESET位置,在确定子带组内CORESET的位置。确定CORESET,或,PDCCH迁移到哪个子带组的方式类似于上述方式。而在子带组内CORESET,或,PDCCH位置的确定,基于信道条件最好原则,或,子带组内第一个子带原则,或,随机选择一个子带原则,或,子带组内最后一个子带原则。
CORESET,或,PDCCH在LBT机制成功的子带上进行发送。其中,CORESET,或,PDCCH中携带有指示时域信道占用时间(Channel Occupat1n Time,COT)结构信息,和/或,指示频域LBT机制结果信息。
上述方式同样适用于多个载波(组),和/或,多个BWP(组)情况。
实施例四:
本实施例提供一种终端UE侧获知下行传输带宽情况。在非授权频谱场景中,由于信道的不可用性,从而使得基站有可能在激活的BWP(Bandwidth Part,部分带宽)中的一个或多个子带上进行下行传输(由于其他子带上的LBT机制失败(或,没有获得接入信道的权利)。对于这种情况,终端UE如果知道哪些子带上的LBT机制成功或失败,将有利于规避终端在LBT机制失败的子带上进行接收或检测。也有利于UE知道哪些子带上可以进行上行传输。上述子带还可以被替换为子带(组),BWP(组),载波(组),子载波(组),资源块(组)中至少之一。
方式一:基站通过显式信令通知UE当前哪些子带(组),和/或,BWP(组),和/或,载波(组)上LBT机制成功,或,失败。
解决方案1:通过DCI通知UE成功/失败的LBT机制的子带情况。所述DCI可以采用指示COT时域结构的信令。即指示COT时域结构的信令,还携带指示频域信道的占用情况。所述DCI,除了指示一个COT内上行和/或下行信号/信道结构,时域子帧(时隙/mini-slot小时隙)数目,占用的符号个数,下行控制信道的时域资源配置,周期,占用的符号数目,反馈Feedback的时域位置,反馈Feedback的时域符号数目,下行反馈的PDSCH(组)index,下行反馈的HARQ进程(组)index的中至少之一之外,还可以指示频域上LBT机制成功/ 失败的子带(组),和/或,BWP(组),和/或,载波(组)信息。该信令还可以指示后续时域上的结构,和/或,频域上的信道可用性。上述COT的也可以替换为一段时间T,或,子帧,或,时隙,mini-slot小时隙。
解决方案2:通过下行公共控制信道GC-PDCCH,或,下行控制信道PDCCH来指示频域上信道占用情况。具体地,可以在DCI中引入类似CFI(Control Format information,控制格式指示)字段,或,引入了一个新的字段,用于指示当前和/或后续下行传输的时域和/或频域资源信息。其中,频域资源为子带(组),BWP(组),载波(组),子载波(组),资源块(组)中至少之一。上述的下行传输也可以替换为LBT机制成功,或,LBT机制失败。
解决方案3:设计新的格式,来指示当前和/或后续下行传输的时域和/或频域资源信息。其中,频域资源为子带(组),BWP(组),载波(组),子载波(组),资源块(组)中至少之一。上述的下行传输也可以替换为LBT机制成功,或,LBT机制失败。
上述频域资源信息,或,频域上信道占用情况,可以通过位图bitmap,指示通过起点位置和/或结束频域位置(或,连续占用频域资源数目)中至少之一方式确定。上述bitmap,起点位置,结束位置可以是一个,或者,多个。
成功的LBT机制的子带(组),和/或,BWP(组),和/或,载波(组)上的时域传输结构相同。
方式二:UE通过隐式方式获知当前哪些子带上LBT机制成功,或,失败。
UE通过检测特定的信道和/或信号来识别子带(组),BWP(组),载波(组),子载波(组),资源块(组)中至少之一占用情况。上述特定的信道和/或信号,可以为下列至少之一:解调数据的DMRS,或者,CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号),或者,SSB(Synchronization Signal/PBCH Block,同步广播块),或者,DRS(Discovery Reference Signal,发现参考信号),或者,PBCH(Physical Broadcast Channel,物理广播信道)中的DMRS,或者,PSS(Primary Synchronization Signal,主同步信号),或者,SSS(Secondary Synchronization Signal,辅同步信号)中至少之一。
通过检测上述信号,一定程度上减低了UE侧的忙检复杂度。可选地,DMRS可以配置为宽带的,或者,窄带的。可选地,从了检测上述信号之外,还可以进一步解码PDCCH,或者,PDSCH。
如果UE通过DMRS序列,和/或,相位旋转来获知是否当前子带上的LBT机制失败或成功。也可以通过DMRS序列与子带间的对应的关系确定子带上 LBT机制失败或成功的情况。这里的子带也替换为子带(组),BWP(组),载波(组),子载波(组),资源块(组)中至少之一。
DMRS序列还可以指示COT的时域结构,例如,COT内上行和/或下行信号,或,信道结构,时域子帧(时隙/mini-slot小时隙)数目,占用的符号个数,下行控制信道的时域资源配置,周期,占用的符号数目中至少之一。即DMRS序列与COT结构之间建立对应关系。
可选地,也可以建立DMRS序列,和/或,相位旋转,和/或,频域移位(或梳齿)与COT时域和/或频域信息之间的对应关系。
例如,一个BWP为80MHz,包含4个20MHz的子带。DMRS序列与子带之间的关系,如表1所示:
表1
Figure PCTCN2020099288-appb-000001
如果DMRS序列数目不足以表征子带信息,可以结合采用DMRS的频域梳齿,和/或,相位旋转来指示。如表2所示。例如,DMRS序列数目为8,梳齿个数为4。
表2
Figure PCTCN2020099288-appb-000002
Figure PCTCN2020099288-appb-000003
除上述之外,上述指示信道/信号还可以指示子带组内的子带占用情况,或,BWP组内的子带,子带组,BWP的占用情况,其他的相同的处理的。
上面仅举例说明了DMRS与时域和/或频域资源之间的关系,其他上述提到的信号也适用于该实施例中所示的方法。
上述显式或隐式方式可以指示一个BWP内一个或所有子带(组)或子带组内的LBT失败或成功情况。同样,其也适用于BWP(组),载波(组)。
如果成功的LBT机制的子带上的CORESET,或,PDCCH已经指示了所有子带上的LBT机制成功/失败情况,其他LBT机制成功且配置有CORESET,或,PDCCH的子带上的CORESET,或,PDCCH可以携带上述用于指示时域结构,和/或,频域不可用或可用信道情况的信息。也可以不携带所述用于指示时域结构,和/或,频域不可用或可用信道情况的信息。
实施例五:
本实施例提供一种下行物理共享信道PDSCH(Physical Downlink Shared Channel,下行物理共享信道)的映射方式。
基于上述实施例的方案,如果无CORESET的子带上LBT机制成功,则该子带上的PDSCH时域开始位置可规避到相邻子带上的CORESET时域位置,在从CORESET的时域结束位置开始进行PDSCH传输。频域上,PDSCH可以按照PDCCH调度的子带上进行传输。或者,按照LBT机制结果,动态确定PDSCH传输的频域位置。
实施例六:
本实施例提供一种控制资源集CORESET数目和/或CORESET的频域映射方式的确定方式。本实施例中的方法适用于子带(组),BWP(组),载波(组), 子载波(组),资源块(组)中至少之一。
一般情况下,(1)CORESET数目根据子带数目确定。即为了解决CORESET数目(3个)足于满足宽带操作场景,和/或,LBT机制影响的需求,每个子带上配置一个CORESET,CORESET的配置限制在一个子带内。
(2)CORESET数目根据子带组的数目确定。这种方式是为了保证至少一个子带组内能配置一个CORESET,从而用于指示子带组内的子带的时域和/或频域的资源配置。例如,频域上子带的LBT机制结果(占用情况),时域上当前/后续COT(一段时间T内/子帧/时隙/小时隙)内下行/上行(Downlink/Uplink,DL/UL)结构,占用的时域资源,占用的符号数目,起始时隙/子帧/小时隙/符号位置,结束子帧/小时隙/符号位置中至少之一等。
(3)CORESET数目根据LBT机制成功的子带(子带组)数目确定。也就是说,高层可以配置一个CORESET数目集合,CORESET的数目选择是基于实际LBT机制成功的子带(子带组)数目确定。
(4)CORESET数目根据当前LBT机制成功的子带(子带组)数目,以及,之前COT(一段时间T内/子帧/时隙/小时隙)指示CORESET(可用的子带或子带组可用情况)确定。也就是说,例如,BWP内包含5个子带,当前成功的子带为#1,#3,#5,其中,前一次指示子带可用情况的信息持续使能到当前时域资源,例如,通过前一次信道可用性指示,子带#5上一直有数据/信号传输,则本次无需在子带#5上配置CORESET。基于此,当前需要配置的CORESET数目仅为2个。一定程度上降低了CORESET的数目,从而降低UE的忙检次数。
(5)CORESET的数目可以根据CORESET的频域映射方式,和/或,CORESET内包含的搜索空间,和/或,搜索空间内包含的聚合级别,和/或,聚合级别的数目,和/或,频域重复次数,和/或,重复粒度,和/或,候选的PDCCH的位置确定。如果采用频域离散方式映射到子带内,则此时仅需要一个,或,小数目的CORESET即可满足子带或子带组内包含PDCCH的情况。
CORESET的频域上的映射方式,包括以下至少之一:CORESET映射在子带内;CORESET重复映射在所有(或部分)子带上;一个或多个CORESET离散映射在所有(或部分)的子带上。具体的频域映射方式,重复的次数,重复资源之间的间隔,(补充CORESET内的搜索空间的参考)可以通过以下至少之一方式获取:物理层DCI通知,高层RRC信令配置,通过bitmap方式确定,预定义配置。
上文中所公开方法中的全部或一些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描 述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由多个物理组件合作执行。一些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、带电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Video Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (44)

  1. 一种发送方法,包括以下至少之一:
    获取特定信息;
    基于特定信息,在特定的频域资源上进行特定的信道/信号的发送。
  2. 根据权利要求1所述的发送方法,在所述进行特定的信道/信号的发送之前,还包括:
    执行先听后说LBT机制;
    在执行LBT机制成功或判断信道空闲的情况下,在所述特定的频域资源上进行特定的信道/信号发送。
  3. 根据权利要求1或2所述的发送方法,还包括以下至少之一:
    在进行信息发送之前,执行先听后说LBT机制;
    在执行LBT机制失败或判断信道忙的情况下,放弃在所述特定的频域资源上进行特定的信道/信号发送;或者,在执行LBT机制失败或判断信道忙,且,当前频域资源上配置有特定的信道/信号的情况下,将所述特定的信道/信号按照特定规则切换到执行LBT机制成功或信道空闲的频域资源上发送。
  4. 根据权利要求3所述的发送方法,其中,所述特定规则包括以下至少之一:
    切换到无配置特定的信道/信号,且,执行LBT机制成功或信道空闲的频域资源上;
    切换到无配置特定的信道/信号,且,执行LBT机制成功或信道空闲,且,信道条件好的频域资源上;
    切换到距离所述当前频域资源最近的执行LBT机制成功或信道空闲的频域资源上;
    切换到执行LBT机制成功或信道空闲的最小频域资源索引对应的频域资源上;
    切换到执行LBT机制成功或信道空闲的最大频域资源索引对应的频域资源上;
    随机切换到一个执行LBT机制成功或信道空闲的频域资源上;
    在存在多个频域资源上执行LBT机制失败或信道忙,且,每个频域资源上都配置有特定信道/信号的情况下,所述多个配置的特定的信道/信号依次切换到以下至少之一:连续的多个执行LBT机制成功或信道空闲的频域资源上,信道条件较好的频域资源上;
    在存在多个频域资源上执行LBT机制失败或信道忙,且,每个频域资源上都配置有特定信道/信号的情况下,所述多个配置的特定的信道/信号依次切换到执行LBT机制成功或信道空闲的频域资源索引最小的多个频域资源上;
    在存在多个频域资源上执行LB机制T失败或信道忙,且,每个频域资源上都配置有特定信道/信号的情况下,所述多个配置的特定的信道/信号依次切换到执行LBT机制成功或信道空闲的频域资源索引最大的多个频域资源上;
    在存在多个频域资源上执行LBT机制失败或信道忙,且,每个频域资源上都配置有特定信道/信号的情况下,根据频域资源起始位置参数和偏移量参数中的至少之一确定切换的频域资源位置。
  5. 根据权利要求3或4所述的发送方法,其中,对于存在频域资源组的情况,在所述频域资源组内,所述特定规则还包括以下至少之一:
    切换到所述频域资源组内信道条件好的频域资源上;
    切换到所述频域资源组内第一个频域资源上;
    切换到所述频域资源组内最后一个频域资源上;
    切换到预定义的所述频域资源组内的频域资源上;
    随机切换到所述频域资源组内的频域资源上。
  6. 根据权利要求1至3中任一项所述的发送方法,其中,所述特定的信道/信号,包括以下至少之一:
    控制资源集合CORESET;
    下行链路控制信息DCI信令;
    下行公共控制信道GC-PDCCH;
    下行控制信道PDCCH;
    解调数据的解调参考信号DMRS;
    信道状态信息参考信号CSI-RS;
    同步广播块SSB;
    发现参考信号DRS;
    包含DMRS的物理广播信道PBCH;
    主同步信号PSS;
    辅同步信号SSS;
    下行物理共享信道PDSCH;
    上行控制信道PUCCH;
    探测参考信号SRS;
    上行物理共享信道PUSCH。
  7. 根据权利要求6所述的发送方法,其中,所述CORESET,DCI信令,所述GC-PDCCH,所述PDCCH中的至少之一,携带以下信息中的至少之一:
    时间的时域传输结构信息,所述时间包括以下至少之一:一段时间内,当前时间,后续时间;
    当前时间和后续时间中的至少之一中频域资源的信道占用情况;
    频域资源上的执行LBT机制成功或信道空闲,或,执行LBT机制失败或信道忙的情况;
    时域资源数目;
    时域资源占用的符号数目;
    下行控制信道的时域资源配置;
    下行控制信道的周期;
    下行控制信道占用的符号数目;
    反馈的时域位置;
    反馈的时域符号数目;
    下行反馈的PDSCH或PDSCH组索引;
    下行反馈的混合自动重传请求HARQ进程或HARQ进程组。
  8. 根据权利要求6所述的发送方法,包括以下至少之一:
    所述CORESET中DMRS,所述GC-PDCCH中DMRS,所述PDCCH中DMRS,所述解调数据的DMRS,所述CSI-RS,所述SSB,所述DRS,所述包含DMRS的PBCH,所述PSS,所述SSS,所述PUCCH,所述SRS中至少之一,和/或,对应信道/信号的相位旋转,和/或,对应信道/信号的频域梳齿,与,一段时间内,当前时间,后续时间中至少之一的时域传输结构,和,当前时间,后续时间中至少之一的频域资源的信道占用情况中至少之一之间存在对应关系。
  9. 根据权利要求1至8中任一项所述的发送方法,还包括:
    在进行特定的信道/信号发送之前,执行先听后说LBT机制;
    如果执行LBT成功或判断信道空闲,在特定的频域资源上进行特定的信道/ 信号发送;在其他执行LBT成功或判断信道空闲的频域资源上不发送所述特定的信道/信号中携带的内容。
  10. 根据权利要求1或6所述的发送方法,其中,所述特定的信道/信号,或,CORESET,或,GC-PDCCH,或,PDCCH在频域资源上的配置方式,包括以下至少之一:
    所述特定的信道/信号,或,CORESET,或,GC-PDCCH,或,PDCCH被配置在每个频域资源上;
    多个特定的信道/信号,或,多个CORESET,或,多个GC-PDCCH,或,多个PDCCH分别被配置在连续的频域资源上;
    多个特定的信道/信号,或,多个CORESET,或,多个GC-PDCCH,或,多个PDCCH分别被配置在离散的频域资源上;
    一个特定的信道/信号,或,一个CORESET,或,一个GC-PDCCH,或,一个PDCCH被配置横跨在多个频域资源上;
    所述特定的信道/信号,或,CORESET,或,GC-PDCCH,或,PDCCH在所有频域资源上重复配置,所述重复配置包括以下至少之一:单个特定的信道/信号,或,单个CORESET,或,单个GC-PDCCH,或,单个PDCCH在所有频域资源上重复配置;多个特定的信道/信号,或,多个CORESET,或,多个GC-PDCCH,或,多个PDCCH作为一个整体在所有频域资源上重复。
  11. 根据权利要求1至10中任一项所述的发送方法,其中,所述特定的信道/信号,或,CORESET,或,GC-PDCCH,或,PDCCH在频域资源上的配置方式,和/或,配置的数目,和/或,频域资源位置信息,和/或,频域位置起始位置,和/或,频域位置间的偏移量,和/或,频域资源之间的切换规则,通过以下方式中的至少之一确定或获得:
    高层无线资源控制RRC信令;
    DCI信令;
    基于执行LBT机制失败或成功的次数触发确定或调整;
    基于执行LBT机制的结果确定。
  12. 根据权利要求1所述的发送方法,其中,所述特定信息,包括以下至少之一:
    调度信息;
    LBT机制类型;
    LBT机制优先级等级;
    LBT机制对应的参数信息;
    特定的信道/信号的数目;
    频域资源信息;
    时域资源信息;
    时域结构信息;
    频域资源切换信息或切换触发信令;
    触发反馈的信令;
    反馈的时域位置;
    反馈的时域符号数目;
    下行反馈的PDSCH或PDSCH组索引;
    下行反馈的HARQ进程或HARQ进程组;
    特定的信道/信号的时域资源位置信息;
    特定的信道/信号的频域资源位置信息;
    特定的信道/信号,和,特定的信道/信号的相位旋转,和,特定的信道/信号的频域梳齿中的至少之一,与,一段时间内,当前时间,后续时间中的至少之一的时域传输结构,当前时间,后续时间中的至少之一的频域资源的信道占用情况中至少之一之间的对应关系或对应关系索引。
  13. 根据权利要求1所述的发送方法,其中,所述特定的频域资源,包括以下至少之一:
    子带;
    子带组;
    部分带宽BWP;
    BWP组;
    载波;
    载波组。
  14. 根据权利要求1所述的发送方法,其中,所述特定信息,通过以下方式中的至少之一获取:
    高层RRC信令;
    物理层DCI信令;
    之前的物理层DCI信令;
    预定义方式。
  15. 一种接收方法,包括:
    在特定的频域资源上接收特定的信道/信号。
  16. 根据权利要求15所述的接收方法,其中,
    所述特定的信道/信号包括:显式下行链路控制信息DCI信令;
    所述方法还包括:
    通过在所述特定的频域资源上接收的所述特定的信道/信号携带的显式DCI信令,确定或获取一段时间内,当前时间,后续时间中的至少之一的时域传输结构信息,和/或,当前时间,后续时间中的至少之一的频域资源的信道占用情况。
  17. 根据权利要求15所述的接收方法,还包括:
    通过在所述特定的频域资源上接收所述特定的信道/信号携带的信息,隐式确定或获取一段时间内,当前时间,后续时间中的至少之一的时域传输结构信息,和/或,当前时间,后续时间中的至少之一的频域资源的信道占用情况。
  18. 根据权利要求17所述的接收方法,其中,所述隐式确定或获取一段时间内,当前时间,后续时间中至少之一的时域传输结构信息,和/或,当前时间,后续时间中至少之一的频域资源的信道占用情况,包括以下至少之一:
    基于控制资源集合CORESET中解调参考信号DMRS,下行公共控制信道GC-PDCCH中DMRS,下行控制信道PDCCH中DMRS,解调数据的DMRS,信道状态信息参考信号CSI-RS,同步广播块SSB,发现参考信号DRS,包含DMRS物理广播信道PBCH,主同步信号PSS,辅同步信号SSS,上行控制信道PUCCH,探测参考信号SRS中至少之一,和/或,对应信道/信号的相位旋转,和/或,对应信道/信号的频域梳齿,隐式确定一段时间内,当前时间,后续时间中的至少之一的时域传输结构,和/或,当前时间,后续时间中的至少之一的频域资源的信道占用情况。
  19. 根据权利要求15中所述的接收方法,其中,所述特定的信道/信号,包括以下至少之一:
    CORESET;
    DCI信令;
    GC-PDCCH;
    PDCCH;
    解调数据的DMRS;
    CSI-RS;
    SSB;
    DRS;
    包含DMRS的PBCH;
    PSS;
    SSS;
    下行物理共享信道PDSCH;
    PUCCH;
    SRS;
    上行物理共享信道PUSCH。
  20. 根据权利要求15所述的接收方法,其中,所述特定的频域资源,包括以下至少之一:
    子带;
    子带组;
    部分带宽BWP;
    BWP组;
    载波;
    载波组。
  21. 一种发送装置,包括以下至少之一:
    信息获取模块,设置为获取特定信息;
    发送模块,设置为基于特定信息,在特定的频域资源上进行特定的信道/信号的发送。
  22. 根据权利要求21所述的发送装置,其中,
    所述发送模块,还设置为在所述进行特定的信道/信号的发送之前,执行先听后说LBT机制;在执行LBT机制成功或判断信道空闲的情况下,在所述特定的频域资源上进行特定的信道/信号发送。
  23. 根据权利要求22所述的发送装置,其中,
    所述发送模块,还设置为执行以下至少之一:
    在进行信息发送之前,执行先听后说LBT机制;
    在执行LBT机制失败或判断信道忙的情况下,放弃在所述特定的频域资源上进行特定的信道/信号发送;或者,在执行LBT机制失败或判断信道忙,且,当前频域资源上配置有特定的信道/信号的情况下,将所述特定的信道/信号按照特定规则切换到执行LBT机制成功或信道空闲的频域资源上发送。
  24. 根据权利要求23所述的发送装置,其中,所述特定规则包括以下至少之一:
    切换到无配置特定的信道/信号,且,执行LBT机制成功或信道空闲的频域资源上;
    切换到无配置特定的信道/信号,且,执行LBT机制成功或信道空闲,且,信道条件好的频域资源上;
    切换到距离所述当前频域资源最近的执行LBT机制成功或信道空闲的频域资源上;
    切换到执行LBT机制成功或信道空闲的最小频域资源索引对应的频域资源上;
    切换到执行LBT机制成功或信道空闲的最大频域资源索引对应的频域资源上;
    随机切换到一个执行LBT机制成功或信道空闲的频域资源上;
    在存在多个频域资源上执行LBT机制失败或信道忙,且,每个频域资源上都配置有特定信道/信号的情况下,所述多个配置的特定的信道/信号依次切换到以下至少之一:连续的多个执行LBT机制成功或信道空闲的频域资源上,信道条件较好的频域资源上;
    在存在多个频域资源上执行LBT机制失败或信道忙,且,每个频域资源上都配置有特定信道/信号的情况下,所述多个配置的特定的信道/信号依次切换到执行LBT机制成功或信道空闲的频域资源索引最小的多个频域资源上;
    在存在多个频域资源上执行LBT机制失败或信道忙,且,每个频域资源上都配置有特定信道/信号的情况下,所述多个配置的特定的信道/信号依次切换到执行LBT机制成功或信道空闲的频域资源索引最大的多个频域资源上;
    在存在多个频域资源上执行LBT机制失败或信道忙,且,每个频域资源上都配置有特定信道/信号的情况下,根据频域资源起始位置参数和偏移量参数中 的至少之一确定切换的频域资源位置。
  25. 根据权利要求23或24所述的发送装置,其中,对于存在频域资源组的情况,在所述频域资源组内,所述特定规则还包括以下至少之一:
    切换到所述频域资源组内信道条件好的频域资源上;
    切换到所述频域资源组内第一个频域资源上;
    切换到所述频域资源组内最后一个频域资源上;
    切换到预定义的所述频域资源组内的频域资源上;
    随机切换到所述频域资源组内的频域资源上。
  26. 根据权利要求21至23中任一项所述的发送装置,其中,所述特定的信道/信号,包括以下至少之一:
    控制资源集合CORESET;
    下行链路控制信息DCI信令;
    下行公共控制信道GC-PDCCH;
    下行控制信道PDCCH;
    解调数据的解调参考信号DMRS;
    信道状态信息参考信号CSI-RS;
    同步广播块SSB;
    发现参考信号DRS;
    包含DMRS的物理广播信道PBCH;
    主同步信号PSS;
    辅同步信号SSS;
    下行物理共享信道PDSCH;
    上行控制信道PUCCH;
    探测参考信号SRS;
    上行物理共享信道PUSCH。
  27. 根据权利要求26所述的发送装置,其中,所述CORESET,DCI信令,所述GC-PDCCH,所述PDCCH中的至少之一,携带以下信息中的至少之一:
    时间的时域传输结构信息,所述时间包括以下至少之一:一段时间内,当前时间,后续时间;
    当前时间和后续时间中的至少之一中频域资源的信道占用情况;
    频域资源上的执行LBT机制成功或信道空闲,或,执行LBT机制失败或信道忙的情况;
    时域资源数目;
    时域资源占用的符号数目;
    下行控制信道的时域资源配置;
    下行控制信道的周期;
    下行控制信道占用的符号数目;
    反馈的时域位置;
    反馈的时域符号数目;
    下行反馈的PDSCH或PDSCH组索引;
    下行反馈的混合自动重传请求HARQ进程或HARQ进程组。
  28. 根据权利要求26所述的发送装置,包括以下至少之一:
    所述CORESET中DMRS,所述GC-PDCCH中DMRS,所述PDCCH中DMRS,所述解调数据的DMRS,所述CSI-RS,所述SSB,所述DRS,所述包含DMRS的PBCH,所述PSS,所述SSS,所述PUCCH,所述SRS中至少之一,和/或,对应信道/信号的相位旋转,和/或,对应信道/信号的频域梳齿,与,一段时间内,当前时间,后续时间中至少之一的时域传输结构,和,当前时间,后续时间中至少之一的频域资源的信道占用情况中至少之一之间存在对应关系。
  29. 根据权利要求22至28中任一项所述的发送装置,其中,
    所述发送模块,还设置为在进行特定的信道/信号发送之前,执行先听后说LBT机制;如果执行LBT成功或判断信道空闲,在特定的频域资源上进行特定的信道/信号发送;在其他执行LBT成功或判断信道空闲的频域资源上不发送所述特定的信道/信号中携带的内容。
  30. 根据权利要求21或26所述的发送装置,其中,所述特定的信道/信号,或,CORESET,或,GC-PDCCH,或,PDCCH在频域资源上的配置方式,包括以下至少之一:
    特定的信道/信号,或,CORESET,或,GC-PDCCH,或,PDCCH被配置在每个频域资源上;
    多个特定的信道/信号,或,多个CORESET,或,多个GC-PDCCH,或, 多个PDCCH分别被配置在连续的频域资源上;
    多个特定的信道/信号,或,多个CORESET,或,多个GC-PDCCH,或,多个PDCCH分别被配置在离散的频域资源上;
    一个特定的信道/信号,或,一个CORESET,或,一个GC-PDCCH,或,一个PDCCH被配置横跨在多个频域资源上;
    特定的信道/信号,或,CORESET,或,GC-PDCCH,或,PDCCH在所有频域资源上重复配置,所述重复配置包括以下至少之一:单个特定的信道/信号,或,单个CORESET,或,单个GC-PDCCH,或,单个PDCCH在所有频域资源上重复配置;多个特定的信道/信号,或,多个CORESET,或,多个GC-PDCCH,或,多个PDCCH作为一个整体在所有频域资源上重复。
  31. 根据权利要求21至30中任一项所述的发送装置,其中,所述特定的信道/信号,或,CORESET,或,GC-PDCCH,或,PDCCH在频域资源上的配置方式,和/或,配置的数目,和/或,频域资源位置信息,和/或,频域位置起始位置,和/或,频域位置间的偏移量,和/或,频域资源之间的切换规则,通过以下方式中的至少之一确定或获得:
    高层无线资源控制RRC信令;
    DCI信令;
    基于执行LBT机制失败或成功的次数触发确定或调整;
    基于执行LBT机制的结果确定。
  32. 根据权利要求21所述的发送装置,其中,所述特定信息,包括以下至少之一:
    调度信息;
    LBT机制类型;
    LBT机制优先级等级;
    LBT机制对应的参数信息;
    特定的信道/信号的数目;
    频域资源信息;
    时域资源信息;
    时域结构信息;
    频域资源切换信息或切换触发信令;
    触发反馈的信令;
    反馈的时域位置;
    反馈的时域符号数目;
    下行反馈的PDSCH或PDSCH组索引;
    下行反馈的HARQ进程或HARQ进程组;
    特定的信道/信号的时域资源位置信息;
    特定的信道/信号的频域资源位置信息;
    特定的信道/信号,和,特定的信道/信号的相位旋转,和,特定的信道/信号的频域梳齿中的至少之一,与,一段时间内,当前时间,后续时间中的至少之一的时域传输结构,和,当前时间,后续时间中的至少之一的频域资源的信道占用情况中至少之一之间的对应关系或对应关系索引。
  33. 根据权利要求21所述的发送装置,其中,所述特定的频域资源,包括以下至少之一:
    子带;
    子带组;
    部分带宽BWP;
    BWP组;
    载波;
    载波组。
  34. 根据权利要求21所述的发送装置,其中,所述信息获取模块是设置为通过以下方式中的至少之一获取特定信息:
    高层RRC信令;
    物理层DCI信令;
    之前的物理层DCI信令;
    预定义方式。
  35. 一种接收装置,包括:
    接收模块,设置为在特定的频域资源上接收特定的信道/信号。
  36. 根据权利要求35所述的接收装置,其中,
    所述特定的信道/信号包括:显式下行链路控制信息DCI信令;
    所述接收模块,还设置为通过在所述特定的频域资源上接收的所述特定的信道/信号携带的显式DCI信令,确定或获取一段时间内,当前时间,后续时间中的至少之一的时域传输结构信息,和/或,当前时间,后续时间中的至少之一的频域资源的信道占用情况。
  37. 根据权利要求35所述的接收装置,其中,
    所述接收模块,还设置为通过在所述特定的频域资源上接收所述特定的信道/信号携带的信息,隐式确定或获取一段时间内,当前时间,后续时间中的至少之一的时域传输结构信息,和/或,当前时间,后续时间中的至少之一的频域资源的信道占用情况。
  38. 根据权利要求37所述的接收装置,其中,所述接收模块,是设置为通过以下方式中的至少之一隐式确定或获取一段时间内,当前时间,后续时间中的至少之一的时域传输结构信息,和/或,当前时间,后续时间中的至少之一的频域资源的信道占用情况:
    基于控制资源集合CORESET中解调参考信号DMRS,下行公共控制信道GC-PDCCH中DMRS,下行控制信道PDCCH中DMRS,解调数据的DMRS,信道状态信息参考信号CSI-RS,同步广播块SSB,发现参考信号DRS,包含DMRS物理广播信道PBCH,主同步信号PSS,辅同步信号SSS,上行控制信道PUCCH,探测参考信号SRS中至少之一,和/或,对应信道/信号的相位旋转,和/或,对应信道/信号的频域梳齿,隐式确定一段时间内,当前时间,后续时间中的至少之一的时域传输结构,和/或,当前时间,后续时间中的至少之一的频域资源的信道占用情况。
  39. 根据权利要求35所述的接收装置,其中,所述特定的信道/信号,包括以下至少之一:
    CORESET;
    DCI信令;
    GC-PDCCH;
    PDCCH;
    解调数据的DMRS;
    CSI-RS;
    SSB;
    DRS;
    包含DMRS的PBCH;
    PSS;
    SSS;
    下行物理共享信道PDSCH;
    PUCCH;
    SRS;
    上行物理共享信道PUSCH。
  40. 根据权利要求35所述的接收装置,其中,所述特定的频域资源,包括以下至少之一:
    子带;
    子带组;
    部分带宽BWP;
    BWP组;
    载波;
    载波组。
  41. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如权利要求1至14中任一项所述的发送方法。
  42. 一种发送终端,包括:
    存储器,设置为存储计算机可执行指令;
    处理器,设置为执行所述计算机可执行指令,以实现如权利要求1至14中任一项所述的发送方法。
  43. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现如权利要求15至20中任一项所述的接收方法。
  44. 一种接收终端,包括:
    存储器,设置为存储计算机可执行指令;
    处理器,设置为执行所述计算机可执行指令,以实现如权利要求15至20中任一项所述的接收方法。
PCT/CN2020/099288 2019-07-01 2020-06-30 发送方法及装置、接收方法及装置、终端、存储介质 WO2021000858A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910586536.9 2019-07-01
CN201910586536.9A CN110536447A (zh) 2019-07-01 2019-07-01 一种发送、接收方法以及发送、接收装置

Publications (1)

Publication Number Publication Date
WO2021000858A1 true WO2021000858A1 (zh) 2021-01-07

Family

ID=68659453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099288 WO2021000858A1 (zh) 2019-07-01 2020-06-30 发送方法及装置、接收方法及装置、终端、存储介质

Country Status (2)

Country Link
CN (1) CN110536447A (zh)
WO (1) WO2021000858A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113645705A (zh) * 2021-08-30 2021-11-12 中信科移动通信技术股份有限公司 频域资源分配方法及装置
CN115175362A (zh) * 2021-04-02 2022-10-11 大唐移动通信设备有限公司 一种信息处理方法、装置、网络侧设备及终端

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536447A (zh) * 2019-07-01 2019-12-03 中兴通讯股份有限公司 一种发送、接收方法以及发送、接收装置
CN114982332A (zh) * 2020-01-22 2022-08-30 高通股份有限公司 多个通话前监听(lbt)带宽中的下行链路控制信息(dci)传输
JP7426501B2 (ja) * 2020-03-27 2024-02-01 鴻穎創新有限公司 マルチキャスト/ブロードキャストサービスのためのユーザ機器及び方法
WO2021248311A1 (en) * 2020-06-09 2021-12-16 Qualcomm Incorporated Availability of resource block (rb) sets and listen-before-talk (lbt) status associated with the rb sets
KR20230004784A (ko) * 2020-08-06 2023-01-06 엘지전자 주식회사 반이중 주파수 분할 듀플렉싱을 지원하는 무선통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2022040984A1 (zh) * 2020-08-26 2022-03-03 华为技术有限公司 一种通信方法与装置
WO2022062873A1 (zh) * 2020-09-27 2022-03-31 华为技术有限公司 传输信息的方法和装置
WO2023065365A1 (zh) * 2021-10-22 2023-04-27 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN116367327A (zh) * 2021-12-23 2023-06-30 维沃移动通信有限公司 通信资源确定方法、终端及网络侧设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180132243A1 (en) * 2016-11-08 2018-05-10 Qualcomm Incorpoated Search space design and use
CN108496397A (zh) * 2018-04-02 2018-09-04 北京小米移动软件有限公司 同步广播传输信号块的方法及装置
CN109565834A (zh) * 2018-10-30 2019-04-02 北京小米移动软件有限公司 下行控制信息接收方法、装置及存储介质
CN110536447A (zh) * 2019-07-01 2019-12-03 中兴通讯股份有限公司 一种发送、接收方法以及发送、接收装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180132243A1 (en) * 2016-11-08 2018-05-10 Qualcomm Incorpoated Search space design and use
CN108496397A (zh) * 2018-04-02 2018-09-04 北京小米移动软件有限公司 同步广播传输信号块的方法及装置
CN109565834A (zh) * 2018-10-30 2019-04-02 北京小米移动软件有限公司 下行控制信息接收方法、装置及存储介质
CN110536447A (zh) * 2019-07-01 2019-12-03 中兴通讯股份有限公司 一种发送、接收方法以及发送、接收装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "3GPP TSG RAN WG1 #96 R1-1903595", SUMMARY #2 ON WIDE-BAND OPERATION FOR NR-U, 1 March 2019 (2019-03-01), XP051690862 *
LG ELECTRONICS: "3GPP TSG RAN WG1 #96bis R1-1905630", SUMMARY ON WIDE-BAND OPERATION FOR NR-U, 12 April 2019 (2019-04-12), XP051707690 *
LG ELECTRONICS: "3GPP TSG RAN WG1 #97 R1-1907769", SUMMARY #2 ON WIDE-BAND OPERATION FOR NR-U, 17 May 2019 (2019-05-17), XP051740042 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115175362A (zh) * 2021-04-02 2022-10-11 大唐移动通信设备有限公司 一种信息处理方法、装置、网络侧设备及终端
CN113645705A (zh) * 2021-08-30 2021-11-12 中信科移动通信技术股份有限公司 频域资源分配方法及装置
CN113645705B (zh) * 2021-08-30 2023-11-21 中信科移动通信技术股份有限公司 频域资源分配方法及装置

Also Published As

Publication number Publication date
CN110536447A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2021000858A1 (zh) 发送方法及装置、接收方法及装置、终端、存储介质
CN114745086B (zh) 无线通信系统中发送和接收控制信道的方法、装置和系统
US11825471B2 (en) Method for transmitting and receiving shared channel in wireless communication system, and device supporting same
CN111587554B (zh) 无线通信系统的信道复用方法和复用的信道传输方法及使用该方法的设备
KR102668286B1 (ko) 신호 송신을 위한 방법 및 장치
US20220046606A1 (en) Method and apparatus of operation considering bandwidth part in next generation wireless communication system
CN107925544B (zh) 无线通信系统中的用于通信的方法和装置
US12095706B2 (en) Information determination method and device, information adjustment method, threshold usage method, terminal, and storage medium
WO2018126777A1 (zh) Pdsch资源确定方法及装置、终端、基站和存储介质
US11265859B2 (en) Method and apparatus for transmitting and receiving control information in wireless communication system
CN111742510A (zh) 无线通信系统中发送上行链路控制信息的方法及使用其的装置
WO2018076565A1 (zh) 资源配置方法及资源配置装置
CN114651512A (zh) 用于上行链路取消指示的方法和设备
KR20240093776A (ko) 신호 송신을 위한 방법 및 장치
WO2018141180A1 (zh) 控制信息的传输方法、接收方法、装置、基站及终端
EP3198976B1 (en) Transmission confirmation signal on lbt carrier
CN109041243B (zh) 一种物理下行控制信道的发送方法、接收方法及相关设备
WO2024093878A1 (zh) 一种通信方法及装置
US9313006B2 (en) Methods and apparatus for resource element mapping
US10680867B2 (en) Control channel transmission method, network device, and terminal device
WO2024160143A1 (zh) 一种通信方法及装置
CN118694491A (zh) 一种通信方法、装置、通信设备和存储介质
KR20180106802A (ko) 효율적인 메모리 사용을 위한 메모리 할당기를 포함하는 무선 통신 장치 및 이의 동작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835445

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20835445

Country of ref document: EP

Kind code of ref document: A1