WO2020019655A1 - Feuille d'aluminium de revêtement conducteur pour batterie au lithium-ion et procédé de préparation associé - Google Patents

Feuille d'aluminium de revêtement conducteur pour batterie au lithium-ion et procédé de préparation associé Download PDF

Info

Publication number
WO2020019655A1
WO2020019655A1 PCT/CN2018/122843 CN2018122843W WO2020019655A1 WO 2020019655 A1 WO2020019655 A1 WO 2020019655A1 CN 2018122843 W CN2018122843 W CN 2018122843W WO 2020019655 A1 WO2020019655 A1 WO 2020019655A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum foil
conductive coating
conductive
ion battery
lithium ion
Prior art date
Application number
PCT/CN2018/122843
Other languages
English (en)
Chinese (zh)
Inventor
张全成
吴永新
Original Assignee
江苏常铝铝业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏常铝铝业股份有限公司 filed Critical 江苏常铝铝业股份有限公司
Publication of WO2020019655A1 publication Critical patent/WO2020019655A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of aluminum foil, and in particular, to a conductive coating aluminum foil for a lithium ion battery and a preparation method thereof.
  • LiFePO 4 has a high specific capacity (about 170mah / g), a gentle charge and discharge platform, good reversibility, high safety, cheap and easy to prepare, and is environmentally friendly, making it the best choice for the positive electrode material of power batteries.
  • a high specific capacity about 170mah / g
  • a gentle charge and discharge platform good reversibility, high safety, cheap and easy to prepare, and is environmentally friendly, making it the best choice for the positive electrode material of power batteries.
  • it is an ideal way to improve the performance of power lithium-ion batteries.
  • most of the pole pieces are modified with highly conductive materials to improve the conductivity of the pole pieces.
  • the technical problems mainly solved by the present disclosure include, for example, providing a conductive coating aluminum foil for lithium ion batteries and a preparation method thereof, which can solve the above-mentioned disadvantages of the existing conductive coating aluminum foil.
  • a technical solution of the present disclosure provides a conductive coating aluminum foil for a lithium ion battery, including: an aluminum foil body and a conductive coating, wherein the conductive coating is evenly coated on both surfaces of the aluminum foil.
  • the conductive coating includes the following components by weight: 85 to 95 parts of an environmentally friendly adhesive, 5 to 15 parts of a conductive filler, and 1 to 3 parts of a surfactant.
  • the environmentally friendly adhesive is an acrylate adhesive.
  • the conductive filler includes a mixture of conductive carbon nanotubes, conductive graphite, and nano silver oxide in a mass ratio of 1-3: 3-5: 0.5-1.5.
  • Another technical solution of the present disclosure provides a method for preparing a conductive coating aluminum foil for a lithium ion battery, including the following steps:
  • step (3) First, the aluminum foil with a conductive coating obtained in step (3) is placed in a drying box and vacuum dried to obtain the conductive coating aluminum foil for a lithium ion battery.
  • the conditions for the stirring and ultrasonic dispersion are: firstly stirring at a speed of 500 to 800 r / min for 10 to 30 minutes, and then ultrasonically dispersing for more than 30 minutes .
  • the high-speed stirring time is 20-30 minutes until the dispersion is uniform.
  • the antioxidant protective film layer is a polyester film layer.
  • the nitrogen gas stream carries 30% of the aluminum powder particles, which are continuously sprayed on the surface of the aluminum foil at a rate of 3 to 5 m / min. More than 30min.
  • the spraying conditions of the conductive coating are: a temperature of 50 to 80 ° C., a spraying rate of 3 to 5 m / min, and a spraying pressure of 0.5 to 2 MPa.
  • the coating thickness is 5 ⁇ 8mm.
  • the vacuum drying conditions are: a temperature of 85 to 95 ° C., and a degree of vacuum of 0.01 to 0.03 MPa.
  • the vacuum drying time is more than 3h.
  • the present disclosure also provides a pole piece including a current collector, the current collector being the foregoing conductive coating aluminum foil, or the conductive coating aluminum foil prepared by the above preparation method; and an activity on the current collector. material.
  • the active material is a positive active material.
  • the active material is LiFePO 4 .
  • the charge transfer resistance between the active material and the current collector is more than 50% lower than that of the light aluminum foil.
  • the Li + diffusion rate of the conductive coated aluminum foil is 3.5 times or more that of the light aluminum foil.
  • the present disclosure also provides a lithium ion battery including the above-mentioned pole piece.
  • a lithium ion battery including the conductive coating aluminum foil as a current collector has a reduction in internal resistance of more than 33% and a power density increase of more than 39 compared to a lithium aluminum battery with a light aluminum foil. %.
  • the beneficial effect of the present disclosure is that the method for preparing the conductive coating aluminum foil for lithium ion batteries of the present disclosure is simple and easy to implement.
  • the reasonable design of the conductive paste formulation and the effective coating process make the conductive coating on the one hand.
  • the layer can be firmly adhered to the surface of aluminum foil.
  • the conductive effect of the coating is significant, and the bonding system is safe and environmentally friendly, and does not pollute the environment.
  • the resulting aluminum foil used in lithium ion batteries can significantly reduce the internal resistance of the battery and increase lithium ions.
  • the diffusion rate makes the battery excellent in cycle performance and low temperature resistance and prolongs its service life.
  • the present disclosure discloses a conductive coating aluminum foil for a lithium ion battery, including: an aluminum foil body and a conductive coating, wherein the conductive coating is evenly coated on both surfaces of the aluminum foil; the conductive coating includes the following weight Ingredients: 85 parts of environmentally friendly adhesive, 5 parts of conductive filler, 1 part of surfactant.
  • the environmentally friendly adhesive is an acrylate adhesive
  • the conductive filler includes a mixture of conductive carbon nanotubes, conductive graphite, and nano silver oxide in a mass ratio of 1: 3: 0.5.
  • the method for preparing the conductive coating aluminum foil for a lithium ion battery includes the following steps:
  • the present disclosure discloses a conductive coating aluminum foil for a lithium ion battery, including: an aluminum foil body and a conductive coating, wherein the conductive coating is evenly coated on both surfaces of the aluminum foil; the conductive coating includes the following weight Ingredients: 95 parts of environmentally friendly adhesive, 15 parts of conductive filler, 3 parts of surfactant.
  • the environmentally friendly adhesive is an acrylate adhesive;
  • the conductive filler includes a mixture of conductive carbon nanotubes, conductive graphite, and nano silver oxide in a mass ratio of 3: 5: 1.5.
  • the method for preparing the conductive coating aluminum foil for a lithium ion battery includes the following steps:
  • conductive paint conductive carbon nanotubes, conductive graphite and nano silver oxide are mixed at a mass ratio of 3: 5: 1.5 to obtain conductive fillers, and then 15 parts of conductive fillers and 3 parts of surfactant are weighed according to the formula.
  • a stirrer stir at a high speed of 1500 r / min for 20 minutes until the dispersion is uniform, then add the stirring mixture to 95 parts of acrylate adhesive, stir and ultrasonically disperse for more than 30 minutes to obtain the conductive coating;
  • step (3) First, the aluminum foil with a conductive coating obtained in step (3) is placed in a drying box and vacuum dried to obtain the conductive coating aluminum foil for a lithium ion battery.
  • the vacuum drying conditions are: a temperature of 95 ° C, and a degree of vacuum of 0.01 to 0.03 MPa.
  • the conductive coating aluminum foil for lithium ion batteries obtained by the above method is added and made into pole pieces for use in lithium ion batteries. After testing, the charge transfer resistance between the active material and the current collector is 50% lower than that of light aluminum foil. The Li + diffusion rate is 3.5 times higher than that of the light aluminum foil.
  • the coated aluminum foil as a current collector can reduce the internal resistance of the assembled full battery. Compared with the light aluminum foil, the internal resistance decreases by more than 33%, and the power density increases by more than 39%. In addition, the cycle performance and low temperature performance of the lithium-ion battery are significantly improved, and the service life is long.
  • the method for preparing the conductive coating aluminum foil for lithium ion batteries disclosed in the present disclosure is simple and easy to implement.
  • the reasonable design of the conductive paste formula and effective coating process make the conductive coating firmly adhere to On the surface of aluminum foil, on the other hand, the conductive effect of the coating is significant, and the bonding system is safe and environmentally friendly, and does not pollute the environment.
  • the resulting aluminum foil used in lithium ion batteries can significantly reduce the internal resistance of the battery, increase the lithium ion diffusion rate, and make the battery's Excellent cycle performance and low temperature resistance, extended service life, suitable for industrial production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne une feuille d'aluminium de revêtement conducteur pour une batterie au lithium-ion et un procédé de préparation associé comprenant un corps de feuille d'aluminium et un revêtement conducteur. Le revêtement conducteur est uniformément revêtu sur les deux surfaces de la feuille d'aluminium ; le revêtement conducteur comprend les composants suivants en parties en poids : de 85 à 95 parties d'adhésif respectueux de l'environnement, de 5 à 15 parties de charge conductrice et de 1 à 3 parties de tensioactif ; le procédé de préparation comprend les étapes suivantes : 1. la fourniture du revêtement conducteur ; 2. la réalisation d'un traitement de surface de la feuille d'aluminium ; 3. le revêtement du revêtement conducteur ; 4. la réalisation d'une formation de revêtement. Dans la présente invention, au moyen de la conception raisonnable de la formule de pâte conductrice et du processus de revêtement efficace, le revêtement conducteur peut être amené à adhérer fermement aux surfaces de la feuille d'aluminium et l'effet conducteur du revêtement est remarquable, et un système adhésif est en outre sûr et respectueux de l'environnement. La feuille d'aluminium obtenue pour la batterie au lithium-ion peut réduire de manière considérable la résistance interne de la batterie, améliorer le taux de diffusion d'ions lithium, rendre la batterie excellente en termes de performance de cycle et de résistance à basse température et prolonger la durée de vie de la batterie.
PCT/CN2018/122843 2018-07-26 2018-12-21 Feuille d'aluminium de revêtement conducteur pour batterie au lithium-ion et procédé de préparation associé WO2020019655A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810835787.1A CN109037692B (zh) 2018-07-26 2018-07-26 一种锂离子电池用导电涂层铝箔及其制备方法
CN201810835787.1 2018-07-26

Publications (1)

Publication Number Publication Date
WO2020019655A1 true WO2020019655A1 (fr) 2020-01-30

Family

ID=64646658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122843 WO2020019655A1 (fr) 2018-07-26 2018-12-21 Feuille d'aluminium de revêtement conducteur pour batterie au lithium-ion et procédé de préparation associé

Country Status (2)

Country Link
CN (1) CN109037692B (fr)
WO (1) WO2020019655A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109037692B (zh) * 2018-07-26 2020-01-17 江苏常铝铝业集团股份有限公司 一种锂离子电池用导电涂层铝箔及其制备方法
CN112077144B (zh) * 2020-07-13 2022-09-27 乳源东阳光优艾希杰精箔有限公司 一种基于激光毛化法的铝合金涂层复合箔制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137942A (zh) * 2011-12-02 2013-06-05 北京鼎能开源电池科技股份有限公司 一种磷酸铁锂电池用集流体及正极片的制备方法
CN203456540U (zh) * 2013-09-11 2014-02-26 杨海燕 一种锂电池用涂碳铝箔的生产设备
JP2015118865A (ja) * 2013-12-19 2015-06-25 株式会社豊田自動織機 集電体本体への保護層形成方法、リチウムイオン二次電池用集電体、リチウムイオン二次電池用正極及びリチウムイオン二次電池
CN106047015A (zh) * 2016-06-05 2016-10-26 李科 锂离子电池的导电涂层材料及其制备方法以及锂离子电池
CN109037692A (zh) * 2018-07-26 2018-12-18 江苏常铝铝业股份有限公司 一种锂离子电池用导电涂层铝箔及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5596641B2 (ja) * 2011-08-29 2014-09-24 大日精化工業株式会社 塗工液、導電性塗工膜、蓄電装置用電極板及び蓄電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137942A (zh) * 2011-12-02 2013-06-05 北京鼎能开源电池科技股份有限公司 一种磷酸铁锂电池用集流体及正极片的制备方法
CN203456540U (zh) * 2013-09-11 2014-02-26 杨海燕 一种锂电池用涂碳铝箔的生产设备
JP2015118865A (ja) * 2013-12-19 2015-06-25 株式会社豊田自動織機 集電体本体への保護層形成方法、リチウムイオン二次電池用集電体、リチウムイオン二次電池用正極及びリチウムイオン二次電池
CN106047015A (zh) * 2016-06-05 2016-10-26 李科 锂离子电池的导电涂层材料及其制备方法以及锂离子电池
CN109037692A (zh) * 2018-07-26 2018-12-18 江苏常铝铝业股份有限公司 一种锂离子电池用导电涂层铝箔及其制备方法

Also Published As

Publication number Publication date
CN109037692A (zh) 2018-12-18
CN109037692B (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
CN107611406B (zh) 一种硅/石墨烯/碳复合负极材料的制备方法
CN106328913B (zh) 一种锂离子电池硅负极材料表面改性的方法、硅负极浆料和应用
CN104810506B (zh) 一种高能量密度的锂离子电池
CN106848264A (zh) 一种多孔硅氧化物锂离子电池负极材料及其制备方法
CN103259005B (zh) 一种高容量高倍率锂离子电池负极材料的制备方法
CN110504435B (zh) 一种低温等离子体制备硅碳复合负极材料的方法
WO2020134765A1 (fr) Plaque d'électrode négative pour réduction d'impédance de batterie au lithium-ion et son procédé de préparation
CN110323409B (zh) 一种改善高电压循环性能的锂离子电池负极及其制备方法
CN108682813A (zh) 一种硅碳复合材料的制备方法及应用
CN107959027A (zh) 一种锂离子电池硅基负极粘结剂及含有该粘结剂的负极片的制备方法
CN109473658A (zh) 一种锂离子电池负极材料的制备方法及应用其的锂离子电池
CN106450199A (zh) 一种安全环保的高倍率锂离子电池的制备方法
CN109560263A (zh) 一种氧化锌包覆硅负极材料的制备方法
CN106684436B (zh) 一种高安全性能的锂离子电池的制备方法
WO2020019655A1 (fr) Feuille d'aluminium de revêtement conducteur pour batterie au lithium-ion et procédé de préparation associé
CN110112405A (zh) 一种核壳结构硅/碳纤维柔性复合电极材料及其制备方法与应用
CN111864210A (zh) 一种用于锂离子电池的涂炭铝箔及其制备方法
CN112436105A (zh) 一种预锂化负极极片及其制备方法
CN109411762A (zh) 一种涂炭铝箔及其制备方法
CN103413917B (zh) 含有石墨烯的锰酸锂正极极片的制备方法
CN108878815B (zh) 一种复合型锂电池负极材料及其制备方法
CN110600684A (zh) 一种锂离子电池用硅碳负极材料及其制备方法
CN111370642A (zh) 一种基于石墨烯量子点及其衍生物的导电涂层材料及其应用
CN105958074B (zh) 一种石墨烯复合导电剂及其锂离子电池
WO2021184222A1 (fr) Matériau de revêtement conducteur à base de points quantiques de graphène et de ses dérivés, et son utilisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927681

Country of ref document: EP

Kind code of ref document: A1