WO2020019619A1 - 定位参考信号生成方法、装置、基站及可读存储介质 - Google Patents

定位参考信号生成方法、装置、基站及可读存储介质 Download PDF

Info

Publication number
WO2020019619A1
WO2020019619A1 PCT/CN2018/118865 CN2018118865W WO2020019619A1 WO 2020019619 A1 WO2020019619 A1 WO 2020019619A1 CN 2018118865 W CN2018118865 W CN 2018118865W WO 2020019619 A1 WO2020019619 A1 WO 2020019619A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
positioning reference
symbol
time
fftsize
Prior art date
Application number
PCT/CN2018/118865
Other languages
English (en)
French (fr)
Inventor
毕程
陈诗军
陈大伟
王园园
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP18927515.9A priority Critical patent/EP3817263A4/en
Priority to US17/262,866 priority patent/US20210242994A1/en
Publication of WO2020019619A1 publication Critical patent/WO2020019619A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to, but is not limited to, the field of communication technologies, for example, to a positioning reference signal generating method, device, base station, and readable storage medium.
  • LTE Long Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • 5G 5th-generation
  • NR New Radio Access Network
  • Cyclic Prefix CP
  • ISI Intersymbol Interference
  • ICI Inter-Carrier Interference
  • the cyclic prefix is to copy the last part of each OFDM symbol and append it to the front end of each OFDM symbol. For example, see FIG. 1.
  • a CP is added at the transmitting end, and a CP is removed at the receiving end.
  • a Positioning Reference Signal PRS
  • PRS Positioning Reference Signal
  • 5G has higher accuracy and delay requirements for positioning technology.
  • Observed Time Difference (Of Arrival, OTDOA) positioning method can effectively improve positioning accuracy, and the basic principle of OTDOA positioning method is serving cell or receiving node The location of the receiving node is determined based on measurements at the receiving node.
  • the method of detecting the arrival time of the PRS is usually detected by using the correlation between the received signal and all PRSs that the serving node has informed the receiving node that it should receive.
  • the difference between the PRS signal arrival times of the two cells exceeds one CP, it will cause the PRS signals on different symbols to interfere with each other, which will affect the correlation detection on the receiver side and affect the positioning results.
  • the PRS signal arrival time difference of the cell is more than one CP, and the positioning reference signal will also cause interference to the communication data. This limits that in all K cells used for measurement, the distance between the nearest and farthest cell from the receiving end and the receiving end should not exceed the product of the CP time length and the speed of light c.
  • the frame structure of 5G has changed a lot compared with LTE.
  • 5G supports flexible configuration of the subcarrier interval.
  • the subcarrier interval can be 30kHz, 60kHz, 120kHz, or 240kHz.
  • the larger the subcarrier interval the shorter the symbol length and the shorter the CP.
  • the length of the CP limits the coverage of the positioning base station, but the distance between the actual base stations is large, which makes it impossible to effectively complete the OTDOA positioning in the large subcarrier interval scenario.
  • the embodiments of the present disclosure provide a positioning reference signal generating method, a device, a base station, and a readable storage medium, so as to at least solve the problem that the OTDOA positioning cannot be effectively completed in a large subcarrier interval scenario.
  • an embodiment of the present disclosure provides a positioning reference signal generating method, including:
  • Allocate time-frequency resources for positioning reference signals where the time-frequency resources include at least two consecutive symbols;
  • the at least two consecutive symbols are used as one combined PRS symbol to generate a continuous positioning reference signal in the time domain.
  • an embodiment of the present disclosure further provides a positioning reference signal generating device, including:
  • a resource allocation module configured to allocate time-frequency resources for positioning reference signals, wherein the time-frequency resources include at least two consecutive symbols;
  • the positioning reference signal generating module is configured to generate the at least two consecutive symbols as a combined PRS symbol in the time domain according to a preset generation manner according to the positioning reference signal generation information and the time-frequency resource. Continuous positioning reference signal.
  • an embodiment of the present disclosure further provides a base station, including: a processor, a memory, and a communication bus;
  • the communication bus is configured to implement connection and communication between the processor and the memory
  • the processor is configured to execute one or more programs stored in the memory to implement the positioning reference signal generating method described above.
  • an embodiment of the present disclosure further provides a readable storage medium, where the readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to execute the positioning reference signal generating method described above.
  • FIG. 1 is a schematic structural diagram of an OFDM symbol provided by the present disclosure
  • FIG. 2 is a schematic flowchart of a positioning reference signal generation method according to Embodiment 1 of the present disclosure
  • FIG. 3 is a schematic flowchart of generating a positioning reference signal according to Embodiment 1 of the present disclosure
  • FIG. 4 is a schematic diagram of a symbol structure provided in Embodiment 1 of the present disclosure.
  • FIG. 5 is a waveform diagram of a positioning control signal generated in a first manner provided by Embodiment 1 of the present disclosure
  • FIG. 6 is a schematic flowchart of a first manner provided by Embodiment 1 of the present disclosure.
  • FIG. 7 is a schematic diagram of generating a symbol in a first manner provided by Embodiment 1 of the present disclosure.
  • FIG. 8 is a schematic diagram of generating two symbols in mode one provided by Embodiment 1 of the present disclosure.
  • FIG. 9 is a schematic diagram of generating three symbols in the first manner provided by Embodiment 1 of the present disclosure.
  • FIG. 10 is a schematic flowchart of a second manner provided by Embodiment 1 of the present disclosure.
  • FIG. 11 is a schematic diagram of a symbol interval t end provided by Embodiment 1 of the present disclosure.
  • FIG. 12 is a schematic diagram of another positioning reference signal generation process provided in Embodiment 2 of the present disclosure.
  • FIG. 13 is a schematic diagram of generating a symbol in the first method provided in Embodiment 2 of the present disclosure.
  • FIG. 14 is a schematic diagram of generating two symbols in the first method provided in Embodiment 2 of the present disclosure.
  • FIG. 15 is a schematic diagram of generating three symbols in the first method provided in Embodiment 2 of the present disclosure.
  • FIG. 16 is a schematic diagram of a processed signal waveform at a receiving end according to Embodiment 2 of the present disclosure
  • FIG. 17 is a schematic structural diagram of a positioning reference signal generating apparatus according to Embodiment 3 of the present disclosure.
  • FIG. 18 is a schematic structural diagram of another positioning reference signal generating apparatus according to Embodiment 3 of the present disclosure.
  • FIG. 19 is a schematic structural diagram of a base station according to a fourth embodiment of the present disclosure.
  • first, second, etc. may be used herein to describe elements or operations, these elements or operations should not be limited by these terms. These terms are used to distinguish one element or operation from another.
  • a first unit may be referred to as a second unit, and similarly, a second unit may be referred to as a first unit without departing from the teachings of the present disclosure.
  • FIG. 2 is a positioning reference signal generation method provided by Embodiment 1 of the present disclosure, including:
  • Step 210 Allocate time-frequency resources for positioning reference signals.
  • the time-frequency resource allocated for the positioning reference signal should include at least two consecutive symbols.
  • the at least two consecutive symbols refer to consecutive symbol numbers, that is, in time and frequency, the symbols are immediately adjacent to each other.
  • a slot when allocating resources, a slot may be used as a positioning reference according to the total resources in the slot and the resource allocation of at least one channel in the slot and the priority of the at least one channel.
  • Signals are allocated time-frequency resources.
  • multiple channels may be carried in a time slot, for example, a synchronization channel, a control channel, and a broadcast channel. Then, generally speaking, the signals in the synchronization channel, the control channel, and the broadcast channel have priority. Level is higher than the positioning reference signal, so the system will first allocate resources for signals in the synchronization channel, control channel, and broadcast channel. The remaining resources are obtained from the total resources in the slot and the allocated resources, and time-frequency resources are allocated to the positioning reference signal according to the remaining resources.
  • the positioning reference signal described in this embodiment refers to a reference signal that can be used for positioning such as OTDOA, and should not be limited to the PRS in the current LTE technology in a narrow sense.
  • a signal has other functions besides the current PRS positioning function.
  • the signal can be considered as the positioning reference signal described in this application.
  • Step 220 According to the generation information of the positioning reference signal and the time-frequency resource, according to a preset generation method, at least two consecutive symbols are used as a combined PRS symbol to generate a continuous positioning reference signal in the time domain.
  • the generated information in this embodiment includes at least one of the following: the number of the positioning reference signal The symbol number, and the frame number of the frame from which the positioning reference signal was generated. In addition, it also includes the related configuration of positioning reference signals. In one embodiment, in order to ensure the validity of the transmission, that is, to ensure that the receiver can receive the transmitted positioning reference signal, multiple positioning reference signals can be generated. In order to facilitate management, a positioning reference is set. Signal number
  • mapping of a sequence of positioning reference signals to time-frequency resources is completed, that is, the positioning reference signal to be generated is carried on the allocated resources (that is, symbols). Therefore, it is achieved that at least two consecutive symbols are used as a combined PRS symbol to generate a positioning reference signal.
  • the frequency-domain position mapping of the positioning reference signal on at least two consecutive symbols that generate the same positioning reference signal may be completely the same (that is, the positioning reference signal portion on at least two consecutive symbols corresponding to the positioning reference signal The frequency domain position is the same), so as to ensure the relationship between subsequent passing sequences or adjustments in the transmission process, so that at least two consecutive symbols can be connected into a continuous waveform in the time domain (that is, the generated positioning reference The signal is continuous in the time domain).
  • the symbol used to generate the positioning reference signal in this embodiment refers to an extended symbol with CP added, such as the extended OFDM symbol shown in FIG. 1.
  • the preset generation method may be:
  • Step 310 Generate a positioning reference signal portion ⁇ X i ⁇ on the first symbol in the combined PRS symbol.
  • ⁇ X i ⁇ may be generated according to the generation information of the positioning reference signal and the configuration parameters of the predetermined positioning reference signal.
  • Step 320 Generate the positioning reference signal portion on the nth symbol in the combined PRS symbol in sequence according to the positioning reference signal portion ⁇ X i ⁇ .
  • N CP is the length of the cyclic prefix of the symbol
  • N symb is the length of the part of the symbol other than the cyclic prefix
  • i is the number of the combined PRS symbol
  • the value ranges from 0 to the combined PRS symbol. The length is reduced by 1, for example, see FIG. 4.
  • n is greater than or equal to 2
  • the first to nth symbols are continuous.
  • the positioning reference signal parts from the first symbol to the nth symbol are combined to be a positioning reference signal.
  • the first symbol ⁇ X i ⁇ is generated first according to the above manner, and then the second symbol is generated.
  • the blackened part of the waveform in FIG. 5 is the CP part on the symbol.
  • the preset generation manner may also be at least one of manner 1 and manner 2:
  • the first method includes:
  • Step 610 Generate a reference time domain sequence ⁇ Y i , i ⁇ [0, FFTsize-1] ⁇ of the positioning reference signal on each symbol.
  • the reference time domain sequence may be generated according to the generation information of the positioning reference signal and the configuration parameters of the predetermined positioning reference signal.
  • Step 620 Copy the ⁇ Y i , i ⁇ [FFTsize-CPsize, FFTsize-1] ⁇ part of the reference time domain sequence to the front of the reference time domain sequence ⁇ Y i , i ⁇ [0, FFTsize-1] ⁇ , Time-domain data of the positioning reference signal portion formed on the first symbol with the reference time-domain sequence ⁇ Y i , i ⁇ [0, FFTsize-1] ⁇
  • FIG. 7 which is the first symbol formed.
  • the FFTsize is a length value of a part of the symbol except the cyclic prefix; CPsize is a length value of the cyclic prefix of the symbol.
  • Step 630 Time-domain data of the positioning reference signal portion on the first symbol ⁇ Y i , i ⁇ [0, CPsize-1] ⁇ part of the copy to the end of ⁇ Y i , i ⁇ [0, FFTsize-1] ⁇ , and the reference time domain sequence ⁇ Y i , i ⁇ [0, FFTsize-1] ⁇ time-domain data of the positioning reference signal portion formed on the second symbol together
  • the first symbol and the second symbol are continuous; the positioning reference signal portions of the first symbol and the second symbol are combined to obtain a positioning reference signal.
  • FIG. 8 is a first symbol and a second symbol formed.
  • Step 640 When there is an m-th (m greater than or equal to 3) symbol, use the ⁇ Y i , i ⁇ [(m-2) CPsize, FFTsize-1] ⁇ part of the reference time domain sequence as the first sequence, and The ⁇ Y i , i ⁇ [0, (m-2) CPsize-1] ⁇ part of the reference time domain sequence is used as the second sequence, and the ⁇ Y i , i ⁇ [(m-2) CPsize, (m-1) CPsize-1] ⁇ as the third sequence; the first sequence, the second sequence, and the third sequence are sequentially combined to form the time-domain data of the positioning reference signal portion on the mth symbol
  • the time-domain sequence of ⁇ Y i , i ⁇ [CPsize, FFTsize-1] ⁇ is used as the first sequence
  • ⁇ Y i , i ⁇ [0, CPsize-1] ⁇ is used as the second sequence.
  • the first symbol and the second symbol are continuous; when there is an m-th (m greater than or equal to 3) symbol, the first to m-th symbols should also be continuous.
  • step 640 if the positioning reference signal is generated only on the first symbol and the second symbol, step 640 is not performed. At this time, the positioning reference signal portions of the first symbol and the second symbol are combined to obtain Positioning reference signal.
  • step 640 if the positioning reference signal is generated on the first symbol to the m-th symbol, step 640 is performed, and the positioning reference signals of the first symbol to the m-th symbol are combined to obtain the positioning reference. signal.
  • the second method includes:
  • Step 1010 Generate a reference frequency domain sequence ⁇ X i , i ⁇ [0, FFTsize-1] ⁇ of the positioning reference signal on each symbol.
  • the reference frequency domain sequence may be generated according to the generation information of the positioning reference signal and a predetermined configuration parameter of the positioning reference signal.
  • Step 1020 Generate a time-domain waveform of the positioning reference signal according to the reference frequency-domain sequence.
  • t i ⁇ T c , Represents Euler's formula.
  • T c is the sampling period of the system.
  • ⁇ Y i , i ⁇ [-CPsize, FFTsize-1 + (k-1) CPsize] ⁇ is a part ⁇ Y i , i ⁇ [(k-2) CPsize, FFTsize-1 + (k -1) CPsize] ⁇ is the time-domain data of the positioning reference signal on the k-th symbol; k is an integer greater than or equal to 1. It should be understood that although k can take a value of 1, the number of symbols used to generate the positioning reference signal should be greater than or equal to two.
  • the FFTsize is a length value of a part of the symbol except the cyclic prefix; CPsize is a length value of the cyclic prefix of the symbol.
  • the first method when the preset generation method includes the first method, the first method generates a reference time domain sequence ⁇ Y i , i ⁇ [0, FFTsize-1] ⁇ of the positioning reference signal on each symbol. Yes: first generate the reference frequency domain sequence ⁇ X i , i ⁇ [0, FFTsize-1] ⁇ of the positioning reference signal on each symbol; then perform inverse Fourier transform on the reference frequency domain sequence to obtain the positioning reference signal at each The reference time-domain sequence ⁇ Y i , i ⁇ [0, FFTsize-1] ⁇ over the number of symbols.
  • the reference frequency domain sequence may be generated according to the generation information of the positioning reference signal and a predetermined configuration parameter of the positioning reference signal.
  • time-frequency resource allocation for the positioning reference signal is divided. for Groups, and the time-frequency resources of each group include at least two consecutive symbols.
  • step 220 includes: according to the generation information of the positioning reference signal and the time-frequency resources of each group, using at least two consecutive symbols of each group as a combined PRS symbol in each group according to a preset generation method, Generate continuous positioning reference signals in the time domain. That is, a positioning reference signal is generated in each group.
  • the number of groups in this embodiment and the number of symbols in each group can be automatically configured according to the time-frequency resource situation allocated to the positioning reference signal and the current scene.
  • the time-frequency resources allocated to the positioning reference signal are four consecutive symbols (denoted as A1-A4 and continuous in the order of A1-A2-A3-A4), at this time the system 2 consecutive symbols are assigned to each group according to a preset scene assignment rule (a scene assignment rule corresponding to a 60kHz subcarrier interval scene is not limited), and the number of groups is determined by the total number of symbols allocated to the positioning reference signal and The number of symbols in each group is determined by)).
  • the time-frequency resources allocated to the positioning reference signal can be divided into two groups of four consecutive symbols, where A1 and A2 are a group, and A3 and A4 are a group.
  • A1 and A2 are a group
  • A3 and A4 are a group.
  • the above example is only a feasible scenario configuration rule characterized by this embodiment, and does not mean that the configuration rule in a 60 kHz subcarrier interval scenario in the present disclosure can only be such.
  • a completion identifier at the end of at least two consecutive symbols that generate positioning reference signals for each group (that is, the corresponding combined PRS symbol for each group), so that the The positioning reference signals are separated and separated to ensure that the receiver can accurately identify each group of positioning reference signals and avoid situations where multiple groups of positioning reference signals are considered to be one positioning reference signal.
  • the data in the interval t end of the tail end of each group of at least two consecutive symbols that generate the positioning reference signal may be cleared, and this data clearing interval is used as the end identifier, for example, see FIG. 11 .
  • the value of t end should be greater than 0.
  • the positioning reference signal generating method provided in the embodiment of the present disclosure, firstly, a time-frequency resource including at least two consecutive symbols is allocated to the positioning reference signal, and then according to the generation information and time-frequency resource of the positioning reference signal, according to a preset generation method At least two consecutive symbols are used as one combined PRS symbol to generate a continuous positioning reference signal in the time domain.
  • the positioning reference signal of the present disclosure is a continuous positioning reference signal in the time domain generated on at least two symbols, so the positioning reference signal can be received by the receiver as a continuous signal.
  • the positioning reference signal is generated on at least two symbols, so it contains at least two CPs.
  • the receiver When the positioning reference signal reaches the receiver, the receiver actually processes at least two CPs, and as the receiver receives The number of CPs in the received symbol increases, and the receiver is equivalent to a larger CP length. For example, if the positioning reference signal is generated by two symbols, then the receiver receives the two CPs in the positioning reference signal, and the CP length is essentially It has been doubled, so that the coverage of the positioning base stations available for calculation has been doubled, which guarantees the effectiveness of OTDOA positioning, especially the effectiveness of completing OTDOA positioning in large subcarrier interval scenarios.
  • this embodiment exemplifies a solution of the present disclosure.
  • FIG. 12 is a schematic diagram of another positioning reference signal generation process provided in Embodiment 2 of the present disclosure, including:
  • Step 1210 Allocate time-frequency resources for the positioning reference signal.
  • time-frequency resources allocated in a slot are Symbols, The number is determined by the resources occupied by at least one channel and reference signal in the slot and its priority.
  • the distribution method is characterized by ensuring that it contains at least two consecutive OFDM symbols for sending PRS.
  • Step 1220 Perform time-frequency resource grouping.
  • Time-frequency resources to be allocated to the PRS Symbols in time domain PRS groups the grouping principle is that each group contains consecutive Symbols, The value of can be configured by the system according to the time-frequency resource situation and scenario.
  • i represents the i-th PRS group, for example That is, the number of consecutive symbols representing the first PRS group, That is, the number of consecutive symbols representing the second PRS group.
  • Step 1230 Generate positioning reference signals in each group, and make the generated positioning reference signals continuous in the time domain.
  • a PRS sequence to be transmitted is generated, and the generation of the PRS sequence and the mapping of the sequence to the time-frequency resource are completed.
  • the mapping feature is that the frequency domain position mapping of the PRS sent by at least two consecutive symbols in each group is exactly the same, and through the relationship between the sequences, or adjustments in the transmission process, at least two consecutive ones in each group plus CP
  • the symbols in the time domain can be connected into a continuous waveform.
  • the configuration information and system information include the Frame number, symbol number, etc.
  • Method 1 In a PRS group, the sequence of the first symbol is generated first, and the sequence of the first symbol is set to ⁇ X i ⁇ after generation, and the sequence of the second symbol is Generate the third symbol sequence as Generate the sequence on the nth symbol as yes
  • Method 2 Take three symbols in the group to generate PRS as an example:
  • time-domain data for the first symbol is generated.
  • the frequency-domain sequence ⁇ X i , i ⁇ [0, FFTsize-1] ⁇ of the first symbol is generated, and the discrete Fourier is performed on ⁇ X i , i ⁇ [0, FFTsize-1] ⁇ .
  • the inverse transform yields the time-domain sequence ⁇ Y i , i ⁇ [0, FFTsize-1] ⁇ .
  • time-domain data for the second symbol is generated.
  • time-domain data for the third symbol is generated.
  • the time-domain sequence of i , i ⁇ [CPsize, FFTsize-1] ⁇ is taken as time-domain sequence 1.
  • Method 3 Take three symbols in the group to generate PRS as an example:
  • ⁇ Y i , i ⁇ [-CPsize, FFTsize-1] ⁇ is the time-domain data of the first symbol
  • ⁇ Y i , i ⁇ [0, FFTsize-1 + CPsize] ⁇ is the time-domain data of the second symbol
  • ⁇ Y i , i ⁇ [CPsize, FFTsize-1 + 2CPsize] ⁇ is the time-domain data of the third symbol.
  • Step 1240 The data at the end of the positioning reference signal t end interval is cleared.
  • interval t end is set at the end of consecutive symbols after the symbols plus CP, and the data in t end is cleared, that is, the following relationship exists in the entire resource slot allocated for positioning reference signals:
  • the symbol length is 16.67us and the CP length is 1.17us.
  • the base station distance is less than 351 meters, the distribution density of the base stations is too large, which is unacceptable.
  • the CP CP can be taken as the new CP length at the receiving end by 2 times, for example, see FIG. 16.
  • the receiver needs to receive two symbols in succession when receiving a PRS, that is, it can select data twice the length of the CP for CP removal, and then intercept a symbol length signal for correlation. This effect is equivalent to doubling the CP length.
  • the longest distance requirement will also be doubled, expanding the coverage of positioning base stations, reducing the distribution density of base stations, making OTDOA positioning technology more feasible, and effectively avoiding interference of positioning reference signals to other signals.
  • FIG. 17 is a positioning reference signal generating device 170 provided in Embodiment 3 of the present disclosure, including: a resource allocation module 1710 and a positioning reference signal generating module 1720. among them:
  • the resource allocation module 1710 is configured to allocate time-frequency resources for positioning reference signals, where the time-frequency resources include at least two consecutive symbols.
  • the time-frequency resource allocated for the positioning reference signal should include at least two consecutive symbols.
  • the so-called consecutive at least two symbols refer to the continuation of the symbol numbers, that is, in time and frequency, the symbols are immediately adjacent to each other.
  • the resource allocation module 1710 when the resource allocation module 1710 allocates resources, it may be in a slot, according to the total resources in the time slot and the resource allocation of at least one channel in the time slot and the priority of the at least one channel.
  • the stage allocates time-frequency resources for positioning reference signals.
  • in one time slot it may carry multiple channels, such as a synchronization channel, a control channel, and a broadcast channel.
  • the signals in the synchronization channel, control channel, and broadcast channel The priority is higher than the positioning reference signal, so the system first allocates resources for the signals in the synchronization channel, control channel, and broadcast channel. After allocating resources for these signals with higher priority than the positioning reference signal, it will be based on this.
  • the remaining resources are obtained from the total resources in the time slot and the allocated resources, and time-frequency resources are allocated to the positioning reference signal according to the remaining resources.
  • the positioning reference signal described in this embodiment refers to a reference signal that can be used for positioning such as OTDOA, and should not be limited to the PRS in the current LTE technology in a narrow sense. For example, when a signal has other functions besides the current PRS positioning function, then at this time, because the signal can be used for positioning such as OTDOA, the signal can be considered as the positioning reference signal described in this application.
  • the positioning reference signal generating module 1720 is configured to generate at least two consecutive symbols as a combined PRS symbol according to a preset generation method according to the generation information of the positioning reference signal and the time-frequency resource, to generate continuous positioning in the time domain. Reference signal.
  • the generated information in this embodiment includes at least one of the following: the number of the positioning reference signal The symbol number, and the frame number of the frame from which the positioning reference signal was generated. In addition, it also includes the related configuration of positioning reference signals. In one embodiment, in order to ensure the validity of the transmission, that is, to ensure that the receiver can receive the transmitted positioning reference signal, multiple positioning reference signals can be generated. In order to facilitate management, a positioning reference is set. Signal number
  • the positioning reference signal generating module 1720 when generating the positioning reference signal to be transmitted, needs to complete the mapping of the sequence of the positioning reference signal to the time-frequency resource, that is, bear the positioning reference signal to be generated to the allocated resource. (Ie, symbols), so as to generate at least two consecutive symbols as a combined PRS symbol as a positioning reference signal.
  • the frequency reference position mapping of the positioning reference signals on at least two consecutive symbols that generate the same positioning reference signal may be completely the same, thereby ensuring the relationship between subsequent passing sequences or adjustments in the sending process, so that At least two consecutive symbols can be connected into a continuous waveform in the time domain (that is, the generated positioning reference signal is continuous in the time domain).
  • the symbol used to generate the positioning reference signal in this embodiment refers to an extended symbol with CP added, such as the extended OFDM symbol shown in FIG. 1.
  • the preset generation method may be:
  • ⁇ X i ⁇ may be generated according to the generation information of the positioning reference signal and the configuration parameters of the predetermined positioning reference signal.
  • N CP is the length of the cyclic prefix of the symbol
  • N symb is the length of the part of the symbol other than the cyclic prefix.
  • n is greater than or equal to 2
  • the first to nth symbols are continuous.
  • the positioning reference signal parts from the first symbol to the nth symbol are combined to be a positioning reference signal.
  • the preset generation manner may also be at least one of manner 1 and manner 2:
  • the first method includes:
  • the reference time domain sequence may be generated according to the generation information of the positioning reference signal and the configuration parameters of the predetermined positioning reference signal.
  • the FFTsize is a length value of a part of the symbol except the cyclic prefix; CPsize is a length value of the cyclic prefix of the symbol.
  • Time-domain data to locate the reference signal portion on the first symbol ⁇ Y i , i ⁇ [0, CPsize-1] ⁇ part of the sequence is copied to the reference time-domain sequence ⁇ Y i , i ⁇ [0, FFTsize-1] ⁇ , and the reference time-domain sequence ⁇ Y i , i ⁇ [0, FFTsize-1] ⁇ together form the time-domain data of the positioning reference signal portion on the second symbol
  • the ⁇ Y i , i ⁇ [(m-2) CPsize, FFTsize-1] ⁇ part in the reference time domain sequence is used as the first sequence, and the reference time domain is used.
  • the ⁇ Y i , i ⁇ [0, (m-2) CPsize-1] ⁇ part of the sequence is used as the second sequence, and the ⁇ Y i , i ⁇ [(m-2) CPsize, ( m-1) CPsize-1] ⁇ part as the third sequence; the first sequence, the second sequence and the third sequence are sequentially combined to form the time-domain data of the positioning reference signal portion on the mth symbol
  • the first symbol and the second symbol are continuous; when the mth (m is greater than or equal to 3) symbols are required, the first symbol to the mth symbol should also be continuous.
  • step 640 if the positioning reference signal is generated only on the first symbol and the second symbol, step 640 is not performed. At this time, the positioning reference signal portions of the first symbol and the second symbol are combined to obtain Positioning reference signal.
  • step 640 if the positioning reference signal is generated on the first symbol to the m-th symbol, step 640 is performed. At this time, the positioning reference signal parts from the first symbol to the m-th symbol are combined to obtain the positioning. Reference signal.
  • Method two includes:
  • the reference frequency domain sequence may be generated according to the generation information of the positioning reference signal and a predetermined configuration parameter of the positioning reference signal.
  • T c is the sampling period of the system.
  • ⁇ Y i , i ⁇ [(k-2) CPsize, FFTsize-1 + (k-1) CPsize] ⁇ is time-domain data of the positioning reference signal on the kth symbol; k is greater than An integer equal to 1. It should be understood that although k can take a value of 1, the number of symbols used to generate the positioning reference signal should be greater than or equal to two.
  • the FFTsize is a length value of a part of the symbol except the cyclic prefix; CPsize is a length value of the cyclic prefix of the symbol.
  • the first method when the preset generation method includes the first method, the first method generates a reference time domain sequence ⁇ Y i , i ⁇ [0, FFTsize-1] ⁇ of the positioning reference signal on each symbol.
  • the first method generates a reference time domain sequence ⁇ Y i , i ⁇ [0, FFTsize-1] ⁇ of the positioning reference signal on each symbol.
  • the reference frequency domain sequence may be generated according to the generation information of the positioning reference signal and a predetermined configuration parameter of the positioning reference signal.
  • the positioning reference signal generating device 170 may further include a resource grouping module 1730;
  • the resource grouping module 1730 is configured to, after the resource allocation module 1710 allocates time-frequency resources for the positioning reference signal, divide the time-frequency resources allocated for the positioning reference signal into Groups, and the time-frequency resources of each group include at least two consecutive symbols.
  • the positioning reference signal generating module 1720 is configured to use at least two consecutive symbols of each group as each group in accordance with a preset generation method according to the generation information of the positioning reference signal and time-frequency resources of each group.
  • a combined PRS symbol generates a continuous positioning reference signal in the time domain.
  • the actual number of packets and the number of symbols in each group can be automatically configured according to the time-frequency resources allocated to the positioning reference signal and the current scene.
  • the positioning reference signal generating module 1720 may further set a completion identifier at the end of at least two consecutive symbols that generate the positioning reference signal in each group, thereby positioning the positioning reference signals in each group. Zones are separated to ensure that the receiver can accurately identify each group of positioning reference signals and avoid situations where multiple groups of positioning reference signals are considered to be one positioning reference signal.
  • the data in the interval t end of the trailing end of at least two consecutive symbols for each group to generate the positioning reference signal may be cleared, and this data clearing interval is used as the end identifier, for example, see FIG. 11 Show.
  • the value of t end should be greater than 0.
  • a positioning reference signal is first allocated with time-frequency resources including at least two consecutive symbols, and then based on the positioning reference signal generation information and time-frequency resources, according to a preset generation method. At least two consecutive symbols are used as one combined PRS symbol to generate a continuous positioning reference signal in the time domain.
  • the positioning reference signal of the present disclosure is a continuous positioning reference signal in the time domain generated on at least two symbols, so the positioning reference signal can be received by the receiver as a continuous signal.
  • the positioning reference signal is generated on at least two symbols, so it contains at least two CPs. When the positioning reference signal reaches the receiver, the receiver actually processes at least two CPs.
  • the number of CPs in the received symbol increases, and the receiver is equivalent to the length of the received CP becoming larger. For example, if the positioning reference signal is generated by two symbols, then the receiver receives the two CPs in the positioning reference signal.
  • the CP length is substantial. It has been doubled, so that the coverage of positioning base stations available for calculation has been doubled, which guarantees the effectiveness of OTDOA positioning, especially the effectiveness of completing OTDOA positioning in large subcarrier interval scenarios.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • This embodiment provides a base station. As shown in FIG. 19, it includes a processor 1910, a memory 1920, and a communication bus 1930. among them:
  • the communication bus 1930 is configured to implement connection and communication between the processor 1910 and the memory 1920;
  • the processor 1910 is configured to execute one or more programs stored in the memory 1920 to implement the positioning reference signal generating method described in the first embodiment and / or the second embodiment.
  • This embodiment also provides a readable storage medium including an easy-to-implement method implemented in any method or technology for storing information such as computer-readable instructions, data structures, computer program modules, or other data. Lost or non-volatile, removable or non-removable media.
  • the readable storage medium includes, but is not limited to, Random Access Memory (RAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM) , Flash memory or other memory technology, compact disc read-only memory (CD-ROM), digital versatile disc (DVD) or other optical disc storage, magnetic box, magnetic tape, disk storage or other magnetic storage device, or Any other medium that can be used to store desired information and can be accessed by a computer.
  • Computer-executable instructions are stored in the readable storage medium provided by this embodiment, and the computer-executable instructions can be executed by one or more processors to implement the positioning reference signal generation described in Embodiment 1 and / or Embodiment 2. Method steps. I will not repeat them here.
  • a communication medium typically contains computer-readable instructions, data structures, computer program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium. Therefore, the present disclosure is not limited to any particular combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开提供了一种定位参考信号生成方法,包括:为定位参考信号分配包括至少两个连续的符号的时频资源;根据定位参考信号的生成信息以及时频资源,按照预设生成方式将至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号。本文还公开了一种定位参考信号生成装置、基站以及存储介质。

Description

定位参考信号生成方法、装置、基站及可读存储介质
本申请要求在2018年7月26日提交中国专利局、申请号为201810837634.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及但不限于通信技术领域,例如,涉及一种定位参考信号生成方法、装置、基站及可读存储介质。
背景技术
长期演进(Long Term Evolution,LTE)技术引入了正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)和它的扩展或者混合技术,第五代移动通信技术(5th-Generation,5G)新一代无线接入网(New Radio Access Network,NR)依然使用这一技术。这类技术的一个优点是可以通过循环前缀(Cyclic Prefix,CP)来减少符号间干扰(Inter Symbol Interference,ISI)和载波间干扰(Inter-Channel Interference,ICI)。
循环前缀是复制每个OFDM符号最后的部分符号,再附加到每个OFDM符号的前端,例如参见图1所示。OFDM系统中在发射端进行加CP操作,接收端进行去CP操作。
LTE技术中为了对接收侧的定位进行测量,引入了定位参考信号(Positioning Reference Signal,PRS),从而接收侧可以利用定位参考信号来对接收侧的定位进行准确的测量。5G对定位技术有了更高的精度和时延要求,下行到达时间观测差(Observed Time Difference Of Arrival,OTDOA)定位方法可以有效提高定位精度,而OTDOA定位方法的基本原理是服务小区或者接收节点根据接收节点处的测量来确定接收节点的位置的。
目前,检测PRS的到达时间通常利用的方式是用接收信号与已由服务小区告知接收节点所应该接收到的所有PRS之间的相关来检测。但是当两个小区的PRS信号到达时间之差超过一个CP的时候,就会造成不同符号上的PRS信号 互相干扰,从而影响接收机侧的相关检测,对定位结果造成影响,同时,如果两个小区的PRS信号到达时间差超过一个CP,则定位参考信号也会对通信数据造成干扰。这就限制了在所有用来测量的K个小区里,距离接收端最近和最远的小区到达接收端的距离差不宜超过CP时间长度和光速c的乘积。
目前5G的帧结构与LTE相比发生了很大的变化,5G支持子载波间隔的灵活配置,子载波间隔可以是30kHz,60kHz,120kHz,或240kHz等。但是在子载波间隔越大时,符号长度会越短,CP也越短。而CP的长度限制了定位基站的覆盖范围,而实际基站间的距离是较大的,这就使得在大子载波间隔场景中无法有效的完成OTDOA定位。
发明内容
本公开实施例提供一种定位参考信号生成方法、装置、基站及可读存储介质,以至少解决在大子载波间隔场景中无法有效的完成OTDOA定位的问题。
在一实施例中,本公开实施例提供了一种定位参考信号生成方法,包括:
为定位参考信号分配时频资源,其中,所述时频资源包括至少两个连续的符号;
根据所述定位参考信号的生成信息以及所述时频资源,按照预设生成方式,将所述至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号。
在一实施例中,本公开实施例还提供了一种定位参考信号生成装置,包括:
资源分配模块,设置为为定位参考信号分配时频资源,其中,所述时频资源包括至少两个连续的符号;
定位参考信号生成模块,设置为根据所述定位参考信号的生成信息以及所述时频资源,按照预设生成方式,将所述至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号。
在一实施例中,本公开实施例还提供了一种基站,包括:处理器、存储器以及通信总线;
所述通信总线设置为实现所述处理器和存储器之间的连接通信;
所述处理器设置为执行所述存储器中存储的一个或者多个程序,以实现上述的定位参考信号生成方法。
在一实施例中,本公开实施例还提供一种可读存储介质,所述可读存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的定位参考信号生成方法。
附图说明
图1为本公开提供的一种OFDM符号的结构示意图;
图2为本公开实施例一提供的一种定位参考信号生成方法的流程示意图;
图3为本公开实施例一提供的一种定位参考信号生成的流程示意图;
图4为本公开实施例一提供的一种符号结构示意图;
图5为本公开实施例一提供的方式一生成的定位操控信号的波形图;
图6为本公开实施例一提供的方式一的流程示意图;
图7为本公开实施例一提供的方式一中生成一个符号的符号示意图;
图8为本公开实施例一提供的方式一中生成两个符号的符号示意图;
图9为本公开实施例一提供的方式一中生成三个符号的符号示意图;
图10为本公开实施例一提供的方式二的流程示意图;
图11为本公开实施例一提供的一种符号区间t end示意图;
图12为本公开实施例二提供的另一种定位参考信号生成流程示意图;
图13为本公开实施例二提供的方式一中生成一个符号的符号示意图;
图14为本公开实施例二提供的方式一中生成两个符号的符号示意图;
图15为本公开实施例二提供的方式一中生成三个符号的符号示意图;
图16为本公开实施例二提供的一种接收端处理后的信号波形示意图;
图17为本公开实施例三提供的一种定位参考信号生成装置的结构示意图;
图18为本公开实施例三提供的另一种定位参考信号生成装置的结构示意图;
图19为本公开实施例四提供的一种基站的结构示意图。
具体实施方式
本公开实施例不限于所示出的实施例。上面描述和附图,相同的参考数字和标记代表相同或者类似的元素。
尽管这里可能使用术语第一、第二等来描述元件或操作,但是这些元件或操作不应被这些术语限制。这些术语用于将一个元件或操作与另一个加以区分。例如,第一单元可以被称为第二单元,并且类似地,第二单元可以被称为第一单元而不偏离本公开的教导。
这里使用的术语仅仅是为了描述实施例,并非旨在限制本公开构思。如这里所使用的,单数形式“一”、“一个”和“该”预期也包括复数形式,除非上下文清楚地另有指示。除非另外定义,这里使用的所有术语(包括技术和科学术语)具有和本公开所属技术领域的技术人员通常理解的相同的含义。例如在常用词典中定义的术语应该被解释为具有与其在相关技术和/或本公开的上下文中的含义相符的含义,除非这里明确地定义。
下面通过实施方式结合附图对本公开实施例进行说明。
实施例一:
参见图2所示,图2为本公开实施例一提供的一种定位参考信号生成方法,包括:
步骤210:为定位参考信号分配时频资源。
在本实施例中,为定位参考信号分配的时频资源应当包括至少两个连续的符号。在一实施例中,所述至少两个连续的符号是指符号编号的连续,即在时频上,符号间是紧邻的。
在本实施例中,当分配资源时,可以在一个时隙(slot)内,根据该时隙内的总资源以及时隙内至少一个信道的资源分配情况与至少一个信道的优先级为定位参考信号分配时频资源。在一实施例中,在一个时隙内,可能承载有多种信道,例如承载有同步信道、控制信道、广播信道等,那么通常而言,同步信道、控制信道、广播信道中的信号的优先级是高于定位参考信号的,因此系统会先为同步信道、控制信道、广播信道中的信号分配资源,在为这些优先级高于定位参考信号的信号分配完毕资源之后,才会依据该时隙内的总资源以及已分配出去的资源情况得到剩余资源,根据剩余资源来为定位参考信号分配时频 资源。本实施例中所述的定位参考信号是指可以用于进行诸如OTDOA定位的参考信号,而不应狭义上的限定为目前LTE技术中的PRS。例如,一信号在具有目前PRS的定位功能外,还具有其他功能,那么此时由于该信号可以用于进行OTDOA定位,即可认为该信号是本申请所述的定位参考信号。
步骤220:根据定位参考信号的生成信息以及所述时频资源,按照预设生成方式,将至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号。
本实施例中生成信息包括下述至少一项:定位参考信号的编号
Figure PCTCN2018118865-appb-000001
符号编号,以及生成定位参考信号的帧的帧号。此外,还包括定位参考信号的相关配置等。在一实施例中,在一个时隙上,为了保证发送的有效性,即为了确保接收机能够接收到发送的定位参考信号,可以生成多个定位参考信号,为了便于管理,会设定定位参考信号的编号
Figure PCTCN2018118865-appb-000002
在一实施例中,当生成所要发送的定位参考信号时,要完成定位参考信号的序列到时频资源的映射,即,将所要生成的定位参考信号承载到所分配的资源(即符号)上,从而实现将至少两个连续的符号作为一个组合PRS符号来生成为定位参考信号。在本实施例中,生成同一定位参考信号的至少两个连续的符号上的定位参考信号频域位置映射可以完全相同(即:定位参考信号对应的至少两个连续的符号上的定位参考信号部分的频域位置相同),从而保证在后续通过序列之间的关系,或者发送过程中的调整,使得至少两个连续的符号在在时域上可以连接成连续的波形(即使得生成的定位参考信号在时域上连续)。
本实施例中用于生成定位参考信号的符号是指的加CP的扩展符号,例如图1所示的扩展OFDM符号。
在本实施例中,预设生成方式可以是:
参见图3所示,包括:
步骤310:生成组合PRS符号内第一个符号上的定位参考信号部分{X i}。
本实施例中{X i}可以是根据定位参考信号的生成信息以及预先确定的定位参考信号的配置参数等来生成的。
步骤320:依据定位参考信号部分{X i}依次生成在组合PRS符号内第n个符号上的定位参考信号部分
Figure PCTCN2018118865-appb-000003
其中:N CP为符号的循环前缀的长 度,N symb为符号除循环前缀以外的部分的长度,,所述i为所述组合PRS符号的编号,取值范围为0到所述组合PRS符号的长度减1,例如参见图4所示。
在本实施例中,n大于等于2,且第一个符号到第n个符号连续。这样,第一个符号到第n个符号的定位参考信号部分组合起来即为定位参考信号。
参见图5所示,例如,设置n为2,根据上述方式先生成第一个符号{X i},再生成第二个符号
Figure PCTCN2018118865-appb-000004
这样通过序列之间的关系即可保证生成的定位参考信号在时域上连续。在一实施例中,图5中波形加黑部分即为该符号上的CP部分。
此外,在本实施例中,预设生成方式还可以是方式一和方式二中的至少一种:
其中,参见图6所示,所述方式一包括:
步骤610:生成定位参考信号在每个符号上的基准时域序列{Y i,i∈[0,FFTsize-1]}。
本实施例中基准时域序列可以是根据定位参考信号的生成信息以及预先确定的定位参考信号的配置参数等来生成的。
步骤620:将基准时域序列中的{Y i,i∈[FFTsize-CPsize,FFTsize-1]}部分拷贝到基准时域序列{Y i,i∈[0,FFTsize-1]}的前面,与基准时域序列{Y i,i∈[0,FFTsize-1]}一起形成在第一个符号上的定位参考信号部分的时域数据
Figure PCTCN2018118865-appb-000005
例如,参见图7所示,图7即为形成的第一个符号。
在一实施例中,上述FFTsize为符号除循环前缀以外的部分的长度值;CPsize为符号的循环前缀的长度值。
步骤630:将在第一个符号上的定位参考信号部分的时域数据
Figure PCTCN2018118865-appb-000006
中的{Y i,i∈[0,CPsize-1]}部分拷贝到{Y i,i∈[0,FFTsize-1]}的后面,与基准时域序列{Y i,i∈[0,FFTsize-1]}一起形成在第二个符号上的定位参考信号部分的时域数据
Figure PCTCN2018118865-appb-000007
第一个符号和第二个符号连续;将第一个符号和第二个符号的定位参考信号部分组合起来得到定位参考信号。
例如,参见图8所示,图8即为形成的第一个符号和第二个符号。步骤640: 当有第m(m大于等于3)个符号时,将基准时域序列中的{Y i,i∈[(m-2)CPsize,FFTsize-1]}部分作为第一序列,将基准时域序列中的{Y i,i∈[0,(m-2)CPsize-1]}部分作为第二序列,将基准时域序列中的{Y i,i∈[(m-2)CPsize,(m-1)CPsize-1]}部分作为第三序列;依次将第一序列、第二序列和第三序列顺序组合起来形成在第m个符号上的定位参考信号部分的时域数据
Figure PCTCN2018118865-appb-000008
例如m为3时,将{Y i,i∈[CPsize,FFTsize-1]}的时域序列作为第一序列,将{Y i,i∈[0,CPsize-1]}作为第二序列,将基准时域序列中的{Y i,i∈[(CPsize,2CPsize-1]}作为第三序列。参见图9所示,即为形成的第一个符号、第二个符号和第三符号。
在一实施例中,方式一中,第一个符号和第二个符号连续;当有第m(m大于等于3)个符号时,第一个符号到第m个符号也应当连续。
在方式一中,若定位参考信号仅在第一个符号和第二个符号上生成,则步骤640不进行,此时将第一个符号和第二个符号的定位参考信号部分组合起来即得到定位参考信号。
在方式一中,若定位参考信号在第一个符号到第m个符号上生成,则执行步骤640,此时将第一个符号到第m个符号的定位参考信号部分组合起来即得到定位参考信号。
参见图10所示,方式二包括:
步骤1010:生成定位参考信号在每个符号上的基准频域序列{X i,i∈[0,FFTsize-1]}。
本实施例中基准频域序列可以是根据定位参考信号的生成信息以及预先确定的定位参考信号的配置参数等来生成的。
步骤1020:根据基准频域序列生成定位参考信号的时域波形
Figure PCTCN2018118865-appb-000009
其中:t=i×T c
Figure PCTCN2018118865-appb-000010
表示欧拉公式。
在一实施例中,T c为系统的采样周期。
步骤1030:根据定位参考信号的时域波形
Figure PCTCN2018118865-appb-000011
以及t=i×T c得到定位参考信号的时域数据{Y i,i∈[-CPsize,FFTsize-1+(k-1)CPsize]}。
在一实施例中,{Y i,i∈[-CPsize,FFTsize-1+(k-1)CPsize]}的一部分 {Y i,i∈[(k-2)CPsize,FFTsize-1+(k-1)CPsize]}为定位参考信号在第k个符号上的时域数据;k为大于等于1的整数。应当理解的是,虽然k可以取值为1,但是生成定位参考信号的符号个数应当大于等于2。
在一实施例中,上述FFTsize为符号除循环前缀以外的部分的长度值;CPsize为符号的循环前缀的长度值。
在本实施例中,在预设生成方式包括方式一时,方式一中生成定位参考信号在每个符号上的基准时域序列{Y i,i∈[0,FFTsize-1]}的一种方式是:先生成定位参考信号在每个符号上的基准频域序列{X i,i∈[0,FFTsize-1]};再对基准频域序列进行傅里叶反变换得到定位参考信号在每个符号上的基准时域序列{Y i,i∈[0,FFTsize-1]}。本实施例中基准频域序列可以是根据定位参考信号的生成信息以及预先确定的定位参考信号的配置参数等来生成的。
在本实施例中,为了保证发送的有效性,即为了确保接收机能够接收到发送的定位参考信号,可以执行步骤210之后,在执行步骤220之前,将为定位参考信号分配的时频资源分为
Figure PCTCN2018118865-appb-000012
个组,且每组的时频资源包括至少两个连续的符号。
此时步骤220包括:根据定位参考信号的生成信息以及每个组的时频资源,按照预设生成方式,在每个组内将每个组的至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号。即在每个组内均会生成一个定位参考信号。
本实施例中的分组个数以及每个组内的符号个数可以根据分配给定位参考信号的时频资源情况以及当前的场景来自动配置。例如,在60kHz的子载波间隔场景中,分配给定位参考信号的时频资源为连续的4个符号(记为A1-A4,并按A1-A2-A3-A4的顺序连续),此时系统根据预设的场景分配规则(设60kHz的子载波间隔场景对应的场景分配规则为每组分配2个连续的符号(不限定分配的组数,组数由分配给定位参考信号的总符号数和每组中的符号个数决定)),可以将分配给定位参考信号的时频资源为连续的4个符号分为两组,其中A1和A2为一组,A3和A4为一组。在一实施例中,上述示例仅为本实施例所表征的一种可行场景配置规则,不代表本公开中60kHz的子载波间隔场景中的配置规则仅可以是这样的。
在本实施例中,在分组后,还可以在每组生成定位参考信号的至少两个连 续的符号(即在每组对应的组合PRS符号)的尾端设置完结标识,从而将每组内的定位参考信号区分隔离开,以保证接收机能够准确识别出每组定位参考信号,避免出现将多组定位参考信号认为是一个定位参考信号的情况。
在本实施例中,可以将每组生成定位参考信号的至少两个连续的符号的尾端的区间t end内的数据清零,以这一数据清零区间作为完结标识,例如参见图11所示。在一实施例中,t end的取值应大于0。
根据本公开实施例提供的定位参考信号生成方法,通过先为定位参考信号分配包括至少两个连续的符号的时频资源,进而根据定位参考信号的生成信息以及时频资源,按照预设生成方式将至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号。这样,本公开的定位参考信号是在至少两个符号上进行生成的时域上连续的定位参考信号,因此定位参考信号可以被接收机作为连续信号而接收到。又定位参考信号是在至少两个符号上进行生成的,因此包含有至少两个CP,当定位参考信号到达接收机时,接收机实际处理得到的就是至少两个CP,而随着接收机接收到的符号中的CP变多,接收机相当于接收到的CP长度变大了,例如定位参考信号由两个符号生成,那么接收机接收到了定位参考信号中的两个CP,CP长度实质就扩大了两倍,从而使得可供计算的定位基站的覆盖范围扩大了两倍,这就保证了OTDOA定位的有效性,尤其是保证了在大子载波间隔场景中完成OTDOA定位的有效性。
实施例二:
本实施例在实施例一的基础上,对本公开的方案进行示例说明。
参见图12所示,图12为本公开实施例二提供的另一种定位参考信号生成流程示意图,包括:
步骤1210:为定位参考信号分配时频资源。
记在一个slot内分配时频资源为
Figure PCTCN2018118865-appb-000013
个符号,
Figure PCTCN2018118865-appb-000014
的个数由slot内至少一个信道和参考信号所占的资源和其优先级决定,分配方式的特点为确保其中至少包含两个连续的OFDM符号用于发送PRS。
步骤1220:进行时频资源分组。
将分配给PRS的时频资源
Figure PCTCN2018118865-appb-000015
个符号在时域分为
Figure PCTCN2018118865-appb-000016
个PRS组, 分组原则为每组包含连续的
Figure PCTCN2018118865-appb-000017
个符号,
Figure PCTCN2018118865-appb-000018
的取值可根据时频资源情况和场景由系统配置。在一实施例中,
Figure PCTCN2018118865-appb-000019
中,i表征第i个PRS组,例如
Figure PCTCN2018118865-appb-000020
即表征第一个PRS组的连续的符号个数,
Figure PCTCN2018118865-appb-000021
即表征第二个PRS组的连续的符号个数。
步骤1230:每个组内生成定位参考信号,并使生成的定位参考信号在时域上连续。
以PRS的配置信息、系统信息和分配给PRS的时频资源的分组信息作为依据,生成所要发送的PRS序列,完成PRS序列的生成和序列到时频资源的映射。映射特点是:每组内至少两个连续的符号发送的PRS的频域位置映射完全相同,并通过序列之间的关系,或者发送过程中的调整使得每组内至少两个连续的个加CP的符号在时域上可以连接成连续的波形。在本实施例中,配置信息和系统信息包括上层配置的
Figure PCTCN2018118865-appb-000022
帧号,符号编号等。
在一实施例中,有以下三种信号生成方式:
方式一:在一个PRS组内,先生成第一个符号的序列,第一个符号的序列生成以后设为{X i},生成第二个符号的序列为
Figure PCTCN2018118865-appb-000023
生成第三个符号序列为
Figure PCTCN2018118865-appb-000024
生成第n个符号上的序列为是
Figure PCTCN2018118865-appb-000025
方式二:以组内3个符号生成PRS为例:
首先,生成第一个符号的时域数据。在一实施例中,生成第一个符号的频域序列{X i,i∈[0,FFTsize-1]},对{X i,i∈[0,FFTsize-1]}进行离散傅里叶反变换得到时域序列{Y i,i∈[0,FFTsize-1]}。并将{Y i,i∈[0,FFTsize-1]}中{Y i,i∈[FFTsize-CPsize,FFTsize-1]}的时域序列作为CP拷贝到{Y i,i∈[0,FFTsize-1]}的前面一起形成第一个符号的时域数据
Figure PCTCN2018118865-appb-000026
例如图13所示。
接着,生成第二个符号的时域数据。在一实施例中:对{X i,i∈[0,FFTsize-1]}进行离散傅里叶反变换得到时域序列{Y i,i∈[0,FFTsize-1]}。并将{Y i,i∈[0,FFTsize-1]}中{Y i,i∈[0,CPsize-1]}的时域序列作为CP1拷贝到{Y i,i∈[0,FFTsize-1]}的后面一起形成第二个符号的时域数据
Figure PCTCN2018118865-appb-000027
例如图14所示。
最后,生成第三个符号的时域数据。在一实施例中:对{X i,i∈[0,FFTsize-1]}进 行离散傅里叶反变换得到时域序列{Y i,i∈[0,FFTsize-1]}。并将{Y i,i∈[CPsize,2CPsize-1]}的时域序列作为CP 2;将{Y i,i∈[0,CPsize-1]}的时域序列作为CP 1;将{Y i,i∈[CPsize,FFTsize-1]}的时域序列作为时域序列1。将时域序列1、CP 1、CP 2链接起形成第三个符号的时域数据
Figure PCTCN2018118865-appb-000028
例如图15所示。
方式三:以组内3个符号生成PRS为例:
生成符号的频域序列{X i,i∈[0,FFTsize-1]};
根据{X i,i∈[0,FFTsize-1]}生成
Figure PCTCN2018118865-appb-000029
t=i×T c,T c为采样周期,
Figure PCTCN2018118865-appb-000030
表示欧拉公式。
生成{Y i,i∈[-CPsize,FFTsize-1+(k-1)CPsize]};Y i=Y(i×T s),其中,
{Y i,i∈[-CPsize,FFTsize-1]}为第一个符号的时域数据;
{Y i,i∈[0,FFTsize-1+CPsize]}为第二个符号的时域数据;
{Y i,i∈[CPsize,FFTsize-1+2CPsize]}为第三个符号的时域数据。
步骤1240:定位参考信号尾部t end区间数据清零。
在每个PRS组内
Figure PCTCN2018118865-appb-000031
个符号加CP之后的连续符号尾端设置一个区间t end,t end内的数据清零,即在整个为定位参考信号分配的资源时隙上存在以下关系:
Figure PCTCN2018118865-appb-000032
以下以一种场景对本公开实施例进行描述:
假设在60kHz的子载波间隔场景中,符号长度为16.67us,CP长度为1.17us,根据OTDOA原理,定位基站到达接收端之间的最远距离将被限制为1.17*10-6*3*108=351米,因为一旦不同基站的距离接收端的距离超过这个数值,其到达同一个UE的时间差就会有可能会大于CP长度,从而导致测量使用的不同基站发射的PRS产生干扰,同时PRS信号也会对其他信道产生干扰,这就会限制基站之间的距离。但是,为了避免干扰,而保证基站距离小于351米时,基站分布密度过大,是不能接受的。通过本公开所述方式生成和发射PRS,假设
Figure PCTCN2018118865-appb-000033
取2,首先根据配置信息和分组信息给某个PRS组内第一个符号生成PRS序列{Xi},发射中添加CP,对于第二个符号,其PRS序列为{Xi},这样两个符号在加CP之后在时域上可以连接成连续的波形,例如参见图5所示。
这样,在接收端即可取2倍CPsize长度作为新的CP,例如参见图16所示。接收端接收一个PRS要连续接收两个符号,即可以选择两倍于CP长度的数据进行去CP操作,然后再截取一个符号长度信号进行相关,这样效果即相当于CP长度扩大2倍,基站间最远距离要求也将扩大2倍,扩大了定位基站覆盖范围,降低了基站分布密度,使得OTDOA定位技术具有更高的可行性,同时有效避免了定位参考信号对其他信号的干扰。
实施例三:
本实施例在实施例一的基础上,提供了一种定位参考信号生成装置。参见图17,图17为本公开实施例三提供的一种定位参考信号生成装置170,包括:资源分配模块1710和定位参考信号生成模块1720。其中:
资源分配模块1710,设置为为定位参考信号分配时频资源其中,所述时频资源包括至少两个连续的符号。
在本实施例中,为定位参考信号分配的时频资源应当包括至少两个连续的符号。在一实施例中,这里所谓连续的的至少两个符号是指符号编号的连续,即在时频上,符号间是紧邻的。
在本实施例中,资源分配模块1710在分配资源时,可以在一个时隙(slot)内,根据该时隙内的总资源以及时隙内至少一个信道的资源分配情况与至少一个信道的优先级为定位参考信号分配时频资源。在一实施例中,在一个时隙内,其可能承载有多种信道,例如承载有同步信道、控制信道、广播信道等,那么通常而言,同步信道、控制信道、广播信道中的信号的优先级是高于定位参考信号的,因此系统会先为同步信道、控制信道、广播信道中的信号分配资源,在为这些优先级高于定位参考信号的信号分配完毕资源之后,才会依据该时隙内的总资源以及已分配出去的资源情况得到剩余资源,根据剩余资源来为定位参考信号分配时频资源。
本实施例中所述的定位参考信号是指的可以用于进行诸如OTDOA定位的参考信号,而不应狭义上的限定为目前LTE技术中的PRS。例如,某一信号在具有目前PRS的定位功能外,还具有其他功能时,那么此时由于该信号可以用于进行诸如OTDOA定位,即可认为该信号是本申请所述的定位参考信号。
定位参考信号生成模块1720,设置为根据定位参考信号的生成信息以及所述时频资源,按照预设生成方式,将至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号。
本实施例中生成信息包括下述至少一项:定位参考信号的编号
Figure PCTCN2018118865-appb-000034
符号编号,以及生成定位参考信号的帧的帧号。此外,还包括定位参考信号的相关配置等。在一实施例中,在一个时隙上,为了保证发送的有效性,即为了确保接收机能够接收到发送的定位参考信号,可以生成多个定位参考信号,为了便于管理,会设定定位参考信号的编号
Figure PCTCN2018118865-appb-000035
在一实施例中,定位参考信号生成模块1720在生成所要发送的定位参考信号时,要完成定位参考信号的序列到时频资源的映射,即:将要生成的定位参考信号承载到所分配的资源(即符号)上,从而实现将至少两个连续的符号作为一个组合PRS符号来生成为定位参考信号。在本实施例中,生成同一定位参考信号的至少两个连续的符号上的定位参考信号频域位置映射可以完全相同,从而保证在后续通过序列之间的关系,或者发送过程中的调整,使得至少两个连续的个符号在在时域上可以连接成连续的波形(即使得生成的定位参考信号在时域上连续)。
本实施例中用于生成定位参考信号的符号是指的加CP的扩展符号,例如图1所示的扩展OFDM符号。
在本实施例中,预设生成方式可以是:
先生成在组合PRS符号内第一个符号上的定位参考信号部分{X i};
本实施例中{X i}可以是根据定位参考信号的生成信息以及预先确定的定位参考信号的配置参数等来生成的。
再依据{X i}依次生成在组合PRS符号内第n个符号上的定位参考信号部分
Figure PCTCN2018118865-appb-000036
其中:N CP为符号的循环前缀的长度,N symb为符号除循环前缀以外的部分的长度,例如参见图4所示。
在本实施例中,n大于等于2,且第一个符号到第n个符号连续。这样,第一个符号到第n个符号的定位参考信号部分组合起来即为定位参考信号。
此外,在本实施例中,预设生成方式还可以是方式一和方式二中的至少一种:
其中,方式一包括:
生成定位参考信号在每个符号上的基准时域序列{Y i,i∈[0,FFTsize-1]};
本实施例中基准时域序列可以是根据定位参考信号的生成信息以及预先确定的定位参考信号的配置参数等来生成的。
将基准时域序列中的{Y i,i∈[FFTsize-CPsize,FFTsize-1]}部分拷贝到基准时域序列{Y i,i∈[0,FFTsize-1]}的前面,与基准时域序列{Y i,i∈[0,FFTsize-1]}一起形成在第一个符号上的定位参考信号部分的时域数据
Figure PCTCN2018118865-appb-000037
在一实施例中,上述FFTsize为符号除循环前缀以外的部分的长度值;CPsize为符号的循环前缀的长度值。
将在第一个符号上的定位参考信号部分的时域数据
Figure PCTCN2018118865-appb-000038
中的{Y i,i∈[0,CPsize-1]}部分拷贝到基准时域序列{Y i,i∈[0,FFTsize-1]}的后面,与基准时域序列{Y i,i∈[0,FFTsize-1]}一起形成在第二个符号上的定位参考信号部分的时域数据
Figure PCTCN2018118865-appb-000039
当有第m(m大于等于3)个符号时,将基准时域序列中的{Y i,i∈[(m-2)CPsize,FFTsize-1]}部分作为第一序列,将基准时域序列中的{Y i,i∈[0,(m-2)CPsize-1]}部分作为第二序列,将基准时域序列中的{Y i,i∈[(m-2)CPsize,(m-1)CPsize-1]}部分作为第三序列;依次将第一序列、第二序列和第三序列顺序组合起来形成在第m个符号上的定位参考信号部分的时域数据
Figure PCTCN2018118865-appb-000040
在一实施例中,方式一中,第一个符号和第二个符号连续;当要第m(m大于等于3)个符号时,第一个符号到第m个符号也应当连续。
在方式一中,若定位参考信号仅在第一个符号和第二个符号上生成,则步骤640不进行,此时将第一个符号和第二个符号的定位参考信号部分组合起来即得到定位参考信号。
在方式一中,若定位参考信号在第一个符号到第m个符号上生成,则要执行步骤640,此时将第一个符号到第m个符号的定位参考信号部分组合起来即得到定位参考信号。
方式二包括:
生成定位参考信号在每个符号上的基准频域序列{X i,i∈[0,FFTsize-1]};
本实施例中基准频域序列可以是根据定位参考信号的生成信息以及预先确定的定位参考信号的配置参数等来生成的。
根据基准频域序列生成定位参考信号的时域波形
Figure PCTCN2018118865-appb-000041
其中:t=i×T c
Figure PCTCN2018118865-appb-000042
表示欧拉公式;
在一实施例中,T c为系统的采样周期。
最后根据定位参考信号的时域波形
Figure PCTCN2018118865-appb-000043
以及t=i×T c得到定位参考信号的时域数据{Y i,i∈[-CPsize,FFTsize-1+(k-1)CPsize]}。
在一实施例中,{Y i,i∈[(k-2)CPsize,FFTsize-1+(k-1)CPsize]}为定位参考信号在第k个符号上的时域数据;k为大于等于1的整数。应当理解的是,虽然k可以取值为1,但是生成定位参考信号的符号个数应当大于等于2。
在一实施例中,上述FFTsize为符号除循环前缀以外的部分的长度值;CPsize为符号的循环前缀的长度值。
在本实施例中,在预设生成方式包括方式一时,方式一中生成定位参考信号在每个符号上的基准时域序列{Y i,i∈[0,FFTsize-1]}的一种方式是:生成定位参考信号在每个符号上的基准频域序列{X i,i∈[0,FFTsize-1]};对基准频域序列进行傅里叶反变换得到定位参考信号在每个符号上的基准时域序列{Y i,i∈[0,FFTsize-1]}。本实施例中基准频域序列可以是根据定位参考信号的生成信息以及预先确定的定位参考信号的配置参数等来生成的。
在本实施例中,为了保证发送的有效性,即为了确保接收机能够接收到发送的定位参考信号,参见图18所示,定位参考信号生成装置170还可以包括资源分组模块1730;
资源分组模块1730设置为,在资源分配模块1710为定位参考信号分配时频资源之后,将为定位参考信号分配的时频资源分为
Figure PCTCN2018118865-appb-000044
个组,且每组的时频资源包括至少两个连续的符号。
此时定位参考信号生成模块1720是设置为,根据定位参考信号的生成信息以及每组的时频资源,按照预设生成方式,在每个组内将每个组的至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号。
本实施例中实际的分组个数以及每个组内的符号个数可以根据分配给定位 参考信号的时频资源情况以及当前的场景来自动配置。
在本实施例中,在分组后,定位参考信号生成模块1720还可以在每个组生成定位参考信号的至少两个连续的符号的尾端设置完结标识,从而将每个组内的定位参考信号区分隔离开,以保证接收机能够准确识别出每组定位参考信号,避免出现将多组定位参考信号认为是一个定位参考信号的情况。
在本实施例中,可以将每个组生成定位参考信号的至少两个连续的符号的尾端的区间t end内的数据清零,以这一数据清零区间作为完结标识,例如参见图11所示。在一实施例中,t end的取值应大于0。
根据本公开实施例提供的定位参考信号生成装置,通过先为定位参考信号分配包括至少两个连续的符号的时频资源,进而根据定位参考信号的生成信息以及时频资源,按照预设生成方式将至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号。这样,本公开的定位参考信号是在至少两个符号上进行生成的时域上连续的定位参考信号,因此定位参考信号可以被接收机作为连续信号而接收到。又定位参考信号是在至少两个符号上进行生成的,因此包含有至少两个CP,这样在定位参考信号到达接收机时,接收机实际处理得到的就是至少两个CP,而随着接收机接收到的符号中的CP变多,接收机相当于接收到的CP长度变大了,例如定位参考信号由两个符号生成,那么接收机接收到了定位参考信号中的两个CP,CP长度实质就扩大了两倍,从而使得可供计算的定位基站的覆盖范围扩大了两倍,这就保证了OTDOA定位的有效性,尤其是保证了在大子载波间隔场景中完成OTDOA定位的有效性。
实施例四:
本实施例提供了一种基站,参见图19所示,其包括处理器1910、存储器1920以及通信总线1930。其中:
通信总线1930设置为实现处理器1910和存储器1920之间的连接通信;
处理器1910设置为执行存储器1920中存储的一个或者多个程序,以实现上述实施例一和/或实施例二所述的定位参考信号生成方法。
本实施例还提供了一种可读存储介质,该可读存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、计算机程序模块或其他数据)的任何方法或 技术中实施的易失性或非易失性、可移除或不可移除的介质。可读存储介质包括但不限于随机存取存储器(Random Access Memory,RAM),只读存储器(Read-Only Memory,ROM),带电可擦可编程只读存储器(Electrically Erasable Programmable read only memory,EEPROM)、闪存或其他存储器技术、光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM),数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
本实施例提供的可读存储介质中存储有计算机可执行指令,该计算机可执行指令可被一个或者多个处理器执行,以实现实施例一和/或实施例二所述的定位参考信号生成方法的步骤。在此不再赘述。
本领域的技术人员应该明白,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件(可以用计算装置可执行的计算机程序代码来实现)、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由多个物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。
此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、计算机程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。所以,本公开不限制于任何特定的硬件和软件结合。

Claims (15)

  1. 一种定位参考信号生成方法,包括:
    为定位参考信号PRS分配时频资源,其中,所述时频资源包括至少两个连续的符号;
    根据所述定位参考信号的生成信息以及所述时频资源,按照预设生成方式,将所述至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号。
  2. 如权利要求1所述的方法,其中,所述为定位参考信号分配时频资源包括:
    在一个时隙内,根据时隙内的总资源以及时隙内至少一个信道的资源分配情况与所述至少一个信道的优先级为所述定位参考信号分配时频资源。
  3. 如权利要求1所述的方法,其中,所述生成信息包括下述至少一项:定位参考信号编号,符号编号,以及生成定位参考信号的帧的帧号。
  4. 如权利要求1所述的定位参考信号生成方法,其中,在所述按照预设生成方式将所述至少两个连续的符号作为一个组合PRS符号生成在时域上连续的定位参考信号的步骤中,所述定位参考信号对应的至少两个连续的符号上的定位参考信号部分的频域位置相同。
  5. 如权利要求1或4所述的方法,其中,所述预设生成方式包括:
    生成所述组合PRS符号内第一个符号上的定位参考信号部分{Xi};
    依据所述定位参考信号部分{Xi}依次生成在所述组合PRS符号内第n个符号上的定位参考信号部分
    Figure PCTCN2018118865-appb-100001
    所述n大于等于2,且所述第一个符号到所述第n个符号连续;其中:所述N CP为所述符号的循环前缀的长度,所述N svmb为所述符号除所述循环前缀以外的部分的长度,所述i为所述组合PRS符号的编号;将所述第一个符号到所述第n个符号的定位参考信号部分组合起 来得到所述定位参考信号。
  6. 如权利要求1所述的方法,其中,所述预设生成方式包括方式一和方式二中的至少一种:
    其中,所述方式一包括:
    生成所述定位参考信号在每个符号上的基准时域序列{Y i,i∈[0,FFTsize-1]};
    将所述基准时域序列中的{Y i,i∈[FFTsize-CPsize,FFTsize-1]}部分拷贝到所述基准时域序列{Y i,i∈[0,FFTsize-1]}的前面,与所述基准时域序列{Y i,i∈[0,FFTsize-1]}一起形成在第一个符号上的定位参考信号部分的时域数据
    Figure PCTCN2018118865-appb-100002
    将所述在第一个符号上的定位参考信号部分的时域数据
    Figure PCTCN2018118865-appb-100003
    中的{Y i,i∈[0,CPsize-1]}部分拷贝到所述基准时域序列{Y i,i∈[0,FFTsize-1]}的后面,与所述基准时域序列{Y i,i∈[0,FFTsize-1]}一起形成在第二个符号上的定位参考信号部分的时域数据
    Figure PCTCN2018118865-appb-100004
    所述第一个符号和所述第二个符号连续;将所述第一个符号和所述第二个符号的定位参考信号部分组合起来得到所述定位参考信号;
    当有第m(m大于等于3)个符号时,将所述基准时域序列中的{Y i,i∈[(m-2)CPsize,FFTsize-1]}部分作为第一序列,将所述基准时域序列中的{Y i,i∈[0,(m-2)CPsize-1]}部分作为第二序列,将所述基准时域序列中的{Y i,i∈[(m-2)CPsize,(m-1)CPsize-1]}部分作为第三序列;依次将所述第一序列、所述第二序列和所述第三序列顺序组合起来形成在第m个符号上的定位参考信号部分的时域数据
    Figure PCTCN2018118865-appb-100005
    且所述第一个符号到所述第m个符号连续;将所述第一个符号到所述第m个符号的定位参考信号部分组合起来得到所述定位参考信号;
    其中,所述FFTsize为所述符号除循环前缀以外的部分的长度值;所述CPsize为所述符号的循环前缀的长度值;
    所述方式二包括:
    生成所述定位参考信号在每个符号上的基准频域序列{X i,i∈[0,FFTsize-1]}
    根据所述基准频域序列生成所述定位参考信号的时域波形
    Figure PCTCN2018118865-appb-100006
    其中,t=i×T c,所述T c为采样周期,
    Figure PCTCN2018118865-appb-100007
    表示欧拉公式;
    根据所述定位参考信号的时域波形
    Figure PCTCN2018118865-appb-100008
    以及所述t=i×T c得到所述定位参考信号的时域数据{Y i,i∈[-CPsize,FFTsize-1+(k-1)CPsize]},其中:
    {Y i,i∈[(k-2)CPsize,FFTsize-1+(k-1)CPsize]}为所述定位参考信号在第k个符号上的时域数据;所述k为大于等于1的整数。
  7. 如权利要求6所述的方法,其中,所述预设生成方式包括方式一时,所述生成所述定位参考信号在每个符号上的基准时域序列{Y i,i∈[0,FFTsize-1]}包括:
    生成所述定位参考信号在每个符号上的基准频域序列{X i,i∈[0,FFTsize-1]};
    对所述基准频域序列进行傅里叶反变换得到所述定位参考信号在每个符号上的基准时域序列{Y i,i∈[0,FFTsize-1]}。
  8. 如权利要求1-7任一项所述的方法,其中,在所述为定位参考信号分配时频资源后,在所述根据所述定位参考信号的生成信息以及所述时频资源,按照预设生成方式,将所述至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号之前,还包括:
    将为所述定位参考信号分配的时频资源分为
    Figure PCTCN2018118865-appb-100009
    个组,且每组的时频资源包括至少两个连续的符号。
  9. 如权利要求8所述的方法,其中,所述根据所述定位参考信号的生成信息以及所述时频资源,按照预设生成方式,将所述至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号包括:
    根据所述定位参考信号的生成信息以及每个组的时频资源,按照预设生成方式,在每个组内将每个组的所述至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号。
  10. 如权利要求9所述的成方法,其中,在每个组内将每个组的所述至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号,还包括:
    在所述组合PRS符号的尾端设置完结标识。
  11. 如权利要求10所述的方法,其中,所述在所述组合PRS符号的尾端设置完结标识包括:
    将所述组合PRS符号的尾端的区间t end内的数据清零作为完结标识;所述t end的取值大于0。
  12. 一种定位参考信号生成装置,包括:
    资源分配模块,设置为为定位参考信号分配时频资源,其中,所述时频资源包括至少两个连续的符号;
    定位参考信号生成模块,设置为根据所述定位参考信号的生成信息以及所述时频资源,按照预设生成方式,将所述至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号。
  13. 如权利要求12所述的装置,还包括:资源分组模块;
    所述资源分组模块,设置为在所述资源分配模块为定位参考信号分配时频资源之后,将为所述定位参考信号分配的时频资源分为
    Figure PCTCN2018118865-appb-100010
    个组,且每组的时频资源包括至少两个连续的符号;
    所述定位参考信号生成模块是设置为:根据所述定位参考信号的生成信息以及每个组的时频资源,按照预设生成方式,在每个组内将每个组的所述至少两个连续的符号作为一个组合PRS符号,生成在时域上连续的定位参考信号。
  14. 一种基站,包括处理器、存储器以及通信总线;
    所述通信总线设置为实现所述处理器和存储器之间的连接通信;
    所述处理器设置为执行所述存储器中存储的一个或者多个程序,以实现如权利要求1-11任一项所述的定位参考信号生成方法。
  15. 一种可读存储介质,所述可读存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行如权利要求1-11任一项所述的定位参考信号生成方法。
PCT/CN2018/118865 2018-07-26 2018-12-03 定位参考信号生成方法、装置、基站及可读存储介质 WO2020019619A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18927515.9A EP3817263A4 (en) 2018-07-26 2018-12-03 METHOD AND DEVICE FOR GENERATION OF A POSITIONING REFERENCE SIGNAL, BASE STATION AND READABLE STORAGE MEDIA
US17/262,866 US20210242994A1 (en) 2018-07-26 2018-12-03 Positioning reference signal generation method and device, base station, and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810837634.0 2018-07-26
CN201810837634.0A CN110768761B (zh) 2018-07-26 2018-07-26 定位参考信号生成方法、装置、基站及可读存储介质

Publications (1)

Publication Number Publication Date
WO2020019619A1 true WO2020019619A1 (zh) 2020-01-30

Family

ID=69180832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118865 WO2020019619A1 (zh) 2018-07-26 2018-12-03 定位参考信号生成方法、装置、基站及可读存储介质

Country Status (4)

Country Link
US (1) US20210242994A1 (zh)
EP (1) EP3817263A4 (zh)
CN (1) CN110768761B (zh)
WO (1) WO2020019619A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111464261B (zh) * 2019-01-22 2021-07-23 大唐移动通信设备有限公司 一种信号传输、检测方法及装置
KR20200120522A (ko) * 2019-04-12 2020-10-21 한양대학교 산학협력단 측위를 위한 참조신호를 송수신하는 방법 및 장치
US11438869B2 (en) * 2020-05-28 2022-09-06 Qualcomm Incorporated User equipment positioning signal measurement and/or transmission
US11693081B2 (en) * 2020-09-01 2023-07-04 Locaila, Inc Method for estimating distance using wireless carrier signal phase measurement
US11616617B2 (en) * 2020-11-16 2023-03-28 Jaihyung Cho Method for transmitting reference signal for positioning and apparatus for the same
EP4364368A2 (en) * 2021-06-30 2024-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for providing a modified ofdm frame structure
CN117295161A (zh) * 2022-06-17 2023-12-26 华为技术有限公司 通信方法以及通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833849A (zh) * 2012-08-21 2012-12-19 华为技术有限公司 定位的方法和用户设备
CN106162922A (zh) * 2015-01-27 2016-11-23 中兴通讯股份有限公司 发现信号的处理方法及装置
CN106716899A (zh) * 2014-08-27 2017-05-24 Lg电子株式会社 用于在无线通信系统中接收参考信号的方法及其设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8401111B2 (en) * 2009-03-13 2013-03-19 Qualcomm Incorporated Method and apparatus for sequencing and correlating a positioning reference signal
US9350478B2 (en) * 2009-04-24 2016-05-24 Sharp Kabushiki Kaisha Wireless communication system, wireless communication device, and wireless communication method
WO2010124448A1 (en) * 2009-04-27 2010-11-04 Huawei Technologies Co., Ltd. Positioning reference signals
CN101594336B (zh) * 2009-06-19 2012-12-19 中兴通讯股份有限公司 一种定位参考信号的发送方法
CN101697535A (zh) * 2009-10-29 2010-04-21 中兴通讯股份有限公司 定位参考信号发送方法、数据发送方法、数据接收方法
CN101778068B (zh) * 2009-12-25 2014-01-01 中兴通讯股份有限公司 定位参考信号频域位置确定方法及装置
CN104010363B (zh) * 2013-02-26 2018-05-29 华为技术有限公司 一种定位参考信号子帧的发送、接收方法及装置
WO2017035782A1 (zh) * 2015-09-01 2017-03-09 华为技术有限公司 一种参考信号的传输设备、方法及系统
CN107276734B (zh) * 2016-04-08 2021-09-14 华为技术有限公司 参考信号的传输方法、设备和系统
CN107889212B (zh) * 2016-09-30 2021-08-24 中兴通讯股份有限公司 一种定位的方法和设备
WO2018058590A1 (zh) * 2016-09-30 2018-04-05 华为技术有限公司 传输定位参考信号的方法和设备
CN110535578B (zh) * 2018-05-25 2021-08-03 大唐移动通信设备有限公司 信号传输方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833849A (zh) * 2012-08-21 2012-12-19 华为技术有限公司 定位的方法和用户设备
CN106716899A (zh) * 2014-08-27 2017-05-24 Lg电子株式会社 用于在无线通信系统中接收参考信号的方法及其设备
CN106162922A (zh) * 2015-01-27 2016-11-23 中兴通讯股份有限公司 发现信号的处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3817263A4

Also Published As

Publication number Publication date
EP3817263A1 (en) 2021-05-05
CN110768761A (zh) 2020-02-07
EP3817263A4 (en) 2022-03-30
US20210242994A1 (en) 2021-08-05
CN110768761B (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2020019619A1 (zh) 定位参考信号生成方法、装置、基站及可读存储介质
CN110808820B (zh) 一种定位参考信号传输方法及装置
EP3119049B1 (en) Detecting physical random access channel preambles in a long term evolution communication system
CN111800245B (zh) 一种发送下行控制信息dci的方法及装置
US11974259B2 (en) Positioning reference signal generation method and apparatus, communication system, and storage medium
WO2018028705A1 (zh) 信号发送装置、信号检测装置及方法
US11418303B2 (en) Resource mapping method for demodulation reference signal and base station
CN110139290A (zh) 一种远端干扰测量信号的处理方法及基站、存储介质
WO2021043292A1 (zh) 一种上行正交频分多址随机接入的方法和装置
CN106576025A (zh) 增强的随机接入信道过程
WO2019191898A1 (zh) 免授权频谱的信道传输方法及网络设备、终端
US20240179667A1 (en) Method and apparatus for transmitting and receiving sidelink positioning reference signal
WO2020224512A1 (zh) 下行控制信道的检测方法和装置
WO2012171407A1 (zh) 一种确定时间同步位置的方法及设备
WO2018187970A1 (zh) 一种信号传输方法和装置
CN107005959A (zh) 一种同步方法、装置及系统
WO2020001501A1 (zh) 信道状态指示参考信号分配的方法、基站和存储介质
US10448432B1 (en) Frequency domain PRACH filter for PRACH signal recovery
CN113411176B (zh) Pdsch解资源映射方法及装置、计算机可读存储介质、基带芯片
CN111148220B (zh) 一种定位方法及装置
CN112468425A (zh) 帧头结构和系统时间同步方法
WO2024032473A1 (zh) 信号传输方法、装置、终端及存储介质
CN107534955B (zh) 资源指示的处理方法、处理装置、接入点和站点
WO2021259239A1 (zh) 驻波比计算方法、装置、网络设备和存储介质
JP7306568B2 (ja) 通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018927515

Country of ref document: EP

Effective date: 20210201