WO2020019661A1 - 一种用于edfa中的双980泵浦激光器对泵结构 - Google Patents

一种用于edfa中的双980泵浦激光器对泵结构 Download PDF

Info

Publication number
WO2020019661A1
WO2020019661A1 PCT/CN2018/123439 CN2018123439W WO2020019661A1 WO 2020019661 A1 WO2020019661 A1 WO 2020019661A1 CN 2018123439 W CN2018123439 W CN 2018123439W WO 2020019661 A1 WO2020019661 A1 WO 2020019661A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
signal
light
laser
pump light
Prior art date
Application number
PCT/CN2018/123439
Other languages
English (en)
French (fr)
Inventor
余振宇
卜勤练
付成鹏
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Priority to US17/263,766 priority Critical patent/US20210234325A1/en
Priority to EP18927741.1A priority patent/EP3832814A4/en
Publication of WO2020019661A1 publication Critical patent/WO2020019661A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094011Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with bidirectional pumping, i.e. with injection of the pump light from both two ends of the fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2303/00Pumping wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium

Definitions

  • the present invention relates to the field of optical communication technology, and in particular to a dual-980 pump laser pair pump structure used in EDFA.
  • Erbium Doped Fiber Amplifier In optical fiber communication systems, Erbium Doped Fiber Amplifier (EDFA) is an important relay device to extend the transmission distance of optical signals. Unlike optical-electrical-optical relay amplification, EDFA is a kind of light-to-light Repeater equipment. Since the birth of the world's first EDFA in the late 1980s, EDFA has played a pivotal role in the global optical communication system and has flourished and been widely used. Among them, the pump laser is the source of the energy of the EDFA amplified signal light. The pump light is injected into the erbium-doped fiber, which excites the erbium ions from the ground state to the upper energy level, and then transitions to the metastable state without radiation. In the case of a chirped fiber, the plutonium ions dropped to the base level in a metastable state will release energy and generate amplified light in the same direction and frequency as the incident signal light, that is, the optical amplification process
  • the pump laser mainly uses two types: 980 pump and 1480 pump.
  • the 980 pump has relatively strong ability to suppress noise, while the 1480 pump has relatively high energy conversion efficiency.
  • Both 980 and 1480 pump lasers are F-P lasers, while F-P lasers are multi-longitudinal mode lasers with a broader spectrum.
  • the 20dB spectral width of a 1480 pump laser can reach 10nm or even 20nm.
  • Erbium ion emission absorption spectrum is relatively steep in the 980 band, but relatively flat in the 1480 band.
  • EDF Erbium Doped Fiber
  • Fiber Bragg Grating (FBG) must be engraved on the 980 pump laser pigtail as an external cavity to further process the spectrum, so it is difficult to integrate an isolator on the 980 pump laser package; on the contrary, It is not necessary to add FBG as an external cavity for further processing on the 1480 pump laser pigtail, and only use the original spectrum as the output; correspondingly, because there is no FBG external cavity on the pigtail, an isolator can be integrated on the 1480 pump pigtail. .
  • FBG Fiber Bragg Grating
  • the forward pump has a strong ability to suppress noise
  • the backward pump has a high amplification gain.
  • the residual pump light with the same or similar wavelength enters the counter-pump, it may cause lasing in the counter-pump and cause the failure of the counter-pump laser. That is, there is a risk of mutual interference between the two opposing pumps.
  • the FBG on the 980 pump laser pigtail belongs to the external cavity and is used in the screening mode to emit only the optical power of the desired wavelength; while the stray pump light of other wavelengths is not external As a blocking effect, external stray pump light can still be injected into the cavity of the pump laser. If the wavelength of the stray pump light is close to the wavelength of the outgoing light of the interfered pump laser, then there is a certain probability of lasing, so The original resonance mode of the pump laser cavity is destroyed, and the disturbed pump laser is invalidated.
  • 980 + 980 can better meet the requirements; for example, in some symmetrical array optical path EDFA, 980 + 1480 cannot be symmetrical, while 1480 + 1480 is limited to its absorption Slow, unable to achieve array symmetry, only 980 + 980 can do the job. In this situation, the optical path needs to be appropriately modified to ensure that the two pairs of 980 pumps will not interfere with each other, so that they can be better applied.
  • the invention provides a dual-980 pump laser pair pump structure for EDFA, which includes erbium-doped fiber 1, a first 980 pump laser 2-1, a second 980 pump laser 2-2, and a first signal / Pump multiplexer 3-1, second signal / pump multiplexer 3-2 and anti-interference structure;
  • the first 980 pump laser 2-1 is used to output a first pump light, and the first 980 pump laser 2-1 is connected to the first signal / pump multiplexer 3-1.
  • the first signal / pump multiplexer 3-1 is connected to the signal input terminal of the erbium-doped fiber 1 so that the first pump light is injected into the erbium-doped fiber 1 in a forward direction;
  • the second 980 pump laser 2-2 is used to output a second pump light, the second 980 pump laser 2-2 is connected to the second signal / pump multiplexer 3-2, and the second signal / pump multiplexer
  • the device 3-2 is connected to the signal output end of the erbium-doped fiber 1 so that the second pump light is injected into the erbium-doped fiber 1 in the reverse direction;
  • anti-interference structures are respectively provided on the forward transmission optical path of the first pump light and the reverse transmission optical path of the second pump light to resist the first pump light from interfering with the first pump light.
  • the anti-interference structure includes a first fiber Bragg grating 4-1 and a second fiber Bragg grating 4-2, and the first fiber Bragg grating 4-1 is disposed on a transmission optical path of the first pump light For passing the first pump light and high-reflection second pump light; the second fiber Bragg grating 4-2 is disposed on the transmission light path of the second pump light for passing the second pump light And high-reflection first pump light.
  • the center wavelength and bandwidth of the high reflection band of the first fiber Bragg grating 4-1 are matched with the second pump light, and the center wavelength of the high reflection band of the second fiber Bragg grating 4-2 and The bandwidth matches the first pump light.
  • the first fiber Bragg grating 4-1 is disposed between the first 980 pump laser 2-1 and the first signal / pump combiner 3-1, or the first signal / Pump multiplexer 3-1 and the signal input end of the erbium-doped fiber 1;
  • the second fiber Bragg grating 4-2 is disposed between the second 980 pump laser 2-2 and the first Between the two signal / pump multiplexers 3-2, or between the second signal / pump multiplexer 3-2 and the signal output end of the erbium-doped fiber 1.
  • the first fiber Bragg grating 4-1 is written on the pigtail of the first 980 pump laser 2-1 or on the pigtail of the first signal / pump multiplexer 3-1 or The signal input end of the erbium-doped fiber 1;
  • the second fiber Bragg grating 4-2 is written on the pigtail of the second 980 pump laser 2-2 or the second signal / pump multiplexer 3-2 pigtail or the signal output end of the erbium-doped fiber 1.
  • the anti-interference structure includes a first optical filter 5-1 and a second optical filter 5-2, and the first optical filter 5-1 is disposed on the first 980 pump laser 2-1 And the first signal / pump combiner 3-1, the second optical filter 5-2 is disposed between the second 980 pump laser 2-2 and the second signal / pump Multiplexer 3-2.
  • the first optical filter 5-1 and the second optical filter 5-2 both use a narrow-band band-pass filter; wherein the first optical filter 5-1 allows the first pump The pump light passes and shields the second pump light, and the second optical filter 5-2 allows the second pump light to pass and shields the first pump light.
  • the center wavelengths of the first pump light and the second pump light are both selected in a range of 973-981.5 nm.
  • the center wavelengths of the first pump light and the second pump light are different, and the center wavelength difference is 4-7 nm.
  • the erbium-doped optical fiber 1 is a single whole section or at least two sections are cascaded.
  • the invention provides a dual 980 pump laser pair pump structure used in EDFA.
  • the optical path of the 980 + 980 pair pump structure is appropriately improved.
  • a fiber Bragg grating or an optical filter as an anti-interference structure, Residual pump light in the direction cannot be injected into the opposite pump, thereby avoiding mutual interference between the two 980 opposite pumps, and avoiding the failure of the pump laser.
  • the fiber Bragg grating and optical filter scheme is adopted, which has small loss, small volume and low cost.
  • Figure 1 is a dual 980 pump laser pair pump structure without anti-interference structure
  • Figure 2 is a dual 980 pump laser pair pump structure with an optical isolator
  • FIG. 3 is a dual 980 pump laser pair pump structure (an additional fiber Bragg grating is added to the pumping path) used in the EDFA according to an embodiment of the present invention
  • FIG. 4 is a dual 980 pump laser-to-pump structure (an additional fiber Bragg grating is added on the main optical path) provided in an embodiment of the present invention
  • FIG. 5 is another dual-980 pump laser-to-pump structure (an optical filter is added to a pumping path) used in an EDFA according to an embodiment of the present invention.
  • the pair pump structure includes erbium-doped fiber 1, the first 980 pump laser 2-1, the first Two 980 pump lasers 2-2, the first signal / pump multiplexer 3-1 and the second signal / pump multiplexer 3-2.
  • the first 980 pump laser 2-1 is used to output a first pump light, and an output end of the first 980 pump laser 2-1 and the first signal / pump combiner 3-1 The pump end is connected, and the signal output end of the first signal / pump multiplexer 3-1 is connected to the signal input end of the erbium-doped fiber 1 so that the first pump light is injected into the erbium-doped material in the forward direction.
  • Optical fiber 1, the first 980 pump laser 2-1, the first signal / pump combiner 3-1, and the erbium-doped fiber 1 constitute a forward transmission optical path of the first pump light
  • the second 980 pump laser 2-2 is used to output a second pump light, and the output end of the second 980 pump laser 2-2 and the second signal / pump combiner 3-2
  • the pump end of the second signal / pump multiplexer 3-2 is connected to the signal output end of the erbium-doped fiber 1 so that the second pump light is injected into the reverse direction.
  • Ytterbium-doped fiber 1, the second 980 pump laser 2-2, the second signal / pump combiner 3-2 and the erbium-doped fiber 1 constitute the reverse direction of the second pump light Transmission light path.
  • the signal light After the signal light enters through the input port, it sequentially passes through the first signal / pump multiplexer 3-1, the erbium-doped fiber 1 and the second signal / pump multiplexer 3-2. , And finally arrive at the output port; here, the transmission direction of the signal light is taken as the forward direction, and the transmission path of the signal light is the main optical path.
  • the first pump light and the signal light are injected into the erbium-doped fiber 1 in the same direction, and the second pump light is injected into the erbium-doped fiber 1 from the opposite direction.
  • the forward optical path is specifically: After the first pump light is output by the first 980 pump laser 2-1, the first signal / pump combiner 3-1 is coupled with the signal light, and finally the erbium-doped fiber is injected into the forward direction. 1;
  • the reverse optical path is specifically: after the second pump light is output by the second 980 pump laser 2-2, the second signal / pump combiner 3-2 is coupled with the signal light Finally, the erbium-doped fiber 1 is reversely injected.
  • the first 980 pump laser 2-1 and the first signal / pump combiner 3-1 constitute a first pump optical path
  • the second 980 pump laser 2-2 and the first The two signal / pump multiplexer 3-2 constitutes a second pump optical path.
  • a first optical isolator 6-1 is provided between the first 980 pump laser 2-1 and the first signal / pump combiner 3-1, and is configured to unidirectionally pass the first Pump light;
  • a second optical isolator 6-2 is provided between the second 980 pump laser 2-2 and the second signal / pump combiner 3-2 for unidirectionally passing the second Pump light. Therefore, when the second pump light reaches the first optical isolator 6-1 in the reverse direction, it cannot reach the first 980 pump laser 2-1 through the first optical isolator 6-1. . Similarly, the first pump light cannot reach the second 980 pump laser 2-2 through the second optical isolator 6-2.
  • optical isolators are large in size, large in loss, high in cost, and difficult to integrate on a 980 pump laser.
  • An embodiment of the present invention provides a dual 980 pump laser pair pump structure for EDFA, which includes erbium-doped fiber 1, a first 980 pump laser 2-1, a second 980 pump laser 2-2, a first Signal / pump multiplexer 3-1, second signal / pump multiplexer 3-2 and anti-interference structure.
  • anti-interference structures are respectively provided on the forward transmission optical path of the first pump light and the reverse transmission optical path of the second pump light to resist the first pump light.
  • the anti-interference structure includes a first fiber Bragg grating 4-1 and a second fiber Bragg grating 4-2, and the first fiber Bragg grating 4-1
  • the second optical fiber Bragg grating 4-2 is disposed on the transmission optical path of the first pump light and passes through the first pump light and is highly reflective to the second pump light.
  • the transmission light path is used to pass the second pump light and to highly reflect the first pump light.
  • the invention provides a dual 980 pump laser pair pump structure used in EDFA.
  • the optical path of the 980 + 980 pair pump structure is appropriately improved, and a fiber Bragg grating is added to the transmission light path of the two pump lights.
  • Each fiber Bragg grating can highly reflect the residual pump light in the other direction, so that the residual pump light in either direction cannot be injected into the opposite pump, avoiding mutual interference between the two 980 opposite pumps , Thereby avoiding the failure of the opposite pump laser.
  • the fiber Bragg grating scheme adopts a small loss, a small volume, and a low cost.
  • the first fiber Bragg grating 4-1 is disposed on a first pumping optical path
  • the second fiber Bragg grating 4-2 is disposed on the second pumping optical path
  • the A first fiber Bragg grating 4-1 is provided between the first 980 pump laser 2-1 and the first signal / pump combiner 3-1
  • the second fiber Bragg grating 4-2 is provided Between the second 980 pump laser 2-2 and the second signal / pump combiner 3-2.
  • the first fiber Bragg grating 4-1 and the first signal / pump combiner 3 -1, between the second 980 pump laser 2-2 and the second fiber Bragg grating 4-2, and between the second fiber Bragg grating 4-2 and the second signal / pump combiner 3-2 can be connected by welding; or, the first fiber Bragg grating 4-1 can also be welded to the pigtail of the first 980 pump laser 2-1, and the first Two fiber Bragg gratings 4-2 are welded to the pigtail of the second 980 pump laser 2-2.
  • the first fiber Bragg grating 4-1 and the second fiber Bragg grating 4-1 are all high-reflectivity fiber Bragg gratings.
  • the high-reflection window 30dB bandwidth of the two fiber Bragg gratings is 4-7nm, and the reflectance is above 99%.
  • the high anti-center wavelength and bandwidth of the first fiber Bragg grating 4-1 are matched with the center wavelength and bandwidth of the second pump light, so as to have high anti-second pump light; the second fiber Bragg grating 4
  • the high-reflection center wavelength and bandwidth of ⁇ 2 are matched with the center wavelength and bandwidth of the first pump light, so that the high-reflection first pump light.
  • the first pump light when the first pump light is transmitted in the forward direction, it can continue to transmit after passing through the first fiber Bragg grating 4-1 with low loss, and when the second pump light passes through the second signal / pump After the multiplexer 3-2, the erbium-doped fiber 1 and the first signal / pump multiplexer 3-1, the remaining second pump light reaches the first fiber Bragg grating 4-1 in the opposite direction. Can be reflected to the greatest extent, making it difficult for the second pump light to reach the first 980 pump laser 2-1 through the first fiber Bragg grating 4-1, thereby eliminating the second 980 pump laser 2-2 interferes with the first 980 pump laser 2-1.
  • the second pump light when the second pump light is transmitted in the reverse direction, it can continue to transmit after passing through the second fiber Bragg grating 4-2 with low loss, and when the first pump light is transmitted in the forward direction to the first
  • the two fiber Bragg gratings 4-2 can be reflected to the greatest extent, making it difficult for the first pump light to reach the second 980 pump laser 2-2 through the second fiber Bragg grating 4-2, thereby eliminating all The interference of the first 980 pump laser 2-1 to the second 980 pump laser 2-2.
  • the center wavelengths of the first pump light and the second pump light may both be selected within a range of 973-981.5 nm. It should be noted that, in the embodiment of the present invention, in order to prevent the first pump light from passing through the second fiber Bragg grating 4-2 or the second pump light from passing through the first fiber Bragg grating 4-1, the center wavelengths of the first pump light and the second pump light are different, and the center wavelength difference is in the range of 4-7 nm. If the center wavelength difference is too small, it is difficult to separate the two pump lights; and when the center wavelength difference is greater than 4 nm, the two pump lights can be distinguished without obstacles.
  • the first 980 pump laser 2-1 and the second 980 pump laser 2-2 are misaligned to select wavelengths, for example, 973 and 977 nm are selected.
  • the high reflection window bandwidth of FBG can actually be determined by the difference between the center wavelengths of the two opposing pump lasers. Assuming that the center wavelength difference between the two pumps is 4nm, the bandwidth of the high reflection window can be set to 4nm. The Pu center wavelength difference is 7nm, then the high inversion window bandwidth can be set to 4 ⁇ 7nm.
  • the first fiber Bragg grating 4-1 and the second fiber Bragg grating 4-2 may be respectively disposed on a main optical path of signal light, specifically: A fiber Bragg grating 4-1 is disposed between the first signal / pump combiner 3-1 and the signal input end of the erbium-doped fiber 1, and the second fiber Bragg grating 4-2 is disposed at Between the second signal / pump multiplexer 3-2 and the signal output terminal of the erbium-doped fiber 1.
  • the first fiber Bragg grating 4-1 can pass the signal light and the first pump light and highly reflect the second pump light; the second fiber Bragg grating 4-2 can pass the signal light and the second pump light, and highly reflect the first pump light.
  • the positions of the two fiber Bragg gratings are shifted from the pump optical path to the main optical path of the signal light, the mutual interference between the two 980 pump lasers can still be eliminated.
  • the specific principle is similar to that described above. I will not repeat them here.
  • both the second fiber Bragg grating 4-2 and the second signal / pump combiner 3-2 and between the second fiber Bragg grating 4-2 and the erbium-doped fiber 1 can be used. Fusion connection.
  • the first fiber Bragg grating 4-1 may be further disposed on the first pump light path, and the second fiber Bragg grating 4-2 may be disposed on the main light of the signal light.
  • the first fiber Bragg grating 4-1 is disposed between the first 980 pump laser 2-1 and the first signal / pump combiner 3-1, and the first Two fiber Bragg gratings 4-2 are disposed between the second signal / pump combiner 3-2 and a signal output end of the erbium-doped fiber 1.
  • the first fiber Bragg grating 4-1 may also be disposed on a main optical path of signal light
  • the second fiber Bragg grating 4-2 may be disposed on the second pump optical path
  • the A first fiber Bragg grating 4-1 is disposed between the first signal / pump multiplexer 3-1 and a signal input end of the erbium-doped fiber 1
  • the second fiber Bragg grating 4-2 is disposed between The second signal / pump multiplexer 3-2 and the signal output end of the erbium-doped optical fiber 1; the specific connection mode and working principle are not repeated here.
  • the first fiber Bragg grating 4-1 is disposed on the first pump light path and the second fiber Bragg grating 4-2 is disposed on the second pump light path, the first One fiber Bragg grating 4-1 and the second fiber Bragg grating 4-2 do not cause additional insertion loss to the signal light, so this arrangement is more optimal.
  • the first fiber Bragg grating 4-1 and the second fiber Bragg grating 4-2 can also be directly written on the pigtail of the device, specifically: the first fiber Bragg grating 4 -1 can be directly written on the pigtail of the first 980 pump laser 2-1, or on the pigtail of the first signal / pump multiplexer 3-1, or on the erbium-doped fiber 1 Signal input; the second fiber Bragg grating 4-2 can be directly written on the pigtail of the second 980 pump laser 2-2, or the second signal / pump multiplexer 3-2 On the pigtail, or on the signal output end of the erbium-doped fiber 1.
  • the first fiber Bragg grating 4-1 can still highly reflect the second pump light
  • the second fiber Bragg grating 4-2 can still highly reflect the The first pump light can still eliminate mutual interference between the two 980 pump lasers.
  • the erbium-doped optical fiber 1 is a single whole section or at least two sections are cascaded. Because amplifiers made from a single segment of erbium-doped fiber have a worse noise figure when their output power is close to their saturated output power, in order to achieve larger gains and lower noise figures, erbium-doped fibers can be divided into front and rear Two sections, and the length of the erbium-doped fiber at the front section is shorter than the length of the erbium-doped fiber at the rear section.
  • the two sections of the erbium-doped fiber are separated by an isolator, which can effectively isolate the back-propagating noise in the erbium-doped fiber at the rear section and prevent it from entering Anterior erbium-doped fiber. In this way, the reverse noise will not be amplified in the previous erbium-doped fiber, which can reduce the noise figure of the first stage. In a multi-stage system, the total noise figure is mainly affected by the noise figure of the first stage. This optimizes the noise performance of the entire amplifier. Similarly, the erbium-doped fiber can be divided into three or more sections, which will not be repeated here.
  • the embodiment of the present invention also provides another dual-980 pump laser pair pump structure used in EDFA, as shown in FIG. 5, which is different from the embodiment 1 in that:
  • the anti-interference structure is changed from the two fiber Bragg gratings in Embodiment 1 to two optical filter structures. That is, before the 980 pump laser is connected to the corresponding signal / pump multiplexer, an optical filter is used to utilize Optical filter selection function for specific wavelengths to eliminate mutual interference between two 980 pump lasers.
  • the dual 980 pump laser pair pump structure provided in this embodiment includes erbium-doped fiber 1, the first 980 pump laser 2-1, the second 980 pump laser 2-2, and the first signal / pump combination.
  • the wave filter 3-1, the second signal / pump combiner 3-2, and an anti-interference structure, the anti-interference structure includes a first optical filter 5-1 and a second optical filter 5-2.
  • the first optical filter 5-1 is disposed on a first pumping optical path
  • the second optical filter 5-2 is disposed on the second pumping optical path
  • the first optical filter 5-1 is disposed between the output end of the first 980 pump laser 2-1 and the pump end of the first signal / pump combiner 3-1
  • the second optical filter 5- 2 is disposed between the output end of the second 980 pump laser 2-2 and the pump end of the second signal / pump combiner 3-2.
  • the first 980 pump laser 2-1 and the first optical filter 5-1 the first optical filter 5-1 and the first signal / pump combiner 3 -1, between the second 980 pump laser 2-2 and the second optical filter 5-2, and between the second optical filter 5-2 and the second signal / pump combiner 3-2 can be connected by welding.
  • the first optical filter 5-1 and the second optical filter 5-2 both adopt narrow-band band-pass filters, which can allow light signals of a specific wavelength to pass and shield light of other wavelengths.
  • Signal, narrow band window 30dB bandwidth is 3-7nm
  • filter transmission insertion loss is within 0.6dB.
  • the first optical filter 5-1 can only allow the light of the first pump light wavelength to pass while shielding the light of other wavelengths
  • the second optical filter 5-2 can only allow the second light filter Pump light wavelengths pass through and block light at other wavelengths.
  • the second pump light passes through the second signal / pump multiplexer 3-2, the erbium-doped fiber 1 and the first signal / pump multiplexer 3-1, residual
  • the second pump light cannot pass because the first optical filter 5-1 has a shielding effect on the second pump light.
  • the first optical filter 5-1 reaches the first 980 pump laser 2-1, thereby eliminating the effect of the second 980 pump laser 2-2 on the first 980 pump laser 2-1. interference.
  • the center wavelengths of the first pump light and the second pump light may both be selected within a range of 973-981.5 nm. It should be noted that, in the embodiment of the present invention, in order to prevent the first pump light from passing through the second optical filter 5-2 or the second pump light from passing through the first optical filter 5- 1.
  • the center wavelengths of the first pump light and the second pump light are different, and the center wavelength difference is in a range of 4-7 nm. If the center wavelength difference is too small, it is difficult to separate the two pump lights; and when the center wavelength difference is greater than 4 nm, the two pump lights can be distinguished without obstacles.
  • the first 980 pump laser 2-1 and the second 980 pump laser 2-2 are misaligned to select wavelengths, for example, 973 and 977 nm are selected.
  • the present invention provides a dual 980 pump laser pair pump structure used in EDFA.
  • the optical path of the 980 + 980 pair pump structure is appropriately improved, and an optical filter is added to each of the two pump light transmission optical paths.
  • Each optical filter only allows the corresponding pump light to pass, but does not allow the residual pump light in the other direction to pass, so that the residual pump light in any direction cannot be incident into the opposite pump, avoiding two 980 The mutual interference between the opposite pumps, thereby avoiding the failure of the opposite pump laser.
  • the loss of the optical filter is small, the volume is small, and the cost is low.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

一种用于EDFA中的双980泵浦激光器(2-1,2-2)对泵结构,包括掺铒光纤(1)、两个980泵浦激光器(2-1,2-2)、两个信号/泵浦合波器(3-1,3-2)和抗干扰结构;两个980泵浦激光器(2-1,2-2)分别用于输出第一泵浦光和第二泵浦光,第一泵浦光和第二泵浦光分别正向和反向注入掺铒光纤(1);第一泵浦光的传输光路上以及第二泵浦光的传输光路上分别设置有抗干扰结构,抗干扰结构为两个光纤布拉格光栅(4-1,4-2)或两个光滤波器(5-1,5-2)。对双980泵浦激光器(2-1,2-2)对泵结构的光路进行适当改进,通过增加光纤布拉格光栅或光滤波器作为抗干扰结构,使得任一方向的残余泵浦光均无法射入对向泵浦中,从而避免了两980对向泵浦之间的相互干扰,进而避免了对管芯的损坏。

Description

一种用于EDFA中的双980泵浦激光器对泵结构 【技术领域】
本发明涉及光通信技术领域,具体涉及一种用于EDFA中的双980泵浦激光器对泵结构。
【背景技术】
在光纤通信系统中,掺铒光纤放大器(Erbium Doped Fiber Amplifier,简写为EDFA)是延长光信号传输距离的重要中继设备,与光-电-光中继放大不同,EDFA是一种光到光直放设备。自上世纪80年代末世界首台EDFA诞生以来,在全球光通讯系统中,EDFA扮演着举足轻重的作用,并获得了蓬勃发展和广泛应用。其中,泵浦激光器是EDFA放大信号光的能量之源,泵浦光注入掺铒光纤,激发铒离子从基态跃迁到上能级,并随后无辐射跃迁到亚稳态,当有信号光注入掺铒光纤时,在亚稳态跌落到基级的铒离子就会释放能量,并产生和入射信号光同向同频同相的放大光,即完成光放大过程。
目前,泵浦激光器主要采用980泵浦和1480泵浦两种,980泵浦抑制噪声能力相对较强,而1480泵浦能量转化效率相对较高。980和1480泵浦激光器均为F-P激光器,而F-P激光器为多纵模激光器,光谱较宽,如1480泵浦激光器的20dB谱宽可以达到10nm甚至20nm。铒离子发射吸收谱在980波段比较陡峭,而在1480波段比较平坦,相应的,掺铒光纤(Erbium Doped Fiber,简写为EDF)对980泵浦激光器光谱要求较高。所以,980泵浦激光器尾纤上须刻写光纤布拉格光栅(Fiber Bragg Grating,简写为FBG)作外腔以对光谱作进一步处理,因而980泵浦激光器封装上很难再集成隔离器;相反地,1480泵浦激光器尾纤上则无须加入FBG作外腔作进一步处理,而仅以原始光谱作输出即可;相应的,由于尾纤上无FBG外腔,1480泵浦尾管上可集成隔离器。
从光路结构上说,前向泵浦抑制噪声能力强,后向泵浦放大增益高。在工 程设计和应用中,往往需要将前向泵浦和后向泵浦结合起来使用,从而可结合前向泵浦和后向泵浦的优点,在提升输出光功率的同时抑制噪声。但是,在对向泵浦结构中,如果波长相同或者相近的残余泵浦光射入对向泵浦中,那么可能在对向泵浦中引起激射,并导致对向泵浦激光器的失效,即两对向泵浦存在相互干扰的风险。在上述介绍的980泵浦激光器中,980泵浦激光器尾纤上的FBG属于外腔,用于筛选模式,仅出射期望波长的光功率;而对外来的其它波长的杂散泵浦光并无阻隔作用,外来的杂散泵浦光依然可以射入泵浦激光器腔内,如果杂散泵浦光波长与该被干扰泵浦激光器的出射光波长接近,那么就有一定概率产生激射,从而破坏该泵浦激光腔原谐振模式,进而使得被干扰的泵浦激光器失效。
鉴于1480泵浦激光器输出位置一般集成有隔离器,所以两1480泵浦可作对向泵浦;鉴于980泵浦和1480泵浦中心波长相距甚远,对向泵浦亦可实施;而由于980泵浦激光器无法集成隔离器,所以双980对泵结构不能直接使用,因此,目前工程设计上只存在980+1480和1480+1480两种对泵结构。而在有些工程应用场合下,单向980、单向1480、对向1480+1480或者对向980+1480对泵结构均不能满足要求,只有980+980对向泵浦结构方能胜任。比如,在需要对泵架构具有更好的噪声性能时,采用980+980更能满足要求;再比如,某些对称型阵列光路EDFA中,980+1480无法对称,而1480+1480则限于其吸收慢,无法做到阵列对称,只有980+980可以胜任。在这种状况下,就需要适当改造光路,保证两对向980泵浦之间不会相互干扰,如此才能更好地应用。
鉴于此,克服上述现有技术所存在的缺陷是本技术领域亟待解决的问题。
【发明内容】
本发明需要解决的技术问题是:
由于目前市场上无集成光隔离器的980泵浦激光器,在980+980对向泵浦结构中,如果波长相同或者相近的残余泵浦光射入对向泵浦中,可能在对向泵浦中引起激射,并导致对向的泵浦激光器失效,因此两980对向泵浦存在相互 干扰的风险。
本发明通过如下技术方案达到上述目的:
本发明提供了一种用于EDFA中的双980泵浦激光器对泵结构,包括掺铒光纤1、第一980泵浦激光器2-1、第二980泵浦激光器2-2、第一信号/泵浦合波器3-1、第二信号/泵浦合波器3-2和抗干扰结构;
所述第一980泵浦激光器2-1用于输出第一泵浦光,所述第一980泵浦激光器2-1与所述第一信号/泵浦合波器3-1相连,所述第一信号/泵浦合波器3-1与所述掺铒光纤1的信号输入端相连,使得所述第一泵浦光正向注入所述掺铒光纤1;所述第二980泵浦激光器2-2用于输出第二泵浦光,所述第二980泵浦激光器2-2与所述第二信号/泵浦合波器3-2相连,所述第二信号/泵浦合波器3-2与所述掺铒光纤1的信号输出端相连,使得所述第二泵浦光反向注入所述掺铒光纤1;
其中,在所述第一泵浦光的正向传输光路上以及所述第二泵浦光的反向传输光路上分别设置抗干扰结构,用于抵抗所述第一泵浦光对所述第二980泵浦激光器2-2的干扰,以及所述第二泵浦光对所述第一980泵浦激光器2-1的干扰。
优选的,所述抗干扰结构包括第一光纤布拉格光栅4-1和第二光纤布拉格光栅4-2,所述第一光纤布拉格光栅4-1设置在所述第一泵浦光的传输光路上,用于通过第一泵浦光并高反第二泵浦光;所述第二光纤布拉格光栅4-2设置在所述第二泵浦光的传输光路上,用于通过第二泵浦光并高反第一泵浦光。
优选的,所述第一光纤布拉格光栅4-1的高反波带中心波长和带宽与所述第二泵浦光匹配,所述第二光纤布拉格光栅4-2的高反波带中心波长和带宽与所述第一泵浦光匹配。
优选的,所述第一光纤布拉格光栅4-1设置于所述第一980泵浦激光器2-1与所述第一信号/泵浦合波器3-1之间,或者所述第一信号/泵浦合波器3-1与所述掺铒光纤1的信号输入端之间;所述第二光纤布拉格光栅4-2设置于所述第二980泵浦激光器2-2与所述第二信号/泵浦合波器3-2之间,或者所述第二信号/泵浦合波器3-2与所述掺铒光纤1的信号输出端之间。
优选的,所述第一光纤布拉格光栅4-1写于所述第一980泵浦激光器2-1的尾纤上或所述第一信号/泵浦合波器3-1的尾纤上或所述掺铒光纤1的信号输入端;所述第二光纤布拉格光栅4-2写于所述第二980泵浦激光器2-2的尾纤上或所述第二信号/泵浦合波器3-2的尾纤上或所述掺铒光纤1的信号输出端。
优选的,所述抗干扰结构包括第一光滤波器5-1和第二光滤波器5-2,所述第一光滤波器5-1设置于所述第一980泵浦激光器2-1与所述第一信号/泵浦合波器3-1之间,所述第二光滤波器5-2设置于所述第二980泵浦激光器2-2与所述第二信号/泵浦合波器3-2之间。
优选的,所述第一光滤波器5-1和所述第二光滤波器5-2均采用窄带带通滤波器;其中,所述第一光滤波器5-1允许所述第一泵浦光通过而屏蔽第二泵浦光,所述第二光滤波器5-2允许所述第二泵浦光通过而屏蔽第一泵浦光。
优选的,所述第一泵浦光与所述第二泵浦光的中心波长均在973-981.5nm范围内选择。
优选的,所述第一泵浦光与所述第二泵浦光的中心波长不同,且中心波长差为4-7nm。
优选的,所述掺铒光纤1为单独一整段,或至少两段级联而成。
本发明的有益效果是:
本发明提供了一种用于EDFA中的双980泵浦激光器对泵结构,对980+980对泵结构的光路进行适当改进,通过增加光纤布拉格光栅或光滤波器作为抗干扰结构,使得任一方向的残余泵浦光均无法射入对向泵浦中,从而避免了两980对向泵浦之间的相互干扰,避免了泵浦激光器的失效。而且,相比于集成光隔离器来说,采用光纤布拉格光栅与光滤波器方案,损耗小、体积小、成本低。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图1为一种无抗干扰结构的双980泵浦激光器对泵结构;
图2为一种设有光隔离器的双980泵浦激光器对泵结构;
图3为本发明实施例提供的一种用于EDFA中的双980泵浦激光器对泵结构(泵浦路上增设光纤布拉格光栅);
图4为本发明实施例提供的一种用于EDFA中的双980泵浦激光器对泵结构(主光路上增设光纤布拉格光栅);
图5为本发明实施例提供的另一种用于EDFA中的双980泵浦激光器对泵结构(泵浦路上增设光滤波器)。
【具体实施方式】
在不考虑两980对向泵浦之间相互干扰的情况下,原始的双980泵浦结构如图1所示,对泵结构包括掺铒光纤1、第一980泵浦激光器2-1、第二980泵浦激光器2-2、第一信号/泵浦合波器3-1和第二信号/泵浦合波器3-2。所述第一980泵浦激光器2-1用于输出第一泵浦光,所述第一980泵浦激光器2-1的输出端与所述第一信号/泵浦合波器3-1的泵浦端相连,所述第一信号/泵浦合波器3-1的信号输出端与所述掺铒光纤1的信号输入端相连,使得所述第一泵浦光正向注入所述掺铒光纤1,则所述第一980泵浦激光器2-1、所述第一信号/泵浦合波器3-1与所述掺铒光纤1构成所述第一泵浦光的正向传输光路;所述第二980泵浦激光器2-2用于输出第二泵浦光,所述第二980泵浦激光器2-2的输出端与所述第二信号/泵浦合波器3-2的泵浦端相连,所述第二信号/泵浦合波器3-2的信号输入端与所述掺铒光纤1的信号输出端相连,使得所述第二泵浦光反向注入所述掺铒光纤1,则所述第二980泵浦激光器2-2、所述第二信号/泵浦合波器3-2与所述掺铒光纤1构成所述第二泵浦光的反向传输光路。
参考图1,信号光由输入口进入后,依次途径所述第一信号/泵浦合波器3-1、所述掺铒光纤1和所述第二信号/泵浦合波器3-2,最终抵达输出口;此处将信号光的传输方向作为正向,信号光的传输路径为主光路。所述第一泵浦光与所述 信号光以同一方向注入所述掺铒光纤1,所述第二泵浦光则从相反方向注入所述掺铒光纤1,正向光路具体为:所述第一泵浦光由所述第一980泵浦激光器2-1输出后,在所述第一信号/泵浦合波器3-1与信号光进行耦合,最终正向注入所述掺铒光纤1;反向光路具体为:所述第二泵浦光由所述第二980泵浦激光器2-2输出后,在所述第二信号/泵浦合波器3-2与信号光进行耦合,最终反向注入所述掺铒光纤1。其中,所述第一980泵浦激光器2-1与所述第一信号/泵浦合波器3-1构成第一泵浦光路,所述第二980泵浦激光器2-2与所述第二信号/泵浦合波器3-2构成第二泵浦光路。
在如图1所示的理论对泵结构中,两980对向泵浦存在相互干扰的风险,需对光路进行适当地改进,消除两980对向泵浦之间的相互干扰。如果在980泵浦激光器上集成光隔离器,即980泵浦激光器与对应的信号/泵浦合波器连接之前,先与光隔离器相连接,则理论上利用光隔离器的单向通光性,可消除两个980泵浦激光器之间的相互干扰。参考图2,所述第一980泵浦激光器2-1与所述第一信号/泵浦合波器3-1之间设置有第一光隔离器6-1,用于单向通过第一泵浦光;所述第二980泵浦激光器2-2与所述第二信号/泵浦合波器3-2之间设置有第二光隔离器6-2,用于单向通过第二泵浦光。因此,当所述第二泵浦光反向抵达所述第一光隔离器6-1时,无法透过所述第一光隔离器6-1抵达所述第一980泵浦激光器2-1。同理地,所述第一泵浦光也无法通过所述第二光隔离器6-2抵达所述第二980泵浦激光器2-2。然而,光隔离器体积较大,损耗较大,成本也较高,而且不容易集成在980泵浦激光器上。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。下面就参考附图和实施例结合来详细说明本发明。
实施例1:
本发明实施例提供了一种用于EDFA中的双980泵浦激光器对泵结构,包括掺铒光纤1、第一980泵浦激光器2-1、第二980泵浦激光器2-2、第一信号/泵浦合波器3-1、第二信号/泵浦合波器3-2和抗干扰结构。在图1的基础上,在所述第一泵浦光的正向传输光路上以及所述第二泵浦光的反向传输光路上分别设置抗干扰结构,用于抵抗所述第一泵浦光对所述第二980泵浦激光器2-2的干扰,以及所述第二泵浦光对所述第一980泵浦激光器2-1的干扰。
如图3和图4所示,在本发明实施例中,所述抗干扰结构包括第一光纤布拉格光栅4-1和第二光纤布拉格光栅4-2,所述第一光纤布拉格光栅4-1设置在所述第一泵浦光的传输光路上,用于通过第一泵浦光并高反第二泵浦光;所述第二光纤布拉格光栅4-2设置在所述第二泵浦光的传输光路上,用于通过第二泵浦光并高反第一泵浦光。
本发明提供的一种用于EDFA中的双980泵浦激光器对泵结构,对980+980对泵结构光路进行适当改进,在两个泵浦光的传输光路上分别增设一个光纤布拉格光栅,每个光纤布拉格光栅均能高反射另一方向的残余泵浦光,从而使得任一方向的残余泵浦光均无法射入对向泵浦中,避免了两980对向泵浦之间的相互干扰,进而避免了对向的泵浦激光器的失效。而且,相比于集成光隔离器来说,采用光纤布拉格光栅方案的损耗小、体积小、成本低。
具体参考图3,所述第一光纤布拉格光栅4-1设置在第一泵浦光路上,所述第二光纤布拉格光栅4-2设置在所述第二泵浦光路上,具体为:所述第一光纤布拉格光栅4-1设置于所述第一980泵浦激光器2-1与所述第一信号/泵浦合波器3-1之间,所述第二光纤布拉格光栅4-2设置于所述第二980泵浦激光器2-2与所述第二信号/泵浦合波器3-2之间。其中,所述第一980泵浦激光器2-1与所述第一光纤布拉格光栅4-1之间、所述第一光纤布拉格光栅4-1与所述第一信号/泵浦合波器3-1之间、所述第二980泵浦激光器2-2与第二光纤布拉格光栅4-2之间以及所述第二光纤布拉格光栅4-2与所述第二信号/泵浦合波器3-2之间均可采用熔接的方式连接;或者,还可将所述第一光纤布拉格光栅4-1焊接在所述第一980泵浦激光器2-1的尾纤上,将所述第二光纤布拉格光栅4-2焊接在所述 第二980泵浦激光器2-2的尾纤上。
为消除所述第一980泵浦激光器2-1与所述第二980泵浦激光器2-2间的相互干扰,在本发明实施例中,所述第一光纤布拉格光栅4-1与所述第二光纤布拉格光栅4-2均为高反射率光纤布拉格光栅,两光纤布拉格光栅的高反窗口30dB带宽在4-7nm,反射率在99%以上。所述第一光纤布拉格光栅4-1的高反中心波长和带宽与所述第二泵浦光的中心波长和带宽相匹配,以便高反第二泵浦光;所述第二光纤布拉格光栅4-2的高反中心波长和带宽与所述第一泵浦光的中心波长和带宽相匹配,以便高反第一泵浦光。因此,当所述第一泵浦光正向传输时可低损耗地通过所述第一光纤布拉格光栅4-1后继续传输,而当所述第二泵浦光经所述第二信号/泵浦合波器3-2、所述掺铒光纤1和所述第一信号/泵浦合波器3-1后,残余的第二泵浦光反向抵达所述第一光纤布拉格光栅4-1时可最大程度被反射,使得第二泵浦光难以透过所述第一光纤布拉格光栅4-1抵达所述第一980泵浦激光器2-1,从而消除了所述第二980泵浦激光器2-2对所述第一980泵浦激光器2-1的干扰。同理地,当所述第二泵浦光反向传输时可低损耗地通过所述第二光纤布拉格光栅4-2后继续传输,而当所述第一泵浦光正向传输至所述第二光纤布拉格光栅4-2时可最大程度被反射,使得第一泵浦光难以透过所述第二光纤布拉格光栅4-2抵达所述第二980泵浦激光器2-2,从而消除了所述第一980泵浦激光器2-1对所述第二980泵浦激光器2-2的干扰。
在本发明实施例中,所述第一泵浦光与所述第二泵浦光的中心波长均可在973-981.5nm范围内选择。需要说明的是,在本发明实施例中,为避免所述第一泵浦光透过所述第二光纤布拉格光栅4-2或所述第二泵浦光透过所述第一光纤布拉格光栅4-1,所述第一泵浦光与所述第二泵浦光的中心波长不同,且中心波长差在4-7nm范围内。如果中心波长差过小,则两泵浦光难以分开;而当中心波长差大于4nm时,可无障碍进行两泵浦光的区分。在本实施例的双980泵浦激光器对泵结构中,所述第一980泵浦激光器2-1与所述第二980泵浦激光器2-2错位选择波长,比如分别选取为973和977nm。其中,FBG的高反窗口带宽实际上也可视两对向泵浦激光器中心波长差而定,假设两泵浦中心波长差为 4nm,那么高反窗口的带宽可设定为4nm;如果两泵浦中心波长差为7nm,那么高反窗口带宽则可设定为4~7nm。
参考图4,在本发明实施例中,所述第一光纤布拉格光栅4-1与所述第二光纤布拉格光栅4-2还可分别设置在信号光的主光路上,具体为:所述第一光纤布拉格光栅4-1设置于所述第一信号/泵浦合波器3-1与所述掺铒光纤1的信号输入端之间,所述第二光纤布拉格光栅4-2设置于所述第二信号/泵浦合波器3-2与所述掺铒光纤1的信号输出端之间。在这种布置方式中,所述第一光纤布拉格光栅4-1可通过所述信号光与所述第一泵浦光,且高反射所述第二泵浦光;所述第二光纤布拉格光栅4-2可通过所述信号光与所述第二泵浦光,且高反射所述第一泵浦光。如此一来,两个光纤布拉格光栅的位置虽然从泵浦光路上转移到信号光的主光路上,依然可消除两个980泵浦激光器之间的相互干扰,其具体原理与上述介绍类似,此处不再赘述。其中,所述第一光纤布拉格光栅4-1与所述第一信号/泵浦合波器3-1之间、所述第一光纤布拉格光栅4-1与所述掺铒光纤1之间、所述第二光纤布拉格光栅4-2与所述第二信号/泵浦合波器3-2之间以及所述第二光纤布拉格光栅4-2与所述掺铒光纤1之间均可采用熔接方式连接。
在本发明实施例的基础上,还可将所述第一光纤布拉格光栅4-1设置在所述第一泵浦光路上,所述第二光纤布拉格光栅4-2设置在信号光的主光路上,具体为:所述第一光纤布拉格光栅4-1设置于所述第一980泵浦激光器2-1与所述第一信号/泵浦合波器3-1之间,将所述第二光纤布拉格光栅4-2设置于所述第二信号/泵浦合波器3-2与所述掺铒光纤1的信号输出端之间。或者,还可将所述第一光纤布拉格光栅4-1设置在信号光的主光路上,所述第二光纤布拉格光栅4-2设置在所述第二泵浦光路上,具体为:所述第一光纤布拉格光栅4-1设置于所述第一信号/泵浦合波器3-1与所述掺铒光纤1的信号输入端之间,所述第二光纤布拉格光栅4-2设置于所述第二信号/泵浦合波器3-2与所述掺铒光纤1的信号输出端之间;具体连接方式及工作原理此处不再赘述。
相比较而言,当所述第一光纤布拉格光栅4-1设置在第一泵浦光路上,所述 第二光纤布拉格光栅4-2设置在所述第二泵浦光路上时,所述第一光纤布拉格光栅4-1与所述第二光纤布拉格光栅4-2不会对信号光造成额外插损,因此这种布置方式更优。
在本发明实施例中,所述第一光纤布拉格光栅4-1与所述第二光纤布拉格光栅4-2还可直接写于器件的尾纤上,具体为:所述第一光纤布拉格光栅4-1可直接写于所述第一980泵浦激光器2-1的尾纤上,或所述第一信号/泵浦合波器3-1的尾纤上,或所述掺铒光纤1的信号输入端上;所述第二光纤布拉格光栅4-2可直接写于所述第二980泵浦激光器2-2的尾纤上,或所述第二信号/泵浦合波器3-2的尾纤上,或所述掺铒光纤1的信号输出端上。通过这种设置方式,在整个光路传输中,所述第一光纤布拉格光栅4-1仍可高反射所述第二泵浦光,所述第二光纤布拉格光栅4-2仍可高反射所述第一泵浦光,依然可消除两个980泵浦激光器之间的相互干扰。
结合图3和图4,在本发明实施例中,所述掺铒光纤1为单独一整段,或至少两段级联而成。由于单段掺铒光纤制作成的放大器在其输出功率接近其饱和输出功率时,噪声指数劣化比较严重;因此,为实现较大的增益和较低的噪声指数,可将掺铒光纤分为前后两段,且前段掺铒光纤长度小于后段掺铒光纤,两段掺铒光纤之间通过隔离器分隔开,从而可有效隔离后段掺铒光纤中反向传播的噪声,使之不能进入前段掺铒光纤。如此一来,反向噪声不会在前段掺铒光纤中得到放大,可减小第一级的噪声系数,而在多级系统中,总的噪声系数主要受第一级噪声系数的影响,这样便可优化整个放大器的噪声性能。同理地,掺铒光纤还可分为三段甚至更多段,此处不再赘述。
实施例2:
在上述实施例1的基础上,本发明实施例还提供了另一种用于EDFA中的双980泵浦激光器对泵结构,如图5所示,与实施例1的不同之处在于:所述抗干扰结构由实施例1中的两个光纤布拉格光栅变为两个光滤波器结构,即980泵浦激光器与对应的信号/泵浦合波器连接之前,先经由一个光滤波器,利用光 滤波器对特定波长的选择功能,来消除两个980泵浦激光器之间的相互干扰。
参考图5,本实施例提供的双980泵浦激光器对泵结构包括掺铒光纤1、第一980泵浦激光器2-1、第二980泵浦激光器2-2、第一信号/泵浦合波器3-1、第二信号/泵浦合波器3-2和抗干扰结构,所述抗干扰结构包括第一光滤波器5-1和第二光滤波器5-2。所述第一光滤波器5-1设置在第一泵浦光路上,所述第二光滤波器5-2设置在所述第二泵浦光路上,具体为:所述第一光滤波器5-1设置于所述第一980泵浦激光器2-1的输出端与所述第一信号/泵浦合波器3-1的泵浦端之间,所述第二光滤波器5-2设置于所述第二980泵浦激光器2-2的输出端与所述第二信号/泵浦合波器3-2的泵浦端之间。具体各器件的连接可参考实施例1,此处不再赘述。其中,所述第一980泵浦激光器2-1与所述第一光滤波器5-1之间、所述第一光滤波器5-1与所述第一信号/泵浦合波器3-1之间、所述第二980泵浦激光器2-2与第二光滤波器5-2之间以及所述第二光滤波器5-2与所述第二信号/泵浦合波器3-2之间均可采用熔接的方式连接。
在本发明实施例中,所述第一光滤波器5-1和所述第二光滤波器5-2均采用窄带带通滤波器,可允许特定波长的光信号通过而屏蔽其他波长的光信号,窄带窗口30dB带宽在3-7nm,滤波器透射插损在0.6dB以内。其中,所述第一光滤波器5-1仅可允许所述第一泵浦光波长的光通过而屏蔽其他波长的光,所述第二光滤波器5-2仅可允许所述第二泵浦光波长的光通过而屏蔽其他波长的光。因此,当所述第二泵浦光经所述第二信号/泵浦合波器3-2、所述掺铒光纤1和所述第一信号/泵浦合波器3-1后,残余的第二泵浦光反向抵达所述第一光滤波器5-1时,由于所述第一光滤波器5-1对第二泵浦光具有屏蔽作用,使得第二泵浦光无法通过所述第一光滤波器5-1抵达所述第一980泵浦激光器2-1,从而消除了所述第二980泵浦激光器2-2对所述第一980泵浦激光器2-1的干扰。同理地,当所述第一泵浦光传输至所述第二光滤波器5-2时,由于所述第二光滤波器5-2仅可允许第二泵浦光通过,而对第一泵浦光具有屏蔽作用,使得第一泵浦光无法通过所述第二光滤波器5-2抵达所述第二980泵浦激光器2-2,从而消除了所述第一980泵浦激光器2-1对所述第二980泵浦激光器2-2的干扰。
在本发明实施例中,所述第一泵浦光与所述第二泵浦光的中心波长均可在973-981.5nm范围内选择。需要说明的是,在本发明实施例中,为避免所述第一泵浦光通过所述第二光滤波器5-2或所述第二泵浦光通过所述第一光滤波器5-1,所述第一泵浦光与所述第二泵浦光的中心波长不同,且中心波长差在4-7nm范围内。如果中心波长差过小,则两泵浦光难以分开;而当中心波长差大于4nm时,可无障碍进行两泵浦光的区分。在本实施例的双980泵浦激光器对泵结构中,所述第一980泵浦激光器2-1与所述第二980泵浦激光器2-2错位选择波长,比如分别选取为973和977nm。
本发明提供的一种用于EDFA中的双980泵浦激光器对泵结构,对980+980对泵结构光路进行适当改进,在两个泵浦光的传输光路上分别增设一个光滤波器,每个光滤波器只允许对应的泵浦光通过,而不允许另一方向的残余泵浦光通过,从而使得任一方向的残余泵浦光均无法射入对向泵浦中,避免了两980对向泵浦之间的相互干扰,进而避免了对向的泵浦激光器的失效。而且,相比于集成光隔离器来说,采用光滤波器的损耗小,体积小,且成本较低。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种用于EDFA中的双980泵浦激光器对泵结构,其特征在于,包括掺铒光纤(1)、第一980泵浦激光器(2-1)、第二980泵浦激光器(2-2)、第一信号/泵浦合波器(3-1)、第二信号/泵浦合波器(3-2)和抗干扰结构;
    所述第一980泵浦激光器(2-1)用于输出第一泵浦光,所述第一980泵浦激光器(2-1)与所述第一信号/泵浦合波器(3-1)相连,所述第一信号/泵浦合波器(3-1)与所述掺铒光纤(1)的信号输入端相连,使得所述第一泵浦光正向注入所述掺铒光纤(1);所述第二980泵浦激光器(2-2)用于输出第二泵浦光,所述第二980泵浦激光器(2-2)与所述第二信号/泵浦合波器(3-2)相连,所述第二信号/泵浦合波器(3-2)与所述掺铒光纤(1)的信号输出端相连,使得所述第二泵浦光反向注入所述掺铒光纤(1);
    其中,在所述第一泵浦光的正向传输光路上以及所述第二泵浦光的反向传输光路上分别设置抗干扰结构,用于抵抗所述第一泵浦光对所述第二980泵浦激光器(2-2)的干扰,以及所述第二泵浦光对所述第一980泵浦激光器(2-1)的干扰。
  2. 根据权利要求1所述的用于EDFA中的双980泵浦激光器对泵结构,其特征在于,所述抗干扰结构包括第一光纤布拉格光栅(4-1)和第二光纤布拉格光栅(4-2),所述第一光纤布拉格光栅(4-1)设置在所述第一泵浦光的传输光路上,用于通过第一泵浦光并高反第二泵浦光;所述第二光纤布拉格光栅(4-2)设置在所述第二泵浦光的传输光路上,用于通过第二泵浦光并高反第一泵浦光。
  3. 根据权利要求2所述的用于EDFA中的双980泵浦激光器对泵结构,其特征在于,所述第一光纤布拉格光栅(4-1)的高反波带中心波长和带宽与所述第二泵浦光匹配,所述第二光纤布拉格光栅(4-2)的高反波带中心波长和带宽与所述第一泵浦光匹配。
  4. 根据权利要求2所述的用于EDFA中的双980泵浦激光器对泵结构,其特征在于,所述第一光纤布拉格光栅(4-1)设置于所述第一980泵浦激光器(2-1)与所述第一信号/泵浦合波器(3-1)之间,或者所述第一信号/泵浦合波器(3-1)与所述掺铒光纤(1)的信号输入端之间;所述第二光纤布拉格光栅(4-2)设置于所述第二980泵浦激光器(2-2)与所述第二信号/泵浦合波器(3-2)之间,或者所述第二信号/泵浦合波器(3-2)与所述掺铒光纤(1)的信号输出端之间。
  5. 根据权利要求2所述的用于EDFA中的双980泵浦激光器对泵结构,其特征在于,所述第一光纤布拉格光栅(4-1)写于所述第一980泵浦激光器(2-1)的尾纤上或所述第一信号/泵浦合波器(3-1)的尾纤上或所述掺铒光纤(1)的信号输入端;所述第二光纤布拉格光栅(4-2)写于所述第二980泵浦激光器(2-2)的尾纤上或所述第二信号/泵浦合波器(3-2)的尾纤上或所述掺铒光纤(1)的信号输出端。
  6. 根据权利要求1所述的用于EDFA中的双980泵浦激光器对泵结构,其特征在于,所述抗干扰结构包括第一光滤波器(5-1)和第二光滤波器(5-2),所述第一光滤波器(5-1)设置于所述第一980泵浦激光器(2-1)与所述第一信号/泵浦合波器(3-1)之间,所述第二光滤波器(5-2)设置于所述第二980泵浦激光器(2-2)与所述第二信号/泵浦合波器(3-2)之间。
  7. 根据权利要求6所述的用于EDFA中的双980泵浦激光器对泵结构,其特征在于,所述第一光滤波器(5-1)和所述第二光滤波器(5-2)均采用窄带带通滤波器;其中,所述第一光滤波器(5-1)允许所述第一泵浦光通过而屏蔽第二泵浦光,所述第二光滤波器(5-2)允许所述第二泵浦光通过而屏蔽第一泵浦光。
  8. 根据权利要求2-7任一所述的用于EDFA中的双980泵浦激光器对泵结 构,其特征在于,所述第一泵浦光与所述第二泵浦光的中心波长均在973-981.5nm范围内选择。
  9. 根据权利要8所述的用于EDFA中的双980泵浦激光器对泵结构,其特征在于,所述第一泵浦光与所述第二泵浦光的中心波长不同,且中心波长差为4-7nm。
  10. 根据权利要求1所述的用于EDFA中的双980泵浦激光器对泵结构,其特征在于,所述掺铒光纤(1)为单独一整段,或至少两段级联而成。
PCT/CN2018/123439 2018-07-27 2018-12-25 一种用于edfa中的双980泵浦激光器对泵结构 WO2020019661A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/263,766 US20210234325A1 (en) 2018-07-27 2018-12-25 Opposing pump structure for twin 980-nm pump lasers in edfa
EP18927741.1A EP3832814A4 (en) 2018-07-27 2018-12-25 OPPOSITE PUMP STRUCTURE FOR DUAL 980 NM PUMP LASERS IN ERBIUM-DOPPED FIBER OPTICAL AMPLIFIER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810840108.XA CN109038189B (zh) 2018-07-27 2018-07-27 一种用于edfa中的双980泵浦激光器对泵结构
CN201810840108.X 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020019661A1 true WO2020019661A1 (zh) 2020-01-30

Family

ID=64645852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123439 WO2020019661A1 (zh) 2018-07-27 2018-12-25 一种用于edfa中的双980泵浦激光器对泵结构

Country Status (4)

Country Link
US (1) US20210234325A1 (zh)
EP (1) EP3832814A4 (zh)
CN (1) CN109038189B (zh)
WO (1) WO2020019661A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109038189B (zh) * 2018-07-27 2019-12-31 武汉光迅科技股份有限公司 一种用于edfa中的双980泵浦激光器对泵结构
CN111416270A (zh) * 2020-03-27 2020-07-14 武汉光谷信息光电子创新中心有限公司 一种光放大器中的对泵结构
CN112117628A (zh) * 2020-07-31 2020-12-22 武汉光谷航天三江激光产业技术研究院有限公司 一种高受激布里渊散射阈值高转换效率的光纤激光放大器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1219043A (zh) * 1997-12-05 1999-06-09 清华大学 实现波分复用系统动态增益谱均衡的方法及其均衡放大器
US20030039026A1 (en) * 2001-08-22 2003-02-27 Fujitsu Limited Optical amplifier and gain tilt compensation method
CN202217909U (zh) * 2011-08-26 2012-05-09 武汉奥新科技有限公司 一种单泵浦双级放大的掺铒光纤放大器
CN106785833A (zh) * 2016-12-06 2017-05-31 江苏黑马高科股份有限公司 一种功率箝制增益可控的掺铒光纤放大器
US9762020B1 (en) * 2017-01-13 2017-09-12 Gooch And Housego Plc Bi-directionally pumped polarization maintaining fiber amplifier
CN109038189A (zh) * 2018-07-27 2018-12-18 武汉光迅科技股份有限公司 一种用于edfa中的双980泵浦激光器对泵结构

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4102648A1 (de) * 1991-01-30 1992-08-06 Standard Elektrik Lorenz Ag Optischer verstaerker
JP3181663B2 (ja) * 1992-03-04 2001-07-03 富士通株式会社 1.3μm帯光増幅器
FR2731524B1 (fr) * 1995-02-28 1997-04-18 Alcatel Optronics Amplificateur optique a fibre a pompage bidirectionnel
US5710659A (en) * 1995-12-19 1998-01-20 Lucent Technologies Inc. Low tilt, high gain fiber amplifier
JP3741767B2 (ja) * 1996-02-26 2006-02-01 富士通株式会社 光ファイバ増幅器
US5923684A (en) * 1996-09-26 1999-07-13 Lucent Technologies Inc. Fiber amplifier with multiple pass pumping
US5991070A (en) * 1997-11-14 1999-11-23 Sdl, Inc. Optical amplifier with oscillating pump energy
JPH11266047A (ja) * 1998-03-17 1999-09-28 Fujitsu Ltd 光増幅器及び該光増幅器を備えたシステム
JPH11274625A (ja) * 1998-03-19 1999-10-08 Nec Corp 光ファイバ増幅器とこれを用いた双方向光伝送用光増幅装置
SE522586C2 (sv) * 1998-04-01 2004-02-24 Ericsson Telefon Ab L M Optisk fiberförstärkare med förstärkningsutjämnande filter
KR100342190B1 (ko) * 1999-01-14 2002-06-27 윤종용 이득 평탄화 광섬유증폭기
JP2000244043A (ja) * 1999-02-24 2000-09-08 Nec Corp 光増幅器
US6519081B2 (en) * 2000-04-13 2003-02-11 Corning Incorporated Method of operating a noise-compensating gain controller for an optical amplifier
EP1170837A1 (en) * 2000-07-05 2002-01-09 Optical Technologies Italia S.p.A. Optical amplifier with bidirectional pumping
US6831779B2 (en) * 2001-04-27 2004-12-14 Massachusetts Institute Of Technology Method and apparatus for stabilizing a high-gain, high-power single polarization EDFA
US6690505B1 (en) * 2001-09-28 2004-02-10 Onetta, Inc. Optical network equipment with gain transient control and automatic drift compensation
US20030128419A1 (en) * 2002-01-09 2003-07-10 Alaruri Sami D. Stability of a fiber amplifier by eliminating optical feedback into its pumb light sources
WO2004038876A1 (en) * 2002-10-28 2004-05-06 Pirelli Submarine Telecom Systems Italia S.P.A. Bidirectionally pumped optical amplifier
CN102540622B (zh) * 2012-01-15 2014-10-08 中国人民解放军国防科学技术大学 基于增益竞争和混合泵浦的高增益低噪声掺镱光纤放大器
GB2499648A (en) * 2012-02-24 2013-08-28 Oclaro Technology Plc Doped fibre amplifier with a wavelength locking reflector
JP2018125406A (ja) * 2017-01-31 2018-08-09 株式会社フジクラ ファイバレーザ、供給方法、及び製造方法
US20180351317A1 (en) * 2017-04-27 2018-12-06 Analog Photonics LLC On-chip optical gain circuits
CN206850214U (zh) * 2017-05-11 2018-01-05 上海瀚宇光纤通信技术有限公司 一种基于ase滤波技术的高功率光纤激光器光路
CN107732641A (zh) * 2017-11-10 2018-02-23 山东大学 高功率光纤激光器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1219043A (zh) * 1997-12-05 1999-06-09 清华大学 实现波分复用系统动态增益谱均衡的方法及其均衡放大器
US20030039026A1 (en) * 2001-08-22 2003-02-27 Fujitsu Limited Optical amplifier and gain tilt compensation method
CN202217909U (zh) * 2011-08-26 2012-05-09 武汉奥新科技有限公司 一种单泵浦双级放大的掺铒光纤放大器
CN106785833A (zh) * 2016-12-06 2017-05-31 江苏黑马高科股份有限公司 一种功率箝制增益可控的掺铒光纤放大器
US9762020B1 (en) * 2017-01-13 2017-09-12 Gooch And Housego Plc Bi-directionally pumped polarization maintaining fiber amplifier
CN109038189A (zh) * 2018-07-27 2018-12-18 武汉光迅科技股份有限公司 一种用于edfa中的双980泵浦激光器对泵结构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FEI, HAIFENG: "Research on EDFA Characteristics in WDM System", CHINESE MASTER S THESES FULL-TEXT DATABASE, 15 March 2009 (2009-03-15), pages 50 - 52, XP055681871, ISSN: 1674-0246 *
See also references of EP3832814A4 *

Also Published As

Publication number Publication date
CN109038189A (zh) 2018-12-18
CN109038189B (zh) 2019-12-31
EP3832814A4 (en) 2022-05-04
EP3832814A1 (en) 2021-06-09
US20210234325A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
JP3808632B2 (ja) 光増幅器及び光増幅方法
CN109742645B (zh) 高效l波段远程放大器
JP4028218B2 (ja) 改善した広帯域エルビウム添加光ファイバ増幅器
WO2020019661A1 (zh) 一种用于edfa中的双980泵浦激光器对泵结构
US6646785B2 (en) Fiber ring amplifiers and lasers
JP3884744B2 (ja) 利得平坦化された広帯域エルビウム添加光ファイバ増幅器
CN103199417A (zh) 一种稀土掺杂光纤光源光路结构
KR100326039B1 (ko) 흡수체를갖는광증폭기
US6690507B2 (en) Double-pumped raman amplifier
US6738183B2 (en) Optical filter functioning as both a gain equalizer and noise-light blocking filter
CN209487928U (zh) 高效l波段远程放大器
JP4908690B2 (ja) ファイバラマン増幅器および光伝送システム
CN113497403A (zh) 一种光纤、光放大器及光通信系统
JP3019828B2 (ja) 双方向光増幅器
US6862132B1 (en) Suppression of double rayleigh backscattering and pump reuse in a raman amplifier
CN114884574A (zh) 一种l波段扩展混合光纤放大器
CN111600185B (zh) 双偏振光纤放大器
CN115552812A (zh) 一种光纤放大器、波分复用系统及光通信设备
CN114006245A (zh) 一种用于信号收发一体化的光纤放大器
US20020085803A1 (en) Optical amplifier
JPH11307844A (ja) 能動型光ファイバ及び光ファイバ増幅器
WO2023217131A1 (zh) 光放大器、光放大的方法以及光纤通信系统
KR100219711B1 (ko) 평탄한 이득특성을 갖는 광섬유증폭기
WO2023226752A1 (zh) 双波长激光器和中继放大器
CN220774975U (zh) 一种抗辐射宽谱掺铒光子晶体光纤光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018927741

Country of ref document: EP

Effective date: 20210301