WO2020001501A1 - 信道状态指示参考信号分配的方法、基站和存储介质 - Google Patents

信道状态指示参考信号分配的方法、基站和存储介质 Download PDF

Info

Publication number
WO2020001501A1
WO2020001501A1 PCT/CN2019/093118 CN2019093118W WO2020001501A1 WO 2020001501 A1 WO2020001501 A1 WO 2020001501A1 CN 2019093118 W CN2019093118 W CN 2019093118W WO 2020001501 A1 WO2020001501 A1 WO 2020001501A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
feedback
resources
channel quality
allocation method
Prior art date
Application number
PCT/CN2019/093118
Other languages
English (en)
French (fr)
Inventor
田继宇
Original Assignee
南京中兴新软件有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京中兴新软件有限责任公司 filed Critical 南京中兴新软件有限责任公司
Publication of WO2020001501A1 publication Critical patent/WO2020001501A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control

Definitions

  • This application relates to, but is not limited to, the field of communication technology.
  • Channel State Indication Reference Signal Due to the promotion of multi-antenna technology, Channel State Indication Reference Signal (CSI-RS) is introduced in 4G.
  • the reference signal and the cell reference signal are used to measure the channel state information of the UE (User Equipment). .
  • the CSI-RS completely replaces the cell reference signal in the new air interface (New Radio, NR) as the only reference signal for channel measurement.
  • This reference signal can more accurately measure the channel quality of each UE.
  • the frame structure of the NR is flexible and the uplink and downlink resources can be combined in various ways, an accurate method is needed to reasonably allocate the CSI-RS feedback resources to ensure that the location of each UE does not conflict. Transmission and feedback.
  • CSI-RS can only be allocated to the UE in two processes.
  • the first process is the radio resource control (RRC) layer assignment when the UE initially accesses the base station; the second process is the radio resource reconfiguration of the base station. It is allocated by the RRC layer. Since the capability information of the UE cannot be obtained during initial access, the UE can only be assigned a designated CSI-RS through the RRC reconfiguration process.
  • RRC radio resource control
  • each UE can normally feedback channel state information, and to ensure that the base station side has as little overhead as possible, it is necessary to allocate CSI- RS, so that the allocated CSI-RS avoids conflicts in resource feedback of multiple UEs at the same time.
  • embodiments of the present application provide a CSI-RS allocation method, a base station, and a storage medium.
  • a CSI-RS allocation method including:
  • Analyze the frame structure determine the working mode of each slot of the NR, allocate CSI-RS transmission resources in the slots with downlink symbols, and allocate CSI-RS feedback resources in the slots with uplink symbols;
  • resources are allocated for each UE with poor channel quality.
  • a base station including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the computer program is executed by the processor, the CSI-RS allocation is implemented.
  • a storage medium is also provided.
  • a computer program is stored on the storage medium.
  • the steps of the CSI-RS allocation method are implemented.
  • the CSI-RS allocation method, base station, and storage medium mentioned in the embodiments of the present application are based on the 5G protocol.
  • 5G protocol By allocating non-conflicting CSI-RS to each UE with poor channel quality, multiple UEs can be prevented from Resource feedback conflicts at the same time, so that each UE can normally feed back channel state information in a scenario where the channel quality is poor, meet the need to measure the channel state of the UE in real time, and ensure that the base station side overhead is as small as possible.
  • 5G's beam management and channel measurement functions have more room to play, but it can increase the speed of handover in the handover scenario, reduce the handover delay, and provide the UE with a smoother experience and services.
  • the application of CSI-RS can help base stations evaluate UE signals, allocate better bandwidth resources to UEs, and improve user experience.
  • FIG. 1 is a flowchart of a CSI-RS allocation method according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a next frame structure of an NR system according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a method for initializing a CSI-RS according to an embodiment of the present application.
  • FIG. 4 is a flowchart of a resource allocation method according to an embodiment of the present application.
  • FIG. 5 is a flowchart of another CSI-RS allocation method according to an embodiment of the present application.
  • T1 CSI-RS transmission cycle T2 CSI-RS feedback period M Number of symbols used to transmit CSI-RS in the transmission period N Number of symbols used for feedback CSI-RS in the feedback period B1 Total bandwidth used to transmit CSI-RS B2 Total bandwidth for feedback CSI-RS P1 Number of frequency domain resources used to transmit CSI-RS P2 Number of frequency domain resources used for feedback CSI-RS p CSI-RS density Q Number of frequency domain resources supported by each resource block R1 Number of transmission resource sets R2 Number of feedback resources
  • an embodiment of the present application proposes a CSI-RS allocation method.
  • the method includes:
  • the working mode of each time slot of the NR system is determined, which may be full downlink (all symbols for downlink), full uplink (all symbols for uplink), and downlink self-contained (multiple The symbols are used for the downlink, a small number of symbols are used for the uplink), and the uplink is self-contained (a plurality of symbols are used for the uplink, and a few symbols are used for the downlink).
  • the base station parses the structure and allocates CSI-RS transmission resources in the time slots with downlink symbols, and allocates feedback resources in the time slots with uplink symbols.
  • a time slot (such as slot x) has 14 symbols.
  • the transmission time t1 and the feedback time t2 of the CSI-RS are obtained.
  • the transmission time t1 and the feedback time t2 in the entire period can be determined.
  • the total number of CSI-RS transmission resources in a cell is determined by the CSI-RS transmission period T1 and transmission.
  • the number of symbols M used to send CSI-RS in period T1 is determined by the density ⁇ of CSI-RS
  • the total number of feedback resources is used by CSI-RS feedback period T2 and feedback period T2. It is determined by the number of symbols N of the feedback CSI-RS and the total bandwidth B2 for feedback CSI-RS.
  • these parameters can be preset according to the scenario, but the base station can also flexibly adjust these seven parameters to meet different scenarios.
  • this step further includes:
  • a preset CSI-RS transmission period T1 and a CSI-RS feedback period T2 determine the number of time domain symbols M used to transmit the CSI-RS in the transmission period T1, and the number of time domain feedback CSI-RS used in the feedback period T2. Number of time-domain symbols N.
  • S1022. Determine, according to a preset total bandwidth B1 for transmitting CSI-RS B1, a total bandwidth B2 for feedback CSI-RS, and a bandwidth segment (BWP) to determine the number of frequency domain resources P1 and bandwidth for transmitting CSI-RS.
  • BWP bandwidth segment
  • the base station first determines a UE with poor channel quality by sending a measurement event according to a result fed back by the measurement event.
  • the UE when the signal quality of the UE is lower than a certain threshold, the UE will report the measurement event to the base station. After receiving the measurement event, the base station obtains a UE with poor signal quality from the a2 measurement event. Because only UEs with poor signal quality will report, the base station can determine that the UE has poor signal quality after receiving the a2 measurement event of a UE.
  • time domain resources are preferentially allocated, followed by the principle of frequency domain resource allocation, in order: Each UE with poor channel quality is allocated feedback resources.
  • this step further includes:
  • an R1 set of transmission resources is allocated to each UE having poor access channel quality.
  • R2 sets of feedback resources are allocated to each UE with poor channel quality.
  • CSI-RS plays an irreplaceable role in functions such as channel measurement and beam management.
  • the base station can perform beam management based on the UE's feedback on each set of resources. It can also let the UE feedback different content based on different feedback purposes of the R2 set.
  • Each set of feedback resources can correspond to one or more sets of transmission resources, but the purpose of each set of feedback resources must be unique.
  • One or more sets of transmission resources can be used for the measurement of different beams, which can assist the base station in selecting the optimal beam.
  • each UE can normally feed back channel state information to meet the need to measure the channel state of the UE in real time, and ensure that the base station side overhead is as small as possible.
  • a method for initializing a CSI-RS resource includes:
  • the feedback resource allocated to the UE is recovered, and the base station can continue to allocate the resource to the UE with poor access channel quality, thereby improving the resource Utilization.
  • an office building scenario supports 400 UEs with poor channel quality.
  • the configuration parameters are as follows: the frame structure is a period of 10ms, each channel uses 1 downlink symbol to measure the channel state, 5 uplink symbols are used to feedback information, the cell bandwidth is 272RB, and the frequency domain supports a total of 20 resources to simultaneously feedback CSI information, each CSI information It occupies 2RB, and the number of feedback resource sets is 1 (only the channel quality is measured). Then the measurement period is configured as 10 ms, and the feedback period is configured as 40 ms.
  • the allocation principle is based on the feedback order of the UE measurement event to the poor channel quality, and time domain resources are allocated first, followed by frequency domain resources.
  • the feedback time domain position of the i-th UE with poor channel quality is: (slot0 + (i-1) ⁇ slot)% N, where slot0 means allocated to the CSI-RS The slot position of the feedback resource. Slot represents the total number of slots in each frame structure.
  • the feedback frequency domain position of the UE with poor i-th channel quality is (i ⁇ P2)% N + P0, where P0 is the frequency domain resource. The initial position of the position.
  • the CSI-RS feedback time domain position is: the CSI of the first UE is offset by 3 in the configured CSI period,
  • the offset of the CSI of the second UE is 7 within the configured CSI period.
  • the CSI of the i-th UE is offset by 3+ (i-1) ⁇ 4 in the configured CSI period.
  • subsequent UEs After 20 UEs are configured, subsequent UEs send slots for CSI and so on.
  • the time domain position of the j-th UE that needs to issue a CSI-RS is consistent with the (j% 20) -th UE.
  • the frequency domain position is: the first UE continuously occupies 2RB in the frequency domain, and the second UE occupies the same frequency domain position until the 20th UE, the occupied frequency domain position remains unchanged.
  • the frequency domain positions of the 20th to 40th UEs that need to issue CSI-RS are 2 consecutive RBs behind the first 20 UEs, and so on. Every 20 UEs are a group, and each group occupies the previous group of frequency domains. After consecutive 2RB. After 400 UEs are accessed, a total of 20 resources are occupied in the time domain and a total of 20 resources are occupied in the frequency domain.
  • a typical scenario is taken as an example to intuitively describe the CSI-RS allocation method, and the practical application is not limited to this.
  • an embodiment of the present application further provides a base station.
  • the base station includes a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the computer program implements the foregoing CSI-RS allocation method when the computer program is executed by the processor. A step of.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium. When the computer program is executed by a processor, the steps of the CSI-RS allocation method are implemented.
  • the above-mentioned base station and computer-readable storage medium belong to the same concept as the CSI-RS allocation method embodiment.
  • the detailed implementation process is described in the method embodiment, and the technical features in the method embodiment are readable by the base station and the computer.
  • Corresponding applications are applicable in the storage medium, and are not repeated here.
  • the CSI-RS allocation method, base station, and storage medium mentioned in the embodiments of the present application are based on the 5G protocol.
  • 5G protocol By allocating non-conflicting CSI-RS to each UE with poor channel quality, multiple UEs can be prevented from Resource feedback conflicts at the same time, so that each UE can normally feed back channel state information in a scenario where the channel quality is poor, meet the need to measure the channel state of the UE in real time, and ensure that the base station side overhead is as small as possible.
  • 5G's beam management and channel measurement functions have more room to play, but it can increase the speed of handover in the handover scenario, reduce the handover delay, and provide the UE with a smoother experience and services.
  • the application of CSI-RS can help base stations evaluate UE signals, allocate better bandwidth resources to UEs, and improve user experience.
  • the division between functional modules / units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical The components execute cooperatively.
  • Some or all physical components can be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit .
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • computer storage medium includes volatile and non-volatile implemented in any method or technology configured to store information, such as computer-readable instructions, data structures, program modules, or other data.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, disk storage or other magnetic storage devices, or may Any other medium configured to store the desired information and accessible by the computer.
  • a communication medium typically contains computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种CSI-RS分配方法、基站和存储介质,属于通信领域。其中,该方法包括:解析帧结构,确定新空口(NR)每个时隙的工作方式,在有下行符号的时隙分配CSI-RS传输资源,有上行符号的时隙分配CSI-RS反馈资源;根据预设的参数初始化CSI-RS资源;接收到测量事件的反馈结果后,获取信道质量差的UE;根据初始化的CSI-RS资源,为每个信道质量差的UE分配资源。

Description

信道状态指示参考信号分配的方法、基站和存储介质
相关申请的交叉引用
本申请基于申请号为201810693104.3、申请日为2018年06月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及但不限于通信技术领域。
背景技术
由于多天线技术的推广,4G中推出信道状态指示参考信号(Channel State Information Reference Signal,CSI-RS),该参考信号和小区参考信号一起用来测量UE(User Equipment,用户设备)的信道状态信息。随着协议的演进,在新空口(New Radio,NR)中CSI-RS完全代替小区参考信号,作为信道测量的唯一参考信号,该参考信号能够更精确地测量到每个UE的信道质量。由于NR的帧结构配置灵活,上下行资源可以有多种组合方式,因此需要一种精确的方法来合理分配CSI-RS的反馈资源,保证每个UE位置不冲突,同时还需要实现该资源的传输和反馈。
目前,CSI-RS只能在两个过程分配给UE,第一个过程是UE初始接入基站时由无线资源控制(Radio Resource Control,RRC)层分配;第二个过程是基站无线资源重配时由RRC层分配。由于初始接入无法获取到UE的能力信息,故只能通过RRC重配过程,为UE分配指定CSI-RS。为满足多UE在信道质量差的场景下每个UE均能够正常反馈信道状态信息,并保证基站侧开销尽可能少,必须为每个接入的信道质量差的UE分配资源不冲突的CSI-RS,使得分配的CSI-RS避免多个UE在同一时刻的资源反馈出现冲突。
发明内容
有鉴于此,本申请实施例提供一种CSI-RS分配方法、基站和存储介质。
本申请实施例采用的技术方案如下:
根据本申请实施例的一个方面,提供一种CSI-RS分配方法,包括:
解析帧结构,确定NR每个时隙的工作方式,在有下行符号的时隙分配CSI-RS传输资源,有上行符号的时隙分配CSI-RS反馈资源;
根据预设的参数初始化CSI-RS资源;
接收到测量事件的反馈结果后,获取信道质量差的UE;
根据初始化的CSI-RS资源,为每个信道质量差的UE分配资源。
根据本申请实施例的另一个方面,提供一种基站,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述CSI-RS分配方法的步骤。
根据本申请实施例的又一个方面,还提供了一种存储介质,存储介质上存储有计算机程序,计算机程序被处理器执行时,实现上述CSI-RS分配方法的步骤。
本申请实施例提的CSI-RS分配方法、基站和存储介质,以5G协议为依托,通过为每个接入的信道质量差的UE分配资源不冲突的CSI-RS,能避免多个UE在同一时刻的资源反馈出现冲突,从而满足多UE在信道质量差的场景下每个UE均能够正常反馈信道状态信息,满足实时地测量UE信道状态的需求,并保证基站侧开销尽可能少。不仅使5G的波束管理、信道测量功能得到更大的发挥空间,而且在切换场景中能够提高切换的速度,降低切换的时延,给UE提供更流畅的体验和服务。同时,CSI-RS的应用,能够帮助基站评估UE信号,为UE分配更好的带宽资源,提升用户体验。
附图说明
图1为本申请实施例提供的一种CSI-RS分配方法的流程图;
图2为本申请实施例提供的一种NR系统下一种帧结构示意图;
图3为本申请实施例提供的一种初始化CSI-RS方法的流程图。
图4为本申请实施例提供的一种资源分配方法的流程图。
图5为本申请实施例提供的另一种CSI-RS分配方法的流程图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
以下结合附图和实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅以解释本申请,并不用于限定本申请。
本申请实施例涉及的参数含义如下表:
CSI-RS参数说明
参数缩写 中文释义
T1 CSI-RS传输周期
T2 CSI-RS反馈周期
M 传输周期内用于发送CSI-RS的符号数
N 反馈周期内用于反馈CSI-RS的符号数
B1 用于传输CSI-RS的总带宽
B2 用于反馈CSI-RS的总带宽
P1 用于传输CSI-RS的频域资源数
P2 用于反馈CSI-RS的频域资源数
ρ CSI-RS的密度
Q 每个资源块支持的频域资源数
R1 传输资源套数
R2 反馈资源套数
实施例一
如图1所示,本申请实施例提出一种CSI-RS分配方法,该方法包括:
S101、解析帧结构,确定NR每个时隙的工作方式,在有下行符号的时隙分配CSI-RS传输资源,有上行符号的时隙分配CSI-RS反馈资源。
具体地,根据小区的帧结构配置,确定NR系统的每个时隙的工作方式,可能为全下行(所有符号用于下行)、全上行(所有符号用于上行)、下行自包含(多个符号用于下行,少量符号用于上行)、上行自包含(多个符号用于上行,少量符号用于下行)。基站解析该结构,并在有下行符号的时隙分配CSI-RS传输资源,同时在有上行符号的时隙分配反馈资源。
请参考图2所示的NR系统下一种帧结构示意图,其中,横坐标为时域,纵坐标为频域。一个时隙(如slot x)有14个符号。通过解析帧结构,得到CSI-RS的传输时刻t1和反馈时刻t2。根据预设的传输周期T1和反馈周期T2,可以确定整个周期内的传输时刻t1和反馈时刻t2。
S102、根据预设的参数初始化CSI-RS资源。
具体地,由于NR小区的空口总资源有限,CSI-RS资源数不会无限多,需要根据实际场景合理控制资源个数,一个小区的CSI-RS传输资源总数由CSI-RS传输周期T1、传输周期T1内用于发送CSI-RS的符号数M、用于传输CSI-RS的总带宽B1、CSI-RS的密度ρ决定,同时反馈资源总数由CSI-RS反馈周期T2、反馈周期T2内用于反馈CSI-RS的符号数N、用于反馈CSI-RS的总带宽B2决定。在实际应用中,可以根据场景预设这些参数,但基站还可以灵活调整这七个参数,以满足不同的场景。
请参考图3,本步骤进一步包括:
S1021、根据预设的CSI-RS传输周期T1和CSI-RS反馈周期T2,确定传输周期T1内用于发送CSI-RS的时域符号数M、以及反馈周期T2内用于反馈CSI-RS的时域符号数N。
S1022、根据预设的用于传输CSI-RS的总带宽B1、用于反馈CSI-RS的总带宽B2、以及带宽分段(BWP)确定用于传输CSI-RS的频域资源数P1和用于反馈CSI-RS的频域资源数P2。
S1023、根据预设的CSI-RS的密度ρ,确定传输资源中每个资源块支持的资源数。
S103、接收到测量事件的反馈结果后,获取信道质量差的UE。
具体地,基站首先通过下发测量事件,根据测量事件所反馈的结果来确认信道质量差的UE。
具体地,当UE的信号质量低于设定的某个门限值时,会通过测量事件向基站上报。基站接收到测量事件后,从a2测量事件中获取信号质量差的UE。由于只有信号质量差的UE才会上报,故基站接收到某个UE的a2测量事件后,就能确定该UE信号质量差。
S104、根据初始化的CSI-RS资源,为每个信道质量差的UE分配资源。
在一实施例中,为了更好地使得UE之间的信号不干扰,可以根据测量事件对信道质量差的UE的反馈顺序,按优先分配时域资源,其次分配频域资源的原则,依次为每个接入的信道质量差的UE分配反馈资源。
请参考图4,本步骤进一步包括:
S1041、根据预设的传输资源套数R1,为每个接入的信道质量差的UE分配R1套传输资源。
S1042、根据预设的反馈资源套数R2,为每个接入的信道质量差的UE分配R2套反馈资源。
S1043、关联分配的传输资源和反馈资源,并通过空口重配发送给接入UE。
具体地,CSI-RS在信道测量,波束管理等功能有着不可替代的作用。基站可以基于UE对每套资源的反馈,进行波束管理。还可以基于R2套不同的反馈目的,让UE反馈不同的内容。每套反馈资源可以对应1套或多套传输资源,但是每套反馈资源的目的必须唯一。1套或多套传输资源可以用于不同波束的测量,可以辅助基站选择最优波束。
本申请实施例中,以5G协议为依托,通过为每个接入的信道质量差的UE分配资源不冲突的CSI-RS,能避免多个UE在同一时刻的资源反馈出现冲突,从而满足多UE在信道质量差的场景下每个UE均能够正常反馈信道 状态信息,满足实时地测量UE信道状态的需求,并保证基站侧开销尽可能少。
实施例二
如图5所示,本申请实施例提供的一种初始化CSI-RS资源的方法包括:
S501、解析帧结构,确定NR每个时隙的工作方式,在有下行符号的时隙分配CSI-RS传输资源,有上行符号的时隙分配CSI-RS反馈资源。
S502、根据预设的参数初始化CSI-RS资源。
S503、接收到测量事件的反馈结果后,获取信道质量差的UE。
S504、根据初始化的CSI-RS资源,为每个信道质量差的UE分配资源。
S505、当检测到UE释放之后,回收分配给UE的反馈资源。
本申请实施例中,在实施例一的基础上,当检测到UE释放后,将分配给UE的反馈资源回收,基站可以继续为新接入信道质量差的UE分配该资源,从而提高资源的利用率。
实施例三
本申请实施例以一种典型场景为示例进行说明:办公楼场景,支持400个信道质量差的UE。配置参数如下:帧结构为周期10ms,每帧用1个下行符号测量信道状态,用5个上行符号反馈信息,小区带宽为272RB,频域共支持20个资源同时反馈CSI信息,每个CSI信息占2RB,反馈资源套数为1(仅测量信道质量)。那么测量周期配置为10ms,反馈周期配置为40ms,分配原则为根据UE测量事件对信道质量差的反馈顺序,先分配时域资源,后分配频域资源。
典型场景参数配置表
参数列表 参数配置值
T1 10ms
T2 40ms
M 1
N 20
B1 272RB
B2 40RB
根据UE测量事件对信道质量差的反馈的顺序,第i个信道质量差的UE的反馈时域位置为:(slot0+(i-1)×slot)%N,其中,slot0表示分配给CSI-RS反馈资源的时隙位置,slot表示每个帧结构的时隙总数,第i个信道质量差的UE的反馈频域位置为:(i×P2)%N+P0,其中,P0表示频域资源位置的初始位置。
按照上述规则,具体到本实施例的场景中,即:
CSI-RS反馈时域位置为:第1个UE的CSI在配置的CSI周期内偏移为3,
第二个UE的CSI在配置的CSI周期内偏移为7,
第i个UE的CSI在配置的CSI周期内偏移为3+(i-1)×4。
配置了20个UE后,后续UE发送CSI的slot以此类推。其中,第j个需要下发CSI-RS的UE的时域位置与第(j%20)个UE一致。
频域位置为:第1个UE频域连续占用2RB,第二个UE占用同样的频域位置,直到第20个UE,占用的频域位置不变。第20~40个需要下发CSI-RS的UE的频域位置为前20个UE后面连续的2个RB,以此类推,每20个UE为一组,每一组占用前一组频域后的连续2RB。400个UE接入后,时域共占用20个资源,频域共占用20个资源。本申请实施例以典型场景为例是为了进行直观的说明CSI-RS的分配方法,实际应用中并不限于此。
另外,本申请实施例还提供了一种基站,该基站包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现上述CSI-RS分配方法的步骤。
此外,本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时,实现上述CSI-RS分配方法的步骤。
需要说明的是,上述基站和计算机可读存储介质,与CSI-RS分配方法实施例属于同一构思,其具体实现过程详细见方法实施例,且方法实施例中的技术特征在基站和计算机可读存储介质中均对应适用,这里不再赘述。
本申请实施例提的CSI-RS分配方法、基站和存储介质,以5G协议为依托,通过为每个接入的信道质量差的UE分配资源不冲突的CSI-RS,能避免多个UE在同一时刻的资源反馈出现冲突,从而满足多UE在信道质量差的场景下每个UE均能够正常反馈信道状态信息,满足实时地测量UE信道状态的需求,并保证基站侧开销尽可能少。不仅使5G的波束管理、信道测量功能得到更大的发挥空间,而且在切换场景中能够提高切换的速度,降低切换的时延,给UE提供更流畅的体验和服务。同时,CSI-RS的应用,能够帮助基站评估UE信号,为UE分配更好的带宽资源,提升用户体验。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在配置为存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以配置为存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的 调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上参照附图说明了本申请的优选实施例,并非因此局限本申请的权利范围。本领域技术人员不脱离本申请的范围和实质内所作的任何修改、等同替换和改进,均应在本申请的权利范围之内。

Claims (9)

  1. 一种信道状态指示参考信号CSI-RS分配方法,包括:
    解析帧结构,确定新空口NR每个时隙的工作方式,在有下行符号的时隙分配CSI-RS传输资源,有上行符号的时隙分配CSI-RS反馈资源;
    根据预设的参数初始化CSI-RS资源;
    接收到测量事件的反馈结果后,获取信道质量差的UE;
    根据初始化的CSI-RS资源,为每个所述信道质量差的UE分配资源。
  2. 根据权利要求1所述的CSI-RS分配方法,其中,所述预设的参数包括:CSI-RS传输周期T1、CSI-RS反馈周期T2、用于传输CSI-RS的带宽B1、用于反馈CSI-RS的带宽B2、CSI-RS的密度ρ,传输资源套数R1和反馈资源套数R2。
  3. 根据权利要求2所述的CSI-RS分配方法,其中,所述根据预设的参数初始化CSI-RS资源包括:
    根据所述预设的CSI-RS传输周期T1和CSI-RS反馈周期T2,确定传输周期T1内用于发送CSI-RS的时域符号数M、以及反馈周期T2内用于反馈CSI-RS的时域符号数N;
    根据预设的用于传输CSI-RS的总带宽B1、用于反馈CSI-RS的总带宽B2、以及带宽分段BWP确定用于传输CSI-RS的频域资源数P1和用于反馈CSI-RS的频域资源数P2;
    根据预设的CSI-RS的密度ρ,确定传输资源中每个资源块支持的资源数。
  4. 根据权利要求2所述的CSI-RS分配方法,其中,所述为每个接入的信道质量差的UE分配资源包括:
    根据预设的传输资源套数R1,为每个接入的信道质量差的UE分配R1套传输资源;
    根据预设的反馈资源套数R2,为每个接入的信道质量差的UE分配R2套反馈资源;
    关联所述分配的传输资源和反馈资源,并通过空口重配发送给接入UE。
  5. 根据权利要求1所述的CSI-RS分配方法,其中,所述为每个所述信道质量差的UE分配资源包括按以下顺序进行:
    根据测量事件对信道质量差的UE的反馈顺序,先分配时域资源,后分配频域资源的原则依次分配。
  6. 根据权利要求5所述的CSI-RS分配方法,其中,所述分配时域资源包括:
    第i个信道质量差的UE的反馈时域位置为:(slot0+(i-1)×slot)%N,其中,slot0表示分配给CSI-RS反馈资源的时隙位置,slot表示每个帧结构的时隙总数,N表示用于反馈CSI-RS的时域符号数;
    所述分配频域资源包括:
    第i个信道质量差的UE的反馈频域位置为:(i×P2)%N+P0,其中,P0表示频域资源位置的初始位置,P2表示用于反馈CSI-RS的频域资源数P2。
  7. 根据权利要求1至6任一项权利要求所述的CSI-RS分配方法,其中,所述方法还包括:当检测到UE释放后,回收所述UE的CSI-RS反馈资源。
  8. 一种基站,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至7中任一项所述的CSI-RS分配方法的步骤。
  9. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时,实现如权利要求1至7中任一项所述的CSI-RS分配方法的步骤。
PCT/CN2019/093118 2018-06-29 2019-06-26 信道状态指示参考信号分配的方法、基站和存储介质 WO2020001501A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810693104.3 2018-06-29
CN201810693104.3A CN110662255B (zh) 2018-06-29 2018-06-29 信道状态指示参考信号分配的方法、基站和存储介质

Publications (1)

Publication Number Publication Date
WO2020001501A1 true WO2020001501A1 (zh) 2020-01-02

Family

ID=68984516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093118 WO2020001501A1 (zh) 2018-06-29 2019-06-26 信道状态指示参考信号分配的方法、基站和存储介质

Country Status (2)

Country Link
CN (1) CN110662255B (zh)
WO (1) WO2020001501A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586777A (zh) * 2020-03-25 2020-08-25 北京邮电大学 室内环境下的网络切换方法、装置、电子设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113994623A (zh) * 2021-09-17 2022-01-28 北京小米移动软件有限公司 临时参考信号的传输方法、装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106233646A (zh) * 2014-04-24 2016-12-14 Lg电子株式会社 用于执行测量的方法和用户设备
WO2017022961A1 (ko) * 2015-07-31 2017-02-09 엘지전자 주식회사 Fdr 방식을 이용하는 통신 장치가 비선형 자기간섭 신호의 채널 추정을 위한 참조신호를 전송하는 방법
CN107733507A (zh) * 2016-08-12 2018-02-23 华硕电脑股份有限公司 无线通信系统中确定测量的基础参数带宽的方法和设备
US20180139029A1 (en) * 2010-01-18 2018-05-17 Goldpeak Innovations Inc Method and apparatus for allocating channel state information-reference signal in wireless communication system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103120006B (zh) * 2010-06-01 2016-04-20 中兴通讯股份有限公司 Lte-advance系统中的csi-rs资源分配的方法和系统
CN104852786B (zh) * 2014-02-19 2018-08-10 中国移动通信集团公司 信道状态信息参考信号csi-rs的重配置方法及装置
CN105871515B (zh) * 2015-01-23 2019-07-19 电信科学技术研究院 一种信道状态信息反馈方法、下行参考信号方法及装置
WO2017209391A1 (ko) * 2016-06-03 2017-12-07 엘지전자 주식회사 무선통신 시스템에서 csi-rs를 수신하는 방법 및 이를 위한 장치
US10736097B2 (en) * 2016-08-12 2020-08-04 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods of handling collisions between multiple semi-persistent grants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180139029A1 (en) * 2010-01-18 2018-05-17 Goldpeak Innovations Inc Method and apparatus for allocating channel state information-reference signal in wireless communication system
CN106233646A (zh) * 2014-04-24 2016-12-14 Lg电子株式会社 用于执行测量的方法和用户设备
WO2017022961A1 (ko) * 2015-07-31 2017-02-09 엘지전자 주식회사 Fdr 방식을 이용하는 통신 장치가 비선형 자기간섭 신호의 채널 추정을 위한 참조신호를 전송하는 방법
CN107733507A (zh) * 2016-08-12 2018-02-23 华硕电脑股份有限公司 无线通信系统中确定测量的基础参数带宽的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Remaining issues on CSI-RS", 3GPP TSG RAN WG1 MEETING #92BIS, R1-1803746, vol. RAN WG1, 15 April 2018 (2018-04-15) - 20 April 2018 (2018-04-20), XP051426041 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586777A (zh) * 2020-03-25 2020-08-25 北京邮电大学 室内环境下的网络切换方法、装置、电子设备及存储介质
CN111586777B (zh) * 2020-03-25 2021-09-28 北京邮电大学 室内环境下的网络切换方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN110662255B (zh) 2024-01-23
CN110662255A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
US11330424B2 (en) Terminal, base station, and radio communication method
US11974289B2 (en) Separate configuration of numerology-associated resources
CN110351881B (zh) 信道接入方法及装置、存储介质、终端、基站
US10708948B2 (en) Communication method for providing proper resource assignment in communication using an unlicensed band
US20190007943A1 (en) User terminal, radio base station and radio communication method
JP6972127B2 (ja) ユーザ機器、基地局および無線通信システム
US12004148B2 (en) Transmission configuration indication method of DMRS port and related apparatus, and storage medium
CN107113276A (zh) 一种发送下行控制信息dci的方法及装置
WO2020001501A1 (zh) 信道状态指示参考信号分配的方法、基站和存储介质
US10869326B2 (en) Scheduling information transmission method and apparatus
CN114390581A (zh) 信道状态信息的报告方法、装置及终端
JP2024063184A (ja) 通信用の方法、端末装置、ネットワーク装置およびコンピュータ読み取り可能な媒体
US20240072965A1 (en) Methods and nodes for pusch port selection for srs transmission with multiple srs resource sets
US20230337206A1 (en) Information transmission method and apparatus, iab node, and network device
US10645723B2 (en) Signal transmission method, signal transmission control method, user equipment, and base station
JP2023511422A (ja) 送信パワー配置方法、iabノード、基地局及び記憶媒体
US20210289535A1 (en) User terminal and radio communication method
US20230095005A1 (en) Resource allocation for clients of multiple co-hosted vaps
KR20210058034A (ko) 동적 공유 스펙트럼에서의 공유 자원 할당 방법 및 장치
CN105557010A (zh) 资源分配方法、基站及系统
JPWO2020144786A1 (ja) 端末及び通信方法
JP7205632B2 (ja) 基地局、方法、プログラム、及び記録媒体
CN113287352B (zh) 控制资源针对数据传输的复用
EP4266766A1 (en) Terminal, wireless communication method, and base station
US20240204959A1 (en) Resource coordination in direct user equipment transmissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 14/05/2021 )

122 Ep: pct application non-entry in european phase

Ref document number: 19825126

Country of ref document: EP

Kind code of ref document: A1