WO2017035782A1 - 一种参考信号的传输设备、方法及系统 - Google Patents

一种参考信号的传输设备、方法及系统 Download PDF

Info

Publication number
WO2017035782A1
WO2017035782A1 PCT/CN2015/088760 CN2015088760W WO2017035782A1 WO 2017035782 A1 WO2017035782 A1 WO 2017035782A1 CN 2015088760 W CN2015088760 W CN 2015088760W WO 2017035782 A1 WO2017035782 A1 WO 2017035782A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
symbols
occupied
symbol
sequence
Prior art date
Application number
PCT/CN2015/088760
Other languages
English (en)
French (fr)
Inventor
黎超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/088760 priority Critical patent/WO2017035782A1/zh
Priority to CN201580027128.XA priority patent/CN106717089B/zh
Publication of WO2017035782A1 publication Critical patent/WO2017035782A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a transmission device, method, and system for a reference signal.
  • a reference signal is transmitted from a transmitting device of a reference signal to a receiving device of a reference signal, and can be used for channel estimation, signal demodulation, automatic gain control (AGC), and signal quality measurement.
  • the positioning device, the channel detecting, the positioning, and the like, the receiving device of the reference signal knows in advance the reference signal to be received, so as to achieve the purpose of signal processing such as channel estimation of the receiving device.
  • the transmission of the reference signal needs to occupy a certain channel transmission resource, which reduces the data transmission efficiency.
  • Embodiments of the present invention provide a transmission device, method, and system for a reference signal, which are used to provide a reference signal transmission scheme, which reduces the occupation of transmission resources by reference signals.
  • an embodiment of the present invention provides a reference signal sending apparatus, including:
  • a processing unit configured to generate a reference signal
  • a sending unit configured to send the reference signal generated by the processing unit
  • the reference signal occupies at least three symbols
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to one The length of the data symbol; or
  • the at least three symbols occupied by the reference signal include at least one short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the interval of the subcarriers occupied by the short reference symbols in the frequency domain is K times the interval of the subcarriers occupied by the data symbols in the frequency domain, and the K is an integer greater than or equal to 2.
  • the last symbol of the one subframe is a null symbol, all data symbols in the one subframe, the reference The symbol occupied by the signal, and the null symbol constitute the one subframe, wherein the length of the null symbol is less than or equal to the length of one data symbol.
  • the reference signal occupies Na symbols, and the number of short reference symbols included in the occupied Na symbols is Nb, and the number of normal reference symbols included is Na-Nb. ;
  • the interval of the subcarriers occupied by the normal reference symbols in the frequency domain is equal to the interval of the subcarriers occupied by the data symbols in the frequency domain; Na and Nb are positive integers, and Nb is less than or equal to Na.
  • the short reference symbols occupy consecutive subcarriers in a frequency domain.
  • the reference signal occupies three symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than six The symbol is not less than 5 symbols; if the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in the one subframe is not more than 5 symbols and not less than 4 symbols; or
  • the reference signal occupies four symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in the one subframe is not greater than 6 symbols and not less than 4 symbols; if the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in the one subframe is not more than 5 symbols and not less than 3 symbols.
  • the reference signal occupies the one All non-null symbols in the sub-frame, the number of all non-empty symbols in the one sub-frame is greater than or equal to 3;
  • the reference signal occupies a plurality of discrete subcarriers.
  • the reference signal occupies a plurality of discontinuous multiple subcarriers in each physical resource block PRB occupied by the frequency domain.
  • the reference signal occupies a plurality of subcarriers at equal intervals in each PRB occupied by the frequency domain.
  • the ninth possible implementation manner in each PRB in the frequency domain where the reference signal is located, The subcarriers occupied by the reference signal do not map data or map data to be transmitted.
  • the processing unit is specifically configured to: for the reference signal Every symbol that is occupied,
  • the first sequence used to generate the reference signal is the same or different for different symbols occupied by the reference signal.
  • the first sequence is generated by a ZC (Zadoff-Chu) sequence
  • the first sequence is generated by a second sequence and a third sequence
  • the second sequence is ⁇ Z 1 , Z 2 , . . . , Z N ⁇
  • the length of the second sequence is equal to the length of the first sequence.
  • N is a positive integer
  • the third sequence is ⁇ R 1 , R 2 , . . . , R M ⁇
  • the length of the third sequence is M
  • M is in one subframe
  • the reference signal is occupied.
  • the number of symbols which is a positive integer.
  • the second sequence is generated by a ZC sequence
  • the third sequence is generated by a pseudo-random sequence
  • Both the second sequence and the third sequence are generated by a ZC sequence.
  • the reference signal is different in the one subframe Subcarriers occupying the same frequency domain position on the symbol, and the processing unit is specifically configured to:
  • the first sequence used to generate the reference signal is the same or different for different subcarriers occupied by the reference signal.
  • the time-frequency resource occupied by the reference signal is a time-frequency resource in the first resource pool
  • the first resource pool includes some or all of the subframes in the radio frame in the time domain;
  • Some or all of the configured system bandwidth is included in the frequency domain.
  • an embodiment of the present invention provides a reference signal transmitting apparatus, including the first aspect or the reference signal transmitting apparatus provided in any one of the possible implementation manners of the first aspect.
  • an embodiment of the present invention provides a reference signal receiving apparatus, including:
  • a receiving unit configured to receive a reference signal
  • a processing unit configured to perform signal processing on the reference signal received by the receiving unit
  • the reference signal occupies at least three symbols
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to one The length of the data symbol; or
  • the at least three symbols occupied by the reference signal include at least one short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the interval of the subcarriers occupied by the short reference symbols in the frequency domain is K times the interval of the subcarriers occupied by the data symbols in the frequency domain, and the K is an integer greater than or equal to 2.
  • the last symbol of the one subframe is a null symbol, all data symbols in the one subframe, the reference The symbol occupied by the signal, and the null symbol constitute the one subframe, wherein the length of the null symbol is less than or equal to the length of one data symbol.
  • the reference signal occupies Na symbols, and the number of short reference symbols included in the occupied Na symbols is Nb, and the number of normal reference symbols included is Na-Nb. ;
  • the interval of the subcarriers occupied by the normal reference symbols in the frequency domain is equal to the interval of the subcarriers occupied by the data symbols in the frequency domain; Na and Nb are positive integers, and Nb is less than or equal to Na.
  • the short reference symbols occupy consecutive subcarriers in a frequency domain.
  • the reference signal occupies three symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than six The symbol is not less than 5 symbols; if the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in the one subframe is not more than 5 symbols and not less than 4 symbols; or
  • the reference signal occupies four symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in the one subframe is not greater than 6 symbols and not less than 4 symbols; if the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in the one subframe is not more than 5 symbols and not less than 3 symbols.
  • the reference signal occupies all non-empty symbols in the one subframe, and the number of all non-empty symbols in the one subframe is greater than or equal to 3. ;
  • the reference signal occupies a plurality of discrete subcarriers.
  • Each of the physical resource blocks PRB occupied in the frequency domain occupies a plurality of discontinuous subcarriers.
  • the reference signal occupies a plurality of subcarriers at equal intervals in each PRB occupied by the frequency domain.
  • the ninth possible implementation manner in each PRB in the frequency domain in which the reference signal is located, The subcarriers occupied by the reference signal do not map data or map data to be transmitted.
  • the processing unit is further configured to: before the signal processing of the received reference signal, generate a first sequence for each of the symbols occupied by the reference signal in the one subframe, the first The length of the sequence is equal to the number of subcarriers that the predicted reference signal occupies on the symbol;
  • the processing unit is specifically configured to perform the signal processing on the received reference signal according to the generated first sequence
  • the first sequence used for performing the signal processing on the received reference signal is the same or different for different symbols occupied by the reference signal.
  • the first sequence is generated by a ZC sequence
  • the first sequence is generated by a second sequence and a third sequence
  • the second sequence is ⁇ Z 1 , Z 2 , . . . , Z N ⁇
  • the length of the second sequence is equal to the length of the first sequence.
  • N N is a positive integer
  • the third sequence is ⁇ R 1 , R 2 , . . . , R M ⁇
  • the length of the third sequence is M
  • M is in one subframe
  • the reference signal is occupied.
  • the number of symbols which is a positive integer.
  • the second sequence is generated by a ZC sequence
  • the third sequence is generated by a pseudo-random sequence
  • Both the second sequence and the third sequence are generated by a ZC sequence.
  • the reference signal is different in the one subframe Subcarriers occupying the same frequency domain location in the preamble;
  • the length of the first sequence is equal to the number of symbols occupied by the reference signal in one subframe
  • Each of the symbols in the first sequence respectively corresponds to a predetermined symbol occupied by the reference signal on the one subframe, wherein one symbol corresponds to one symbol;
  • the first sequence used for performing the signal processing on the received reference signal is the same or different for different subcarriers occupied by the reference signal.
  • the time-frequency resource occupied by the reference signal is a time-frequency resource in the first resource pool
  • the first resource pool includes some or all of the subframes in the radio frame in the time domain;
  • Some or all of the configured system bandwidth is included in the frequency domain.
  • an embodiment of the present invention provides a reference signal receiving apparatus, including the reference signal receiving apparatus provided in any one of the possible implementation manners of the third aspect or the third aspect.
  • an embodiment of the present invention provides a reference signal sending apparatus, including:
  • a processing unit configured to generate a reference signal
  • a sending unit configured to send the reference signal generated by the processing unit
  • the reference signal occupies only the first symbol of one subframe
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to one The length of the data symbol; or
  • the reference signal occupies all subcarriers in a continuous part of the PRB, and in the time domain, the length of one symbol occupied by the reference signal is equal to one data symbol Length; or
  • the symbol occupied by the reference signal is a short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the reference signal occupies a plurality of discontinuous subcarriers
  • subcarriers not occupied by the reference signal do not map data or map data to be transmitted.
  • the last symbol of the one subframe is an empty symbol
  • All data symbols in the one subframe, symbols occupied by the reference signal, and the null symbols constitute the one subframe; the length of the symbol occupied by the reference signal and the length of the null symbol Equal to the length of a data symbol.
  • the time-frequency resource occupied by the reference signal is a time-frequency resource in the first resource pool
  • the first resource pool includes some or all of the subframes in the radio frame in the time domain;
  • Some or all of the configured system bandwidth is included in the frequency domain.
  • the embodiment of the present invention provides a reference signal transmitting apparatus, including the reference signal transmitting apparatus provided by the fifth aspect, or any possible implementation manner of the fifth aspect.
  • a seventh aspect of the present invention provides a reference signal receiving apparatus, including:
  • a receiving unit configured to receive a reference signal
  • a processing unit configured to perform signal processing on the reference signal received by the receiving unit
  • the reference signal occupies only the first symbol of one subframe
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to one The length of the data symbol; or
  • the reference signal occupies all subcarriers in a continuous part of the PRB, and in the time domain, the length of one symbol occupied by the reference signal is equal to one data symbol Length; or
  • the symbol occupied by the reference signal is a short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the reference signal occupies a plurality of discontinuous subcarriers
  • subcarriers not occupied by the reference signal do not map data or map data to be transmitted.
  • the last symbol of the one subframe is an empty symbol
  • All data symbols in the one subframe, symbols occupied by the reference signal, and the null symbols constitute the one subframe; the length of the symbol occupied by the reference signal and the length of the null symbol Equal to the length of a data symbol.
  • the time-frequency resource occupied by the reference signal is a time-frequency resource in the first resource pool
  • the first resource pool includes some or all of the subframes in the radio frame in the time domain;
  • Some or all of the configured system bandwidth is included in the frequency domain.
  • the eighth aspect of the present invention provides a reference signal receiving apparatus, including the reference signal receiving apparatus provided in any one of the possible implementation manners of the seventh aspect or the seventh aspect.
  • a ninth aspect, an embodiment of the present invention provides a reference signal sending method, including:
  • the reference signal occupies at least three symbols
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to one The length of the data symbol; or
  • the at least three symbols occupied by the reference signal include at least one short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the interval of the subcarriers occupied by the short reference symbols in the frequency domain is K times the interval of the subcarriers occupied by the data symbols in the frequency domain, and the K is an integer greater than or equal to 2.
  • the last symbol of the one subframe is a null symbol, all data symbols in the one subframe, the reference The symbol occupied by the signal, and the null symbol constitute the one subframe, wherein the length of the null symbol is less than or equal to the length of one data symbol.
  • the reference signal occupies Na symbols, and the number of short reference symbols included in the occupied Na symbols is Nb, and the number of normal reference symbols included is Na-Nb. ;
  • the interval of the subcarriers occupied by the normal reference symbols in the frequency domain is equal to the interval of the subcarriers occupied by the data symbols in the frequency domain; Na and Nb are positive integers, and Nb is less than or equal to Na.
  • the short reference symbol occupies consecutive subcarriers in a frequency domain.
  • the reference signal occupies three symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than six The symbol is not less than 5 symbols; if the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in the one subframe is not more than 5 symbols and not less than 4 symbols; or
  • the reference signal occupies four symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in the one subframe is not greater than 6 symbols and not less than 4 symbols; if the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in the one subframe is not more than 5 symbols and not less than 3 symbols.
  • the reference signal occupies all non-empty symbols in the one subframe, and the number of all non-empty symbols in the one subframe is greater than or equal to 3. ;
  • the reference signal occupies a plurality of discrete subcarriers.
  • Each of the physical resource blocks PRB occupied in the frequency domain occupies a plurality of discontinuous subcarriers.
  • the reference signal occupies a plurality of subcarriers at equal intervals in each PRB occupied by the frequency domain.
  • the ninth possible implementation manner in each PRB in the frequency domain where the reference signal is located, The subcarriers occupied by the reference signal do not map data or map data to be transmitted.
  • the generating a reference signal includes: for each symbol occupied by the reference signal,
  • the first sequence used to generate the reference signal is the same or different for different symbols occupied by the reference signal.
  • the first sequence is generated by a ZC sequence
  • the first sequence is generated by a second sequence and a third sequence
  • the second sequence is ⁇ Z 1 , Z 2 , . . . , Z N ⁇
  • the length of the second sequence is equal to the length of the first sequence.
  • N N is a positive integer
  • the third sequence is ⁇ R 1 , R 2 , . . . , R M ⁇
  • the length of the third sequence is M
  • M is in one subframe
  • the reference signal is occupied.
  • the number of symbols which is a positive integer.
  • the second sequence is generated by a ZC sequence
  • the third sequence is generated by a pseudo-random sequence
  • Both the second sequence and the third sequence are generated by a ZC sequence.
  • the reference signal is different in the one subframe Subcarriers occupying the same frequency domain position on the symbol, and the generated reference signals include:
  • the first sequence used to generate the reference signal is the same or different for different subcarriers occupied by the reference signal.
  • the time-frequency resource occupied by the reference signal is a time-frequency resource in the first resource pool
  • the first resource pool includes some or all of the subframes in the radio frame in the time domain;
  • Some or all of the configured system bandwidth is included in the frequency domain.
  • a tenth aspect of the present invention provides a reference signal receiving method, including:
  • the reference signal occupies at least three symbols
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to one The length of the data symbol; or
  • the at least three symbols occupied by the reference signal include at least one short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the interval of the subcarriers occupied by the short reference symbols in the frequency domain is K times the interval of the subcarriers occupied by the data symbols in the frequency domain, and the K is an integer greater than or equal to 2.
  • the last symbol of the one subframe is a null symbol, all data symbols in the one subframe, the reference The symbol occupied by the signal, and the null symbol constitute the one subframe, wherein the length of the null symbol is less than or equal to the length of one data symbol.
  • the reference signal occupies Na symbols, occupying Na
  • the number of short reference symbols included in the symbols is Nb, and the number of normal reference symbols included is Na-Nb;
  • the interval of the subcarriers occupied by the normal reference symbols in the frequency domain is equal to the interval of the subcarriers occupied by the data symbols in the frequency domain; Na and Nb are positive integers, and Nb is less than or equal to Na.
  • the short reference symbol occupies consecutive subcarriers in a frequency domain.
  • the reference signal occupies three symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than six The symbol is not less than 5 symbols; if the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in the one subframe is not more than 5 symbols and not less than 4 symbols; or
  • the reference signal occupies four symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in the one subframe is not greater than 6 symbols and not less than 4 symbols; if the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in the one subframe is not more than 5 symbols and not less than 3 symbols.
  • the reference signal occupies all non-empty symbols in the one subframe, and the number of all non-empty symbols in the one subframe is greater than or equal to 3. ;
  • the reference signal occupies a plurality of discrete subcarriers.
  • Each of the physical resource blocks PRB occupied in the frequency domain occupies a plurality of discontinuous subcarriers.
  • the reference signal occupies a plurality of subcarriers at equal intervals in each PRB occupied by the frequency domain.
  • the method further includes:
  • the first sequence used for performing the signal processing on the received reference signal is the same or different for different symbols occupied by the reference signal.
  • the first sequence is generated by a ZC sequence
  • the first sequence is generated by a second sequence and a third sequence
  • the second sequence is ⁇ Z 1 , Z 2 , . . . , Z N ⁇
  • the length of the second sequence is equal to the length of the first sequence.
  • N N is a positive integer
  • the third sequence is ⁇ R 1 , R 2 , . . . , R M ⁇
  • the length of the third sequence is M
  • M is in one subframe
  • the reference signal is occupied.
  • the number of symbols which is a positive integer.
  • the second sequence is generated by a ZC sequence
  • the third sequence is generated by a pseudo-random sequence
  • Both the second sequence and the third sequence are generated by a ZC sequence.
  • the reference signal is different in the one subframe Subcarriers occupying the same frequency domain location in the preamble;
  • the length of the first sequence is equal to the number of symbols occupied by the reference signal in one subframe number
  • Each of the symbols in the first sequence respectively corresponds to a predetermined symbol occupied by the reference signal on the one subframe, wherein one symbol corresponds to one symbol;
  • the first sequence used for performing the signal processing on the received reference signal is the same or different for different subcarriers occupied by the reference signal.
  • the time-frequency resource occupied by the reference signal is a time-frequency resource in the first resource pool
  • the first resource pool includes some or all of the subframes in the radio frame in the time domain;
  • Some or all of the configured system bandwidth is included in the frequency domain.
  • an embodiment of the present invention provides a wireless communication system, including: a sending device and a receiving device.
  • the sending device is configured to generate a reference signal, and send the generated reference signal
  • the receiving device is configured to receive a reference signal and perform signal processing on the received reference signal
  • the reference signal occupies at least three symbols
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to one The length of the data symbol; or
  • the at least three symbols occupied by the reference signal include at least one short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the embodiment of the present invention provides a reference signal sending method, including:
  • the reference signal occupies only the first symbol of one subframe
  • the reference The signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol; or
  • the reference signal occupies all subcarriers in a continuous part of the PRB, and in the time domain, the length of one symbol occupied by the reference signal is equal to one data symbol Length; or
  • the symbol occupied by the reference signal is a short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the reference signal occupies a plurality of discontinuous subcarriers
  • subcarriers not occupied by the reference signal do not map data or map data to be transmitted.
  • the last symbol of the one subframe is an empty symbol
  • All data symbols in the one subframe, symbols occupied by the reference signal, and the null symbols constitute the one subframe; the length of the symbol occupied by the reference signal and the length of the null symbol Equal to the length of a data symbol.
  • the time-frequency resource occupied by the reference signal is a time-frequency resource in the first resource pool
  • the first resource pool includes some or all of the subframes in the radio frame in the time domain;
  • Some or all of the configured system bandwidth is included in the frequency domain.
  • the embodiment of the present invention provides a reference signal receiving method, including:
  • the reference signal occupies only the first symbol of one subframe
  • the reference The signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol; or
  • the reference signal occupies all subcarriers in a continuous part of the PRB, and in the time domain, the length of one symbol occupied by the reference signal is equal to one data symbol Length; or
  • the symbol occupied by the reference signal is a short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the reference signal occupies a plurality of discontinuous subcarriers
  • subcarriers not occupied by the reference signal do not map data or map data to be transmitted.
  • the last symbol of the one subframe is an empty symbol
  • All data symbols in the one subframe, symbols occupied by the reference signal, and the null symbols constitute the one subframe; the length of the symbol occupied by the reference signal and the length of the null symbol Equal to the length of a data symbol.
  • the time-frequency resource occupied by the reference signal is a time-frequency resource in the first resource pool
  • the first resource pool includes some or all of the subframes in the radio frame in the time domain;
  • Some or all of the configured system bandwidth is included in the frequency domain.
  • an embodiment of the present invention provides a wireless communication system, including: a sending device and a receiving device,
  • the sending device is configured to generate a reference signal, and send the generated reference signal
  • the receiving device is configured to receive a reference signal and perform signal processing on the received reference signal
  • the reference signal occupies only the first symbol of one subframe
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to one The length of the data symbol; or
  • the reference signal occupies all subcarriers in a continuous part of the PRB, and in the time domain, the length of one symbol occupied by the reference signal is equal to one data symbol Length; or
  • the symbol occupied by the reference signal is a short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the reference signal is used to occupy discontinuous subcarriers in the frequency domain, or the symbol length of the reference signal in the time domain is shortened, thereby reducing the occupation of the reference signal by the reference signal.
  • the receiving device of the reference signal can obtain a denser reference signal per unit time than the scheme shown in FIG.
  • the channel fading is more severe, and the channel characteristics change faster in a unit time.
  • the data to be transmitted can be sent out in the coherent time; for the receiving device
  • the receiving device can obtain more reference signals, and obtain information such as channel status according to the obtained reference signals, thereby satisfying performance requirements of the receiving device 502 for estimating data sent by the receiving transmitting device, and satisfying high frequency and high speed. Communication requirements under the scenario.
  • the reference signal occupies at least 3 symbols in one subframe
  • the reference signal occupies a plurality of discontinuous subcarriers in each PRB occupied in the frequency domain, or the reference signal occupies in one subframe
  • the symbol includes a short reference symbol, which can effectively reduce the overhead of the reference signal.
  • the communication requirement of the high-speed and high-frequency scene can be satisfied without additionally increasing the reference signal overhead.
  • FIG. 1 is a schematic diagram of a transmission mode of a DeModulation Reference Signal (DMRS) in an LTE system;
  • DMRS DeModulation Reference Signal
  • FIG. 2 to FIG. 4 are schematic structural diagrams of a wireless communication system used in an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a wireless communication system according to Embodiment 1 of the present invention.
  • 5B is a schematic diagram of an optional process for a transmitting device to generate and transmit a reference signal according to Embodiment 1 of the present invention
  • 5C is a schematic diagram of an optional process of receiving a reference signal and performing signal processing in a receiving device according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram of an optional mapping manner according to Embodiment 1 of the present invention.
  • FIGS. 7A-7E are schematic diagrams showing an optional mapping manner of a DMRS according to Embodiment 2 of the present invention.
  • 8A-8E are schematic diagrams of an optional mapping manner when an RE that is not occupied by a DMRS does not fill data in the second embodiment of the present invention.
  • FIGS. 9A-9D are schematic diagrams showing an optional mapping manner when a DMRS is mapped in a time domain according to Embodiment 2 of the present invention.
  • FIG. 10 is a schematic diagram of an optional mapping manner of a DMRS according to Embodiment 3 of the present invention.
  • 11A-11B are schematic diagrams showing an optional mapping manner when a DMRS is mapped in a time domain according to Embodiment 3 of the present invention.
  • 12A and 12B are schematic diagrams showing an optional transmission mode of a reference signal according to Embodiment 4 of the present invention.
  • FIG. 13 is a schematic diagram of an optional mapping manner of a reference signal according to Embodiment 5 of the present invention.
  • FIG. 14 is a schematic structural diagram of a first reference signal sending apparatus according to Embodiment 6 of the present invention.
  • FIG. 15 is a schematic structural diagram of a device for transmitting a reference signal provided in Embodiment 7;
  • FIG. 16 is a schematic structural diagram of a reference signal receiving apparatus provided in Embodiment 8.
  • FIG. 17 is a schematic structural diagram of a reference signal receiving apparatus provided in Embodiment 9;
  • Embodiment 18 is a schematic structural diagram of a reference signal transmitting apparatus provided in Embodiment 10.
  • FIG. 19 is a schematic structural diagram of a reference signal transmitting apparatus provided in Embodiment 11;
  • Embodiment 20 is a schematic structural diagram of a reference signal receiving apparatus provided in Embodiment 12;
  • FIG. 21 is a schematic structural diagram of a reference signal receiving apparatus provided in Embodiment 12.
  • FIG. 25 is a flowchart of a reference signal receiving method provided in Embodiment 17.
  • the embodiment of the invention provides a transmission device, method and system for a reference signal, which are used to provide a transmission scheme of a reference signal to reduce the occupation of transmission resources by reference signals.
  • the transmitting device of the reference signal generates a reference signal, and sends the generated reference signal; wherein, in the frequency domain, in each physical resource block (PRB) occupied by the reference signal
  • PRB physical resource block
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol; or the reference signal includes at least one short reference symbol in the symbol occupied in one subframe The length of the short reference symbol is less than the length of one data symbol.
  • the reference signal is used to occupy discontinuous subcarriers in the frequency domain, or the symbol length of the reference signal in the time domain is shortened, thereby reducing the occupation of the reference signal by the reference signal.
  • the reference signal occupies at least three symbols in one subframe in the time domain. This further satisfies the communication requirements of high frequency and high speed scenes.
  • Map Method 1 For details, please refer to the following "Map Method 1".
  • the reference signal occupies only the first symbol of one subframe, and can support reference signals for processes such as AGC, so that the receiving device can refer to the reference signal in the first symbol in one subframe. Perform subsequent data processing.
  • the reference signal for the AGC will be described as an example.
  • LTE Long Term Evolution
  • the description of the present invention does not mean that the embodiment of the present invention is applicable to only the LTE system.
  • any wireless communication system that transmits a reference signal to meet the communication requirements in a high-frequency, high-speed scenario may be provided by the embodiment of the present invention.
  • Reference signal transmission scheme any wireless communication system that transmits a reference signal to meet the communication requirements in a high-frequency, high-speed scenario.
  • the downlink transmission that is, the access network device such as the base station transmits to the UE
  • the access network device is based on the Orthogonal Frequency Division Multiplexing Access (OFDMA) multiple access method
  • the uplink transmission that is, the UE direction
  • the access network device transmission is based on the Single Carrier-Frequency Division Multiplexing Access (SC-FDMA) multiple access method.
  • OFDMA Orthogonal Frequency Division Multiplexing Access
  • SC-FDMA Single Carrier-Frequency Division Multiplexing Access
  • the time-frequency resources are divided into OFDM symbols in the time domain dimension and subcarriers in the frequency domain dimension; for uplink transmission, the time-frequency resources are divided into SC-FDMA symbols in the frequency domain dimension.
  • the symbol may be an OFDM symbol or an SC-FDMA symbol, or a symbol in other multiple access manners, which is not limited in this embodiment of the present invention.
  • the smallest resource granularity is called a Resource Element (RE), that is, a time-frequency symbol representing a time domain symbol in the time domain and a sub-carrier on the frequency domain.
  • RE Resource Element
  • the basic time unit of the access network device scheduling is one subframe, and one subframe includes multiple time domain symbols.
  • the basic time unit of the access network device scheduling may be one or more time domain symbols.
  • the LTE system supports two types of duplex modes: Frequency Division Multiplexing (FDD) and Time Duplexing Division (TDD).
  • FDD Frequency Division Multiplexing
  • TDD Time Duplexing Division
  • the LTE system adopting the FDD duplex mode referred to as the FDD LTE system
  • the downlink transmission and the uplink transmission use different carriers.
  • the uplink transmission and the downlink transmission use different times of the same carrier, and specifically include a downlink subframe, an uplink subframe, and a special subframe on one carrier.
  • the special subframe includes three parts: a Downlink Pilot Time Slot (DwPTS), a Guard Period (GP), and an Uplink Pilot Time Slot (UpPTS). Compensation for device conversion time and propagation delay for downstream to upstream.
  • DwPTS Downlink Pilot Time Slot
  • GP Guard Period
  • UpPTS Uplink Pilot Time Slot
  • downlink data can be transmitted in the DwPTS, but the PUSCH cannot be transmitted in the UpPTS. Therefore, from this perspective, the special subframe can be regarded as a downlink subframe.
  • the uplink and downlink time-frequency resources are grouped into PRBs, and are scheduled and allocated as physical resource units.
  • one PRB contains 12 consecutive subcarriers in the frequency domain.
  • the subcarrier spacing is 15 kHz, that is, the interval between the center frequency points of two adjacent subcarriers.
  • a normal reference symbol and a short reference symbol are provided.
  • the normal reference symbol has the same length as the data symbol, and the interval of the subcarriers occupied in the frequency domain is equal to the interval of the subcarriers of the data symbols.
  • the interval of subcarriers is 15 kHz; and the length of short reference symbols is shorter than the length of data symbols, and the interval of subcarriers occupied in the frequency domain is wider than the interval of subcarriers occupied by data symbols.
  • the interval of the short reference symbols occupied by the subcarriers in the frequency domain is K times the interval of the subcarriers occupied by the data symbols, and K is an integer greater than or equal to 2.
  • K is an integer greater than or equal to 2.
  • the interval of subcarriers occupied by the short reference symbols in the frequency domain is twice the interval of the subcarriers of the data symbols, for example, 30 kHz.
  • the K can also take values of 3, 4, and the like.
  • the length of this symbol in the time domain becomes half of the original, and the length of the CP is not included.
  • K 2
  • the length of the short reference symbol except the CP in the time domain is half of the length of the data symbol except the CP in the time domain.
  • DMRS Demodulation Reference Signal
  • the receiving device demodulates the received data according to the received DMRS.
  • DMRS Demodulation Reference Signal
  • CP Cyclic Prefix
  • Sym0 to Sym6 indicate symbols 0 to 6 in a slot
  • shaded Sym4 indicates a symbol used as a DMRS.
  • a pseudo-random sequence means that each symbol on the sequence appears in a similar random manner throughout the length of the sequence.
  • Typical pseudo-random sequences include m sequences, Gold sequences, Kasami, GMW sequences, and the like.
  • a sequence set A of length L is a perfect sequence, which means that any sequence in the sequence set has an ideal periodic autocorrelation function and any two different sequence ideal cross-correlation function values, namely:
  • the CP length has three values.
  • the CP type is divided into a normal CP and an extended CP.
  • the first symbol of each time slot is 160, and the corresponding occupied time is about 5.2 microseconds, in a 1 ms subframe.
  • the other symbols occupy 144 samples, and the corresponding occupation time is about 4.7 microseconds.
  • a normal CP there are currently 14 symbols in one subframe in the LTE system.
  • an extended CP the CP length of each symbol is the same as 512 samples, and the corresponding occupied duration is about 16.7 microseconds.
  • the embodiment of the present invention is applicable to the architecture of the wireless communication system of the terminal device-access network device shown in FIG. 2, wherein the reference signal may be sent by the terminal device, received by the access network device, or may be sent by the access network device. receive.
  • the embodiment of the present invention is also applicable to the architecture of the wireless communication system of the terminal device-terminal device shown in FIG. 3, such as a device-to-device (D2D) communication system, where one terminal device sends a reference.
  • the signal the other terminal device receives the reference signal, performs channel estimation according to the received reference signal, and the like.
  • D2D device-to-device
  • the embodiment of the present invention can also be used in the vehicle networking system shown in FIG. 4, wherein the reference signal transmission manner between the terminal devices is similar to the transmission mode in the D2D system, and details are not described herein again.
  • the reference signal may also be transmitted between a Road Side Unit (RSU) and a terminal device, for example, the RSU sends a reference signal, the terminal device receives the reference signal, or the terminal device sends a reference signal, and the RSU receives the reference signal;
  • the reference signal may also be transmitted between the RSU and the base station, for example, the RSU transmits the reference signal, the base station receives the reference signal, or the base station transmits the reference signal, and the RSU receives the reference signal.
  • both the RSU and the base station can be regarded as access network devices, and in addition, the RSU can also be regarded as a terminal device.
  • the terminal device may be an in-vehicle device
  • the RSU may communicate with the in-vehicle device and/or the base station
  • the base station may communicate with the in-vehicle device and/or the RSU.
  • the vehicle-mounted equipment moves with the vehicle at a high speed, and when the two vehicle-mounted devices move relative to each other, Large relative movement speed.
  • the communication between the above-mentioned in-vehicle device, RSU and base station can use the spectrum of the cellular link, or the intelligent traffic spectrum near 5.9 GHz can also be used.
  • the terminal device in the embodiment of the present invention may be a wireless terminal, and the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with a wireless connection function, or other processing device connected to the wireless modem.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal
  • RAN Radio Access Network
  • the computers for example, can be portable, pocket-sized, handheld, computer-integrated or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • the access network device may include a base station, or a radio resource management device for controlling the base station, or a base station and a radio resource management device for controlling the base station; the access network device may be a macro station or a small station. It can also be the aforementioned RSU.
  • the communication systems of various wireless communication systems include, but are not limited to, Global System of Mobile communication (GSM), Code Division Multiple Access (CDMA) IS-95, and code.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • CDMA Code Division Multiple Access 2000, Time Division-Synchronous Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • any of the wireless communication systems that transmit the reference signal to meet the communication requirements in the high-frequency, high-speed scene can adopt the reference signal transmission scheme provided by the embodiment of the present invention.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the wireless communication system provided in Embodiment 1 includes: a transmitting device 501 of a reference signal and a receiving device 502 of a reference signal.
  • the transmitting device 501 of the reference signal is hereinafter referred to as a "sending device 501".
  • the receiving device 502 of the reference signal is referred to as a "receiving device 502.”
  • the sending device 501 is configured to determine a reference signal, and send the determined reference signal.
  • the receiving device 502 is configured to receive the reference signal and process the received reference signal, for example, performing channel estimation, signal demodulation, AGC, radio measurement, and channel detection according to the received reference signal.
  • FIG. 5B illustrates an optional process by which the transmitting device 501 generates and transmits a reference signal.
  • the process may include the following steps:
  • the sending device 501 determines a sequence generation parameter used to generate a reference signal sequence.
  • the sending device 501 generates a reference signal according to the determined sequence generation parameter.
  • S503 The sending device 501 generates a data symbol to be sent.
  • the transmitting device 501 determines a mapping used when mapping a reference signal sequence to a physical resource.
  • Mode parameter
  • the sending device 501 maps the generated reference signal sequence to the physical resource according to the determined mapping mode parameter, and forms a data subframe to be sent together with the data mapped to the physical resource.
  • the transmitting device 501 sends the formed data subframe.
  • FIG. 5C illustrates an optional process by which receiving device 502 receives a reference signal.
  • the process may include the following steps:
  • the receiving device 502 determines a generation parameter of the reference signal sequence to be received.
  • the receiving device 502 generates a local reference signal sequence according to the determined generation parameter of the sequence.
  • the receiving device 502 determines a mapping mode parameter used when mapping the reference signal sequence to the physical resource
  • S514 The receiving device 502 performs signal processing on the received reference signal according to the determined mapping mode parameter and the generated local reference signal sequence.
  • process signals including: performing channel estimation on the received reference signal to obtain channel quality information in the bandwidth of the reference signal, and/or performing data detection on the received reference signal and the data to be received. To get the data to be received.
  • the reference signal may be any of the foregoing reference signals used for channel estimation, signal demodulation, automatic gain control (AGC), signal quality measurement, positioning, and channel detection, positioning, and the like.
  • AGC automatic gain control
  • DMRS reference signals for AGC, etc.
  • the reference signal sequence is used to generate a reference signal in one subframe, and one symbol in the sequence corresponds to one subcarrier in one symbol occupied by the reference signal in one subframe.
  • the time-frequency resource occupied by the reference signal is a time-frequency resource in the first resource pool
  • the first resource pool includes some or all of the subframes in the radio frame in the time domain, and includes part or all of the configured system bandwidth in the frequency domain.
  • the time-frequency resource in the first resource pool may be used for sending, and correspondingly, the receiving device 502 receives the reference signal on the time-frequency resource in the first resource pool.
  • the configuration of the first resource pool and whether the sending device 501 uses the first resource pool to send reference signals may be implemented in various options. The following three examples are illustrated:
  • the first resource pool may be pre-defined by a protocol or configured by signaling.
  • the base station broadcasts configuration information of the first resource pool in the cell through the system message, or sends the device 501 to the partial reference signal in the cell through the common message.
  • Sending the configuration information of the first resource pool; after receiving the configuration information, the sending device 501 of the reference signal determines the first resource pool according to the configuration information, and determines whether it needs to be sent on the first resource pool according to at least one of the following parameters:
  • Reference signal
  • the priority of the data to be sent by the sending device 501 the priority being determined by the importance degree, urgency, and the like of the data to be sent;
  • the moving speed of the transmitting device 501 such as the value of the moving speed, or whether the moving speed is in a predefined speed interval, or whether the moving speed is greater than a predefined value;
  • the frequency used by the sending device 501 to send data to be sent such as: high frequency (such as 5.9 GH) or low frequency (such as 2 GHz), the range of high frequency or low frequency can be pre-defined by protocol;
  • the sending device 501 can send the reference signal on the first resource pool; for example, when the data to be sent by the sending device 501 has a higher priority and the moving speed.
  • the sending device 501 may send the reference signal on the first resource pool; for example, when the frequency used by the sending device 501 to send the data to be sent is a high frequency, the sending device 501 may be at the first
  • the reference signal is sent on the resource pool; for example, when the priority of the data to be sent by the sending device 501 is higher, the moving speed exceeds the preset speed threshold, and the frequency used by the sending device 501 to send the data to be sent is a high frequency.
  • the transmitting device 501 can transmit a reference signal on the first resource pool.
  • the base station may send the configuration information of the first resource pool to the sending device 501 of the reference signal by using dedicated signaling, and instruct the sending device 501 to send the reference signal on the first resource pool, according to the manner At least one of the above-mentioned parameters is determined to determine whether the sending device 501 wants to send the configuration information of the first resource pool.
  • the method reference may be made to the first method, and details are not described herein again.
  • the first resource pool is pre-defined by the protocol.
  • the reference signal sending device 501 can also determine whether the reference signal needs to be sent on the first resource pool according to the foregoing parameters in the first mode, and if it is determined that the reference signal needs to be sent on the first resource pool. , the reference signal is sent on the first resource pool predefined by the protocol.
  • the specific method can also refer to the first method, and details are not described herein again.
  • the configuration information of the first resource pool may include at least one of the following parameters:
  • the priority information of the first resource pool is used to indicate the priority of the resource pool, and the description in the first method can be defined.
  • the information of the mobility reliability of the first resource pool is used to indicate the mobility reliability of the resource pool, and the description may be referred to in the first mode;
  • the information of the frequency of the first resource pool is used to indicate the frequency of the resource pool.
  • the definition can be described in the first method.
  • the foregoing configuration of the first resource pool and various optional implementation manners of whether the sending device 501 uses the first resource pool to send the reference signal may be applied to the following various reference signal sequence mapping manners.
  • the mapping manner of the reference signal sequence to the physical resource is different from the current LTE system.
  • the mapping manner may include a time domain mapping manner, a frequency domain mapping manner, and the like.
  • the time domain mapping manner may include: a number of symbols occupied by the reference signal in the time domain, a length of a symbol occupied by the reference signal, a position of a symbol occupied by the reference signal in the time domain, and the like;
  • the frequency domain mapping manner may include: whether the reference signal occupies consecutive subcarriers in the frequency domain, the interval of subcarriers occupied by the reference signal, and the like.
  • mapping manner of the reference signal is divided into mapping mode 1 and mapping mode 2 according to the mapping manner of the reference signal in the time domain.
  • the mapping mode 1 in one subframe in the time domain, the reference signal can occupy at least three symbols; in the mapping mode 2, in one subframe in the time domain, the reference signal occupies only the first symbol.
  • mapping mode 1 the reference signal can occupy at least three symbols in one subframe in the time domain.
  • the frequency domain mapping mode is not limited, and continuous or non-contiguous subcarriers may be occupied.
  • the mapping mode 1 is adopted. Compared with the reference signal such as DMRS symbol in every 0.5 ms slot in the current LTE system, and the two slots in one subframe have 2 DMRS symbols in total, the transmitting device 501 is adopted in this manner. The density of transmitting reference signals in the time domain is increased.
  • the receiving device 502 of the reference signal can obtain a denser reference signal per unit time.
  • the channel fading is more severe, and the channel characteristics change faster in a unit time.
  • the transmitting device 501 in a time of one transmission (for example, one transmission of a 1 ms subframe of the LTE system), the transmitting device 501 can transmit the data to be sent out within the coherent time; 502.
  • the receiving device can acquire more reference signals, and obtain information such as channel status according to the obtained reference signal, so as to meet the performance requirement of the receiving device 502 for estimating the data sent by the sending device 501, and satisfy the high performance. Communication requirements in frequency and high speed scenarios.
  • At least three symbols occupied by the reference signal in one subframe may be in two different time slots.
  • the reference signal appears more frequently in one subframe and the distribution is more uniform, so that the receiving device 502 can obtain a reference signal of more data so that the result of channel estimation or the like based on the reference signal is better.
  • the mapping mode may be further divided according to the length of the symbol occupied by the reference signal and the frequency domain mapping manner.
  • the mapping mode 1 may include but is not limited to the following three sub-modes:
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the reference signal occupies a continuous part of the PRB within the bandwidth occupied by the reference signal. All subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the at least three symbols occupied by the reference signal include at least one short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the symbol length occupied by the reference signal is distinguished, and the symbols occupied by the reference signal may be divided into a normal reference symbol and a short reference symbol, wherein the length of the normal reference symbol is equal to the length of the data symbol, and the length of the short reference symbol is smaller than the length of the data symbol.
  • the reference signal occupies a plurality of discontinuous sub-carriers, but the symbol occupied by the reference signal is a normal reference symbol.
  • the reference signal occupies part of the PRB, and the occupied part of the PRB is continuous, in each occupied In the PRB, the reference signal occupies each subcarrier in the PRB.
  • a part of the PRB occupied by the reference signal is located in an intermediate part of the entire bandwidth occupied by the reference signal, and a part of the PRB is vacated in the high-frequency part and the low-frequency part in the entire bandwidth. . In this way, interference caused by band leakage between adjacent reference signals in the frequency domain can be avoided.
  • the short reference symbol can only continuously occupy part of the PRB of the middle part within the bandwidth occupied by the reference signal, so that interference caused by band leakage between adjacent reference signals in the frequency domain can also be avoided.
  • the reference signal in the sub-mode 3 of the mapping mode 1, includes at least one short reference symbol in at least three symbols occupied by one subframe, and the specific implementation manner of the optional mapping manner can be referred to Example three.
  • the short reference symbol has a CP having the same length as the data symbol or the normal reference symbol, Avoid inter-symbol interference caused by short reference symbols, affecting the performance of the receiving device in estimating the channel on the short reference symbol.
  • the CP length of the short reference symbol is equal to the CP length of the data symbol
  • the last symbol of a subframe is a null (GAP) symbol.
  • GAP null
  • the length of the above two added CPs can be considered from the GAP symbols.
  • the following takes four short reference symbols as an example. There may also be two short reference symbols, three short reference symbols, and one short reference symbol. In this case, the length of the part extracted from the GAP symbol is also used to supplement the CP and / or the case where the short reference symbol takes a long time.
  • the last symbol of one subframe is a null symbol
  • all data symbols in the subframe, symbols occupied by the reference signal, and null symbols constitute the subframe.
  • the length of the null symbol is less than or equal to the length of one data symbol.
  • the length of this data symbol is the length of any one of the symbols except the null symbol and the first symbol in each slot in one subframe.
  • the length of this symbol is 4.7 microseconds plus the length of one symbol (15 kHz subcarriers correspond to 66.67 microseconds).
  • the length of this symbol is 16.7 microseconds plus the length of one symbol (15 kHz subcarriers correspond to 66.67 microseconds). In this way, part of the length can be taken from the GAP to supplement the CP length, so that the CP length of the short reference symbol is effectively guaranteed, thereby ensuring the performance of the short reference symbol.
  • the reference signal occupies Na symbols, and the number of short reference symbols included in the occupied Na symbols is Nb, the number of normal reference symbols included is Na-Nb; wherein, Na, Nb are positive integers, and Nb is less than or equal to Na.
  • the mapping manner of the reference signal in the frequency domain is not limited. Therefore, the short reference symbol may occupy consecutive or non-contiguous subcarriers in the frequency domain. Within the bandwidth occupied by the short reference symbols, the reference signal may occupy multiple consecutive or non-contiguous PRBs, may occupy all PRBs or part of PRBs, and may occupy all subcarriers or partial subcarriers in one PRB.
  • mapping manner of the sub-mode 3 in the mapping mode 1 refer to the following third embodiment.
  • the interval between the symbols occupied by the reference signal can satisfy the following The condition is to ensure that the reference signals are distributed as evenly as possible in the time domain, so that the data sent by the transmitting device 501 can be distributed as evenly as possible between the reference signals, thereby making the receiving device 502 better based on the reference signal for channel estimation and the like. . :
  • the reference signal occupies three symbols.
  • the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 6 symbols and not less than 5 symbols;
  • the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 5 symbols and not less than 4 symbols.
  • the reference signal occupies four symbols
  • the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 6 symbols and not less than 4 symbols;
  • the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 5 symbols and not less than 3 symbols.
  • the interval between adjacent symbols is equal to the difference between the numbers of adjacent symbols in one subframe. Taking FIG. 1 as an example, the interval between the symbol numbered 0 and the symbol numbered 4 is 4.
  • An alternative implementation in which the reference signal occupies discontinuous subcarriers in the frequency domain can be referred to the following embodiment 2.
  • another optional implementation manner is: a time domain continuous frequency domain discrete mapping manner, wherein the reference signal occupies all non-empty symbols in one subframe, each in the frequency domain.
  • PRB the reference signal occupies multiple subcarriers that are not consecutive.
  • the DMRS is taken as an example.
  • the frequency domain the DMRS occupies all subcarriers in the bandwidth occupied by the DMRS.
  • the time domain continuous frequency domain discrete manner It is equivalent to reducing the density of the reference signal in the frequency domain, supplementing to the time domain to meet the communication requirements of high-speed and high-frequency scenes, and at the same time, it can not increase the overhead of additional reference signals compared with the current LTE system.
  • the mapping manner that the short reference symbols occupy consecutive subcarriers in the frequency domain and the sub mode 2 of the mapping manner one, for the mapping manner one, for each subframe occupied by the reference signal in the time domain.
  • the reference signal occupies a plurality of discontinuous subcarriers in each PRB occupied in the frequency domain.
  • the frequency domain discontinuous mapping mode can reduce the overhead of the reference signal. Compared with the current LTE system, the communication requirements of the high-speed and high-frequency scenarios can be met without additionally increasing the reference signal overhead.
  • the reference signal For the optional frequency domain discontinuous mapping manner, optionally, for each subframe occupied by the reference signal in the time domain, the reference signal occupies an equal interval of multiple subcarriers in each PRB occupied by the frequency domain. .
  • the reference signals can be distributed as evenly as possible in the frequency domain, and the receiving device 502 can obtain the channel information in the frequency domain in a more uniform manner by using the reference signal.
  • the subcarriers not occupied by the reference signal do not map any data, so that the transmission power of the reference signal can be increased and a time domain symbol having a repeating characteristic in the time domain can be generated; if the data to be transmitted is mapped, Then the efficiency of data transmission can be further improved.
  • mapping mode 1 the reference signal can occupy at least three symbols in each subframe in the time domain.
  • the reference signal occupies the first symbol in one subframe.
  • mapping method 2 In the second mapping mode, the reference signal occupies the first symbol in one subframe. Similar to mapping method 1, mapping method 2 also includes but is not limited to the following three main sub-modes:
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the reference signal occupies all subcarriers in a continuous part of the PRB, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the at least three symbols occupied by the reference signal include at least one short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • mapping mode 2 The difference between the mapping mode 2 and the mapping mode 1 is that the mapping mode in the time domain is different.
  • the mapping mode 2 the reference signal in one subframe is only mapped to the first symbol, and in the mapping mode 1, the reference signal in one subframe. Map to at least three symbols. Therefore, in the mapping mode 2, the mapping manner in the frequency domain may refer to the description of the mapping mode 1.
  • Each sub-mode may refer to each sub-mode corresponding to the foregoing mapping mode, and details are not described herein again.
  • the reference signal occupies the first symbol of one subframe, so that the receiving device can adjust the modulus according to the reference signal.
  • the quantized range and magnitude of the transformed signal For a specific implementation manner in which the reference signal occupies the first symbol of one subframe, refer to the following Embodiment 4.
  • the manner of generating the reference signal sequence may not be limited to the foregoing mapping mode 1 and mapping mode 2, for example, when the reference signal occupies consecutive subcarriers in the frequency domain, and the occupied symbols are normal reference symbols, The method of generating a reference signal sequence described below can be employed.
  • both the transmitting device 501 and the receiving device 502 need to generate a reference signal sequence.
  • the receiving device 502 knows in advance the location of the time-frequency resource occupied by the reference signal sent by the sending device 501, the length of the generated reference signal sequence, and the like, so that the receiving device 502 can obtain the reference signal from the received signal and reference the reference signal.
  • the signal is subjected to further signal processing.
  • the information of the time-frequency resource occupied by the reference signal, the length of the generated reference signal sequence, and the like may be specified by a protocol, or the receiving device 502 is notified by signaling before performing signal transmission.
  • the first sequence is a sequence directly mapped to a subcarrier in a subframe in which the reference signal is located, and the first sequence corresponds to a sequence on a symbol in the reference signal sequence.
  • the reference signal is a DMRS
  • the first sequence may be called a demodulation reference signal sequence on a symbol;
  • a second sequence a sequence used to generate a first sequence
  • Third sequence A sequence used to generate a first sequence.
  • the sending device 501 For each symbol occupied by the reference signal in one subframe, the sending device 501 generates a first sequence, where the length of the first sequence is equal to the number of subcarriers occupied by the reference signal on the symbol; Each of the generated symbols in the first sequence is mapped to each subcarrier occupied by the reference signal on the symbol, wherein one symbol corresponds to one subcarrier.
  • the receiving device 502 For each symbol that is predicted to be occupied by the reference signal in one subframe, the receiving device 502 generates a first sequence, the length of the first sequence being equal to the number of subcarriers occupied by the predicted reference signal on the symbol, Each symbol in the generated first sequence corresponds to each subcarrier occupied by the reference signal on the symbol, and one symbol corresponds to one subcarrier, and the corresponding manner and the transmitting device 501 map the symbol to the subcarrier. The way is the same.
  • the transmitting device 501 and the receiving device 502 generate a reference for different symbols occupied by the reference signal.
  • the first sequence used by the signal is the same or different.
  • the first sequence may be generated by a perfect sequence, the perfect sequence including a ZC or GCL sequence, or any one of the sequence sets of Equation 1 and Equation 2; or
  • the first sequence may be generated by the second sequence and the third sequence, wherein:
  • N is the length of the first sequence and is a positive integer
  • ⁇ Z i,1 ,Z i,2 ,...,Z i,N ⁇ is the second sequence, and the length of the second sequence is N
  • ⁇ R 1 ,R 2 ,..., R M ⁇ is the third sequence, the length of the third sequence is M, and M is the number of symbols occupied by the reference signal in one subframe, and is a positive integer.
  • the essence of the above operation is that each symbol of the first sequence of the reference signal generated on the symbol i is generated by multiplying each symbol of the second sequence by the symbol i of the third sequence.
  • the second sequence on each of the reference signal symbols may be the same or different.
  • the arithmetic symbol "/" indicates arithmetic division.
  • the operation (R i ) * indicates that the R i pair takes a complex conjugate operation.
  • f(Z i,k ,R i ) represents the operation of Z i,k and R i according to a predefined function f(,), where k is a positive integer from 1 to N.
  • the reference signal occupies 4 symbols in one subframe, that is, the M value is 4, the bandwidth occupies 2 PRBs in the frequency domain, and there is one reference signal subcarrier every 2 subcarriers, so the length of the first sequence Is 12, that is, the N value is 12. 7B to 8E, only the bandwidth of the reference signal becomes 1 PRB, the value of N is 6, and the value of M is still 4.
  • the subcarrier of the short symbol of the reference signal has an interval of twice the interval of the data subcarrier, and there are 12 data subcarriers in the frequency domain direction in one PRB, so the value of N is still 6.
  • the bandwidth of the reference signal is 3 PRB, and there are 2 subcarriers of the reference signal in each PRB. Therefore, in the frequency domain direction, the corresponding N value is 6.
  • the reference signal is mapped on all symbols on the same subcarrier in the time domain direction of one subframe, and the value of the corresponding M is the number of symbols of the data subcarrier in one subframe, such as 14 (extended CP) or 12 (normal CP).
  • the M value is correspondingly reduced by 1 or 2.
  • the second sequence may be generated by a perfect sequence, wherein the perfect sequence may be a ZC or GCL sequence, and the third sequence may be generated by a pseudo-random sequence;
  • the second sequence and the third sequence may each be generated by a perfect sequence, which may be: a ZC or GCL sequence, or any one of the sequence sets of Equations 1 and 2 above; or
  • the second sequence is generated by a pseudo-random sequence
  • the third sequence is generated by a ZC sequence
  • Both the second sequence and the third sequence can be generated from a pseudo-random sequence.
  • the second sequence is generated by the ZC sequence, and the value of the Peak to Average Power Ratio (PAPR) of the reference signal generated at this time is smaller, and the channel estimation performance in the time domain is better.
  • PAPR Peak to Average Power Ratio
  • the reference signal occupies subcarriers in the same frequency domain position on different symbols of one subframe.
  • the sending device 501 can generate the first sequence by generating a first sequence, the first sequence.
  • the length of the reference signal is equal to the number of symbols occupied by the reference signal in one subframe; and the first sequence is mapped to the time-frequency resource occupied by the reference signal by: mapping each symbol in the generated first sequence to The reference signal is on each symbol occupied by one subframe, wherein one symbol corresponds to one symbol; wherein, in one subframe, the first sequence used to generate the reference signal is the same for different subcarriers occupied by the reference signal or different;
  • the receiving device 502 can generate the first sequence by using: the length of the first sequence is equal to the number of symbols occupied by the reference signal in one subframe; and when performing data processing on the received reference signal, Determining, by the following manner, a correspondence between a symbol of the first sequence and a time-frequency resource occupied by the reference signal: each symbol in the first sequence respectively corresponds to each symbol occupied by the predicted reference signal in one subframe, where One symbol corresponding to one symbol; wherein, in the one subframe, the first sequence used for performing signal processing on the received reference signal for different subcarriers occupied by the reference signal Same or different.
  • the methods for generating the second sequence and the third sequence include, but are not limited to, the following:
  • the perfect sequence is generated by a predefined length and then transformed to the length of the second sequence and/or the third sequence according to the perfect sequence.
  • a typical method is that the length of the second sequence and/or the third sequence is N, and the length of the perfect sequence is Mp, and the second sequence of length L is taken out by cyclically shifting the original perfect sequence. / or the third sequence.
  • r x(n mod Mp), 0 ⁇ n ⁇ N, where x represents a perfect sequence and r represents a second sequence and/or a third sequence.
  • the second sequence and/or the third sequence may also be a cyclic shift of the root sequence based on the perfect sequence, and the operation of the root sequence is performed, which is not limited in the embodiment of the present invention.
  • the first embodiment of the present invention is described above.
  • the following describes the transmission scheme of the reference signal in the embodiment of the present invention by using the second embodiment to the sixth embodiment.
  • the second embodiment, the third embodiment, the fifth embodiment, and the sixth embodiment The DMRS is taken as an example for description.
  • the other reference signals are similar to each other and will not be described again.
  • the reference signal used in the process of AGC is taken as an example in the fourth embodiment, and other reference signals are similar and will not be described again.
  • the DMRS is mapped in a discontinuous manner on the occupied bandwidth, where the bandwidth occupied by the DMRS is equal to the subcarrier occupied by the discontinuity in the frequency domain, and optionally, the bandwidth occupied by the DMRS and the bandwidth occupied by the data to be sent.
  • DMRS occupies more than 2 symbols in the time domain, and considering the trade-off between overhead and performance, it is preferably 3 or 4.
  • FIG. 7A shows a mapping manner of the DMRS in the second embodiment.
  • the blank part indicates a resource element (Resource Element, RE) occupied by the data to be transmitted, and the grid part indicates the RE occupied by the DMRS.
  • the REs occupied by the DMRS are placed at equal intervals in the frequency domain.
  • the minimum frequency domain resource occupied by the data to be transmitted may be one or two PRB pairs, and no limitation is made here. If the minimum frequency domain resource allocation unit is 1 PRB, corresponding to the mapping manner in FIG. 7A, the length of the reference signal sequence in one PRB is 6, and the length of the entire reference signal sequence should be an integer multiple of 6. If the minimum frequency domain resource allocation unit is 2 PRBs, corresponding to the mapping manner in FIG. 7A, the length of the reference signal sequence in one PRB is 12, and the length of the entire reference signal sequence should be an integer multiple of 12.
  • the REs that are not used by the DMRS in the time domain symbols in which some or all of the DMRSs are located may be vacated without filling in data.
  • a specific implementation will be shown, for example, in Figures 8A-8E.
  • the slashed RE is an empty RE.
  • the position of the symbol occupied by the DMRS in one subframe may be implemented by using multiple optional implementation manners, where the DMRS occupies 3 symbols and 4 symbols in one subframe, and the DMRS is in the time domain.
  • An optional principle of mapping is to map as evenly as possible to a 1ms sub-frame, which optimizes the performance of the time domain.
  • each line in the figure represents a time domain mapping method.
  • FIG. 9A illustrates four possible time domain mapping modes when a DMRS occupies 4 symbols in a 1 ms subframe (2 slots) under a normal CP; satisfies: the reference signal occupies in one subframe.
  • the spacing between adjacent symbols used is no more than 6 symbols and no less than 4 symbols.
  • the location of the DMRS has the following options:
  • FIG. 9B shows three possible time domain mapping modes when a DMRS occupies three symbols in a 1 ms subframe (in two slots) under a normal CP; satisfies: the adjacent position occupied by the reference signal in one subframe
  • the interval between symbols is no more than 6 symbols and no less than 5 symbols.
  • the location of the DMRS is as follows:
  • the DMRS when the DMRS occupies three symbols, at least one of the symbols may be mapped in a non-contiguous manner in the frequency domain, and other symbols may be mapped in a continuous manner in the frequency domain.
  • the first symbol occupied by the DMRS in one subframe is mapped in a non-contiguous manner in the frequency domain, and in the symbol, the subcarriers not occupied by the DMRS are left blank without filling in data.
  • FIG. 9C shows that in the extended CP, 1 ms subframe (in 2 slots), the DMRS occupies four symbols. Number, three possible time domain mapping methods.
  • the difference between the extended CP subframe and the normal CP subframe is that the subframe length is still 1 ms, but the total number of symbols becomes 6 symbols per slot, which satisfies: the reference signal is occupied between adjacent symbols in one subframe.
  • the interval is no more than 5 symbols and no less than 3 symbols.
  • the location of the DMRS is as follows:
  • FIG. 9D shows four possible time domain mapping modes when the DMRS occupies three symbols under the extended CP, 1 ms subframe (in 2 slots), which satisfies: the adjacent position occupied by the reference signal in one subframe.
  • the interval between symbols is no more than 5 symbols and no less than 4 symbols.
  • the location of the DMRS is as follows:
  • the overhead of the DMRS is the same as that of the current LTE system, that is, no additional system overhead is added, or is the same as the current LTE system, or slightly higher than Currently, the LTE system improves the time domain density of the DMRS, thereby improving the support capability in a high-speed, high-frequency mobile environment.
  • the overhead of the DMRS may be the same as that of the current LTE system, or slightly higher than the current LTE system.
  • the combination of the mapping modes of the DMRS in the frequency domain and the time domain constitutes a transmission mode of the DMRS, which can achieve a balance between the demodulation performance improvement and the overhead control.
  • the reference signal occupies a short reference symbol.
  • the short reference symbol occupied by the reference signal is a short DMRS symbol
  • the normal reference symbol occupied by the reference signal is a normal DMRS symbol.
  • the difference between Embodiment 3 and Embodiment 2 is that among the symbols occupied by the DMRS in the frequency domain, part of the symbols are short DMRS symbols, and other symbols are normal DMRS symbols.
  • the length of the short DMRS symbol in the time domain is smaller than the data symbol, and the length of the normal DMRS symbol in the time domain is equal to the data symbol.
  • the interval of subcarriers of the short DMRS symbol is twice the interval of the subcarriers of the data symbol.
  • the interval of the DMRS may be K times the data subcarrier, where K is a positive integer greater than or equal to 2, such as: 2, 3, 4, and the like.
  • Two symbols are short DMRS symbols, and two symbols are normal DMRS symbols.
  • 1 symbol is a short DMRS symbol, and 2 symbols are normal DMRS symbols;
  • 2 symbols are short DMRS symbols, and 1 symbol is a normal DMRS symbol;
  • the relationship between the number of the short DMRS symbols and the number of normal DMRS symbols satisfies: in each subframe in the time domain, the DMRS signal occupies Na symbols, and the short DMRS symbols included in the occupied Na symbols The number is Nb, and the number of normal DMRS symbols included is Na-Nb; wherein, Na and Nb are positive integers, and Nb is less than or equal to Na.
  • FIG. 11A shows that under normal CP, four Five possible implementations of DMRS symbol time domain locations;
  • Figure 11B shows five possible implementations of four DMRS symbol time domain locations under extended CP.
  • the weighted and underlined symbol is a short DMRS symbol occupied by the DMRS, and the slashed portion is a vacant symbol, that is, GAP, and other symbols are symbols occupied by data to be transmitted in the subframe, and each row in the figure represents one subframe.
  • GAP vacant symbol
  • mapping mode shown in FIG. 11A in the original normal CP subframe, there are 14 normal symbols, and after adding 4 shortened DMRSs, it is equivalent to changing 2 of the normal symbols into 4 short DMRS symbols. In view of not affecting the performance of the DMRS, it is necessary to ensure the CP length of the short DMRS symbol. If the CP length of the short DMRS symbol is the same as the CP length of the data symbol, it is equivalent to the need to increase the length of two DMRS CPs. The sample required for this CP length can be taken from the last symbol used as a GAP. At this time, the number of symbols in one subframe has also changed from 14 to 16.
  • a symbol with a sequence number of 1, 5, 1, and 5 with a 20 MHz system bandwidth and a short DMRS symbol is taken as an example.
  • the normal CP length required for the symbols of sequence numbers 1, 5, 1, 5 is 144 sample points, and the short DMRS symbol requires 1024 samples, then 4 short DMRS symbols and CP are relative to the original normal DMRS symbols and CP.
  • the symbol with the sequence number 0 is a short DMRS symbol, since the CP length of the symbol with the sequence number 0 is 160, it is necessary to further reduce the number of sampling points occupied by the GAP.
  • the symbol of the sequence number of 1, 4, 1, 4 is described by taking the symbol of the 20 MHz system bandwidth and the short DMRS symbol as an example.
  • the length of the extended CP of each sequence number of 1, 4, 1, 4 is 512 sample points, and there are also two sampling points corresponding to the extended CP length, that is, 1024.
  • the short DMRS symbol and the CP length can be borrowed from the last symbol GAP, and the data symbol is not reduced at this time. The number.
  • the DMRS occupies 3 symbols in one subframe, 2 of which are short DMRS symbols, and 1 is a normal short DMRS symbol, wherein 2 short DMRS symbols correspond to 1 normal data symbol, and need to be from the last one
  • the length of a CP length is borrowed from the symbol GAP, and the number of data symbols is not reduced at this time.
  • Embodiment 3 provides another scheme for increasing the density of DMRS in the time domain without increasing or seldom increasing system overhead.
  • the technical effect is the same as that of the second embodiment.
  • a method of borrowing sampling points from the GAP may be employed.
  • Embodiment 4 provides a transmission scheme of a reference signal, which may be used in a process such as AGC, which may be part of the DMRS or independent of the DMRS.
  • the reference signal is taken out from the second time slot, that is, the GAP of the time slot 1; in FIG. 12B, from the perspective of the entire subframe, the GAP is the GAP of the entire subframe. It is not limited to the GAP of the second time slot.
  • the reference signal for the AGC is placed on the symbol at the beginning of the subframe.
  • the mapping manner in the frequency domain may refer to the mapping manner in the second embodiment, and may be mapped discontinuously at equal intervals on the bandwidth occupied by the reference signal.
  • one symbol in the reference signal sequence is placed every M subcarriers, where M is an integer greater than or equal to 2.
  • the interval of the subcarriers of the reference signal may be K times the interval of the subcarriers of the data symbols, that is, the reference signal is a short reference signal.
  • the sampling point in the time domain occupied by the short reference signal Available from GAP.
  • Embodiment 4 support for AGC can be implemented, and support for AGC can be realized. Improve the demodulation performance of burst data in high-speed scenarios without increasing system overhead.
  • the DMRS in the second embodiment and the third embodiment can be regarded as being mapped by Time Division Multiplexing (TDM).
  • TDM Time Division Multiplexing
  • the DMRS is frequency division multiplexing (Frequency Division Multiplexing). , FDM) mode mapping, wherein the part with the lattice is the time-frequency resource occupied by the DMRS.
  • the DMRS is continuously mapped on all symbols in one subframe, that is, each symbol in one subframe continuously maps the DMRS on a certain frequency domain subcarrier.
  • each PRB pair the DMRS occupies P subcarriers.
  • Other P values can be 3, 4, and so on.
  • FIG. 14 is a schematic structural diagram of a first reference signal sending apparatus according to Embodiment 6 of the present invention. As shown in FIG. 14, the apparatus includes:
  • the processing unit 1401 is configured to generate a reference signal
  • the sending unit 1402 is configured to send the reference signal generated by the processing unit 1401.
  • the reference signal occupies at least three symbols
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the at least three symbols occupied by the reference signal include at least one short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the processing unit 1401 can be implemented by a processor, and the transmitting unit 1402 can be implemented by a transmitter.
  • the process of generating and transmitting the reference signal can refer to the related description in FIG. 5B and the first embodiment.
  • mapping mode one For the mapping manner of the reference signal sequence, refer to the “mapping mode one” in the first embodiment, for example:
  • the interval of the subcarriers occupied by the short reference symbols in the frequency domain is K times the interval of the subcarriers occupied by the data symbols in the frequency domain, and K is an integer greater than or equal to 2.
  • the last symbol of one subframe is a null symbol, all data symbols in one subframe, symbols occupied by the reference signal, and null symbols form a subframe, where the length of the null symbol is less than or equal to one data. The length of the symbol.
  • the reference signal occupies Na symbols, and the number of short reference symbols included in the occupied Na symbols is Nb, and the number of normal reference symbols included is Na-Nb. ;
  • the interval of the subcarriers occupied by the normal reference symbols in the frequency domain is equal to the interval of the subcarriers occupied by the data symbols in the frequency domain; Na and Nb are positive integers, and Nb is less than or equal to Na.
  • the short reference symbols occupy consecutive subcarriers in the frequency domain.
  • the reference signal occupies three symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 6 symbols and Not less than 5 symbols; if the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 5 symbols and not less than 4 symbols; or
  • the reference signal occupies four symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 6 symbols and not less than 4 symbols. If the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 5 symbols and not less than 3 symbols.
  • the reference signal occupies all non-empty symbols in one subframe, and the number of all non-empty symbols in one subframe is greater than or equal to 3;
  • the reference signal occupies a plurality of discrete subcarriers.
  • the reference signal occupies a plurality of discontinuous multiple subcarriers in each physical resource block PRB occupied by the frequency domain.
  • the reference signal occupies a plurality of subcarriers at equal intervals in each PRB occupied by the frequency domain.
  • data is not mapped or mapped on the subcarriers that are not occupied by the reference signal.
  • the manner in which the processing unit 1401 generates the reference signal sequence may be referred to various alternative manners for generating the reference sequence introduced in Embodiment 1, such as:
  • the processing unit 1401 is specifically configured to: for each symbol occupied by the reference signal,
  • the first sequence used to generate the reference signal is the same or different for different symbols occupied by the reference signal.
  • the first sequence is generated by a ZC sequence
  • the first sequence is generated by the second sequence and the third sequence
  • the second sequence is ⁇ Z 1 , Z 2 , . . . , Z N ⁇
  • the length of the second sequence is equal to the length of the first sequence, both are N, and N is positive.
  • the third sequence is ⁇ R 1 , R 2 , . . . , R M ⁇ , and the length of the third sequence is M, where M is the number of symbols occupied by the reference signal in one subframe, and is a positive integer.
  • the second sequence is generated by a ZC sequence and the third sequence is generated by a pseudo-random sequence;
  • Both the second sequence and the third sequence are generated by the ZC sequence.
  • the reference signal occupies subcarriers in the same frequency domain position on different symbols of one subframe
  • the processing unit is specifically configured to:
  • the first sequence used to generate the reference signal is the same or different for different subcarriers occupied by the reference signal.
  • an embodiment of the present invention further provides a reference signal transmitting apparatus, including the reference signal sending apparatus provided in Embodiment 6.
  • FIG. 15 is a schematic structural diagram of a second reference signal transmitting apparatus provided in Embodiment 7. As shown in FIG. 15, the apparatus includes:
  • a processor 1501 configured to generate a reference signal
  • a transmitter 1502 configured to send the reference signal generated by the processor 1501;
  • the reference signal occupies at least three symbols
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the at least three symbols occupied by the reference signal include at least one short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the process of generating and transmitting the reference signal can refer to the related description in FIG. 5B and the first embodiment.
  • mapping mode one For the mapping manner of the reference signal sequence, refer to the “mapping mode one” in the first embodiment.
  • the manner in which the processor 1501 generates the reference signal sequence can be referred to various alternative manners for generating the reference sequence introduced in the first embodiment.
  • the transmitting device 501 of the reference signal in the first embodiment reference may be made to the transmitting device 501 of the reference signal in the first embodiment, and the repeated description is omitted.
  • the specific implementation manner of the processor 1501 can refer to the foregoing.
  • the transmitter 1502 can refer to the foregoing sending unit 1402.
  • an embodiment of the present invention further provides a reference signal sending apparatus, including the reference signal sending apparatus provided in Embodiment 7.
  • FIG. 16 is a schematic structural diagram of a reference signal receiving apparatus according to Embodiment 8, as shown in FIG. 16, the apparatus includes:
  • the receiving unit 1601 is configured to receive a reference signal
  • the processing unit 1602 is configured to perform signal processing on the reference signal received by the receiving unit 1601.
  • the reference signal occupies at least three symbols
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the at least three symbols occupied by the reference signal include at least one short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the processing unit 1602 can be implemented by a processor, and the receiving unit 1601 can be implemented by a receiver.
  • the reception and signal processing of the reference signal can be referred to the related description in FIG. 5C and the first embodiment.
  • mapping mode one For the mapping manner of the reference signal sequence, refer to the “mapping mode one” in the first embodiment, for example:
  • the interval of the subcarriers occupied by the short reference symbols in the frequency domain is K times the interval of the subcarriers occupied by the data symbols in the frequency domain, and K is an integer greater than or equal to 2.
  • the last symbol of one subframe is a null symbol, all data symbols in one subframe, symbols occupied by the reference signal, and null symbols form a subframe, where the length of the null symbol is less than or equal to one data. The length of the symbol.
  • the reference signal occupies Na symbols, and the number of short reference symbols included in the occupied Na symbols is Nb, and the number of normal reference symbols included is Na-Nb;
  • the interval of the subcarriers occupied by the normal reference symbols in the frequency domain is equal to the interval of the subcarriers occupied by the data symbols in the frequency domain; Na and Nb are positive integers, and Nb is less than or equal to Na.
  • the short reference symbols occupy consecutive subcarriers in the frequency domain.
  • the reference signal occupies three symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 6 symbols and Not less than 5 symbols; if the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 5 symbols and not less than 4 symbols; or
  • the reference signal occupies four symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 6 symbols and not less than 4 symbols. If the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 5 symbols and not less than 3 symbols.
  • the reference signal occupies all non-empty symbols in one subframe, and the number of all non-empty symbols in one subframe is greater than or equal to 3;
  • the reference signal occupies a plurality of discrete subcarriers.
  • the reference signal occupies a plurality of discontinuous multiple subcarriers in each physical resource block PRB occupied by the frequency domain.
  • the reference signal occupies a plurality of subcarriers at equal intervals in each PRB occupied by the frequency domain.
  • data is not mapped or mapped on the subcarriers that are not occupied by the reference signal.
  • the manner in which the processing unit 1601 generates the reference signal sequence may be referred to various alternative manners for generating the reference sequence introduced in Embodiment 1, such as:
  • the processing unit 1602 is further configured to: before the signal processing of the reference signal received by the receiving unit 1601, generate a first sequence, for each of the symbols occupied by the reference signal in one subframe, the first sequence The length is equal to the subcarrier occupied by the predicted reference signal on the symbol Number of
  • the processing unit 1602 is specifically configured to: perform signal processing on the received reference signal according to the generated first sequence;
  • the first sequence used for signal processing of the reference signal received by the receiving unit 1601 is the same or different for different symbols occupied by the reference signal.
  • the first sequence is generated by a ZC sequence
  • the first sequence is generated by the second sequence and the third sequence
  • the second sequence is ⁇ Z 1 , Z 2 , . . . , Z N ⁇
  • the length of the second sequence is equal to the length of the first sequence, both are N, and N is positive.
  • the third sequence is ⁇ R 1 , R 2 , . . . , R M ⁇ , and the length of the third sequence is M, where M is the number of symbols occupied by the reference signal in one subframe, and is a positive integer.
  • the second sequence is generated by a ZC sequence and the third sequence is generated by a pseudo-random sequence;
  • Both the second sequence and the third sequence are generated by the ZC sequence.
  • the reference signal occupies a pre-known subcarrier of the same frequency domain position on different symbols of one subframe;
  • the length of the first sequence is equal to the number of symbols occupied by the reference signal in one subframe
  • Each symbol in the first sequence corresponds to each symbol occupied by the predicted reference signal in one subframe, wherein one symbol corresponds to one symbol;
  • the first sequence used for signal processing of the received reference signal is the same or different for different subcarriers occupied by the reference signal.
  • an embodiment of the present invention further provides a reference signal receiving apparatus, including the reference signal receiving apparatus provided in Embodiment 8.
  • FIG. 17 is a schematic structural diagram of a second reference signal receiving apparatus according to Embodiment 9 of the present invention, As shown in Figure 17, the device includes:
  • a receiver 1701 configured to receive a reference signal
  • the processor 1702 is configured to perform signal processing on the reference signal received by the receiver 1701.
  • the reference signal occupies at least three symbols
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the at least three symbols occupied by the reference signal include at least one short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the reception and signal processing of the reference signal can be referred to the related description in FIG. 5C and the first embodiment.
  • mapping mode one For the mapping manner of the reference signal sequence, refer to the “mapping mode one” in the first embodiment.
  • the manner in which the processor 1701 generates the reference signal sequence can be referred to various alternative manners for generating the reference sequence introduced in the first embodiment.
  • an embodiment of the present invention further provides a reference signal receiving apparatus, including the reference signal receiving apparatus provided in Embodiment 9.
  • FIG. 18 is a schematic structural diagram of a reference signal transmitting apparatus according to Embodiment 10, as shown in FIG. 18, the apparatus includes:
  • a processing unit 1801 configured to generate a reference signal
  • the sending unit 1802 is configured to send the reference signal generated by the processing unit 1801.
  • the reference signal occupies only the first symbol of one subframe
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the reference signal occupies all subcarriers in a contiguous portion of the PRB, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol; or
  • the symbol occupied by the reference signal is a short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the processing unit 1801 can be implemented by a processor, and the transmitting unit 1802 can be implemented by a transmitter.
  • the process of generating and transmitting the reference signal can refer to the related description in FIG. 5B and the first embodiment.
  • mapping mode 2 For the mapping manner of the reference signal sequence, refer to the “mapping mode 2” in the first embodiment, for example:
  • the reference signal occupies a plurality of discontinuous subcarriers
  • the subcarriers not occupied by the reference signal do not map data or map data to be transmitted.
  • the last symbol of one subframe is an empty symbol
  • All data symbols in one subframe, symbols occupied by the reference signal, and null symbols constitute one subframe; the sum of the length of the symbol occupied by the reference signal and the length of the null symbol is equal to the length of one data symbol.
  • the manner in which the processing unit 1801 generates the reference signal sequence can be referred to various alternative manners for generating the reference sequence introduced in the first embodiment.
  • an embodiment of the present invention further provides a reference signal transmitting apparatus, including the reference signal transmitting apparatus provided in Embodiment 10.
  • FIG. 19 is a schematic structural diagram of a fourth reference signal transmitting apparatus according to Embodiment 11. As shown As shown in Figure 19, the device comprises:
  • a processor 1901 configured to generate a reference signal
  • a transmitter 1902 configured to send a reference signal generated by the processor 1901
  • the reference signal occupies only the first symbol of one subframe
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the reference signal occupies all subcarriers in a contiguous portion of the PRB, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol; or
  • the symbol occupied by the reference signal is a short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the process of generating and transmitting the reference signal can refer to the related description in FIG. 5B and the first embodiment.
  • mapping mode two For the mapping manner of the reference signal sequence, refer to the “mapping mode two” in the first embodiment.
  • the manner in which the processor 1901 generates the reference signal sequence can be referred to various alternative manners for generating the reference sequence introduced in the first embodiment.
  • an embodiment of the present invention further provides a reference signal transmitting apparatus, including the reference signal transmitting apparatus provided in Embodiment 11.
  • FIG. 20 is a schematic structural diagram of a third reference signal receiving apparatus according to Embodiment 12, as shown in FIG. 20, the apparatus includes:
  • the receiving unit 2001 is configured to receive a reference signal
  • the processing unit 2002 is configured to perform signal processing on the reference signal received by the receiving unit 2001;
  • the reference signal occupies only the first symbol of one subframe
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the reference signal occupies all subcarriers in a contiguous portion of the PRB, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol; or
  • the symbol occupied by the reference signal is a short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the processing unit 2002 can be implemented by a processor, and the receiving unit 2001 can be implemented by a receiver.
  • the reception and signal processing of the reference signal can be referred to the related description in FIG. 5C and the first embodiment.
  • mapping mode 2 For the mapping manner of the reference signal sequence, refer to the “mapping mode 2” in the first embodiment, for example:
  • the reference signal occupies a plurality of discontinuous subcarriers
  • the subcarriers not occupied by the reference signal do not map data or map data to be transmitted.
  • the last symbol of one subframe is an empty symbol
  • All data symbols in one subframe, symbols occupied by the reference signal, and null symbols constitute one subframe; the sum of the length of the symbol occupied by the reference signal and the length of the null symbol is equal to the length of one data symbol.
  • the manner in which the processing unit 2002 generates the reference signal sequence can be referred to various alternative manners for generating the reference sequence introduced in the first embodiment.
  • An embodiment of the present invention further provides a reference signal receiving apparatus, including the parameter provided in Embodiment 12. Test signal receiving device.
  • FIG. 21 is a schematic structural diagram of a fourth reference signal receiving apparatus according to Embodiment 12, as shown in FIG. 21, the apparatus includes:
  • a receiver 2101 configured to receive a reference signal
  • the processor 2102 is configured to perform signal processing on the reference signal received by the receiver 2101.
  • the reference signal occupies only the first symbol of one subframe
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the reference signal occupies all subcarriers in a contiguous portion of the PRB, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol; or
  • the symbol occupied by the reference signal is a short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the reception and signal processing of the reference signal can be referred to the related description in FIG. 5C and the first embodiment.
  • mapping mode 2 For the mapping manner of the reference signal sequence, refer to the “mapping mode 2” in the first embodiment, for example:
  • the reference signal occupies a plurality of discontinuous subcarriers
  • the subcarriers not occupied by the reference signal do not map data or map data to be transmitted.
  • the last symbol of one subframe is an empty symbol
  • All data symbols in one subframe, symbols occupied by the reference signal, and null symbols constitute one subframe; the sum of the length of the symbol occupied by the reference signal and the length of the null symbol is equal to the length of one data symbol.
  • the manner in which the processor 2102 generates the reference signal sequence can be referred to various alternative manners for generating the reference sequence introduced in the first embodiment.
  • An embodiment of the present invention further provides a reference signal receiving apparatus, including the reference signal receiving apparatus provided in Embodiment 13.
  • FIG. 22 is a flowchart of a first method for transmitting a reference signal according to Embodiment 14. As shown in FIG. 22, the method includes the following steps:
  • the reference signal occupies at least three symbols
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the at least three symbols occupied by the reference signal include at least one short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the process of generating and transmitting the reference signal can refer to the related description in FIG. 5B and the first embodiment.
  • mapping mode one in the first embodiment, for example:
  • the interval of the subcarriers occupied by the short reference symbols in the frequency domain is K times the interval of the subcarriers occupied by the data symbols in the frequency domain, and K is an integer greater than or equal to 2.
  • the last symbol of one subframe is a null symbol, all data symbols in one subframe, symbols occupied by the reference signal, and null symbols form a subframe, where the length of the null symbol is less than or equal to one data. The length of the symbol.
  • the reference signal occupies Na symbols, and the occupied Na
  • the number of short reference symbols included in the symbols is Nb, and the number of normal reference symbols included is Na-Nb;
  • the interval of the subcarriers occupied by the normal reference symbols in the frequency domain is equal to the interval of the subcarriers occupied by the data symbols in the frequency domain; Na and Nb are positive integers, and Nb is less than or equal to Na.
  • the short reference symbols occupy consecutive subcarriers in the frequency domain.
  • the reference signal occupies three symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 6 symbols and Not less than 5 symbols; if the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 5 symbols and not less than 4 symbols; or
  • the reference signal occupies four symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 6 symbols and not less than 4 symbols. If the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 5 symbols and not less than 3 symbols.
  • the reference signal occupies all non-empty symbols in one subframe, and the number of all non-empty symbols in one subframe is greater than or equal to 3;
  • the reference signal occupies a plurality of discrete subcarriers.
  • the reference signal occupies a plurality of discontinuous multiple subcarriers in each physical resource block PRB occupied by the frequency domain.
  • the reference signal occupies a plurality of subcarriers at equal intervals in each PRB occupied by the frequency domain.
  • data is not mapped or mapped on the subcarriers that are not occupied by the reference signal.
  • the manner of generating the reference signal sequence may be referred to various alternative manners for generating the reference sequence introduced in Embodiment 1, such as:
  • generating the reference signal includes: for each symbol occupied by the reference signal,
  • the first sequence used to generate the reference signal is the same or different for different symbols occupied by the reference signal.
  • the first sequence is generated by a ZC sequence
  • the first sequence is generated by the second sequence and the third sequence
  • the second sequence is ⁇ Z 1 , Z 2 , . . . , Z N ⁇
  • the length of the second sequence is equal to the length of the first sequence, both are N, and N is positive.
  • the third sequence is ⁇ R 1 , R 2 , . . . , R M ⁇ , and the length of the third sequence is M, where M is the number of symbols occupied by the reference signal in one subframe, and is a positive integer.
  • the second sequence is generated by a ZC sequence and the third sequence is generated by a pseudo-random sequence;
  • Both the second sequence and the third sequence are generated by the ZC sequence.
  • the reference signal occupies subcarriers in the same frequency domain position on different symbols of one subframe, and generating the reference signal includes:
  • the first sequence used to generate the reference signal is the same or different for different subcarriers occupied by the reference signal.
  • FIG. 23 is a flowchart of a method for receiving a first reference signal according to Embodiment 15. As shown in FIG. 23, the method includes the following steps:
  • the reference signal occupies at least three symbols
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the at least three symbols occupied by the reference signal include at least one short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • the reception and signal processing of the reference signal can refer to the related description in FIG. 5C and the first embodiment.
  • mapping mode one in the first embodiment, for example:
  • the interval of the subcarriers occupied by the short reference symbols in the frequency domain is K times the interval of the subcarriers occupied by the data symbols in the frequency domain, and K is an integer greater than or equal to 2.
  • the last symbol of one subframe is a null symbol, all data symbols in one subframe, symbols occupied by the reference signal, and null symbols form a subframe, where the length of the null symbol is less than or equal to one data. The length of the symbol.
  • the reference signal occupies Na symbols, and the number of short reference symbols included in the occupied Na symbols is Nb, and the number of normal reference symbols included is Na-Nb. ;
  • the interval of the subcarriers occupied by the normal reference symbols in the frequency domain is equal to the interval of the subcarriers occupied by the data symbols in the frequency domain; Na and Nb are positive integers, and Nb is less than or equal to Na.
  • the short reference symbols occupy consecutive subcarriers in the frequency domain.
  • the reference signal occupies three symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 6 symbols and Not less than 5 symbols; if the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 5 symbols and not less than 4 symbols; or
  • the reference signal occupies four symbols; if the CP is a normal CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 6 symbols and not less than 4 symbols. If the CP is an extended CP, the interval between adjacent symbols occupied by the reference signal in one subframe is not more than 5 symbols and not less than 3 symbols.
  • the reference signal occupies all non-empty symbols in one subframe, and the number of all non-empty symbols in one subframe is greater than or equal to 3;
  • the reference signal occupies a plurality of discrete subcarriers.
  • the reference signal occupies a plurality of discontinuous multiple subcarriers in each physical resource block PRB occupied by the frequency domain.
  • the reference signal occupies a plurality of subcarriers at equal intervals in each PRB occupied by the frequency domain.
  • data is not mapped or mapped on the subcarriers that are not occupied by the reference signal.
  • the manner of generating the reference signal sequence may be referred to various alternative manners for generating the reference sequence introduced in Embodiment 1, such as:
  • the method before performing signal processing on the received reference signal, the method further includes:
  • the first sequence used for signal processing of the received reference signal is the same or different for different symbols occupied by the reference signal.
  • the first sequence is generated by a ZC sequence
  • the first sequence is generated by the second sequence and the third sequence
  • the second sequence is ⁇ Z 1 , Z 2 , . . . , Z N ⁇
  • the length of the second sequence is equal to the length of the first sequence, both are N, and N is positive.
  • the third sequence is ⁇ R 1 , R 2 , . . . , R M ⁇ , and the length of the third sequence is M, where M is the number of symbols occupied by the reference signal in one subframe, and is a positive integer.
  • the second sequence is generated by a ZC sequence and the third sequence is generated by a pseudo-random sequence;
  • Both the second sequence and the third sequence are generated by the ZC sequence.
  • the reference signal occupies a pre-known subcarrier of the same frequency domain position on different symbols of one subframe;
  • the length of the first sequence is equal to the number of symbols occupied by the reference signal in one subframe
  • Each symbol in the first sequence corresponds to each symbol occupied by the predicted reference signal in one subframe, wherein one symbol corresponds to one symbol;
  • the first sequence used for signal processing of the received reference signal is the same or different for different subcarriers occupied by the reference signal.
  • FIG. 24 is a flowchart of a second method for transmitting a reference signal according to Embodiment 16. As shown in FIG. 24, the method includes the following steps:
  • the reference signal occupies only the first symbol of one subframe
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the reference signal occupies all subcarriers in a contiguous portion of the PRB, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol; or
  • the symbol occupied by the reference signal is a short reference symbol, and the length of the short reference symbol is less than one data symbol. The length of the number.
  • the process of generating and transmitting the reference signal can refer to the related description in FIG. 5B and the first embodiment.
  • mapping mode 2 the mapping manner of the reference signal sequence.
  • the reference signal occupies a plurality of discontinuous subcarriers
  • the subcarriers not occupied by the reference signal do not map data or map data to be transmitted.
  • the last symbol of one subframe is an empty symbol
  • All data symbols in one subframe, symbols occupied by the reference signal, and null symbols constitute one subframe; the sum of the length of the symbol occupied by the reference signal and the length of the null symbol is equal to the length of one data symbol.
  • the manner of generating the reference signal sequence may be referred to various alternative manners for generating the reference sequence introduced in Embodiment 1.
  • FIG. 25 is a flowchart of a second reference signal receiving method provided in Embodiment 17. As shown in FIG. 25, the method includes the following steps:
  • the reference signal occupies only the first symbol of one subframe
  • the reference signal occupies a plurality of discontinuous subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol;
  • the reference signal occupies a continuous part of the PRB within the bandwidth occupied by the reference signal. All subcarriers, and in the time domain, the length of one symbol occupied by the reference signal is equal to the length of one data symbol; or
  • the symbol occupied by the reference signal is a short reference symbol, and the length of the short reference symbol is less than the length of one data symbol.
  • mapping mode 2 the mapping manner of the reference signal sequence.
  • the reference signal occupies a plurality of discontinuous subcarriers
  • the subcarriers not occupied by the reference signal do not map data or map data to be transmitted.
  • the last symbol of one subframe is an empty symbol
  • All data symbols in one subframe, symbols occupied by the reference signal, and null symbols constitute one subframe; the sum of the length of the symbol occupied by the reference signal and the length of the null symbol is equal to the length of one data symbol.
  • the manner of generating the reference signal sequence may be referred to various alternative manners for generating the reference sequence introduced in Embodiment 1.
  • the reference signal is used to occupy discontinuous subcarriers in the frequency domain, or the symbol length of the reference signal in the time domain is shortened, thereby reducing the occupation of the reference signal by the reference signal.
  • the receiving device of the reference signal can obtain a denser reference signal per unit time than the scheme shown in FIG.
  • the channel fading is more severe, and the channel characteristics change faster in a unit time.
  • the data to be transmitted in a time of one transmission (for example, one transmission of a 1 ms subframe of the LTE system), for the transmitting device, the data to be transmitted can be sent out in the coherent time; for the receiving device In other words, the receiving device can obtain more reference signals and roots.
  • the information such as the channel state is obtained according to the obtained reference signal, so that the performance requirement of the receiving device 502 for estimating the data transmitted by the receiving device is met, and the communication requirements in the high-frequency and high-speed scenarios are met.
  • the reference signal occupies at least 3 symbols in one subframe
  • the reference signal occupies a plurality of discontinuous subcarriers in each PRB occupied in the frequency domain, or the reference signal occupies in one subframe
  • the symbol includes a short reference symbol, which can effectively reduce the overhead of the reference signal.
  • the communication requirement of the high-speed and high-frequency scene can be satisfied without additionally increasing the reference signal overhead.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device. Instructions are provided for implementation in the flowchart The steps of a process or a plurality of processes and/or block diagrams of a function specified in a block or blocks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及无线通信技术领域,尤其涉及参考信号的传输设备、方法及系统,用以减少参考信号对传输资源的占用。在本发明实施例提供的一种参考信号发送装置中,处理单元生成参考信号;发送单元将参考信号发送出去;其中,在时域上的一个子帧中,参考信号占用至少三个符号;在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者参考信号占用的至少三个符号中包括至少一个长度小于一个数据符号长度的短参考符号。通过参考信号在频域上占用不连续的子载波,或缩短参考信号在时域上的符号长度,达到减少参考信号对传输资源占用的目的。

Description

一种参考信号的传输设备、方法及系统 技术领域
本发明涉及无线通信技术领域,尤其涉及一种参考信号的传输设备、方法及系统。
背景技术
无线通信系统中,参考信号(Reference Signal,RS)由参考信号的发送设备发送给参考信号的接收设备,可用于信道估计、信号解调、自动增益控制(Automatic Gain Control,AGC)、信号质量测量、定位,以及信道探测,定位等,参考信号的接收设备预先知道要接收的参考信号,这样才能达到接收设备信道估计等信号处理的目的。
通常,参考信号的传输需要占用一定的信道传输资源,降低了数据的传输效率。
发明内容
本发明实施例提供一种参考信号的传输设备、方法及系统,用以提供一种参考信号的传输方案,减少参考信号对传输资源的占用。
第一方面,本发明实施例提供一种参考信号发送装置,包括:
处理单元,用于生成参考信号;
发送单元,用于将所述处理单元生成的所述参考信号发送出去;
其中,在时域上的一个子帧中,所述参考信号占用至少三个符号;
在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
所述参考信号占用的所述至少三个符号中包括至少一个短参考符号,所述短参考符号的长度小于一个数据符号的长度。
结合第一方面,在第一种可能的实现方式中,
所述短参考符号在频域上占用的子载波的间隔为数据符号在频域上占用的子载波的间隔的K倍,所述K为大于或等于2的整数。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述一个子帧的最后一个符号为空符号,所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所述空符号组成所述一个子帧,其中,所述空符号的长度小于或等于一个数据符号的长度。
结合第一方面的第一种或第二种可能的实现方式,在第三种可能的实现方式中,
在时域上的所述一个子帧中,所述参考信号占用Na个符号,占用的Na个符号中包括的短参考符号的个数为Nb,包括的正常参考符号的个数为Na-Nb;
其中,所述正常参考符号的在频域上占用的子载波的间隔与数据符号在频域上占用的子载波的间隔相等;Na、Nb为正整数,且Nb小于或等于Na。
结合第一方面的第一种至第三种可能的实现方式中的任一种,在第四种可能的实现方式中,所述短参考符号在频域上占用连续的子载波。
结合第一方面,或第一方面的第一种至第三种可能的实现方式中的任一种,在第五种可能的实现方式中,
在时域上的所述一个子帧中,所述参考信号占用三个符号;若CP为正常CP,则所述参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于5个符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于4个符号;或
在时域上的所述一个子帧中,所述参考信号占用四个符号;若CP为正常CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于4符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于3个符号。
结合第一方面,在第六种可能的实现方式中,所述参考信号占用所述一 个子帧中的所有非空符号,所述一个子帧中的所有非空符号的个数大于或等于3;
对于每个参考信号在频域上占用的每一个PRB,所述参考信号占用不连续的多个子载波。
结合第一方面,或第一方面的第一种至第三种可能的实现方式中的任一种,或第五种可能的实现方式,在第七种可能的实现方式中,
所述参考信号在频域上占用的每一个物理资源块PRB中,占用不连续的多个子载波。
结合第一方面的第七种可能的实现方式,在第八种可能的实现方式中,
所述参考信号在频域上占用的每一个PRB中,占用等间隔的多个子载波。
结合第一方面的第六种至第八种可能的实现方式中的任一种,在第九种可能的实现方式中,在所述参考信号所在的频域上的每一个PRB中,未被所述参考信号占用的子载波上不映射数据或映射待传输的数据。
结合第一方面,或第一方面的第一种至第九种可能的实现方式中的任一种,在第十种可能的实现方式中,所述处理单元具体用于:对于所述参考信号占用的每一个符号,
生成第一序列,所述第一序列的长度等于所述参考信号在该符号上占用的子载波的个数;以及
将生成的所述第一序列中的各个码元分别映射到所述参考信号在该符号上占用的各个子载波上,其中,一个码元对应一个子载波;
其中,在所述一个子帧中,对于所述参考信号占用的不同符号,生成所述参考信号所使用的所述第一序列相同或不同。
结合第一方面的第十种可能的实现方式,在第十一种可能的实现方式中,
所述第一序列由ZC(Zadoff-Chu)序列生成;或
所述第一序列由第二序列与第三序列生成,所述第二序列为{Z1,Z2,…,ZN},所述第二序列的长度与第一序列的长度相等,均为N, N为正整数;所述第三序列为{R1,R2,…,RM},所述第三序列的长度为M,M为在一个子帧中,所述参考信号占用的符号的个数,为正整数。
结合第一方面的第十一种可能的实现方式,在第十二种可能的实现方式中,
所述第二序列由ZC序列生成,所述第三序列由伪随机序列生成;或
所述第二序列和所述第三序列均由ZC序列生成。
结合第一方面,或第一方面的第一种至第九种可能的实现方式中的任一种,在第十三种可能的实现方式中,所述参考信号在所述一个子帧的不同符号上占用相同频域位置的子载波,所述处理单元具体用于:
生成第一序列,所述第一序列的长度等于所述参考信号在一个子帧上占用的符号的个数;
将生成的所述第一序列中的各个码元分别映射到所述参考信号在一个子帧上占用的各个符号上,其中,一个码元对应一个符号;
其中,在所述一个子帧中,对于所述参考信号占用的不同子载波,生成所述参考信号所使用的所述第一序列相同或不同。
结合第一方面,或第一方面的上述任何一种可能的实现方式,在第十四种可能的实现方式中,
所述参考信号所占用的时频资源为第一资源池中的时频资源;
所述第一资源池在时域上包括无线帧中的部分或全部子帧;
在频域上包括配置的系统带宽中的部分或全部带宽。
第二方面,本发明实施例提供一种参考信号发送设备,包括第一方面或第一方面的任一种可能的实现方式所提供的参考信号发送装置。
第三方面,本发明实施例提供一种参考信号接收装置,包括:
接收单元,用于接收参考信号;
处理单元,用于对所述接收单元接收到的参考信号进行信号处理;
其中,在时域上的一个子帧中,所述参考信号占用至少三个符号;
在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
所述参考信号占用的所述至少三个符号中包括至少一个短参考符号,所述短参考符号的长度小于一个数据符号的长度。
结合第三方面,在第一种可能的实现方式中,
所述短参考符号在频域上占用的子载波的间隔为数据符号在频域上占用的子载波的间隔的K倍,所述K为大于或等于2的整数。
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述一个子帧的最后一个符号为空符号,所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所述空符号组成所述一个子帧,其中,所述空符号的长度小于或等于一个数据符号的长度。
结合第三方面的第一种或第二种可能的实现方式,在第三种可能的实现方式中,
在时域上的所述一个子帧中,所述参考信号占用Na个符号,占用的Na个符号中包括的短参考符号的个数为Nb,包括的正常参考符号的个数为Na-Nb;
其中,所述正常参考符号的在频域上占用的子载波的间隔与数据符号在频域上占用的子载波的间隔相等;Na、Nb为正整数,且Nb小于或等于Na。
结合第三方面的第一种至第三种可能的实现方式中的任一种,在第四种可能的实现方式中,所述短参考符号在频域上占用连续的子载波。
结合第三方面,或第三方面的第一种至第三种可能的实现方式中的任一种,在第五种可能的实现方式中,
在时域上的所述一个子帧中,所述参考信号占用三个符号;若CP为正常CP,则所述参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于5个符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于4个符号;或
在时域上的所述一个子帧中,所述参考信号占用四个符号;若CP为正常CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于4符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于3个符号。
结合第三方面,在第六种可能的实现方式中,所述参考信号占用所述一个子帧中的所有非空符号,所述一个子帧中的所有非空符号的个数大于或等于3;
对于每个参考信号在频域上占用的每一个PRB,所述参考信号占用不连续的多个子载波。
结合第三方面,或第三方面的第一种至第三种可能的实现方式中的任一种,或第五种可能的实现方式,在第七种可能的实现方式中,所述参考信号在频域上占用的每一个物理资源块PRB中,占用不连续的多个子载波。
结合第三方面的第七种可能的实现方式,在第八种可能的实现方式中,
所述参考信号在频域上占用的每一个PRB中,占用等间隔的多个子载波。
结合第三方面的第六种至第八种可能的实现方式中的任一种,在第九种可能的实现方式中,在所述参考信号所在的频域上的每一个PRB中,未被所述参考信号占用的子载波上不映射数据或映射待传输的数据。
结合第三方面,或第三方面的第一种至第九种可能的实现方式中的任一种,在第十种可能的实现方式中,
所述处理单元还用于:在对接收的所述参考信号进行信号处理之前,对于预知的在所述一个子帧中所述参考信号占用的每一个符号,生成第一序列,所述第一序列的长度等于预知的所述参考信号在该符号上占用的子载波的个数;
所述处理单元具体用于:根据生成的所述第一序列对接收的所述参考信号进行所述信号处理;
其中,在所述一个子帧中,对于所述参考信号占用的不同符号,用于对接收的所述参考信号进行所述信号处理所使用的所述第一序列相同或不同。
结合第三方面的第十种可能的实现方式,在第十一种可能的实现方式中,
所述第一序列由ZC序列生成;或
所述第一序列由第二序列与第三序列生成,所述第二序列为{Z1,Z2,…,ZN},所述第二序列的长度与第一序列的长度相等,均为N,N为正整数;所述第三序列为{R1,R2,…,RM},所述第三序列的长度为M,M为在一个子帧中,所述参考信号占用的符号的个数,为正整数。
结合第三方面的第十一种可能的实现方式,在第十二种可能的实现方式中,
所述第二序列由ZC序列生成,所述第三序列由伪随机序列生成;或
所述第二序列和所述第三序列均由ZC序列生成。
结合第三方面,或第三方面的第一种至第九种可能的实现方式中的任一种,在第十三种可能的实现方式中,所述参考信号在所述一个子帧的不同符号上占用预知的相同频域位置的子载波;
所述第一序列的长度等于所述参考信号在一个子帧上占用的符号的个数;
所述第一序列中的各个码元分别对应于预知的所述参考信号在所述一个子帧上占用的各个符号,其中,一个码元对应一个符号;
其中,在所述一个子帧中,对于所述参考信号占用的不同子载波,用于对接收的所述参考信号进行所述信号处理所使用的所述第一序列相同或不同。
结合第三方面,或第三方面的上述任何一种可能的实现方式,在第十四种可能的实现方式中,
所述参考信号所占用的时频资源为第一资源池中的时频资源;
所述第一资源池在时域上包括无线帧中的部分或全部子帧;
在频域上包括配置的系统带宽中的部分或全部带宽。
第四方面,本发明实施例提供一种参考信号接收设备,包括第三方面或第三方面的任一种可能的实现方式所提供的参考信号接收装置。
第五方面,本发明实施例提供一种参考信号发送装置,包括:
处理单元,用于生成参考信号;
发送单元,用于将所述处理单元生成的所述参考信号发送出去;
在时域上,所述参考信号仅占用一个子帧的第一个符号;
在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
在频域上,在所述参考信号占用的带宽内,所述参考信号占用连续的部分PRB中的全部子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
所述参考信号占用的符号为短参考符号,所述短参考符号的长度小于一个数据符号的长度。
结合第五方面,在第一种可能的实现方式中,
若在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,则
在所述参考信号占用的每一个PRB中,未被所述参考信号占用的子载波不映射数据或映射待传输的数据。
结合第五方面,或第五方面的第一种可能的实现方式,在第二种可能的实现方式中,所述一个子帧的最后一个符号为空符号;
所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所述空符号组成所述一个子帧;所述参考信号占用的符号的长度与所述空符号的长度之和等于一个数据符号的长度。
结合第五方面,或第五方面的上述任何一种可能的实现方式,在第三种可能的实现方式中,
所述参考信号所占用的时频资源为第一资源池中的时频资源;
所述第一资源池在时域上包括无线帧中的部分或全部子帧;
在频域上包括配置的系统带宽中的部分或全部带宽。
第六方面,本发明实施例提供一种参考信号发送设备,包括如第五方面,或第五方面的任一种可能的实现方式所提供的参考信号发送装置。
第七方面,本发明实施例提供一种参考信号接收装置,包括:
接收单元,用于接收参考信号;
处理单元,用于对所述接收单元接收的参考信号进行信号处理;
在时域上,所述参考信号仅占用一个子帧的第一个符号;
在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
在频域上,在所述参考信号占用的带宽内,所述参考信号占用连续的部分PRB中的全部子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
所述参考信号占用的符号为短参考符号,所述短参考符号的长度小于一个数据符号的长度。
结合第七方面,在第一种可能的实现方式中,
若在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,则
在所述参考信号占用的每一个PRB中,未被所述参考信号占用的子载波不映射数据或映射待传输的数据。
结合第七方面或第七方面的第一种可能的实现方式,在第二种可能的实现方式中,所述一个子帧的最后一个符号为空符号;
所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所述空符号组成所述一个子帧;所述参考信号占用的符号的长度与所述空符号的长度之和等于一个数据符号的长度。
结合第七方面,或第七方面的上述任何一种可能的实现方式,在第三种 可能的实现方式中,
所述参考信号所占用的时频资源为第一资源池中的时频资源;
所述第一资源池在时域上包括无线帧中的部分或全部子帧;
在频域上包括配置的系统带宽中的部分或全部带宽。
第八方面,本发明实施例提供一种参考信号接收设备,包括第七方面或第七方面的任一种可能的实现方式所提供的参考信号接收装置。
第九方面,本发明实施例提供一种参考信号发送方法,包括:
生成参考信号;
将生成的所述参考信号发送出去;
其中,在时域上的一个子帧中,所述参考信号占用至少三个符号;
在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
所述参考信号占用的所述至少三个符号中包括至少一个短参考符号,所述短参考符号的长度小于一个数据符号的长度。
结合第九方面,在第一种可能的实现方式中,
所述短参考符号在频域上占用的子载波的间隔为数据符号在频域上占用的子载波的间隔的K倍,所述K为大于或等于2的整数。
结合第九方面的第一种可能的实现方式,在第二种可能的实现方式中,所述一个子帧的最后一个符号为空符号,所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所述空符号组成所述一个子帧,其中,所述空符号的长度小于或等于一个数据符号的长度。
结合第九方面的第一种或第二种可能的实现方式,在第三种可能的实现方式中,
在时域上的所述一个子帧中,所述参考信号占用Na个符号,占用的Na个符号中包括的短参考符号的个数为Nb,包括的正常参考符号的个数为Na-Nb;
其中,所述正常参考符号的在频域上占用的子载波的间隔与数据符号在频域上占用的子载波的间隔相等;Na、Nb为正整数,且Nb小于或等于Na。
结合第九方面的第一种至第三种可能的实现方式中的任一种,在第四种可能的实现方式中,所述短参考符号在频域上占用连续的子载波。
结合第九方面,或第九方面的第一种至第三种可能的实现方式中的任一种,在第五种可能的实现方式中,
在时域上的所述一个子帧中,所述参考信号占用三个符号;若CP为正常CP,则所述参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于5个符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于4个符号;或
在时域上的所述一个子帧中,所述参考信号占用四个符号;若CP为正常CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于4符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于3个符号。
结合第九方面,在第六种可能的实现方式中,所述参考信号占用所述一个子帧中的所有非空符号,所述一个子帧中的所有非空符号的个数大于或等于3;
对于每个参考信号在频域上占用的每一个PRB,所述参考信号占用不连续的多个子载波。
结合第九方面,或第九方面的第一种至第三种可能的实现方式中的任一种,或第五种可能的实现方式,在第七种可能的实现方式中,所述参考信号在频域上占用的每一个物理资源块PRB中,占用不连续的多个子载波。
结合第九方面的第七种可能的实现方式,在第八种可能的实现方式中,
所述参考信号在频域上占用的每一个PRB中,占用等间隔的多个子载波。
结合第九方面的第六种至第八种可能的实现方式中的任一种,在第九种可能的实现方式中,在所述参考信号所在的频域上的每一个PRB中,未被所述参考信号占用的子载波上不映射数据或映射待传输的数据。
结合第九方面,或第九方面的第一种至第九种可能的实现方式中的任一种,在第十种可能的实现方式中,
所述生成参考信号包括:对于所述参考信号占用的每一个符号,
生成第一序列,所述第一序列的长度等于所述参考信号在该符号上占用的子载波的个数;以及
将生成的所述第一序列中的各个码元分别映射到所述参考信号在该符号上占用的各个子载波上,其中,一个码元对应一个子载波;
其中,在所述一个子帧中,对于所述参考信号占用的不同符号,生成所述参考信号所使用的所述第一序列相同或不同。
结合第九方面的第十种可能的实现方式,在第十一种可能的实现方式中,
所述第一序列由ZC序列生成;或
所述第一序列由第二序列与第三序列生成,所述第二序列为{Z1,Z2,…,ZN},所述第二序列的长度与第一序列的长度相等,均为N,N为正整数;所述第三序列为{R1,R2,…,RM},所述第三序列的长度为M,M为在一个子帧中,所述参考信号占用的符号的个数,为正整数。
结合第九方面的第十一种可能的实现方式,在第十二种可能的实现方式中,
所述第二序列由ZC序列生成,所述第三序列由伪随机序列生成;或
所述第二序列和所述第三序列均由ZC序列生成。
结合第九方面,或第九方面的第一种至第九种可能的实现方式中的任一种,在第十三种可能的实现方式中,所述参考信号在所述一个子帧的不同符号上占用相同频域位置的子载波,所述生成参考信号包括:
生成第一序列,所述第一序列的长度等于所述参考信号在一个子帧上占用的符号的个数;
将生成的所述第一序列中的各个码元分别映射到所述参考信号在一个子 帧上占用的各个符号上,其中,一个码元对应一个符号;
其中,在所述一个子帧中,对于所述参考信号占用的不同子载波,生成所述参考信号所使用的所述第一序列相同或不同。
结合第九方面,或第九方面的上述任何一种可能的实现方式,在第十四种可能的实现方式中,
所述参考信号所占用的时频资源为第一资源池中的时频资源;
所述第一资源池在时域上包括无线帧中的部分或全部子帧;
在频域上包括配置的系统带宽中的部分或全部带宽。
第十方面,本发明实施例提供一种参考信号接收方法,包括:
接收参考信号;
对接收到的参考信号进行信号处理;
其中,在时域上的一个子帧中,所述参考信号占用至少三个符号;
在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
所述参考信号占用的所述至少三个符号中包括至少一个短参考符号,所述短参考符号的长度小于一个数据符号的长度。
结合第十方面,在第一种可能的实现方式中,
所述短参考符号在频域上占用的子载波的间隔为数据符号在频域上占用的子载波的间隔的K倍,所述K为大于或等于2的整数。
结合第十方面的第一种可能的实现方式,在第二种可能的实现方式中,所述一个子帧的最后一个符号为空符号,所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所述空符号组成所述一个子帧,其中,所述空符号的长度小于或等于一个数据符号的长度。
结合第十方面的第一种或第二种可能的实现方式,在第三种可能的实现方式中,
在时域上的所述一个子帧中,所述参考信号占用Na个符号,占用的Na 个符号中包括的短参考符号的个数为Nb,包括的正常参考符号的个数为Na-Nb;
其中,所述正常参考符号的在频域上占用的子载波的间隔与数据符号在频域上占用的子载波的间隔相等;Na、Nb为正整数,且Nb小于或等于Na。
结合第十方面的第一种至第三种可能的实现方式中的任一种,在第四种可能的实现方式中,所述短参考符号在频域上占用连续的子载波。
结合第十方面,或第十方面的第一种至第三种可能的实现方式中的任一种,在第五种可能的实现方式中,
在时域上的所述一个子帧中,所述参考信号占用三个符号;若CP为正常CP,则所述参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于5个符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于4个符号;或
在时域上的所述一个子帧中,所述参考信号占用四个符号;若CP为正常CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于4符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于3个符号。
结合第十方面,在第六种可能的实现方式中,所述参考信号占用所述一个子帧中的所有非空符号,所述一个子帧中的所有非空符号的个数大于或等于3;
对于每个参考信号在频域上占用的每一个PRB,所述参考信号占用不连续的多个子载波。
结合第十方面,或第十方面的第一种至第三种可能的实现方式中的任一种,或第五种可能的实现方式,在第七种可能的实现方式中,所述参考信号在频域上占用的每一个物理资源块PRB中,占用不连续的多个子载波。
结合第十方面的第七种可能的实现方式,在第八种可能的实现方式中,
所述参考信号在频域上占用的每一个PRB中,占用等间隔的多个子载波。
结合第十方面的第六种至第八种可能的实现方式中的任一种,在第九种 可能的实现方式中,在所述参考信号所在的频域上的每一个PRB中,未被所述参考信号占用的子载波上不映射数据或映射待传输的数据。
结合第十方面,或第十方面的第一种至第九种可能的实现方式中的任一种,在第十种可能的实现方式中,
在对接收的所述参考信号进行信号处理之前,还包括:
对于预知的在所述一个子帧中所述参考信号占用的每一个符号,生成第一序列,所述第一序列的长度等于预知的所述参考信号在该符号上占用的子载波的个数;
根据生成的所述第一序列对接收的所述参考信号进行所述信号处理;
其中,在所述一个子帧中,对于所述参考信号占用的不同符号,用于对接收的所述参考信号进行所述信号处理所使用的所述第一序列相同或不同。
结合第十方面的第十种可能的实现方式,在第十一种可能的实现方式中,
所述第一序列由ZC序列生成;或
所述第一序列由第二序列与第三序列生成,所述第二序列为{Z1,Z2,…,ZN},所述第二序列的长度与第一序列的长度相等,均为N,N为正整数;所述第三序列为{R1,R2,…,RM},所述第三序列的长度为M,M为在一个子帧中,所述参考信号占用的符号的个数,为正整数。
结合第十方面的第十一种可能的实现方式,在第十二种可能的实现方式中,
所述第二序列由ZC序列生成,所述第三序列由伪随机序列生成;或
所述第二序列和所述第三序列均由ZC序列生成。
结合第十方面,或第十方面的第一种至第九种可能的实现方式中的任一种,在第十三种可能的实现方式中,所述参考信号在所述一个子帧的不同符号上占用预知的相同频域位置的子载波;
所述第一序列的长度等于所述参考信号在一个子帧上占用的符号的个 数;
所述第一序列中的各个码元分别对应于预知的所述参考信号在所述一个子帧上占用的各个符号,其中,一个码元对应一个符号;
其中,在所述一个子帧中,对于所述参考信号占用的不同子载波,用于对接收的所述参考信号进行所述信号处理所使用的所述第一序列相同或不同。
结合第十方面,或第十方面的上述任何一种可能的实现方式,在第十四种可能的实现方式中,
所述参考信号所占用的时频资源为第一资源池中的时频资源;
所述第一资源池在时域上包括无线帧中的部分或全部子帧;
在频域上包括配置的系统带宽中的部分或全部带宽。
第十一方面,本发明实施例提供一种无线通信系统,包括:发送设备和接收设备,
所述发送设备,用于生成参考信号,并将生成的所述参考信号发送出去;
所述接收设备,用于接收参考信号,并对对接收的参考信号进行信号处理;
其中,在时域上的一个子帧中,所述参考信号占用至少三个符号;
在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
所述参考信号占用的所述至少三个符号中包括至少一个短参考符号,所述短参考符号的长度小于一个数据符号的长度。
第十二方面,本发明实施例提供一种参考信号发送方法,包括:
生成参考信号;
将生成的所述参考信号发送出去;
在时域上,所述参考信号仅占用一个子帧的第一个符号;
在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考 信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
在频域上,在所述参考信号占用的带宽内,所述参考信号占用连续的部分PRB中的全部子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
所述参考信号占用的符号为短参考符号,所述短参考符号的长度小于一个数据符号的长度。
结合第十二方面,在第一种可能的实现方式中,
若在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,则
在所述参考信号占用的每一个PRB中,未被所述参考信号占用的子载波不映射数据或映射待传输的数据。
结合第十二方面或第十二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述一个子帧的最后一个符号为空符号;
所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所述空符号组成所述一个子帧;所述参考信号占用的符号的长度与所述空符号的长度之和等于一个数据符号的长度。
结合第十二方面,或第十二方面的上述任何一种可能的实现方式,在第三种可能的实现方式中,
所述参考信号所占用的时频资源为第一资源池中的时频资源;
所述第一资源池在时域上包括无线帧中的部分或全部子帧;
在频域上包括配置的系统带宽中的部分或全部带宽。
第十三方面,本发明实施例提供一种参考信号接收方法,包括:
接收参考信号;
对接收的参考信号进行信号处理;
在时域上,所述参考信号仅占用一个子帧的第一个符号;
在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考 信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
在频域上,在所述参考信号占用的带宽内,所述参考信号占用连续的部分PRB中的全部子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
所述参考信号占用的符号为短参考符号,所述短参考符号的长度小于一个数据符号的长度。
结合第十三方面,在第一种可能的实现方式中,
若在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,则
在所述参考信号占用的每一个PRB中,未被所述参考信号占用的子载波不映射数据或映射待传输的数据。
结合第十三方面,或第十三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述一个子帧的最后一个符号为空符号;
所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所述空符号组成所述一个子帧;所述参考信号占用的符号的长度与所述空符号的长度之和等于一个数据符号的长度。
结合第十三方面,或第十三方面的上述任何一种可能的实现方式,在第三种可能的实现方式中,
所述参考信号所占用的时频资源为第一资源池中的时频资源;
所述第一资源池在时域上包括无线帧中的部分或全部子帧;
在频域上包括配置的系统带宽中的部分或全部带宽。
第十四方面,本发明实施例提供一种无线通信系统,包括:发送设备和接收设备,
所述发送设备,用于生成参考信号,并将生成的所述参考信号发送出去;
所述接收设备,用于接收参考信号,并对对接收的参考信号进行信号处理;
其中,在时域上,所述参考信号仅占用一个子帧的第一个符号;
在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
在频域上,在所述参考信号占用的带宽内,所述参考信号占用连续的部分PRB中的全部子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
所述参考信号占用的符号为短参考符号,所述短参考符号的长度小于一个数据符号的长度。
本发明实施例中,通过参考信号在频域上占用不连续的子载波,或缩短参考信号在时域上的符号长度,从而达到减少参考信号对传输资源占用的目的。
进一步地,对于参考信号在一个子帧中占用至少3个符号的方案,与图1所示的方案相比,参考信号的接收设备能够在单位时间内获得更密集的参考信号。在高频、高速的场景下,信道快衰落更严重,在单位时间内信道特性变化更快。通过采用本发明实施例,在一次传输的时间内(比如:LTE系统的1ms子帧的一次传输),对发送设备而言,能够将待发送的数据在相干时间内发送出去;对接收设备而言,接收设备能够获取到更多的参考信号,并根据获取的参考信号获取信道状态等信息,从而满足接收设备502对收到的发送设备发送的数据估计时的性能要求,满足高频、高速场景下的通信要求。
进一步地,对于参考信号在一个子帧中占用至少3个符号的方案,若参考信号在频域上占用的每一个PRB中占用不连续的多个子载波,或参考信号在一个子帧上占用的符号包括短参考符号,则可有效降低参考信号的开销,与目前LTE系统相比,可在不额外增加参考信号开销的情况下,满足高速、高频场景的通信需求。
附图说明
图1为目前LTE系统中,解调参考信号(DeModulation Reference Signal,DMRS)传输方式示意图;
图2~图4为本发明实施例使用的无线通信系统的架构示意图;
图5A为本发明实施例一提供的无线通信系统的结构示意图;
图5B为本发明实施例一中发送设备生成并发送参考信号可选过程的示意图;
图5C为本发明实施例一中接收设备接收参考信号并进行信号处理的可选过程示意图;
图6为本发明实施例一中一种可选映射方式的示意图;
图7A~图7E为本发明实施例二中DMRS的可选映射方式的示意图;
图8A~图8E为本发明实施例二中DMRS不占用的RE不填数据时的可选映射方式的示意图;
图9A~图9D为本发明实施例二中DMRS在时域上映射时的可选映射方式的示意图;
图10为本发明实施例三中DMRS的可选映射方式的示意图;
图11A~图11B为本发明实施例三中DMRS在时域上映射时的可选映射方式的示意图;
图12A和图12B为本发明实施例四中参考信号可选传输方式的示意图;
图13为本发明实施例五中参考信号的可选映射方式的示意图;
图14为为本发明实施例六提供的第一种参考信号发送装置的结构示意图;
图15为实施例七提供的参考信号的发送装置的结构示意图;
图16为实施例八提供的参考信号接收装置的结构示意图;
图17为实施例九提供的参考信号接收装置的结构示意图;
图18为实施例十提供的参考信号发送装置的结构示意图;
图19为实施例十一提供的参考信号发送装置的结构示意图;
图20为实施例十二提供的参考信号接收装置的结构示意图;
图21为实施例十二提供的参考信号接收装置的结构示意图;
图22为实施例十四提供的参考信号发送方法的流程图;
图23为实施例十五提供的参考信号接收方法的流程图;
图24为实施例十六提供的参考信号发送方法的流程图;
图25为实施例十七提供的参考信号接收方法的流程图。
具体实施方式
本发明实施例提供一种参考信号的传输设备、方法及系统,用以提供一种参考信号的传输方案,以减少参考信号对传输资源的占用。
在本发明实施例中,参考信号的发送设备生成参考信号,并将生成的参考信号发送出去;其中,在频域上,在参考信号占用的每一个物理资源块(Physical Resource Block,PRB)中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者参考信号在一个子帧中占用的符号中包括至少一个短参考符号,短参考符号的长度小于一个数据符号的长度。
其中,通过参考信号在频域上占用不连续的子载波,或缩短参考信号在时域上的符号长度,从而达到减少参考信号对传输资源占用的目的。
其中,一方面,在时域上的一个子帧中,参考信号占用至少三个符号。这进一步满足了高频、高速场景的通信要求。具体可参考后面的“映射方式一”。
另一方面,在时域上,参考信号仅占用一个子帧的第一个符号,可支持用于AGC等过程的参考信号,便于接收设备根据一个子帧中的第一个符号中的参考信号进行后续数据处理。后面,以用于AGC的参考信号为例加以说明。
下面,为了便于理解,介绍本发明实施例涉及的基本概念。
为了便于理解,以长期演进(Long Term Evolution,LTE)系统为例进行 介绍,但这并不意味着本发明实施例仅适用于LTE系统,实际上,任何发送参考信号,以满足高频、高速场景下的通信需求的无线通信系统,都可以采用本发明实施例提供的参考信号传输方案。
一、LTE系统中的数据传输
LTE系统中,下行传输,即诸如基站的接入网设备向UE传输,是基于正交频分复用多址(Orthogonal Frequency Division Multiplexing Access,OFDMA)的多址方式的;上行传输,即UE向接入网设备传输,是基于单载波频分复用多址(Single Carrier–Frequency Division Multiplexing Access,SC-FDMA)的多址方式的。
对于下行传输,时频资源被划分成时间域维度上的OFDM符号和频率域维度上的子载波;对于上行传输,时频资源被划分为频率域维度上的SC-FDMA符号。本发明实施例中,符号可为OFDM符号或SC-FDMA符号,或其他多址方式下的符号,本发明实施例对此不做限定。
LTE系统中,最小的资源粒度称作资源单元(Resource Element,RE),即表示时间域上的一个时域符号和频率域上的一个子载波组成的时频格点。
通常,接入网设备调度的基本时间单位是一个子帧,一个子帧包括多个时域符号。或者,对于要求缩小传输时延的一些场景,接入网设备调度的基本时间单位可为1个或多个时域符号。
LTE系统支持频分双工(Frequency Duplexing Division,FDD)和时分双工(Time Duplexing Division,TDD)两种双工方式。对于采用FDD双工方式的LTE系统,简称FDD LTE系统,下行传输和上行传输使用不同的载波。对于TDD双工方式的LTE系统,简称TDD LTE系统,上行传输和下行传输使用同一载波的不同时间,具体在一个载波上包括下行子帧,上行子帧和特殊子帧。
其中,特殊子帧中包括下行导频时隙(Downlink Pilot Time Slot,DwPTS),保护时间(Guard Period,GP)和上行导频时隙(Uplink Pilot Time Slot,UpPTS)三个部分,其中GP主要用于下行到上行的器件转换时间和传播时延的补偿。 此外,DwPTS中可以传输下行数据,但UpPTS中不可以传输PUSCH,因此从该角度讲,特殊子帧可以看作为下行子帧。
二、PRB、子载波的间隔与符号长度
LTE系统中,在进行数据传输时,将上、下行时频资源组成PRB,作为物理资源单位进行调度与分配。目前LTE系统中,一个PRB在频域上包含12个连续的子载波。目前LTE系统中,子载波的间隔为15kHz,即两个相邻的子载波的中心频点之间的间隔。
本发明实施例中,提供正常参考符号和短参考符号。其中正常参考符号与数据符号的长度相同,在频域上占用的子载波的间隔与数据符号的子载波的间隔相等。例如:按照目前的LTE系统,子载波的间隔为15kHz;而短参考符号的长度比数据符号的长度短,在频域上占用的子载波的间隔比数据符号占用的子载波的间隔宽。
例如:短参考符号在频域上占用的子载波的间隔为数据符号占用的子载波的间隔的K倍,K为大于或等于2的整数。以K=2为例,短参考符号在频域上占用的子载波的间隔为数据符号的子载波的间隔的2倍,比如:30kHz。此外,该K还可取值3、4等。
按照时频之间的相互对应关系,当子载波的间隔翻倍时,这个符号在时域上的长度变为原来的一半,其中不包括CP长度。比如K=2,则短参考符号在时域上除了CP之外的长度为数据符号在时域上除了CP之外的长度的一半。
三、解调参考信号(DeModulation Reference Signal,DMRS)目前LTE系统中,接收设备根据收到的DMRS对收到的数据进行解调。目前,每0.5ms时隙中存在1个DMRS符号,如图1中的符号(Sym)4。图1中,循环前缀(Cyclic Prefix,CP)加在每个符号的前面,用于消除符号间干扰(Inter Symbol Interference,ISI)。Sym0~Sym6表示符号在一个时隙中的符号0到符号6,其中加阴影的Sym4表示用作DMRS的符号。
四、伪随机序列和ZC序列
1、伪随机序列
伪随机序列是指:序列上的每一个码元在整个序列的长度上是以类似随机的方式出现的。典型的伪随机序列包括m序列,Gold序列,Kasami,GMW序列等。
2、完美序列
一个长为L的序列集A为完美序列,是指该序列集中的任意一个序列具有理想的周期自相关函数且任意两上不同的序列理想的互相关函数值,即:
Figure PCTCN2015088760-appb-000001
   (公式1)
Figure PCTCN2015088760-appb-000002
   (公式2)
其中a和b是序列集A中的任意两个不同的序列。
特别地,可用于本发明实施例的b(n),n=0,1,..,L-1序列包括但不限于:ZC序列和GCL序列。
3、ZC序列
上述完美序列中,当
Figure PCTCN2015088760-appb-000003
时,该完美序列为ZC序列,其中,
Figure PCTCN2015088760-appb-000004
Figure PCTCN2015088760-appb-000005
j是虚数单位,u是ZC序列的根序列号。
4、GCL序列
上述完美序列中,当b(n)=c(n)*g((n)modm),n=0,1,...,L-1时,该完美序列为GCL序列,其中L=s*m2,c(n)是一个完美序列,g(n),n=0,1,..,m-1是长为m的每个元素的幅度为1的复数。
五、CP
目前LTE系统中,CP有两种类型,CP长度有三种数值。
CP类型分为正常(normal)CP和扩展(extended)CP。
以20MHz的系统带宽为例,采用正常CP时,每个时隙的第1个符号,如图1中的Sym0占用的样点数为160,对应占用的时长约为5.2微秒,1ms子帧中的其他符号占用的样点数为144,对应占用的时长约为4.7微秒。采用正常CP时,目前LTE系统中,一个子帧中共有14个符号。采用扩展CP时,每个符号的CP长度相同为512个样点,对应占用的时长约为16.7微秒。在目前LTE系统中,一个扩展CP的子帧中共有12个符号。
六、本发明实施例适用的无线通信系统的架构、终端、接入网设备
本发明实施例可适用于图2所示的终端设备-接入网设备的无线通信系统的架构,其中,参考信号可由终端设备发送,接入网设备接收;也可由接入网设备发送,终端接收。
本发明实施例也可适用于图3所示的终端设备-终端设备的无线通信系统的架构,比如:设备到设备(Device-to-Device,D2D)通信系统中,其中,一个终端设备发送参考信号,其他终端设备接收参考信号,根据接收的参考信号进行信道估计等。
本发明实施例还可使用于图4所示的车联网系统中,其中终端设备之间的参考信号传输方式类似于上述D2D系统中的传输方式,这里不再赘述。其中,参考信号也可在路测单元(Road Side Unit,RSU)和终端设备之间传输,比如:RSU发送参考信号,终端设备接收参考信号,或终端设备发送参考信号,RSU接收参考信号;此外,参考信号也可在RSU和基站之间传输,比如:RSU发送参考信号,基站接收参考信号,或基站发送参考信号,RSU接收参考信号。这里,RSU和基站均可视为接入网设备,此外,RSU也可视为一种终端设备。
需要说明的是,在本发明实施例应用于车联网系统时,终端设备可为车载设备,RSU可与车载设备和/或基站通信,基站可与车载设备和/或RSU通信。车载设备随着车辆高速移动,当两个车载设备之间相对运动时,具有较 大的相对移动速度。上述车载设备、RSU和基站之间的通信可使用蜂窝链路的频谱,也可以使用5.9GHz附近的智能交通频谱。
此外,本发明实施例中的终端设备可以是无线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
本发明实施例提供的接入网设备可包括基站,或用于控制基站的无线资源管理设备,或包括基站和用于控制基站的无线资源管理设备;接入网设备可为宏站或小站,也可为前述的RSU。
七、本发明实施例适用的无线通信系统的通信制式
本发明实施例提供的各种无线通信系统的通信制式包括但不限于:全球移动通信系统(Global System of Mobile communication,GSM)、码分多址(Code Division Multiple Access,CDMA)IS-95、码分多址(Code Division Multiple Access,CDMA)2000、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分双工-长期演进(Time Division Duplexing-Long Term Evolution,TDD LTE)、频分双工-长期演进(Frequency Division  Duplexing-Long Term Evolution,FDD LTE)、长期演进-增强(Long Term Evolution-Advanced,LTE-advanced)、个人手持电话系统(Personal Handy-phone System,PHS)、802.11系列协议规定的无线保真(Wireless Fidelity,WiFi)、全球微波互联接入(Worldwide Interoperability for Microwave Access,WiMAX),以及未来演进的各种无线通信系统。
实际上,任何发送参考信号,以满足高频、高速场景下的通信需求的无线通信系统,都可以采用本发明实施例提供的参考信号传输方案。
八、其他说明
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上,介绍了本发明实施例涉及的基本概念,为了便于理解,下面的表1中列出了本发明各实施例的主要内容、涉及的附图。
表1
Figure PCTCN2015088760-appb-000006
Figure PCTCN2015088760-appb-000007
【实施例一】
如图5A所示,实施例一提供的无线通信系统包括:参考信号的发送设备501和参考信号的接收设备502,为了描述简洁,下面将参考信号的发送设备501称为“发送设备501”,将参考信号的接收设备502称为“接收设备502”。
其中,发送设备501用于确定参考信号,并将确定的参考信号发送出去;
接收设备502用于接收参考信号,并对接收的参考信号进行处理,比如:根据接收的参考信号进行信道估计、信号解调、AGC、无线测量,以及信道探测等。
图5B示出了发送设备501生成并发送参考信号的可选过程。
如图5B所示,该过程可包括如下步骤:
S501:发送设备501确定用于生成参考信号序列的序列生成参数;
S502:发送设备501根据确定的上述序列生成参数,生成参考信号;
S503:发送设备501生成待发送的数据符号;
S504:发送设备501确定将参考信号序列映射到物理资源时使用的映射 方式参数;
S505:发送设备501根据确定的映射方式参数,将生成的参考信号序列映射到物理资源上,和映射到物理资源上的数据一起形成待发送的数据子帧;
S506:发送设备501将形成的数据子帧发送出去。
图5C示出了接收设备502接收参考信号的可选过程。
如图5C所示,该过程可包括如下步骤:
S511:接收设备502确定待接收参考信号序列的生成参数;
S512:接收设备502根据确定的上述序列的生成参数,生成本地参考信号序列;
S513:接收设备502确定将参考信号序列映射到物理资源时使用的映射方式参数;
S514:接收设备502根据确定的映射方式参数和生成的本地参考信号序列来对接收到的参考信号进行信号处理。
信号处理的方式有很多种,包括:对接收到的参考信号来做信道估计以获得参考信号所在带宽内的信道质量信息,和/或对接收到的参考信号以及待接收的数据来做数据检测,以获取待接收的数据。
本发明实施例中,参考信号可为前述的用于信道估计、信号解调、自动增益控制(Automatic Gain Control,AGC)、信号质量测量、定位,以及信道探测,定位等的任何一种参考信号。比如:DMRS,用于AGC的参考信号等。
本发明实施例中,参考信号序列用于在一个子帧中生成参考信号,序列中的一个码元对应于参考信号在一个子帧中占用的一个符号中的一个子载波。
本发明实施例中,参考信号所占用的时频资源为第一资源池中的时频资源;
其中,该第一资源池在时域上包括无线帧中的部分或全部子帧,在频域上包括配置的系统带宽中的部分或全部带宽。
图2、图3或图4中列出的各种架构中,发送设备501在发送参考信号时, 均可使用上述第一资源池中的时频资源进行发送,相应地,接收设备502在上述第一资源池中的时频资源上接收参考信号。
第一资源池的配置,以及发送设备501是否使用第一资源池发送参考信号,实现时可有多种可选方式,下面列举其中的三种举例说明:
方式一、
第一资源池可由协议预先定义或通过信令配置,比如,基站通过系统消息在小区中广播第一资源池的配置信息,或通过公共消息在小区中向小区中的部分参考信号的发送设备501发送第一资源池的配置信息;参考信号的发送设备501在收到该配置信息后,根据该配置信息确定第一资源池,并根据如下参数中的至少一个确定是否需要在第一资源池上发送参考信号:
发送设备501待发送的数据的优先级,该优先级可由待发送的数据的重要程度、紧急程度等确定;
发送设备501的移动速度,比如:移动速度的值,或移动速度是否处于预定义的速度区间,或移动速度是否大于预定义的值;
发送设备501发送待发送的数据所使用的频率,比如:使用的高频(如5.9GH)还是低频(如2GHz),高频或低频的取值范围可通过协议预先定义;
比如:当发送设备501待发送的数据的优先级较高时,发送设备501可在第一资源池上发送参考信号;再比如:当发送设备501待发送的数据的优先级较高,且移动速度超于预设的速度阈值时,发送设备501可在第一资源池上发送参考信号;再比如:当发送设备501发送待发送的数据所使用的频率为高频时,发送设备501可在第一资源池上发送参考信号;再比如:当发送设备501待发送的数据的优先级较高、移动速度超于预设的速度阈值,且发送设备501发送待发送的数据所使用的频率为高频时,发送设备501可在第一资源池上发送参考信号。
方式二、
基站可通过专用信令向一个参考信号的发送设备501发送第一资源池的配置信息,指示该发送设备501在第一资源池上发送参考信号,可根据方式 一种描述的上述参数中的至少一个确定是否想发送设备501发送上述第一资源池的配置信息,方法可参考方式一,这里不再赘述。
方式三、
第一资源池由协议预定义,类似地,参考信号的发送设备501也可根据方式一中的上述参数确定是否需要在第一资源池上发送参考信号,若确定需要在第一资源池上发送参考信号,则在协议预定义的第一资源池上发送参考信号。具体方法也可参考方式一,这里不再赘述。
可选地,上述第一资源池的配置信息中可包括下列参数中的至少一种:
第一资源池的优先级的信息,用来指示资源池的优先级,定义可参考方式一中的描述;
第一资源池的移动信度的信息,用来指示资源池的移动信度,定义可参考方式一中的描述;
第一资源池的频率的信息,用来指示资源池的频率,定义可参考方式一中的描述。
上述第一资源池的配置,以及发送设备501是否使用第一资源池发送参考信号的各种可选实现方式,可适用于下面的各种参考信号序列映射方式。
本发明实施例中,参考信号序列映射到物理资源上的映射方式不同于目前的LTE系统。其中,映射方式可包括时域映射方式、频域映射方式等。
其中,时域映射方式可包括:参考信号在时域上占用的符号个数、参考信号占用的符号的长度、参考信号在时域上占用的符号的位置等;
频域映射方式可包括:参考信号在频域上是否占用连续的子载波,参考信号占用的子载波的间隔等。
下面,对本发明实施例中可采用的参考信号的映射方式加以详细说明。
其中,根据参考信号在时域上的映射方式,将参考信号的映射方式分为映射方式一和映射方式二。其中映射方式一中,在时域上的一个子帧中,参考信号可占用至少三个符号;在映射方式二中,在时域上的一个子帧中,参考信号仅占用第一个符号。
映射方式一
映射方式一中,在时域上的一个子帧中,参考信号可占用至少三个符号。这里,并不对频域映射方式加以限定,可以占用连续或非连续的子载波。
采用映射方式一,与目前LTE系统中的每0.5ms时隙中存在1个诸如DMRS符号的参考信号,1个子帧中两个时隙共有2个DMRS符号相比,采用该方式,发送设备501在时域上发送参考信号的密度加大了。
通过采用上述方案,参考信号的接收设备502能够在单位时间内获得更密集的参考信号。在高频、高速的场景下,信道快衰落更严重,在单位时间内信道特性变化更快。通过采用本发明实施例,在一次传输的时间内(比如:LTE系统的1ms子帧的一次传输),对发送设备501而言,能够将待发送的数据在相干时间内发送出去;对接收设备502而言,接收设备能够获取到更多的参考信号,并根据获取的参考信号获取信道状态等信息,从而满足接收设备502对收到的发送设备501发送的数据估计时的性能要求,满足高频、高速场景下的通信要求。
可选地,在映射方式一下,为了获得更好地适应高频、高速的应用场景,参考信号在一个子帧中占用的至少三个符号可于两个不同的时隙中。这样,参考信号在一个子帧中出现的次数更多,分布也更均匀,使得接收设备502能够以能够获得更多数据的参考信号,以使基于参考信号进行信道估计等的结果更好。
按照参考信号占用的符号的长度,以及频域映射方式,可以将映射方式一进一步划分,映射方式一可包括但不限于如下三种子方式:
子方式一
在频域上,在参考信号占用的每一个PRB中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;
子方式二
在频域上,在参考信号占用的带宽内,参考信号占用连续的部分PRB中 的全部子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;
子方式三
参考信号占用的至少三个符号中包括至少一个短参考符号,短参考符号的长度小于一个数据符号的长度。
其中,区分参考信号占用的符号长度,参考信号占用的符号可分为正常参考符号和短参考符号,其中正常参考符号的长度等于数据符号的长度,短参考符号的长度小于数据符号的长度。
对于映射方式一的子方式一,在参考信号占用的每一个PRB中,参考信号占用不连续的多个子载波,但参考信号占用的符号为正常参考符号。
对于映射方式一的子方式二,可参考图6,在参考信号占用的整个带宽内,包括多个PRB,其中参考信号占用其中部分PRB,且占用的部分PRB是连续的,在占用的每一个PRB中,参考信号占用该PRB中的每一个子载波。
可选地,对于映射方式一的子方式二或子方式三,参考信号占用的部分PRB位于参考信号占用的整个带宽内的中间部分,整个带宽中的高频部分和低频部分均空出一部分PRB。这样,可避免在频域上相邻的参考信号之间的频带泄露造成的干扰。
对于子方式三,短参考符号在参考信号所占用的带宽内,也可仅连续地占用中间部分的部分PRB,这样也可避免在频域上相邻的参考信号之间的频带泄露造成的干扰。
为了降低参考信号的开销,映射方式一的子方式三中,参考信号在一个子帧占用的至少三个符号中,包括至少一个短参考符号,该可选映射方式的具体实现方式,可参考后面的实施例三。
进一步地,映射方式一的子方式三中,为了保证短参考信号的性能,需要保证为短参考符号添加的CP的长度,比如短参考符号具有与数据符号或正常参考符号相同长度的CP,以避免对短参考符号造成的符号间干扰,影响接收设备在短参考符号在上信道估计的性能。
以目前LTE系统中具有正常CP的子帧为例,一个子帧中共有14个正常的符号,将其中的2个正常参考符号变为4个短参考符号后,考虑到不影响参考信号的性能,需要保证短参考符号的CP长度。
假设短参考符号的CP长度与数据符号的CP长度相等,则需要增加2个CP的长度。考虑到在诸如D2D系统等一些无线通信系统中,一个子帧的最后一个符号为空(GAP)符号。则上述增加的2个CP的长度可以考虑从GAP符号中来取。以上以4个短参考符号为例,也可以存在2个短参考符号、3个短参考符号、1个短参考符号等的情况,此时,也存在从GAP符号取出部分长度用于补充CP和/或短参考符号所占时长的情况。
综上,映射方式一的子方式三中,在一个子帧的最后一个符号为空符号的情况下,该子帧中的所有数据符号、参考信号所占用的符号,以及空符号组成该子帧,其中,空符号的长度小于或等于一个数据符号的长度。
这样就有效保证的短参考符号的CP长度,进而保证了短参考符号的性能。
比如,这个数据符号的长度为一个子帧中除了空符号和每个时隙中第一个符号之外的其他任何一个符号的长度。比如:对于20MHz正常CP的子帧,这个符号的长度为4.7微秒加上一个符号的长度(15kHz子载波对应66.67微秒)。再比如:对于20MHz扩展CP的子帧,这个符号的长度为16.7微秒加上一个符号的长度(15kHz子载波对应66.67微秒)。采用该方式,可从GAP中取出部分长度用于补充CP长度,这样就有效保证的短参考符号的CP长度,进而保证了短参考符号的性能。
进一步地,在映射方式一的子方式三中,可选地,在时域上的每一个子帧中,参考信号占用Na个符号,占用的Na个符号中包括的短参考符号的个数为Nb,包括的正常参考符号的个数为Na-Nb;其中,Na、Nb为正整数,且Nb小于或等于Na。
可选地,对于映射方式一的子方式三,对参考信号在频域上的映射方式并不加以限定,因此,短参考符号可在频域上占用连续或非连续的子载波, 在短参考符号占用的带宽内,参考信号可占用连续或非连续的多个PRB,可占用所有PRB或部分PRB,可占用一个PRB中的所有子载波或部分子载波。
其中,映射方式一中的子方式三的具体映射方式可参考后面的实施例三。
无论采用映射方式一的子方式一、子方式二和子方式三种的哪一种子方式,若参考信号未占满一个子帧中的所有符号,则参考信号占用的符号之间的间隔可满足如下条件,以保证参考信号在时域上尽量均匀地分布,使得发送设备501发送的数据能够尽可能均匀地分布在参考信号之间,进而使接收设备502基于参考信号进行信道估计等的结果更好。:
一、假设在时域上的一个子帧中,参考信号占用三个符号
若CP为正常CP,则
参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于5个符号;
若CP为扩展CP,则
参考信号在一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于4个符号。
二、假设在时域上的一个子帧中,参考信号占用四个符号
若CP为正常CP,则
参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于4个符号;
若CP为扩展CP,则
参考信号在一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于3个符号。
其中,相邻符号之间的间隔等于在一个子帧内相邻符号的编号之差。以图1为例,编号为0的符号与编号为4的符号之间的间隔为4。参考信号在频域上占用不连续的子载波的一个可选的实现方案可参考后面的实施例二。
在映射方式一下,另一种可选的实现方式是:时域连续频域离散的映射方式,其中,参考信号占用一个子帧中的所有非空符号,在频域上的每一个 PRB中,参考信号占用不连续的多个子载波。目前LTE系统中,以DMRS为例,在频域上,在DMRS所占用的带宽上,DMRS占用所有子载波,与目前LTE系统中DMRS的映射方式相比,该时域连续频域离散的方式,相当于降低频域上参考信号的密度,补充到时域上,以满足高速、高频场景的通信需求,同时与目前LTE系统相比,也能不增加额外的参考信号的开销。
可选地,对于上述除了短参考符号在频域上占用连续子载波的映射方式以及映射方式一的子方式二之外,对于映射方式一,对于参考信号在时域上占用的每一个子帧,参考信号在频域上占用的每一个PRB中占用不连续的多个子载波。采用该频域不连续的映射方式,可降低参考信号的开销,与目前LTE系统相比,可在不额外增加参考信号开销的情况下,满足高速、高频场景的通信需求。
对于该可选的频域不连续的映射方式,可选地,对于参考信号在时域上占用的每一个子帧,参考信号在频域上占用的每一个PRB中占用等间隔的多个子载波。采用该可选映射方式,可使得参考信号在频域上尽量均匀地分布,进而接收设备502通过参考信号能够以更均匀的方式获得在频域上信道信息。
可选地,对于上述频域不连续的映射方式,对于参考信号占用的至少一个符号,在参考信号所在的频域上的每一个PRB中,未被参考信号占用的子载波上不映射数据或映射待传输的数据。在不映射数据的情况下,未被参考信号占用的子载波则不映射任何数据,从而可以增加参考信号的发射功率并且产生在时域有重复特性的时域符号;若映射待传输的数据,则可进一步提高数据传输的效率。
当参考信号在占用的带宽内按每W个子载波均匀放置一个参考信号子载波,其中,W为大于或等于2的整数,并且未放置参考信号的子载波不映射任何数据时,经过时频变换后,在时域上信号能产生连续且重复的结构。如果W=2,则参考信号的符号长度不变,但在一个符号长度内是以两个相同副本的方式前后出现的。
上述频域不连续的映射方式的具体实现方案,可参考后面的实施例三。
映射方式一中,在时域上的每一个子帧中,参考信号可占用至少三个符号。在下面的映射方式二,参考信号占用一个子帧中的第一个符号。
映射方式二
映射方式二下,参考信号占用一个子帧中的第一个符号。与映射方式一类似,映射方式二也包括但不限于如下三种主要的子方式:
子方式一
在频域上,在参考信号占用的每一个PRB中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;
子方式二
在频域上,在参考信号占用的带宽内,参考信号占用连续的部分PRB中的全部子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;
子方式三
参考信号占用的至少三个符号中包括至少一个短参考符号,短参考符号的长度小于一个数据符号的长度。
映射方式二与映射方式一的区别在于时域上的映射方式不同,映射方式二中,一个子帧中参考信号仅映射到第一个符号中,而映射方式一中,一个子帧中参考信号映射到至少三个符号中。因此,映射方式二中,在频域上的映射方式可参考映射方式一的描述,各个子方式可分别参考前述的映射方式中对应的各个子方式,在此不再赘述。
可选地,在映射方式二下,无论对于子方式一、子方式二,还是子方式三,参考信号占用一个子帧的第一个符号,以便于接收设备能够根据这个参考信号调整进行模数变换的信号的量化范围和幅度。参考信号占用一个子帧的第一个符号的具体实现方式,可参考后面的实施例四。
以上,介绍了参考信号序列映射的可选实现方式。下面介绍生成参考信号序列的可选实现方式。
需要说明的是,该生成参考信号序列的方式可不限于前述的映射方式一和映射方式二,比如:当参考信号在频域上占用连续的子载波,且占用的符号为正常参考符号时,也可采用下述的生成参考信号序列的方法。
参考图5B和图5C,无论是发送设备501还是接收设备502,均需要生成参考信号序列。其中,接收设备502会预先知道发送设备501发送的参考信号占用的时频资源的位置,生成的参考信号序列的长度等信息,这样接收设备502才能从接收的信号中获取参考信号,并对参考信号进行进一步的信号处理。可选地,参考信号占用的时频资源的位置,生成的参考信号序列的长度等信息可以通过协议规定,或者在进行信号传输之前,通过信令告知接收设备502。
下面的描述中,
第一序列:是指直接映射到参考信号所在子帧中子载波上的序列,第一序列对应于参考信号序列中某一个符号上的序列,当参考信号为DMRS时,该第一序列可以称为某个符号上的解调参考信号序列;
第二序列:用来生成第一序列的序列;
第三序列:用来生成第一序列的序列。
其中,可选地,对于在一个子帧中参考信号占用的每一个符号,发送设备501生成第一序列,第一序列的长度等于参考信号在该符号上占用的子载波的个数;并将生成的第一序列中的各个码元分别映射到参考信号在该符号上占用的各个子载波上,其中,一个码元对应一个子载波。
可选地,对于预知的在一个子帧中参考信号占用的每一个符号,接收设备502生成第一序列,第一序列的长度等于预知的参考信号在该符号上占用的子载波的个数,其中,生成的第一序列中的各个码元分别对应于参考信号在该符号上占用的各个子载波,一个码元对应一个子载波,该对应的方式与发送设备501将码元映射到子载波上的方式是一致的。
其中,若参考信号在一个子帧中占用多个符号,则可选地,在一个子帧中,对于参考信号占用的不同符号,发送设备501和接收设备502生成参考 信号所使用的第一序列相同或不同。其中,可选地,该第一序列可由完美序列生成,完美序列包括ZC或GCL序列,或者满前述的公式1和公式2的任意的一个序列集;或者
可选地,该第一序列可由第二序列与第三序列生成,其中:
对于参考信号在一个子帧中占用的第i个符号,第一序列
{Si,1,Si,2,…,Si,N}={RiZi,1,RiZi,2,…,RiZi,N}   (公式3)
其中,N为第一序列的长度,为正整数;{Zi,1,Zi,2,…,Zi,N}为第二序列,第二序列的长度为N;{R1,R2,…,RM}为第三序列,第三序列的长度为M,M为在一个子帧中,参考信号占用的符号的个数,为正整数。上述操作的实质是:符号i上生成参考信号的第一序列的每个码元由第二序列的每个码元与第三序列的码元i对应相乘生成。其中每个参考信号符号上的第二序列可以相同或不同。
可选地,另一种由第二序列和第三序列生成第一序列的实现方式为:
对于参考信号在一个子帧中占用的第i个符号,第一序列
{Si,1,Si,2,…,Si,N}={Zi,1/Ri,Zi,2/Ri,…,Zi,N/Ri}   (公式4)
运算符号“/”表示算术除法。
可选的另一种由第二序列和第三序列生成第一序列的实现方式为:
对于参考信号在一个子帧中占用的第i个符号,第一序列
{Si,1,Si,2,…,Si,N}={Zi,1(Ri)*,Zi,2(Ri)*,…,Zi,N(Ri)*}   (公式5)
运算(Ri)*表示Ri对取复杂共轭运算。
可选的另一种由第二序列和第三序列生成第一序列的实现方式为:
对于参考信号在一个子帧中占用的第i个符号,第一序列
{Si,1,Si,2,…,Si,N}={f(Zi,1,Ri),f(Zi,2,Ri),…,f(Zi,N,Ri)}   (公式6)
其中f(Zi,k,Ri)表示按预定义的函数f(,)来对Zi,k和Ri进行运算,其中k为1到N的正整数。f(,)可以是上面的公式中的任意一种,还可以是其它预定义的公式,如:f(Zi,k,Ri)=mod(AZi,kRi+B,D),其中A,C,D为常数,mod(x,D)表示数x对D做取余运算。
如图7A所示,在一个子帧中参考信号占用4个符号,即M值为4,带宽在频域占用2个PRB,每2个子载波有一个参考信号子载波,因此第一序列的长度为12,即N值为12。图7B到8E的类型,只是参考信号的带宽变为1个PRB,N的值为6,M的值仍为4。在图10中,参考信号的短符号的子载波的间隔为数据子载波的间隔的2倍,在一个PRB中的频域方向有12个数据子载波,因此N的值仍为6。在图13中,在频域方向上,参考信号的带宽为3PRB,每个PRB中有2个参考信号的子载波。因此在频域方向上,对应的N值为6。在一个子帧的时域方向上的同一个子载波上的所有符号上都映射了参考信号,对应M的值为一个子帧中数据子载波的符号数,如14(扩展CP)或12(正常CP)。当第一个符号为AGC符号和/或最后一个符号为GAP符号时,M值会相应的减少1或2。
其中,第二序列可由完美序列生成,其中,完美序列可为ZC或GCL序列,第三序列可由伪随机序列生成;或
第二序列和第三序列均可由完美序列生成,完美序列可为:ZC或GCL序列,或者满前述的公式1和公式2的任意的一个序列集;或
第二序列由伪随机序列生成,第三序列由ZC序列生成;或
第二序列和第三序列均可由伪随机序列生成。
可选地,第二序列由ZC序列生成,此时产生的参考信号的峰均比(Peak to Average Power Ratio,PAPR)的值较小,且时域上的信道估计性能会更优。
可选地,若参考信号在一个子帧的不同符号上占用相同频域位置的子载波,则
发送设备501可采用如下方式生成第一序列:生成第一序列,第一序列 的长度等于参考信号在一个子帧上占用的符号的个数;并采用如下方式将第一序列映射到参考信号占用的时频资源上:将生成的第一序列中的各个码元分别映射到参考信号在一个子帧上占用的各个符号上,其中,一个码元对应一个符号;其中,在一个子帧中,对于参考信号占用的不同子载波,生成参考信号所使用的第一序列相同或不同;
对应地,接收设备502可采用如下方式生成第一序列:第一序列的长度等于所述参考信号在一个子帧上占用的符号的个数;以及在对接收的参考信号进行数据处理时,采用如下方式确定第一序列的码元与参考信号占用的时频资源之间的对应关系:第一序列中的各个码元分别对应于预知的参考信号在一个子帧上占用的各个符号,其中,一个码元对应一个符号;其中,在所述一个子帧中,对于所述参考信号占用的不同子载波,用于对接收的所述参考信号进行所述信号处理所使用的所述第一序列相同或不同。
第二序列和第三序列生成的方法包括但不限于以下几种:
根据第二序列和/或第三序列的长度,来直接生成完美序列,或者;
按预定义的长度生成完美序列,然后再根据完美序列变换到第二序列和/或第三序列的长度上。一种典型的方法是,第二序列和/或第三序列的长度为N,而完美序列的长度为Mp,则通过对原完美序列进行循环移位的方式取出为长L的第二序列和/或第三序列。如r=x(n mod Mp),0≤n<N,其中x表示完美序列,r表示第二序列和/或第三序列。
进一步,可选的,第二序列和/或第三序列还可以基于完美序列做根序列的循环移位,根序列的变换等操作后来生成,本发明实施例对此不做限定。
以上介绍了本发明实施例一,下面,通过实施例二~实施例六举例说明本发明实施例中参考信号的传输方案,其中,实施例二、实施例三、实施例五以及实施例六中以DMRS为例加以说明,其他参考信号同理,不再赘述;实施例四中以用于AGC等过程的参考信号为例,其他参考信号同理,不再赘述。
【实施例二】
实施例二中,DMRS在占用的带宽上等间隔不连续的映射,其中DMRS占用的带宽等于在频域上占用不连续的子载波,可选地,DMRS占用的带宽与待发送数据占用的带宽相同;DMRS在时域上占用大于2个符号,考虑到开销和性能间的折中,优选的是3个或4个。
图7A示出了实施例二中DMRS的一种映射方式。其中,空白部分表示待发送数据占用的资源单元(Resource Element,RE),格子部分表示DMRS占用的RE。其中,DMRS占用的RE在频域上等间隔地放置。此外,待发送数据占用的最小频域资源可以是1个或2个PRB对,这里不做限制。如果最小频域资源分配单位为1个PRB,对应的在所述图7A中的映射方式,参考信号序列在一个PRB中的长度为6,整个参考信号序列的长度应该为6的整数倍。如果最小频域资源分配单位为2个PRB,对应的在所述图7A中的映射方式,则参考信号序列在一个PRB中的长度为12,整个参考信号序列的长度应该为12的整数倍。
图7B~图7E以一个PRB的大小为例,给出了除图7A所示的映射方式之外的其他可选映射方式。
此外,除了图7A~图7E的映射方式之外,还可还可以将部分或全部DMRS所在的时域符号中的未被DMRS使用的RE空出来不填数据。一种具体的将实施例如图8A~图8E所示。其中,划斜线的RE为空出来的RE。
实施例二中,DMRS在一个子帧中占用的符号的位置可由多种可选实现方式,这里以DMRS在一个子帧中占用3个符号和4个符号为例加以说明,DMRS在时域上映射方式的一个可选原则是:尽可能均匀地映射到1ms的子帧上,这样可优化时域的性能。
具体的可选映射方式可分别参见图9A~图9D,其中,加重且带下划线的符号为DMRS占用的符号,带斜线部分为空出来的符号,即GAP,其他符号为子帧中待发送数据占用的符号,图中每一行代表一种时域映射方式。
其中,图9A示出了在正常CP下,1ms子帧(2个时隙)中,DMRS占用4个符号时,四种可能的时域映射方式;满足:参考信号在一个子帧中占 用的相邻符号之间的间隔不大于6个符号且不小于4个符号。具体地,DMRS的位置有如下多种可选方式:
子帧中第一个时隙中的符号0和符号3,以及子帧中第二个时隙中的符号0和符号3;或者
子帧中第一个时隙中的符号0和符号3,以及子帧中第二个时隙中的符号0和符号4;或者
子帧中第一个时隙中的符号0和符号3,以及子帧中第二个时隙中的符号1和符号5;或者
子帧中第一个时隙中的符号0和符号4,以及子帧中第二个时隙中的符号1和符号5;或者
子帧中第一个时隙中的符号1和符号4,以及子帧中第二个时隙中的符号1和符号4。
图9B示出了在正常CP下,1ms子帧(2个时隙中),DMRS占用三个符号时,三种可能的时域映射方式;满足:参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于5个符号。具体地,DMRS的位置有如下多种可选的方式:
子帧中第一个时隙中的符号0和符号5,以及子帧中第二个时隙中的符号3;或者
子帧中第一个时隙中的符号1和符号6,以及子帧中第二个时隙中的符号4;或者
子帧中第一个时隙中的符号0和符号6,以及子帧中第二个时隙中的符号5。
可选地,在一个子帧中,DMRS占用三个符号时,其中至少一个符号可以在频域上以非连续的方式映射,其他符号可以在频域上以连续的方式映射。比如:DMRS在一个子帧中占用的第一个符号在频域上以非连续的方式映射,且在该符号中,未被DMRS占用的子载波空出来不填数据。
图9C示出了在扩展CP下,1ms子帧(2个时隙中),DMRS占用四个符 号时,三种可能的时域映射方式。其中,扩展CP子帧与正常CP子帧的差别是,子帧长度仍为1ms但符号总数变为每个时隙6个符号,满足:参考信号在一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于3个符号。具体地,DMRS的位置有如下多种可选的方式:
子帧中第一个时隙中的符号0和符号3,以及子帧中第二个时隙中的符号0和符号3;或者
子帧中第一个时隙中的符号1和符号4,以及子帧中第二个时隙中的符号1和符号4;或者
子帧中第一个时隙中的符号0和符号3,以及子帧中第二个时隙中的符号1和符号4。
图9D示出了在扩展CP下,1ms子帧(2个时隙中),DMRS占用三个符号时,四种可能的时域映射方式,满足:参考信号在一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于4个符号。具体地,DMRS的位置有如下多种可选的方式:
子帧中第一个时隙中的符号0和符号5,以及子帧中第二个时隙中的符号4;或者
子帧中第一个时隙中的符号1和符号5,以及子帧中第二个时隙中的符号3;或者
子帧中第一个时隙中的符号0和符号4,以及子帧中第二个时隙中的符号2;或者
子帧中第一个时隙中的符号2,以及子帧中第二个时隙中的符号0符号4。
实施例二中,当一个子帧中,DMRS占用的符号数扩展为4个时,DMRS的开销与目前LTE系统相同,即没有增加额外的系统开销,或与目前LTE系统相同,或者略高于目前LTE系统,但却提高了DMRS的时域密度,从而提高了对高速、高频移动环境下的支持能力。
当DMRS占用的符号数扩展为3个时,DMRS的开销可以与目前LTE系统相同,或略高于目前LTE系统。
采用实施例二,通过DMRS在频域上和时域上映射方式的组合,构成DMRS的发送方式,可实现解调性能的提升和开销控制两者之间的平衡。
【实施例三】
实施例三中,参考信号占用短参考符号,当参考信号为DMRS时,参考信号占用的短参考符号即为短DMRS符号,参考信号占用的正常参考符号即为正常DMRS符号。
参考图10,实施例三与实施例二的区别在于,DMRS在频域上占用的各符号中,部分符号为短DMRS符号,其他符号为正常DMRS符号。短DMRS符号在时域上的长度小于数据符号,正常DMRS符号在时域上的长度等于数据符号。图10中,短DMRS符号的子载波的间隔为数据符号的子载波的间隔的2倍。可选地,如果要进一步增加DMRS的密度并限制DMRS的开销,DMRS的间隔可以是数据子载波的K倍,其中K为大于或等于2的正整数,比如:2、3、4等。
按时频之间的相互对应关系,当子载波的间隔翻倍时,这个符号在时间上的长度变为原来的一半。
以DMRS在一个子帧中占用4个符号为例,其中,可选地,
4个符号均为短DMRS符号;或
2个符号为短DMRS符号,2个符号为正常DMRS符号。
以DMRS在一个子帧中占用3个符号为例,其中,可选地,
1个符号为短DMRS符号,2个符号为正常DMRS符号;或
2个符号为短DMRS符号,1个符号为正常DMRS符号;
上述短DMRS符号的个数、正常DMRS符号的个数之间的关系满足:在时域上的每一个子帧中,DMRS信号占用Na个符号,占用的Na个符号中包括的短DMRS符号的个数为Nb,包括的正常DMRS符号的个数为Na-Nb;其中,Na、Nb为正整数,且Nb小于或等于Na。
下面,以DMRS在一个子帧中占用的4个符号均为短DMRS符号为例说明DMRS在时域上的可选映射方式。其中,图11A示出了在正常CP下,四 个DMRS符号时域位置的五种可能的实现方式;图11B示出了在扩展CP下,四个DMRS符号时域位置的五种可能的实现方式。
其中,加重且带下划线的符号为DMRS占用的短DMRS符号,带斜线部分为空出来的符号,即GAP,其他符号为子帧中待发送数据占用的符号,图中每一行代表一个子帧中不同参考符号在时域上的映射方式。
以图11A示出的映射方式为例,原来的正常CP子帧中,共有14个正常符号,增加4个缩短DMRS后,相当于把其中的2个正常符号变成了4个短DMRS符号,考虑到不影响DMRS的性能,需要保证短DMRS符号的CP长度。如果短DMRS符号的CP长度与数据符号的CP长度相同,则相当于需要增加2个DMRS CP的长度,这个CP长度需要的样点可以考虑从最后一个用作GAP的符号中来取。此时一个子帧中的符号数也从原来的14个变成了16个。
对于正常CP,以20MHz系统带宽,短DMRS符号为序号为1、5、1、5的符号为例来加以说明。序号为1、5、1、5的符号各需要的正常CP长度为144采样点,短DMRS符号需要的采样点为1024,则4个短DMRS符号和CP相对原来的正常DMRS符号和CP而言,还缺少2个正常CP长度对应的采样点,即288。这288个采样点,可以从GAP中借用,即新的GAP占用的采样点数为(144+2048-288)=1904,此时GAP占用的时间长度约为62us。
若序号为0的符号为短DMRS符号,由于序号为0的符号的CP长度为160,则需要进一步地减少GAP占用的采样点数。
对于扩展CP,以20MHz系统带宽,短DMRS符号为序号为1、4、1、4的符号为例加以说明。序号为1、4、1、4的符号各序号的扩展CP的长度为512采样点,还缺少2个扩展CP长度对应的采样点,即1024。这1024个采样点,可以从GAP中借用,即新的GAP占用的采样点数为(512+2048-1024)=1536,此时GAP占用的时间长度约为50us。
同理,若DMRS在一个子帧中占用4个符号,其中2个为短DMRS符号,2个为正常DMRS符号,则2个短DMRS符号对应于1个正常的数据符号, 此时还需要从GAP中借用一个CP的长度。
其中,对于正常CP,一个1ms子帧中存在(14-1-2-1)=10个数据符号,同时还有2个正常DMRS符号以及2个缩短DMRS符号;
对于扩展CP,一个1ms子帧中存在(12-1-2-1)=8个数据符号,同时还有2个正常DMRS符号以及2个缩短DMRS符号。
若DMRS在一个子帧中占用3个符号,其中1个为短DMRS符号,2个为正常DMRS符号,这个短DMRS符号以及CP长度都可从最后一个符号GAP中借用,此时不减少数据符号的个数。
若DMRS在一个子帧中占用3个符号,其中2个为短DMRS符号,1个为正常短DMRS符号,其中,2个短DMRS符号对应于1个正常的数据符号,,还需要从最后一个符号GAP中借用一个CP长度的长度,此时不减少数据符号的个数。
实施例三提供了另一种增加DMRS在时域上的密度且不增加或很少地增加系统开销的方案。技术效果与实施例二相同。此外,为了进一步减少开销,可采用从GAP中借用采样点的方法。
【实施例四】
实施例四提供了一种参考信号的传输方案,该参考信号可用于AGC等过程,该参考信号可以是DMRS中的一部分,或独立于DMRS。
参考图12A和图12B,其中,图12A中,参考信号从第二个时隙,即时隙1的GAP中取出;图12B中,从整个子帧的角度看,GAP为整个子帧的GAP,不限定是第二个时隙的GAP。
可选地,用于AGC的参考信号放置在子帧最开始的符号上。
可选地,在频域上的映射方式可参考实施例二中的映射方式,可以在参考信号占用的带宽上等间隔不连续地映射。比如:每M个子载波放置参考信号序列中的一个码元,其中M为大于或等于2的整数。
可选地,参考信号的子载波的间隔可以为数据符号的子载波的间隔的K倍,即参考信号是短参考信号。可选地,短参考信号占用的时域上的采样点, 可从GAP中获取。
采用实施例四,可以实现对AGC的支持,可以实现对AGC的支持。提高在高速场景下,对突发数据的解调性能,并且不增加系统开销。
【实施例五】
实施例二和实施例三中的DMRS,可视为是以时分复用(Time Division Multiplexing,TDM)方式映射的,实施例五中,参考图13,DMRS是以频分复用(Frequency Division Multiplexing,FDM)方式映射的,其中带格子的部分为DMRS占用的时频资源。
实施例四中,DMRS在一个子帧中的所有符号上连续映射,即一个子帧中的每个符号在某个频域子载波上连续地映射DMRS。
在每个PRB对中,DMRS占用了P个子载波,如图13所示,纵向上包括3个PRB对,每个PRB对中DMRS占用2个子载波,即M=2。
P个子载波之间的间隔,优选的可以是S=12/P,如M=P,则S=6。其他P取值可为3、4等。
【实施例六】
图14为本发明实施例六提供的第一种参考信号发送装置的结构示意图,如图14所示,该装置包括:
处理单元1401,用于生成参考信号;
发送单元1402,用于将处理单元1401生成的参考信号发送出去;
其中,在时域上的一个子帧中,参考信号占用至少三个符号;
在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
参考信号占用的至少三个符号中包括至少一个短参考符号,短参考符号的长度小于一个数据符号的长度。
该装置中,处理单元1401可由处理器实现,发送单元1402可由发射器实现。
该装置中,参考信号的生成和发送过程可参考图5B和实施例一中的相关描述。
该装置中,参考信号序列的映射方式可参考实施例一中的“映射方式一”,比如:
可选地,短参考符号在频域上占用的子载波的间隔为数据符号在频域上占用的子载波的间隔的K倍,K为大于或等于2的整数。
可选地,一个子帧的最后一个符号为空符号,一个子帧中的所有数据符号、参考信号所占用的符号,以及空符号组成一个子帧,其中,空符号的长度小于或等于一个数据符号的长度。
可选地,在时域上的一个子帧中,参考信号占用Na个符号,占用的Na个符号中包括的短参考符号的个数为Nb,包括的正常参考符号的个数为Na-Nb;
其中,正常参考符号的在频域上占用的子载波的间隔与数据符号在频域上占用的子载波的间隔相等;Na、Nb为正整数,且Nb小于或等于Na。
可选地,短参考符号在频域上占用连续的子载波。
可选地,在时域上的一个子帧中,参考信号占用三个符号;若CP为正常CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于5个符号;若CP为扩展CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于4个符号;或
在时域上的一个子帧中,参考信号占用四个符号;若CP为正常CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于4符号;若CP为扩展CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于3个符号。
可选地,参考信号占用一个子帧中的所有非空符号,一个子帧中的所有非空符号的个数大于或等于3;
对于每个参考信号在频域上占用的每一个PRB,参考信号占用不连续的多个子载波。
可选地,参考信号在频域上占用的每一个物理资源块PRB中,占用不连续的多个子载波。
可选地,参考信号在频域上占用的每一个PRB中,占用等间隔的多个子载波。
可选地,在参考信号所在的频域上的每一个PRB中,未被参考信号占用的子载波上不映射数据或映射待传输的数据。
该装置中,处理单元1401生成参考信号序列的生成方式可参考实施例一中介绍的生成参考序列的各种可选方式,比如:
可选地,处理单元1401具体用于:对于参考信号占用的每一个符号,
生成第一序列,第一序列的长度等于参考信号在该符号上占用的子载波的个数;以及
将生成的第一序列中的各个码元分别映射到参考信号在该符号上占用的各个子载波上,其中,一个码元对应一个子载波;
其中,在一个子帧中,对于参考信号占用的不同符号,生成参考信号所使用的第一序列相同或不同。
可选地,第一序列由ZC序列生成;或
第一序列由第二序列与第三序列生成,第二序列为{Z1,Z2,…,ZN},第二序列的长度与第一序列的长度相等,均为N,N为正整数;第三序列为{R1,R2,…,RM},第三序列的长度为M,M为在一个子帧中,参考信号占用的符号的个数,为正整数。
可选地,第二序列由ZC序列生成,第三序列由伪随机序列生成;或
第二序列和第三序列均由ZC序列生成。
可选地,参考信号在一个子帧的不同符号上占用相同频域位置的子载波,处理单元具体用于:
生成第一序列,第一序列的长度等于参考信号在一个子帧上占用的符号 的个数;
将生成的第一序列中的各个码元分别映射到参考信号在一个子帧上占用的各个符号上,其中,一个码元对应一个符号;
其中,在一个子帧中,对于参考信号占用的不同子载波,生成参考信号所使用的第一序列相同或不同。
该装置的其他可选实现方式可参考实施例一中的参考信号的发送设备501,重复之处不再赘述。
此外,本发明实施例还提供一种参考信号发送设备,包括实施例六提供的参考信号发送装置。
【实施例七】
图15为实施例七提供的第二种参考信号的发送装置的结构示意图,如图15所示,该装置包括:
处理器1501,用于生成参考信号;
发射器1502,用于将处理器1501生成的参考信号发送出去;
其中,在时域上的一个子帧中,参考信号占用至少三个符号;
在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
参考信号占用的至少三个符号中包括至少一个短参考符号,短参考符号的长度小于一个数据符号的长度。
该装置中,参考信号的生成和发送过程可参考图5B和实施例一中的相关描述。
该装置中,参考信号序列的映射方式可参考实施例一中的“映射方式一”。
该装置中,处理器1501生成参考信号序列的生成方式可参考实施例一中介绍的生成参考序列的各种可选方式。
该装置的其他可选实现方式可参考实施例一中的参考信号的发送设备501,重复之处不再赘述。可选地,处理器1501的具体实现方式可参考前述 的处理单元1401,发射器1502的具体实现方式可参考前述的发送单元1402。
此外,本发明实施例还提供一种参考信号发送设备,包括实施例七提供的参考信号发送装置。
【实施例八】
图16为实施例八提供的参考信号接收装置的结构示意图,如图16所示,该装置包括:
接收单元1601,用于接收参考信号;
处理单元1602,用于对接收单元1601接收到的参考信号进行信号处理;
其中,在时域上的一个子帧中,参考信号占用至少三个符号;
在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
参考信号占用的至少三个符号中包括至少一个短参考符号,短参考符号的长度小于一个数据符号的长度。
该装置中,处理单元1602可由处理器实现,接收单元1601可由接收器实现。
该装置中,参考信号的接收和信号处理过程可参考图5C和实施例一中的相关描述。
该装置中,参考信号序列的映射方式可参考实施例一中的“映射方式一”,比如:
可选地,短参考符号在频域上占用的子载波的间隔为数据符号在频域上占用的子载波的间隔的K倍,K为大于或等于2的整数。
可选地,一个子帧的最后一个符号为空符号,一个子帧中的所有数据符号、参考信号所占用的符号,以及空符号组成一个子帧,其中,空符号的长度小于或等于一个数据符号的长度。
可选地,在时域上的一个子帧中,参考信号占用Na个符号,占用的Na个符号中包括的短参考符号的个数为Nb,包括的正常参考符号的个数为 Na-Nb;
其中,正常参考符号的在频域上占用的子载波的间隔与数据符号在频域上占用的子载波的间隔相等;Na、Nb为正整数,且Nb小于或等于Na。
可选地,短参考符号在频域上占用连续的子载波。
可选地,在时域上的一个子帧中,参考信号占用三个符号;若CP为正常CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于5个符号;若CP为扩展CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于4个符号;或
在时域上的一个子帧中,参考信号占用四个符号;若CP为正常CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于4符号;若CP为扩展CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于3个符号。
可选地,参考信号占用一个子帧中的所有非空符号,一个子帧中的所有非空符号的个数大于或等于3;
对于每个参考信号在频域上占用的每一个PRB,参考信号占用不连续的多个子载波。
可选地,参考信号在频域上占用的每一个物理资源块PRB中,占用不连续的多个子载波。
可选地,参考信号在频域上占用的每一个PRB中,占用等间隔的多个子载波。
可选地,在参考信号所在的频域上的每一个PRB中,未被参考信号占用的子载波上不映射数据或映射待传输的数据。
该装置中,处理单元1601生成参考信号序列的生成方式可参考实施例一中介绍的生成参考序列的各种可选方式,比如:
可选地,处理单元1602还用于:在对接收单元1601接收的参考信号进行信号处理之前,对于预知的在一个子帧中参考信号占用的每一个符号,生成第一序列,第一序列的长度等于预知的参考信号在该符号上占用的子载波 的个数;
处理单元1602具体用于:根据生成的第一序列对接收的参考信号进行信号处理;
其中,在一个子帧中,对于参考信号占用的不同符号,用于对接收单元1601接收的参考信号进行信号处理所使用的第一序列相同或不同。
可选地,第一序列由ZC序列生成;或
第一序列由第二序列与第三序列生成,第二序列为{Z1,Z2,…,ZN},第二序列的长度与第一序列的长度相等,均为N,N为正整数;第三序列为{R1,R2,…,RM},第三序列的长度为M,M为在一个子帧中,参考信号占用的符号的个数,为正整数。
可选地,第二序列由ZC序列生成,第三序列由伪随机序列生成;或
第二序列和第三序列均由ZC序列生成。
可选地,参考信号在一个子帧的不同符号上占用预知的相同频域位置的子载波;
第一序列的长度等于参考信号在一个子帧上占用的符号的个数;
第一序列中的各个码元分别对应于预知的参考信号在一个子帧上占用的各个符号,其中,一个码元对应一个符号;
其中,在一个子帧中,对于参考信号占用的不同子载波,用于对接收的参考信号进行信号处理所使用的第一序列相同或不同。
该装置的其他可选实现方式可参考实施例一中的参考信号的接收设备502,重复之处不再赘述。
此外,本发明实施例还提供一种参考信号接收设备,包括实施例八提供的参考信号接收装置。
【实施例九】
图17为本发明实施例九提供的第二种参考信号接收装置的结构示意图, 如图17所示,该装置包括:
接收器1701,用于接收参考信号;
处理器1702,用于对接收器1701接收到的参考信号进行信号处理;
其中,在时域上的一个子帧中,参考信号占用至少三个符号;
在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
参考信号占用的至少三个符号中包括至少一个短参考符号,短参考符号的长度小于一个数据符号的长度。
该装置中,参考信号的接收和信号处理过程可参考图5C和实施例一中的相关描述。
该装置中,参考信号序列的映射方式可参考实施例一中的“映射方式一”。
该装置中,处理器1701生成参考信号序列的生成方式可参考实施例一中介绍的生成参考序列的各种可选方式。
该装置的其他可选实现方式可参考实施例一中的参考信号的接收设备502,重复之处不再赘述。
此外,本发明实施例还提供一种参考信号接收设备,包括实施例九提供的参考信号接收装置。
【实施例十】
图18为实施例十提供的参考信号发送装置的结构示意图,如图18所示,该装置包括:
处理单元1801,用于生成参考信号;
发送单元1802,用于将处理单元1801生成的参考信号发送出去;
在时域上,参考信号仅占用一个子帧的第一个符号;
在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
在频域上,在参考信号占用的带宽内,参考信号占用连续的部分PRB中的全部子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
参考信号占用的符号为短参考符号,短参考符号的长度小于一个数据符号的长度。
该装置中,处理单元1801可由处理器实现,发送单元1802可由发射器实现。
该装置中,参考信号的生成和发送过程可参考图5B和实施例一中的相关描述。
该装置中,参考信号序列的映射方式可参考实施例一中的“映射方式二”,比如:
可选地,若在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,则
在参考信号占用的每一个PRB中,未被参考信号占用的子载波不映射数据或映射待传输的数据。
可选地,一个子帧的最后一个符号为空符号;
一个子帧中的所有数据符号、参考信号所占用的符号,以及空符号组成一个子帧;参考信号占用的符号的长度与空符号的长度之和等于一个数据符号的长度。
该装置中,处理单元1801生成参考信号序列的生成方式可参考实施例一中介绍的生成参考序列的各种可选方式。
该装置的其他可选实现方式可参考实施例一中的参考信号的发送设备501,重复之处不再赘述。
此外,本发明实施例还提供一种参考信号发送设备,包括实施例十提供的参考信号发送装置。
【实施例十一】
图19为实施例十一提供的第四种参考信号发送装置的结构示意图。如图 19所示,该装置包括:
处理器1901,用于生成参考信号;
发射器1902,用于将处理器1901生成的参考信号发送出去;
在时域上,参考信号仅占用一个子帧的第一个符号;
在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
在频域上,在参考信号占用的带宽内,参考信号占用连续的部分PRB中的全部子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
参考信号占用的符号为短参考符号,短参考符号的长度小于一个数据符号的长度。
该装置中,参考信号的生成和发送过程可参考图5B和实施例一中的相关描述。
该装置中,参考信号序列的映射方式可参考实施例一中的“映射方式二”。
该装置中,处理器1901生成参考信号序列的生成方式可参考实施例一中介绍的生成参考序列的各种可选方式。
该装置的其他可选实现方式可参考实施例一中的参考信号的发送设备501,重复之处不再赘述。
此外,本发明实施例还提供一种参考信号发送设备,包括实施例十一提供的参考信号发送装置。
【实施例十二】
图20为实施例十二提供的第三种参考信号接收装置的结构示意图,如图20所示,该装置包括:
接收单元2001,用于接收参考信号;
处理单元2002,用于对接收单元2001接收的参考信号进行信号处理;
在时域上,参考信号仅占用一个子帧的第一个符号;
在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
在频域上,在参考信号占用的带宽内,参考信号占用连续的部分PRB中的全部子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
参考信号占用的符号为短参考符号,短参考符号的长度小于一个数据符号的长度。
该装置中,处理单元2002可由处理器实现,接收单元2001可由接收器实现。
该装置中,参考信号的接收和信号处理过程可参考图5C和实施例一中的相关描述。
该装置中,参考信号序列的映射方式可参考实施例一中的“映射方式二”,比如:
可选地,若在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,则
在参考信号占用的每一个PRB中,未被参考信号占用的子载波不映射数据或映射待传输的数据。
可选地,一个子帧的最后一个符号为空符号;
一个子帧中的所有数据符号、参考信号所占用的符号,以及空符号组成一个子帧;参考信号占用的符号的长度与空符号的长度之和等于一个数据符号的长度。
该装置中,处理单元2002生成参考信号序列的生成方式可参考实施例一中介绍的生成参考序列的各种可选方式。
该装置的其他可选实现方式可参考实施例一中的参考信号的接收设备502,重复之处不再赘述。
本发明实施例还提供一种参考信号接收设备,包括实施例十二提供的参 考信号接收装置。
【实施例十三】
图21为实施例十二提供的第四种参考信号接收装置的结构示意图,如图21所示,该装置包括:
接收器2101,用于接收参考信号;
处理器2102,用于对接收器2101接收的参考信号进行信号处理;
在时域上,参考信号仅占用一个子帧的第一个符号;
在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
在频域上,在参考信号占用的带宽内,参考信号占用连续的部分PRB中的全部子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
参考信号占用的符号为短参考符号,短参考符号的长度小于一个数据符号的长度。
该装置中,参考信号的接收和信号处理过程可参考图5C和实施例一中的相关描述。
该装置中,参考信号序列的映射方式可参考实施例一中的“映射方式二”,比如:
可选地,若在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,则
在参考信号占用的每一个PRB中,未被参考信号占用的子载波不映射数据或映射待传输的数据。
可选地,一个子帧的最后一个符号为空符号;
一个子帧中的所有数据符号、参考信号所占用的符号,以及空符号组成一个子帧;参考信号占用的符号的长度与空符号的长度之和等于一个数据符号的长度。
该装置中,处理器2102生成参考信号序列的生成方式可参考实施例一中介绍的生成参考序列的各种可选方式。
该装置的其他可选实现方式可参考实施例一中的参考信号的接收设备502,重复之处不再赘述。
本发明实施例还提供一种参考信号接收设备,包括实施例十三提供的参考信号接收装置。
【实施例十四】
图22为实施例十四提供的第一种参考信号发送方法的流程图。如图22所示,该方法包括如下步骤:
S2201:生成参考信号;
S2202:将生成的参考信号发送出去;
其中,在时域上的一个子帧中,参考信号占用至少三个符号;
在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
参考信号占用的至少三个符号中包括至少一个短参考符号,短参考符号的长度小于一个数据符号的长度。
该方法中,参考信号的生成和发送过程可参考图5B和实施例一中的相关描述。
该方法中,参考信号序列的映射方式可参考实施例一中的“映射方式一”,比如:
可选地,短参考符号在频域上占用的子载波的间隔为数据符号在频域上占用的子载波的间隔的K倍,K为大于或等于2的整数。
可选地,一个子帧的最后一个符号为空符号,一个子帧中的所有数据符号、参考信号所占用的符号,以及空符号组成一个子帧,其中,空符号的长度小于或等于一个数据符号的长度。
可选地,在时域上的一个子帧中,参考信号占用Na个符号,占用的Na 个符号中包括的短参考符号的个数为Nb,包括的正常参考符号的个数为Na-Nb;
其中,正常参考符号的在频域上占用的子载波的间隔与数据符号在频域上占用的子载波的间隔相等;Na、Nb为正整数,且Nb小于或等于Na。
可选地,短参考符号在频域上占用连续的子载波。
可选地,在时域上的一个子帧中,参考信号占用三个符号;若CP为正常CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于5个符号;若CP为扩展CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于4个符号;或
在时域上的一个子帧中,参考信号占用四个符号;若CP为正常CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于4符号;若CP为扩展CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于3个符号。
可选地,参考信号占用一个子帧中的所有非空符号,一个子帧中的所有非空符号的个数大于或等于3;
对于每个参考信号在频域上占用的每一个PRB,参考信号占用不连续的多个子载波。
可选地,参考信号在频域上占用的每一个物理资源块PRB中,占用不连续的多个子载波。
可选地,参考信号在频域上占用的每一个PRB中,占用等间隔的多个子载波。
可选地,在参考信号所在的频域上的每一个PRB中,未被参考信号占用的子载波上不映射数据或映射待传输的数据。
该方法中,生成参考信号序列的生成方式可参考实施例一中介绍的生成参考序列的各种可选方式,比如:
可选地,生成参考信号包括:对于参考信号占用的每一个符号,
生成第一序列,第一序列的长度等于参考信号在该符号上占用的子载波 的个数;以及
将生成的第一序列中的各个码元分别映射到参考信号在该符号上占用的各个子载波上,其中,一个码元对应一个子载波;
其中,在一个子帧中,对于参考信号占用的不同符号,生成参考信号所使用的第一序列相同或不同。
可选地,第一序列由ZC序列生成;或
第一序列由第二序列与第三序列生成,第二序列为{Z1,Z2,…,ZN},第二序列的长度与第一序列的长度相等,均为N,N为正整数;第三序列为{R1,R2,…,RM},第三序列的长度为M,M为在一个子帧中,参考信号占用的符号的个数,为正整数。
可选地,第二序列由ZC序列生成,第三序列由伪随机序列生成;或
第二序列和第三序列均由ZC序列生成。
可选地,参考信号在一个子帧的不同符号上占用相同频域位置的子载波,生成参考信号包括:
生成第一序列,第一序列的长度等于参考信号在一个子帧上占用的符号的个数;
将生成的第一序列中的各个码元分别映射到参考信号在一个子帧上占用的各个符号上,其中,一个码元对应一个符号;
其中,在一个子帧中,对于参考信号占用的不同子载波,生成参考信号所使用的第一序列相同或不同。
该方法的其他可选实现方式可参考实施例一中的参考信号的发送设备501的处理,重复之处不再赘述。
【实施例十五】
图23为实施例十五提供的第一种参考信号接收方法的流程图,如图23所示,该方法包括如下步骤:
S2301:接收参考信号;
S2302:对接收到的参考信号进行信号处理;
其中,在时域上的一个子帧中,参考信号占用至少三个符号;
在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
参考信号占用的至少三个符号中包括至少一个短参考符号,短参考符号的长度小于一个数据符号的长度。
该方法中,参考信号的接收和信号处理过程可参考图5C和实施例一中的相关描述。
该方法中,参考信号序列的映射方式可参考实施例一中的“映射方式一”,比如:
可选地,短参考符号在频域上占用的子载波的间隔为数据符号在频域上占用的子载波的间隔的K倍,K为大于或等于2的整数。
可选地,一个子帧的最后一个符号为空符号,一个子帧中的所有数据符号、参考信号所占用的符号,以及空符号组成一个子帧,其中,空符号的长度小于或等于一个数据符号的长度。
可选地,在时域上的一个子帧中,参考信号占用Na个符号,占用的Na个符号中包括的短参考符号的个数为Nb,包括的正常参考符号的个数为Na-Nb;
其中,正常参考符号的在频域上占用的子载波的间隔与数据符号在频域上占用的子载波的间隔相等;Na、Nb为正整数,且Nb小于或等于Na。
可选地,短参考符号在频域上占用连续的子载波。
可选地,在时域上的一个子帧中,参考信号占用三个符号;若CP为正常CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于5个符号;若CP为扩展CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于4个符号;或
在时域上的一个子帧中,参考信号占用四个符号;若CP为正常CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于4符号;若CP为扩展CP,则参考信号在一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于3个符号。
可选地,参考信号占用一个子帧中的所有非空符号,一个子帧中的所有非空符号的个数大于或等于3;
对于每个参考信号在频域上占用的每一个PRB,参考信号占用不连续的多个子载波。
可选地,参考信号在频域上占用的每一个物理资源块PRB中,占用不连续的多个子载波。
可选地,参考信号在频域上占用的每一个PRB中,占用等间隔的多个子载波。
可选地,在参考信号所在的频域上的每一个PRB中,未被参考信号占用的子载波上不映射数据或映射待传输的数据。
该方法中,生成参考信号序列的生成方式可参考实施例一中介绍的生成参考序列的各种可选方式,比如:
可选地,在对接收的参考信号进行信号处理之前,还包括:
对于预知的在一个子帧中参考信号占用的每一个符号,生成第一序列,第一序列的长度等于预知的参考信号在该符号上占用的子载波的个数;
根据生成的第一序列对接收的参考信号进行信号处理;
其中,在一个子帧中,对于参考信号占用的不同符号,用于对接收的参考信号进行信号处理所使用的第一序列相同或不同。
可选地,第一序列由ZC序列生成;或
第一序列由第二序列与第三序列生成,第二序列为{Z1,Z2,…,ZN},第二序列的长度与第一序列的长度相等,均为N,N为正整数;第三序列为 {R1,R2,…,RM},第三序列的长度为M,M为在一个子帧中,参考信号占用的符号的个数,为正整数。
可选地,第二序列由ZC序列生成,第三序列由伪随机序列生成;或
第二序列和第三序列均由ZC序列生成。
可选地,参考信号在一个子帧的不同符号上占用预知的相同频域位置的子载波;
第一序列的长度等于参考信号在一个子帧上占用的符号的个数;
第一序列中的各个码元分别对应于预知的参考信号在一个子帧上占用的各个符号,其中,一个码元对应一个符号;
其中,在一个子帧中,对于参考信号占用的不同子载波,用于对接收的参考信号进行信号处理所使用的第一序列相同或不同。
该方法的其他可选实现方式可参考实施例一中的参考信号的接收设备502的处理,重复之处不再赘述。
【实施例十六】
图24为实施例十六提供的第二种参考信号发送方法的流程图。如图24所示,该方法包括如下步骤:
S2401:生成参考信号;
S2402:将生成的参考信号发送出去;
在时域上,参考信号仅占用一个子帧的第一个符号;
在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
在频域上,在参考信号占用的带宽内,参考信号占用连续的部分PRB中的全部子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
参考信号占用的符号为短参考符号,短参考符号的长度小于一个数据符 号的长度。
该方法中,参考信号的生成和发送过程可参考图5B和实施例一中的相关描述。
该方法中,参考信号序列的映射方式可参考实施例一中的“映射方式二”,比如:
可选地,若在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,则
在参考信号占用的每一个PRB中,未被参考信号占用的子载波不映射数据或映射待传输的数据。
可选地,一个子帧的最后一个符号为空符号;
一个子帧中的所有数据符号、参考信号所占用的符号,以及空符号组成一个子帧;参考信号占用的符号的长度与空符号的长度之和等于一个数据符号的长度。
该方法中,生成参考信号序列的生成方式可参考实施例一中介绍的生成参考序列的各种可选方式。
该方法的其他可选实现方式可参考实施例一中的参考信号的发送设备501,重复之处不再赘述。
【实施例十七】
图25为实施例十七提供的第二种参考信号接收方法的流程图。如图25所示,该方法包括如下步骤:
S2501:接收参考信号;
S2502:对接收的参考信号进行信号处理;
在时域上,参考信号仅占用一个子帧的第一个符号;
在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
在频域上,在参考信号占用的带宽内,参考信号占用连续的部分PRB中 的全部子载波,且在时域上,参考信号占用的一个符号的长度等于一个数据符号的长度;或者
参考信号占用的符号为短参考符号,短参考符号的长度小于一个数据符号的长度。
该方法中,参考信号序列的映射方式可参考实施例一中的“映射方式二”,比如:
可选地,若在频域上,在参考信号占用的每一个物理资源块PRB中,参考信号占用不连续的多个子载波,则
在参考信号占用的每一个PRB中,未被参考信号占用的子载波不映射数据或映射待传输的数据。
可选地,一个子帧的最后一个符号为空符号;
一个子帧中的所有数据符号、参考信号所占用的符号,以及空符号组成一个子帧;参考信号占用的符号的长度与空符号的长度之和等于一个数据符号的长度。
该方法中,生成参考信号序列的生成方式可参考实施例一中介绍的生成参考序列的各种可选方式。
该装置的其他可选实现方式可参考实施例一中的参考信号的接收设备502,重复之处不再赘述。
本发明实施例中,通过参考信号在频域上占用不连续的子载波,或缩短参考信号在时域上的符号长度,从而达到减少参考信号对传输资源占用的目的。
进一步地,对于参考信号在一个子帧中占用至少3个符号的方案,与图1所示的方案相比,参考信号的接收设备能够在单位时间内获得更密集的参考信号。在高频、高速的场景下,信道快衰落更严重,在单位时间内信道特性变化更快。通过采用本发明实施例,在一次传输的时间内(比如:LTE系统的1ms子帧的一次传输),对发送设备而言,能够将待发送的数据在相干时间内发送出去;对接收设备而言,接收设备能够获取到更多的参考信号,并根 据获取的参考信号获取信道状态等信息,从而满足接收设备502对收到的发送设备发送的数据估计时的性能要求,满足高频、高速场景下的通信要求。
进一步地,对于参考信号在一个子帧中占用至少3个符号的方案,若参考信号在频域上占用的每一个PRB中占用不连续的多个子载波,或参考信号在一个子帧上占用的符号包括短参考符号,则可有效降低参考信号的开销,与目前LTE系统相比,可在不额外增加参考信号开销的情况下,满足高速、高频场景的通信需求。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (82)

  1. 一种参考信号发送装置,其特征在于,包括:
    处理单元,用于生成参考信号;
    发送单元,用于将所述处理单元生成的所述参考信号发送出去;
    其中,在时域上的一个子帧中,所述参考信号占用至少三个符号;
    在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
    所述参考信号占用的所述至少三个符号中包括至少一个短参考符号,所述短参考符号的长度小于一个数据符号的长度。
  2. 如权利要求1所述的装置,其特征在于,
    所述短参考符号在频域上占用的子载波的间隔为数据符号在频域上占用的子载波的间隔的K倍,所述K为大于或等于2的整数。
  3. 如权利要求2所述的装置,其特征在于,所述一个子帧的最后一个符号为空符号,所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所述空符号组成所述一个子帧,其中,所述空符号的长度小于或等于一个数据符号的长度。
  4. 如权利要求2或3所述的装置,其特征在于,
    在时域上的所述一个子帧中,所述参考信号占用Na个符号,占用的Na个符号中包括的短参考符号的个数为Nb,包括的正常参考符号的个数为Na-Nb;
    其中,所述正常参考符号的在频域上占用的子载波的间隔与数据符号在频域上占用的子载波的间隔相等;Na、Nb为正整数,且Nb小于或等于Na。
  5. 如权利要求2~4任一项所述的装置,其特征在于,所述短参考符号在频域上占用连续的子载波。
  6. 如权利要求1~4任一项所述的装置,其特征在于,
    在时域上的所述一个子帧中,所述参考信号占用三个符号;若CP为正常CP,则所述参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于5个符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于4个符号;或
    在时域上的所述一个子帧中,所述参考信号占用四个符号;若CP为正常CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于4符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于3个符号。
  7. 如权利要求1所述的装置,其特征在于,所述参考信号占用所述一个子帧中的所有非空符号,所述一个子帧中的所有非空符号的个数大于或等于3;
    对于每个参考信号在频域上占用的每一个PRB,所述参考信号占用不连续的多个子载波。
  8. 如权利要求1~4任一项或6所述的装置,其特征在于,
    所述参考信号在频域上占用的每一个物理资源块PRB中,占用不连续的多个子载波。
  9. 如权利要求8所述的装置,其特征在于,
    所述参考信号在频域上占用的每一个PRB中,占用等间隔的多个子载波。
  10. 如权利要求7~9任一项所述的装置,其特征在于,在所述参考信号所在的频域上的每一个PRB中,未被所述参考信号占用的子载波上不映射数据或映射待传输的数据。
  11. 如权利要求1~10任一项所述的装置,其特征在于,所述处理单元具体用于:对于所述参考信号占用的每一个符号,
    生成第一序列,所述第一序列的长度等于所述参考信号在该符号上占用的子载波的个数;以及
    将生成的所述第一序列中的各个码元分别映射到所述参考信号在该符号上占用的各个子载波上,其中,一个码元对应一个子载波;
    其中,在所述一个子帧中,对于所述参考信号占用的不同符号,生成所述参考信号所使用的所述第一序列相同或不同。
  12. 如权利要求11数据传输的装置,其特征在于,
    所述第一序列由ZC序列生成;或
    所述第一序列由第二序列与第三序列生成,所述第二序列为{Z1,Z2,…,ZN},所述第二序列的长度与第一序列的长度相等,均为N,N为正整数;所述第三序列为{R1,R2,…,RM},所述第三序列的长度为M,M为在一个子帧中,所述参考信号占用的符号的个数,为正整数。
  13. 如权利要求12所述的装置,其特征在于,
    所述第二序列由ZC序列生成,所述第三序列由伪随机序列生成;或
    所述第二序列和所述第三序列均由ZC序列生成。
  14. 如权利要求1~10任一项所述的装置,其特征在于,所述参考信号在所述一个子帧的不同符号上占用相同频域位置的子载波,所述处理单元具体用于:
    生成第一序列,所述第一序列的长度等于所述参考信号在一个子帧上占用的符号的个数;
    将生成的所述第一序列中的各个码元分别映射到所述参考信号在一个子帧上占用的各个符号上,其中,一个码元对应一个符号;
    其中,在所述一个子帧中,对于所述参考信号占用的不同子载波,生成所述参考信号所使用的所述第一序列相同或不同。
  15. 如权利要求1~14任一项所述的装置,其特征在于,
    所述参考信号所占用的时频资源为第一资源池中的时频资源;
    所述第一资源池在时域上包括无线帧中的部分或全部子帧;
    在频域上包括配置的系统带宽中的部分或全部带宽。
  16. 一种参考信号发送设备,其特征在于,包括如权利要求1~15任一项 所述的参考信号发送装置。
  17. 一种参考信号接收装置,其特征在于,包括:
    接收单元,用于接收参考信号;
    处理单元,用于对所述接收单元接收到的参考信号进行信号处理;
    其中,在时域上的一个子帧中,所述参考信号占用至少三个符号;
    在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
    所述参考信号占用的所述至少三个符号中包括至少一个短参考符号,所述短参考符号的长度小于一个数据符号的长度。
  18. 如权利要求17所述的装置,其特征在于,
    所述短参考符号在频域上占用的子载波的间隔为数据符号在频域上占用的子载波的间隔的K倍,所述K为大于或等于2的整数。
  19. 如权利要求18所述的装置,其特征在于,所述一个子帧的最后一个符号为空符号,所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所述空符号组成所述一个子帧,其中,所述空符号的长度小于或等于一个数据符号的长度。
  20. 如权利要求18或19所述的装置,其特征在于,
    在时域上的所述一个子帧中,所述参考信号占用Na个符号,占用的Na个符号中包括的短参考符号的个数为Nb,包括的正常参考符号的个数为Na-Nb;
    其中,所述正常参考符号的在频域上占用的子载波的间隔与数据符号在频域上占用的子载波的间隔相等;Na、Nb为正整数,且Nb小于或等于Na。
  21. 如权利要求18~20任一项所述的装置,其特征在于,所述短参考符号在频域上占用连续的子载波。
  22. 如权利要求17~20任一项所述的装置,其特征在于,
    在时域上的所述一个子帧中,所述参考信号占用三个符号;若CP为正常 CP,则所述参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于5个符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于4个符号;或
    在时域上的所述一个子帧中,所述参考信号占用四个符号;若CP为正常CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于4符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于3个符号。
  23. 如权利要求17所述的装置,其特征在于,所述参考信号占用所述一个子帧中的所有非空符号,所述一个子帧中的所有非空符号的个数大于或等于3;
    对于每个参考信号在频域上占用的每一个PRB,所述参考信号占用不连续的多个子载波。
  24. 如权利要求17~20任一项或22所述的装置,其特征在于,
    所述参考信号在频域上占用的每一个物理资源块PRB中,占用不连续的多个子载波。
  25. 如权利要求24所述的装置,其特征在于,
    所述参考信号在频域上占用的每一个PRB中,占用等间隔的多个子载波。
  26. 如权利要求23~25任一项所述的装置,其特征在于,在所述参考信号所在的频域上的每一个PRB中,未被所述参考信号占用的子载波上不映射数据或映射待传输的数据。
  27. 如权利要求17~26任一项所述的装置,其特征在于,
    所述处理单元还用于:在对接收的所述参考信号进行信号处理之前,对于预知的在所述一个子帧中所述参考信号占用的每一个符号,生成第一序列,所述第一序列的长度等于预知的所述参考信号在该符号上占用的子载波的个数;
    所述处理单元具体用于:根据生成的所述第一序列对接收的所述参考信号进行所述信号处理;
    其中,在所述一个子帧中,对于所述参考信号占用的不同符号,用于对接收的所述参考信号进行所述信号处理所使用的所述第一序列相同或不同。
  28. 如权利要求27数据传输的装置,其特征在于,
    所述第一序列由ZC序列生成;或
    所述第一序列由第二序列与第三序列生成,所述第二序列为{Z1,Z2,…,ZN},所述第二序列的长度与第一序列的长度相等,均为N,N为正整数;所述第三序列为{R1,R2,…,RM},所述第三序列的长度为M,M为在一个子帧中,所述参考信号占用的符号的个数,为正整数。
  29. 如权利要求28所述的装置,其特征在于,
    所述第二序列由ZC序列生成,所述第三序列由伪随机序列生成;或
    所述第二序列和所述第三序列均由ZC序列生成。
  30. 如权利要求17~26任一项所述的装置,其特征在于,所述参考信号在所述一个子帧的不同符号上占用预知的相同频域位置的子载波;
    所述第一序列的长度等于所述参考信号在一个子帧上占用的符号的个数;
    所述第一序列中的各个码元分别对应于预知的所述参考信号在所述一个子帧上占用的各个符号,其中,一个码元对应一个符号;
    其中,在所述一个子帧中,对于所述参考信号占用的不同子载波,用于对接收的所述参考信号进行所述信号处理所使用的所述第一序列相同或不同。
  31. 如权利要求17~30任一项所述的装置,其特征在于,
    所述参考信号所占用的时频资源为第一资源池中的时频资源;
    所述第一资源池在时域上包括无线帧中的部分或全部子帧;
    在频域上包括配置的系统带宽中的部分或全部带宽。
  32. 一种参考信号接收设备,其特征在于,包括如权利要求1~15任一项 所述的参考信号接收装置。
  33. 一种参考信号发送装置,其特征在于,包括:
    处理单元,用于生成参考信号;
    发送单元,用于将所述处理单元生成的所述参考信号发送出去;
    在时域上,所述参考信号仅占用一个子帧的第一个符号;
    在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
    在频域上,在所述参考信号占用的带宽内,所述参考信号占用连续的部分PRB中的全部子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
    所述参考信号占用的符号为短参考符号,所述短参考符号的长度小于一个数据符号的长度。
  34. 如权利要求33所述的装置,其特征在于,
    若在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,则
    在所述参考信号占用的每一个PRB中,未被所述参考信号占用的子载波不映射数据或映射待传输的数据。
  35. 如权利要求33或34所述的装置,其特征在于,所述一个子帧的最后一个符号为空符号;
    所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所述空符号组成所述一个子帧;所述参考信号占用的符号的长度与所述空符号的长度之和等于一个数据符号的长度。
  36. 如权利要求33~35任一项所述的装置,其特征在于,
    所述参考信号所占用的时频资源为第一资源池中的时频资源;
    所述第一资源池在时域上包括无线帧中的部分或全部子帧;
    在频域上包括配置的系统带宽中的部分或全部带宽。
  37. 一种参考信号发送设备,其特征在于,包括如权利要求1~4任一项所述的参考信号发送装置。
  38. 一种参考信号接收装置,其特征在于,包括:
    接收单元,用于接收参考信号;
    处理单元,用于对所述接收单元接收的参考信号进行信号处理;
    在时域上,所述参考信号仅占用一个子帧的第一个符号;
    在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
    在频域上,在所述参考信号占用的带宽内,所述参考信号占用连续的部分PRB中的全部子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
    所述参考信号占用的符号为短参考符号,所述短参考符号的长度小于一个数据符号的长度。
  39. 如权利要求38所述的装置,其特征在于,
    若在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,则
    在所述参考信号占用的每一个PRB中,未被所述参考信号占用的子载波不映射数据或映射待传输的数据。
  40. 如权利要求38或39所述的装置,其特征在于,所述一个子帧的最后一个符号为空符号;
    所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所述空符号组成所述一个子帧;所述参考信号占用的符号的长度与所述空符号的长度之和等于一个数据符号的长度。
  41. 如权利要求38~40任一项所述的装置,其特征在于,
    所述参考信号所占用的时频资源为第一资源池中的时频资源;
    所述第一资源池在时域上包括无线帧中的部分或全部子帧;
    在频域上包括配置的系统带宽中的部分或全部带宽。
  42. 一种参考信号接收设备,其特征在于,包括如权利要求1~4任一项所述的参考信号接收装置。
  43. 一种参考信号发送方法,其特征在于,包括:
    生成参考信号;
    将生成的所述参考信号发送出去;
    其中,在时域上的一个子帧中,所述参考信号占用至少三个符号;
    在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
    所述参考信号占用的所述至少三个符号中包括至少一个短参考符号,所述短参考符号的长度小于一个数据符号的长度。
  44. 如权利要求43所述的方法,其特征在于,
    所述短参考符号在频域上占用的子载波的间隔为数据符号在频域上占用的子载波的间隔的K倍,所述K为大于或等于2的整数。
  45. 如权利要求44所述的方法,其特征在于,所述一个子帧的最后一个符号为空符号,所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所述空符号组成所述一个子帧,其中,所述空符号的长度小于或等于一个数据符号的长度。
  46. 如权利要求44或45所述的方法,其特征在于,
    在时域上的所述一个子帧中,所述参考信号占用Na个符号,占用的Na个符号中包括的短参考符号的个数为Nb,包括的正常参考符号的个数为Na-Nb;
    其中,所述正常参考符号的在频域上占用的子载波的间隔与数据符号在频域上占用的子载波的间隔相等;Na、Nb为正整数,且Nb小于或等于Na。
  47. 如权利要求44~46任一项所述的方法,其特征在于,所述短参考符号在频域上占用连续的子载波。
  48. 如权利要求43~46任一项所述的方法,其特征在于,
    在时域上的所述一个子帧中,所述参考信号占用三个符号;若CP为正常CP,则所述参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于5个符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于4个符号;或
    在时域上的所述一个子帧中,所述参考信号占用四个符号;若CP为正常CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于4符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于3个符号。
  49. 如权利要求43所述的方法,其特征在于,所述参考信号占用所述一个子帧中的所有非空符号,所述一个子帧中的所有非空符号的个数大于或等于3;
    对于每个参考信号在频域上占用的每一个PRB,所述参考信号占用不连续的多个子载波。
  50. 如权利要求42~46任一项或48所述的方法,其特征在于,
    所述参考信号在频域上占用的每一个物理资源块PRB中,占用不连续的多个子载波。
  51. 如权利要求50所述的方法,其特征在于,
    所述参考信号在频域上占用的每一个PRB中,占用等间隔的多个子载波。
  52. 如权利要求49~51任一项所述的方法,其特征在于,在所述参考信号所在的频域上的每一个PRB中,未被所述参考信号占用的子载波上不映射数据或映射待传输的数据。
  53. 如权利要求43~52任一项所述的方法,其特征在于,所述生成参考信号包括:对于所述参考信号占用的每一个符号,
    生成第一序列,所述第一序列的长度等于所述参考信号在该符号上占用的子载波的个数;以及
    将生成的所述第一序列中的各个码元分别映射到所述参考信号在该符号 上占用的各个子载波上,其中,一个码元对应一个子载波;
    其中,在所述一个子帧中,对于所述参考信号占用的不同符号,生成所述参考信号所使用的所述第一序列相同或不同。
  54. 如权利要求53所述的方法,其特征在于,
    所述第一序列由ZC序列生成;或
    所述第一序列由第二序列与第三序列生成,所述第二序列为{Z1,Z2,…,ZN},所述第二序列的长度与第一序列的长度相等,均为N,N为正整数;所述第三序列为{R1,R2,…,RM},所述第三序列的长度为M,M为在一个子帧中,所述参考信号占用的符号的个数,为正整数。
  55. 如权利要求54所述的方法,其特征在于,
    所述第二序列由ZC序列生成,所述第三序列由伪随机序列生成;或
    所述第二序列和所述第三序列均由ZC序列生成。
  56. 如权利要求43~52任一项所述的方法,其特征在于,所述参考信号在所述一个子帧的不同符号上占用相同频域位置的子载波,所述生成参考信号包括:
    生成第一序列,所述第一序列的长度等于所述参考信号在一个子帧上占用的符号的个数;
    将生成的所述第一序列中的各个码元分别映射到所述参考信号在一个子帧上占用的各个符号上,其中,一个码元对应一个符号;
    其中,在所述一个子帧中,对于所述参考信号占用的不同子载波,生成所述参考信号所使用的所述第一序列相同或不同。
  57. 如权利要求43~56任一项所述的方法,其特征在于,
    所述参考信号所占用的时频资源为第一资源池中的时频资源;
    所述第一资源池在时域上包括无线帧中的部分或全部子帧;
    在频域上包括配置的系统带宽中的部分或全部带宽。
  58. 一种参考信号接收方法,其特征在于,包括:
    接收参考信号;
    对接收到的参考信号进行信号处理;
    其中,在时域上的一个子帧中,所述参考信号占用至少三个符号;
    在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
    所述参考信号占用的所述至少三个符号中包括至少一个短参考符号,所述短参考符号的长度小于一个数据符号的长度。
  59. 如权利要求58所述的方法,其特征在于,
    所述短参考符号在频域上占用的子载波的间隔为数据符号在频域上占用的子载波的间隔的K倍,所述K为大于或等于2的整数。
  60. 如权利要求59所述的方法,其特征在于,所述一个子帧的最后一个符号为空符号,所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所述空符号组成所述一个子帧,其中,所述空符号的长度小于或等于一个数据符号的长度。
  61. 如权利要求59或60所述的方法,其特征在于,
    在时域上的所述一个子帧中,所述参考信号占用Na个符号,占用的Na个符号中包括的短参考符号的个数为Nb,包括的正常参考符号的个数为Na-Nb;
    其中,所述正常参考符号的在频域上占用的子载波的间隔与数据符号在频域上占用的子载波的间隔相等;Na、Nb为正整数,且Nb小于或等于Na。
  62. 如权利要求59~61任一项所述的方法,其特征在于,所述短参考符号在频域上占用连续的子载波。
  63. 如权利要求58~61任一项所述的方法,其特征在于,
    在时域上的所述一个子帧中,所述参考信号占用三个符号;若CP为正常CP,则所述参考信号在一个子帧中占用的相邻符号之间的间隔不大于6个符 号且不小于5个符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于4个符号;或
    在时域上的所述一个子帧中,所述参考信号占用四个符号;若CP为正常CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于6个符号且不小于4符号;若CP为扩展CP,则所述参考信号在所述一个子帧中占用的相邻符号之间的间隔不大于5个符号且不小于3个符号。
  64. 如权利要求58所述的方法,其特征在于,所述参考信号占用所述一个子帧中的所有非空符号,所述一个子帧中的所有非空符号的个数大于或等于3;
    对于每个参考信号在频域上占用的每一个PRB,所述参考信号占用不连续的多个子载波。
  65. 如权利要求58~61任一项或63所述的方法,其特征在于,
    所述参考信号在频域上占用的每一个物理资源块PRB中,占用不连续的多个子载波。
  66. 如权利要求65所述的方法,其特征在于,
    所述参考信号在频域上占用的每一个PRB中,占用等间隔的多个子载波。
  67. 如权利要求64~66任一项所述的方法,其特征在于,在所述参考信号所在的频域上的每一个PRB中,未被所述参考信号占用的子载波上不映射数据或映射待传输的数据。
  68. 如权利要求58~67任一项所述的方法,其特征在于,
    在对接收的所述参考信号进行信号处理之前,还包括:
    对于预知的在所述一个子帧中所述参考信号占用的每一个符号,生成第一序列,所述第一序列的长度等于预知的所述参考信号在该符号上占用的子载波的个数;
    根据生成的所述第一序列对接收的所述参考信号进行所述信号处理;
    其中,在所述一个子帧中,对于所述参考信号占用的不同符号,用于对接收的所述参考信号进行所述信号处理所使用的所述第一序列相同或不同。
  69. 如权利要求68所述的方法,其特征在于,
    所述第一序列由ZC序列生成;或
    所述第一序列由第二序列与第三序列生成,所述第二序列为{Z1,Z2,…,ZN},所述第二序列的长度与第一序列的长度相等,均为N,N为正整数;所述第三序列为{R1,R2,…,RM},所述第三序列的长度为M,M为在一个子帧中,所述参考信号占用的符号的个数,为正整数。
  70. 如权利要求69所述的方法,其特征在于,
    所述第二序列由ZC序列生成,所述第三序列由伪随机序列生成;或
    所述第二序列和所述第三序列均由ZC序列生成。
  71. 如权利要求58~67任一项所述的方法,其特征在于,所述参考信号在所述一个子帧的不同符号上占用预知的相同频域位置的子载波;
    所述第一序列的长度等于所述参考信号在一个子帧上占用的符号的个数;
    所述第一序列中的各个码元分别对应于预知的所述参考信号在所述一个子帧上占用的各个符号,其中,一个码元对应一个符号;
    其中,在所述一个子帧中,对于所述参考信号占用的不同子载波,用于对接收的所述参考信号进行所述信号处理所使用的所述第一序列相同或不同。
  72. 如权利要求58~71任一项所述的方法,其特征在于,
    所述参考信号所占用的时频资源为第一资源池中的时频资源;
    所述第一资源池在时域上包括无线帧中的部分或全部子帧;
    在频域上包括配置的系统带宽中的部分或全部带宽。
  73. 一种无线通信系统,包括:发送设备和接收设备,其特征在于,
    所述发送设备,用于生成参考信号,并将生成的所述参考信号发送出去;
    所述接收设备,用于接收参考信号,并对对接收的参考信号进行信号处 理;
    其中,在时域上的一个子帧中,所述参考信号占用至少三个符号;
    在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
    所述参考信号占用的所述至少三个符号中包括至少一个短参考符号,所述短参考符号的长度小于一个数据符号的长度。
  74. 一种参考信号发送方法,其特征在于,包括:
    生成参考信号;
    将生成的所述参考信号发送出去;
    在时域上,所述参考信号仅占用一个子帧的第一个符号;
    在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
    在频域上,在所述参考信号占用的带宽内,所述参考信号占用连续的部分PRB中的全部子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
    所述参考信号占用的符号为短参考符号,所述短参考符号的长度小于一个数据符号的长度。
  75. 如权利要求74所述的方法,其特征在于,
    若在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,则
    在所述参考信号占用的每一个PRB中,未被所述参考信号占用的子载波不映射数据或映射待传输的数据。
  76. 如权利要求74或75所述的方法,其特征在于,所述一个子帧的最后一个符号为空符号;
    所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所 述空符号组成所述一个子帧;所述参考信号占用的符号的长度与所述空符号的长度之和等于一个数据符号的长度。
  77. 如权利要求74~76任一项所述的方法,其特征在于,
    所述参考信号所占用的时频资源为第一资源池中的时频资源;
    所述第一资源池在时域上包括无线帧中的部分或全部子帧;
    在频域上包括配置的系统带宽中的部分或全部带宽。
  78. 一种参考信号接收方法,其特征在于,包括:
    接收参考信号;
    对接收的参考信号进行信号处理;
    在时域上,所述参考信号仅占用一个子帧的第一个符号;
    在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
    在频域上,在所述参考信号占用的带宽内,所述参考信号占用连续的部分PRB中的全部子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
    所述参考信号占用的符号为短参考符号,所述短参考符号的长度小于一个数据符号的长度。
  79. 如权利要求78所述的方法,其特征在于,
    若在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,则
    在所述参考信号占用的每一个PRB中,未被所述参考信号占用的子载波不映射数据或映射待传输的数据。
  80. 如权利要求78或79所述的方法,其特征在于,所述一个子帧的最后一个符号为空符号;
    所述一个子帧中的所有数据符号、所述参考信号所占用的符号,以及所述空符号组成所述一个子帧;所述参考信号占用的符号的长度与所述空符号 的长度之和等于一个数据符号的长度。
  81. 如权利要求78~80任一项所述的方法,其特征在于,
    所述参考信号所占用的时频资源为第一资源池中的时频资源;
    所述第一资源池在时域上包括无线帧中的部分或全部子帧;
    在频域上包括配置的系统带宽中的部分或全部带宽。
  82. 一种无线通信系统,包括:发送设备和接收设备,其特征在于,
    所述发送设备,用于生成参考信号,并将生成的所述参考信号发送出去;
    所述接收设备,用于接收参考信号,并对对接收的参考信号进行信号处理;
    其中,在时域上,所述参考信号仅占用一个子帧的第一个符号;
    在频域上,在所述参考信号占用的每一个物理资源块PRB中,所述参考信号占用不连续的多个子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
    在频域上,在所述参考信号占用的带宽内,所述参考信号占用连续的部分PRB中的全部子载波,且在时域上,所述参考信号占用的一个符号的长度等于一个数据符号的长度;或者
    所述参考信号占用的符号为短参考符号,所述短参考符号的长度小于一个数据符号的长度。
PCT/CN2015/088760 2015-09-01 2015-09-01 一种参考信号的传输设备、方法及系统 WO2017035782A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/088760 WO2017035782A1 (zh) 2015-09-01 2015-09-01 一种参考信号的传输设备、方法及系统
CN201580027128.XA CN106717089B (zh) 2015-09-01 2015-09-01 一种参考信号的传输设备、方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/088760 WO2017035782A1 (zh) 2015-09-01 2015-09-01 一种参考信号的传输设备、方法及系统

Publications (1)

Publication Number Publication Date
WO2017035782A1 true WO2017035782A1 (zh) 2017-03-09

Family

ID=58186561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088760 WO2017035782A1 (zh) 2015-09-01 2015-09-01 一种参考信号的传输设备、方法及系统

Country Status (2)

Country Link
CN (1) CN106717089B (zh)
WO (1) WO2017035782A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632011A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 用于进行数据传输的方法和装置
CN109150770A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种参考信号的发送、接收方法及装置
CN113473600A (zh) * 2020-03-30 2021-10-01 中国电信股份有限公司 数据传输方法、通信网络设备、基站和存储介质
CN113473599A (zh) * 2020-03-30 2021-10-01 中国电信股份有限公司 信道资源映射方法和基站、终端及通信网络设备
CN113472491A (zh) * 2020-03-30 2021-10-01 中国电信股份有限公司 数据传输方法、信息交互设备、基站及存储介质
CN113473599B (zh) * 2020-03-30 2024-05-28 中国电信股份有限公司 信道资源映射方法和基站、终端及通信网络设备

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3627922B1 (en) 2017-07-12 2022-01-12 Huawei Technologies Co., Ltd. Method and apparatus for transmission control
CN110768761B (zh) * 2018-07-26 2022-07-15 中兴通讯股份有限公司 定位参考信号生成方法、装置、基站及可读存储介质
WO2020024274A1 (en) * 2018-08-03 2020-02-06 Zte Corporation Multi-structure reference signals
CN110912659B (zh) * 2018-09-14 2021-08-31 华为技术有限公司 一种信息发送、接收方法、设备及装置
CN111555848B (zh) * 2019-02-11 2023-05-09 中国移动通信有限公司研究院 一种参考信号传输方法及通信设备
CN114124320B (zh) * 2020-08-25 2024-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022047797A1 (zh) * 2020-09-07 2022-03-10 华为技术有限公司 一种参考信号传输方法及装置
CN116918417A (zh) * 2021-02-25 2023-10-20 华为技术有限公司 使用具有频域偏移的短参考符号的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340228A (zh) * 2008-08-07 2009-01-07 中兴通讯股份有限公司 一种参考信号的传输方法
CN101572896A (zh) * 2008-04-29 2009-11-04 大唐移动通信设备有限公司 一种配置上行探测参考信号的方法和装置
CN102461052A (zh) * 2009-06-22 2012-05-16 高通股份有限公司 在资源的不连续簇上传输参考信号
US8238482B2 (en) * 2008-10-14 2012-08-07 Apple Inc. Techniques for improving channel estimation and tracking in a wireless communication system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030778A (zh) * 2006-02-28 2007-09-05 矽统科技股份有限公司 利用相位域和时域进行时钟信号的微调与对准的装置及方法
US8730933B2 (en) * 2008-09-18 2014-05-20 Qualcomm Incorporated Method and apparatus for multiplexing data and reference signal in a wireless communication system
CN103428775A (zh) * 2012-05-17 2013-12-04 中兴通讯股份有限公司 基于传输时间间隔捆绑的资源配置方法及发送装置
WO2015038057A1 (en) * 2013-09-13 2015-03-19 Telefonaktiebolaget L M Ericsson (Publ) Reference signal allocation for flexible data lengths

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572896A (zh) * 2008-04-29 2009-11-04 大唐移动通信设备有限公司 一种配置上行探测参考信号的方法和装置
CN101340228A (zh) * 2008-08-07 2009-01-07 中兴通讯股份有限公司 一种参考信号的传输方法
US8238482B2 (en) * 2008-10-14 2012-08-07 Apple Inc. Techniques for improving channel estimation and tracking in a wireless communication system
CN102461052A (zh) * 2009-06-22 2012-05-16 高通股份有限公司 在资源的不连续簇上传输参考信号

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632011A (zh) * 2017-03-24 2018-10-09 华为技术有限公司 用于进行数据传输的方法和装置
US11784753B2 (en) 2017-03-24 2023-10-10 Huawei Technologies Co., Ltd. Data transmission method and apparatus
CN108632011B (zh) * 2017-03-24 2023-11-21 华为技术有限公司 用于进行数据传输的方法和装置
CN109150770A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 一种参考信号的发送、接收方法及装置
CN109150770B (zh) * 2017-06-16 2023-02-03 华为技术有限公司 一种参考信号的发送、接收方法及装置
CN113473600A (zh) * 2020-03-30 2021-10-01 中国电信股份有限公司 数据传输方法、通信网络设备、基站和存储介质
CN113473599A (zh) * 2020-03-30 2021-10-01 中国电信股份有限公司 信道资源映射方法和基站、终端及通信网络设备
CN113472491A (zh) * 2020-03-30 2021-10-01 中国电信股份有限公司 数据传输方法、信息交互设备、基站及存储介质
CN113473599B (zh) * 2020-03-30 2024-05-28 中国电信股份有限公司 信道资源映射方法和基站、终端及通信网络设备

Also Published As

Publication number Publication date
CN106717089A (zh) 2017-05-24
CN106717089B (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2017035782A1 (zh) 一种参考信号的传输设备、方法及系统
CN108667579B (zh) 一种数据发送方法、相关设备及系统
US11510221B2 (en) V2X message transmission method performed by terminal in wireless communication system, and terminal using same
CN108632006B (zh) 一种参考信号传输方法、装置及系统
CN107846373B (zh) 发送或接收物理下行控制信道的方法和设备
CN108282870B (zh) 一种资源指示方法、用户设备及网络设备
TWI735616B (zh) 傳輸導頻信號的方法、終端設備和網絡側設備
US20160286578A1 (en) Signaling of random access preamble parameters in wireless networks
US10454720B2 (en) Terminal device, wireless transmission method, base station device, and channel estimation method
US10939271B2 (en) Method and NB-IOT device for receiving downlink physical channel on TDD special subframe
WO2018018628A1 (zh) 参考信号序列的映射方法、配置方法、基站和用户设备
WO2009039224A1 (en) Restricted cyclic shift configuration for random access preambles in wireless networks
JP7222076B2 (ja) 情報送信および受信方法、デバイス、および装置
US11930465B2 (en) Long transmission duration for wireless systems
WO2020220894A1 (zh) 一种prach资源配置和指示配置的方法、装置及设备
CN113508633B (zh) 随机接入方法以及装置
TW202008829A (zh) 資源配置的方法和終端設備
JP2020523933A (ja) 情報送信方法、端末デバイス、及びネットワーク・デバイス
TW202008828A (zh) 資源配置的方法和終端設備
WO2018059550A1 (zh) 参考信号的处理方法、用户设备和基站
WO2018171792A1 (zh) 一种参考信号传输方法、装置及系统
JP2021122124A (ja) 無線送信装置、及び、送信方法
US20130064200A1 (en) Base station apparatus, mobile terminal apparatus and communication control method
WO2019191901A1 (en) Method and devices for resource allocation in a wireless communication system
WO2019028801A1 (zh) 一种信号发送、接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902589

Country of ref document: EP

Kind code of ref document: A1