WO2018059550A1 - 参考信号的处理方法、用户设备和基站 - Google Patents

参考信号的处理方法、用户设备和基站 Download PDF

Info

Publication number
WO2018059550A1
WO2018059550A1 PCT/CN2017/104423 CN2017104423W WO2018059550A1 WO 2018059550 A1 WO2018059550 A1 WO 2018059550A1 CN 2017104423 W CN2017104423 W CN 2017104423W WO 2018059550 A1 WO2018059550 A1 WO 2018059550A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
time
base station
indication information
reference signal
Prior art date
Application number
PCT/CN2017/104423
Other languages
English (en)
French (fr)
Inventor
张旭
曲秉玉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17855000.0A priority Critical patent/EP3512144A4/en
Publication of WO2018059550A1 publication Critical patent/WO2018059550A1/zh
Priority to US16/369,024 priority patent/US20190229971A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2621Reduction thereof using phase offsets between subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present application relates to the field of communications and, more particularly, to a method of processing a reference signal, a user equipment, and a base station.
  • the Long Term Evolution (LTE) system standard developed by the 3rd Generation Partnership Project (3GPP) is considered to be the fourth generation wireless access system standard.
  • the downlink transmission waveform is Orthogonal Frequency Division Multiple Access (OFDMA)
  • the uplink transmission waveform is Single-carrier Frequency Division Multiple Access (SC). -FDMA).
  • OFDM Orthogonal Frequency Division Multiplexing
  • LTE systems are widely deployed in the less than 6 GHz band.
  • the carrier frequency of the 5th generation wireless access system is likely to be higher than that of the 4th generation wireless access system.
  • the range of the carrier frequency to be selected includes Carrier frequency near 30 GHz, 60 GHz, etc.
  • the high carrier frequency signal has a larger fading in free space, so it is necessary to overcome the coverage hole problem caused by high path loss. Since the high carrier frequency is on the order of centimeters and millimeters, 5G devices can place a larger number of antenna elements than 3G and 4G devices at the same size.
  • the general method is to use an antenna array including a large number of antenna elements at a high carrier frequency, and use the antenna array to form a beam with high directivity to obtain a signal gain with a signal gain of 20 dB or higher, thereby resisting a high carrier frequency path.
  • Loss however, when the antenna array is used to form a directional beam with high signal gain, the beam width also decreases, so the direction of the transmitted and received beams needs to be trained before the data transmission until the transmitter and/or the receiver find the maximum signal gain. Beam direction.
  • the user equipment (User Equipment, UE) maps the reference signal to the subcarriers with the same interval, which brings the waveform repetition of the time domain signal, and the repeated waveform can be used for beam training of different beams.
  • the UE needs N beam training signals (N is greater than 1)
  • the UE maps the reference signal to multiple subcarriers with a subcarrier spacing of N, and determines that the corresponding OFDM symbol is divided into N shares for Beam training signals for N beams. Therefore, when the user equipment adopts such a mapping mode, although one carrier per N carriers carries a reference signal, time-frequency resources of other carriers cannot be used by other users, thereby causing waste of resources.
  • the embodiment of the present application provides a method for processing a reference signal, a user equipment, and a base station, which can improve time-frequency resource utilization of beam training.
  • a method of processing a test signal includes: the user equipment UE receives the first indication information sent by the base station, where the first indication information is used to indicate the number M of time segments included in the target OFDM symbol, M ⁇ N, where the N is used in the target OFDM symbol.
  • the number of the subcarrier spacings of the adjacent subcarriers in the first subcarrier set carrying the reference signal in the frequency domain, M and N are positive integers; the UE determines the M according to the first indication information; the UE is in the M A time segment signal of the reference signal is transmitted to the base station on each time segment of each time segment or the UE receives a time segment signal of the reference signal transmitted by the base station on each of the M time segments.
  • the UE receives the first indication information that is sent by the base station and indicates the number M of the time segments included in the target OFDM symbol, where the value of the M is less than or equal to the adjacent subcarriers in the first subcarrier set for carrying the reference signal in the target OFDM symbol.
  • the processing method further includes: receiving, by the UE, second indication information sent by the base station, where the second indication information is used to indicate a frequency domain of the first subcarrier set in a starting position of a frequency domain. Offset, the second indication information is used to indicate a frequency domain offset of the first subcarrier set in a starting position of the frequency domain, where the frequency domain offset is a number of subcarrier spacings different from the reference position;
  • the UE determines, according to the frequency domain offset, a starting position of the first subcarrier set in the frequency domain; the UE determines a time segment signal of the reference signal according to the starting position of the first subcarrier set in the frequency domain.
  • the base station may select a starting position of the first subcarrier set in the frequency domain for the UE, and indicate a frequency domain offset of the first subcarrier set in the frequency domain starting position by sending the second indication information to the UE.
  • the UE determines the starting position of the first subcarrier set in the frequency domain according to the frequency domain offset, and determines the time segment signal of the reference signal according to the starting position of the first subcarrier set in the frequency domain.
  • M when the frequency domain offset of the first subcarrier set in the start position of the frequency domain is the first frequency domain offset, M is any one of the first time segment number set. And when the frequency domain offset of the first subcarrier set in the start position of the frequency domain is the second frequency domain offset, M is any one of the second time segment number set, and the first time segment number set Unlike the second set of time segment numbers, the first frequency domain offset is different from the second frequency domain offset.
  • the base station can determine the mapping relationship between the frequency domain offset and the time segment number set in advance, so that the base station can determine the time segment number set corresponding to the different frequency domain offsets according to the mapping relationship, so that the M segment can be determined according to the time segment number set.
  • M can be any one of the set of time segment numbers.
  • a method of processing a test signal includes: determining, by the base station, the number M of time segments included in the target OFDM symbol, M ⁇ N, where the N is the adjacent subcarrier in the first subcarrier set for carrying the reference signal in the target OFDM symbol in the frequency domain
  • the number of phase difference subcarrier spacings, M and N are positive integers
  • the base station sends first indication information to the user equipment UE, the first indication information is used to indicate that the UE determines the M
  • the base station receives the UE in the M time A time segment signal of the reference signal transmitted on the segment or a time segment signal of the reference signal transmitted on the M time segments.
  • the base station sends first indication information indicating the number M of time segments included in the target OFDM symbol to the UE, where the value of the M is less than or equal to the adjacent sub-carrier in the first sub-carrier set for carrying the reference signal in the target OFDM symbol.
  • the number of the subcarrier spacings in the frequency domain is different, so that the UE determines M according to the first indication information, and then sends a time segment of the reference signal to the base station on each time segment of the M time segments or at the M time
  • Each time segment in the segment receives a time segment in which the base station transmits the reference signal, so that the terminal device can multiplex the time-frequency resource with other user equipment according to the indication of the base station, thereby improving the utilization of the time-frequency resource.
  • the processing method further includes: the base station sending, to the UE, second indication information, where the second indication information is used to indicate a frequency domain offset of the first subcarrier set in a starting position of the frequency domain.
  • the shift, the frequency domain offset is the number of subcarrier spacings that differ from the reference position.
  • the base station may select a starting position of the first subcarrier set in the frequency domain for the UE, and indicate a frequency domain offset of the first subcarrier set in the frequency domain starting position by sending the second indication information to the UE.
  • the UE determines the starting position of the first subcarrier set in the frequency domain according to the frequency domain offset, and determines the time segment signal of the reference signal according to the starting position of the first subcarrier set in the frequency domain.
  • M when the frequency domain offset of the first subcarrier set in the start position of the frequency domain is the first frequency domain offset, M is any one of the first time segment number set. And when the frequency domain offset of the first subcarrier set in the start position of the frequency domain is the second frequency domain offset, M is any one of the second time segment number set, and the first time segment number set Unlike the second set of time segment numbers, the first frequency domain offset is different from the second frequency domain offset.
  • the base station can determine the mapping relationship between the frequency domain offset and the time segment number set in advance, so that the base station can determine the time segment number set corresponding to the different frequency domain offsets according to the mapping relationship, so that the M segment can be determined according to the time segment number set.
  • M can be any one of the set of time segment numbers.
  • the UE receives, according to the foregoing technical solution, the first indication information that is sent by the base station and indicates the number M of time segments included in the target OFDM symbol, where the value of the M is less than or equal to the first subcarrier set used to carry the reference signal in the target OFDM symbol.
  • Adjacent subcarriers are different in frequency domain by the number of subcarrier spacings, and M is determined according to the first indication information, and then a time segment of the reference signal is sent to the base station on each of the M time segments or at the M Each time segment of the time segments receives a time segment in which the base station transmits the reference signal, so that the terminal device can multiplex the time-frequency resources with other user equipment according to the indication of the base station, thereby improving the utilization of the time-frequency resource.
  • FIG. 1 is a schematic diagram of time-frequency resource division based on an LTE system
  • FIG. 2 is a schematic diagram of a scenario of multi-beam training
  • FIG. 3 is a schematic interaction flowchart of a method for processing a reference signal according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a subcarrier according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a subcarrier according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a subcarrier according to still another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a subcarrier according to still another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a subcarrier according to still another embodiment of the present application.
  • FIG. 9 is a waveform diagram of a time domain signal according to an embodiment of the present application.
  • FIG. 10 is a waveform diagram of a time domain signal according to another embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a subcarrier according to still another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a subcarrier according to still another embodiment of the present application.
  • FIG. 13 is a waveform diagram of a time domain signal according to another embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a UE according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a base station according to an embodiment of the present application.
  • Figure 16 is a schematic block diagram of a system of an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a UE according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the wireless communication system of the embodiment of the present application can communicate by using various wireless communication schemes, for example, Global System of Mobile communication (GSM), Code Division Multiple Access (CDMA) system. , Wideband Code Division Multiple Access Wireless (WCDMA) system, General Packet Radio Service (GPRS) system, Long Term Evolution (LTE) system, Wireless Local Area Networks , WLAN) and so on.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access Wireless
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • WLAN Wireless Local Area Networks
  • the sending device may be referred to as an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, and a mobile device.
  • UE User Equipment
  • the receiving end device may also be a base station (Base Transceiver Station, BTS) in the GSM system or the CDMA system, or a base station (Node B) in the WCDMA system, or an evolved base station (Evolutional Node B in the LTE system). eNB), and base station equipment in the future 5G network.
  • BTS Base Transceiver Station
  • Node B base station
  • Evolutional Node B evolved Node B in the LTE system
  • eNB evolved base station
  • FIG. 1 shows a schematic diagram of time-frequency resource allocation based on an LTE system.
  • a radio frame has a delay of 10 milliseconds (ms)
  • one radio frame is divided into 10 subframes
  • each subframe occupies a delay of 1 ms
  • each subframe can continue to be divided into two subframes.
  • Slots each of which may include a different number of OFDM symbols due to different operating frequency points.
  • the time-frequency resource of the LTE system can be divided into multiple resource blocks, and each resource block can be divided into multiple resource units, each resource unit occupies one OFDM symbol in the time domain, and one subcarrier in the frequency domain, on one resource block.
  • One OFDM symbol may correspond to multiple subcarriers.
  • one radio frame is 10 milliseconds long in the time domain, and one subframe is 1 millisecond long in the time domain.
  • the OFDM symbol included in one slot includes 14 or 12 OFDM symbols, and the length of one slot in the time domain depends on the width of the configured subcarriers. For example, for a system with a 15 kHz subcarrier width, one includes 14 OFDM.
  • the time slot of the symbol has a length of 1 ms in the time domain.
  • the length of one slot in the time domain is shortened. For example, for a system of 30 kHz subcarrier width, a slot including 14 OFDM symbols has a length of 0.5 milliseconds in the time domain.
  • the inventive solution is not limited to use in an LTE evolution system or in a 5G NR system.
  • FIG. 2 is a schematic diagram of a scenario of multi-beam training in the embodiment of the present application.
  • the transmitting end sends a reference signal in the direction of the beam, and the receiving end can receive the reference signals in multiple beam directions, so as to determine the optimal receiving direction of the receiving end receiving the reference signal.
  • the transmitting end can send reference signals of multiple beam directions, and the receiving end receives a beam direction.
  • the reference signal which determines the best beam direction for the transmitting end to transmit the reference signal.
  • the beam training may be that the transmitting end sends the reference signal to different beam directions, and the receiving end determines the beam direction with the largest signal gain according to the received reference signal, and then transmits the data in the beam direction with the largest gain of the signal, thereby ensuring data transmission. effectiveness.
  • the embodiment of the present application is described by taking the transmitting end as the terminal device and the receiving end as the base station as an example, but the application is not limited thereto.
  • beamforming is a signal preprocessing technique based on an antenna array. By adjusting the weight of the transmitted signal on each antenna element, a beam with directivity is generated.
  • the terminal device sends a certain beam direction is described as “using a certain beam”.
  • the UE when the UE needs N beam training signals (N is greater than 1), the UE maps the reference signal to multiple subcarriers with a subcarrier spacing of N, thereby determining corresponding time domains.
  • the OFDM symbol is divided into N shares of beam training signals for N beams. Therefore, when the user equipment adopts such a mapping manner, although one subcarrier of each of the N subcarriers carries the reference signal, the time-frequency resources of other subcarriers cannot be used by other users, thereby causing waste of resources.
  • the “subcarrier spacing is N” may specifically be an interval of N subcarriers.
  • the number of training beams varies according to the location of the serving cell where the UE is located. For example, at the cell edge, the user equipment is limited in transmission power and it is difficult to meet the training energy requirements of the training of multiple beams. Even if it is configured to map one reference signal every four sub-intervals, the training of four beams cannot be performed. In this case, the present application supports reference signals of multiple users for frequency division multiplexing.
  • the number of the training beams in the serving cell of the UE is different, and the path fading of the signal is different, so that the UE at the cell edge cannot train more in a unit time (for example, within one OFDM symbol). Caused by the beam.
  • time segment each time after the time domain signal of the OFDM symbol is divided into N shares is referred to as a “time segment”, and other names having the function may be used, which is not limited in this application.
  • FIG. 3 shows a schematic interaction flow diagram of a method of processing a reference signal in accordance with one embodiment of the present application.
  • the base station determines the number M of time segments included in the target OFDM symbol, M ⁇ N.
  • the target OFDM symbol may be any one of the OFDM symbols in the system, or may be an OFDM symbol determined by the base station according to certain requirements.
  • one OFDM symbol corresponds to multiple subcarriers.
  • the subcarrier corresponding to the target OFDM symbol may be all subcarriers corresponding to the target OFDM symbol in the system bandwidth, or may be all subcarriers on the resource block corresponding to the target OFDM symbol on any one resource block.
  • the subcarrier corresponding to the target OFDM symbol may also be all subcarriers on the resource block corresponding to the target OFDM symbol on the multiple physical resource blocks.
  • the N may be signaled or predefined.
  • the number of time segments of the target OFDM symbol division is the same as the adjacent subcarriers for carrying the reference signal corresponding to the target OFDM symbol in the frequency domain.
  • eight subcarriers corresponding to the OFDM symbol are taken as an example.
  • the eight subcarriers are numbered by 0, 1, .
  • the subcarriers carrying the RS are subcarriers 0 and 4, and the subcarriers of the subcarriers 0 and 4 are different. Is 4, as shown in Figure 4.
  • the subcarriers carrying the RS are subcarrier No. 1 and subcarrier No.
  • FIG. 5 The waveform diagram corresponding to the time domain reference signal generated by the mapping manner of the reference signals in FIG. 5, FIG. 6 and FIG. 7 is as shown in FIG. 9. If the mapping manner of the reference signal is any one of the modes in FIG. 8, the corresponding time domain reference signal waveform diagram is FIG.
  • the time-frequency resource only serves the current UE (hereinafter referred to as UE1)
  • the mapping mode of the reference signal is as shown in FIG. 4
  • the waveform diagram of the corresponding time domain signal is as shown in FIG.
  • the mapping mode adopted by the UE2 is as shown in FIG. 6, and the waveform diagram of the corresponding time domain signal is also shown in FIG.
  • each UE does not need to know the existence of another UE, and the base station can learn that the UE1 and the UE2 occupy resources of the same symbol at the same time (as shown in FIG.
  • RS1 is a reference signal corresponding to UE1
  • RS2 is a reference signal corresponding to UE2.
  • the waveform diagram corresponding to the time domain signal received by the base station is shown in FIG. 10, except that each of the waveforms is a signal superposition of RS1 and RS2, and the base station can still determine the result of beam training of different UEs according to the time domain signal.
  • the base station can reconfigure the time-frequency resources for use by other UEs according to the occupation status of the time-frequency resources of the current UE.
  • the base station can configure the number M of time segments of the target OFDM symbol division, and M ⁇ N, so that other UEs can multiplex time-frequency resources, thereby improving the utilization of time-frequency resources.
  • the reference signal may be the same type of reference signal corresponding to the UE or a different type of reference signal, which is not limited in this application.
  • the reference signal may be a Channel Status Information Reference Signal (CSI-RS) or a Common Reference Signal (CRS), which is not limited in this embodiment of the present application.
  • CSI-RS Channel Status Information Reference Signal
  • CRS Common Reference Signal
  • the embodiment of the present application may also be applied to a scenario in which a Cyclic Prefix (CP) is inserted before the first symbol.
  • T CP_ seg Tseg - Ts / L.
  • the base station sends first indication information to the UE, where the first indication information is used to instruct the UE to determine the M.
  • the base station After determining the number M of time segments of the target OFDM symbol division, the base station sends first indication information to the UE, where the first indication information may indicate that the UE determines that the target OFDM symbol can be divided into several time segments for beam training.
  • the first indication information may be Downlink Control Information (DCI), or may be high-level signaling, etc., which is not limited in this application.
  • DCI Downlink Control Information
  • the first indication information may be Downlink Control Information (DCI), or may be high-level signaling, etc., which is not limited in this application.
  • the first indication information includes a plurality of bits, where the determining, by the UE, the M according to the first indication information, the determining, by the UE, the value according to the value of the multiple bits M.
  • the base station sends first indication information to the UE, where the first indication information is used to indicate that the target OFDM symbol is divided into the number of time segments.
  • the first indication information may be a direct indication or an indirect indication.
  • the base station may indicate by multiple bits, and specifically determine M according to the value of the bit. Wherein, the number of bits of the bit may be determined according to a possible value of the number of time segments divided on the target OFDM symbol.
  • the first indication information is downlink control information
  • the number of time segments divided on the target OFDM symbol can be 1, 2, and 4, two bits are used (as shown in Table 1): 00 Indicates that the number of time segments is 1, 01 indicates that the number of time segments is 2, and 10 indicates that the number of time segments is 4, and 11 indicates that it can be used for expansion. For other functions, etc. (represented as reserved).
  • the UE determines the M according to the first indication information.
  • the UE receives the first indication information sent by the base station, and determines, according to the first indication information, the number of time segments that divide the target OFDM symbol.
  • the method further includes: receiving, by the UE, second indication information that is sent by the base station, where the second indication information is used to indicate a frequency domain offset of the first subcarrier set in a starting position of the frequency domain, where The frequency domain offset is a number of subcarrier spacings that are different from the reference position; the UE determines, according to the frequency domain offset, a starting position of the first subcarrier set in the frequency domain; the UE is configured according to the first subcarrier. At the beginning of the frequency domain, a time segment signal of the reference signal is determined.
  • the base station may select a starting position of the first subcarrier set in the frequency domain for the UE, and send a second indication information to the UE to indicate a frequency domain offset of the first subcarrier set in the start position of the frequency domain. the amount.
  • the UE determines the starting position of the first subcarrier set in the frequency domain according to the frequency domain offset, and determines the time segment signal of the reference signal according to the starting position of the first subcarrier set in the frequency domain.
  • the frequency domain offset of the first subcarrier set frequency domain start position is the first frequency domain offset
  • M is any one of the first time segment number sets
  • the first subcarrier when the offset of the start position of the set frequency domain is the second frequency domain offset, M is any one of the second time slice number sets, and the first time slice number set and the second time slice number set are different
  • the first A frequency domain offset is different from the second frequency domain offset.
  • the base station can determine the mapping relationship between the frequency domain offset and the time segment number set in advance, so that the base station can determine the time segment number set corresponding to the different frequency domain offsets according to the mapping relationship, so that the M segment can be determined according to the time segment number set.
  • M can be any one of the set of time segment numbers.
  • the number of time segments in the set of time segments corresponding to different frequency domain offsets may be the same or different, which is not limited in this application.
  • the N subcarriers are mapped to an element of a reference signal sequence.
  • the reference position of the reference signal when the frequency resource is mapped that is, the reference position is represented as k 0
  • the corresponding set of the first number of symbols is recorded as: ⁇ 1 , 2, 4, 8, ..., N ⁇ , where N is 2 n and n is a positive integer.
  • the corresponding set of the first number of symbols may be ⁇ 1, 2, 4, 8, ..., N/2 k ⁇ , where k is a positive integer And k ⁇ n.
  • the reference location may also be represented by the number of the reference subcarrier.
  • N/2 k is a non-integer, it can pass Get an integer.
  • mapping relationship between the frequency domain offset and the time segment number set is as shown in Table 2, in order to avoid interference with other resource blocks and phase rotation considered in practical applications. .
  • the frequency domain is offset with respect to k 0 difference in the frequency domain, the value of k 0 may notify the base station or predefined.
  • 0 , 1, 2, and 3 in Table 2 represent k 0 , k 0 +1, k 0 + 2, k 0 + 3.
  • the base station determines, by the base station, the M according to the mapping relationship, the base station determining, according to the mapping relationship, a set of target time segment numbers corresponding to a frequency domain offset of a starting position of the first subcarrier set in a frequency domain.
  • the base station determines the M according to the target time segment number set, where M ⁇ L, where L is the maximum of the plurality of values in the target time segment number set.
  • the value of the M that the base station can indicate may be a maximum value in the set of target numbers that is less than or equal to the target number of segments. As shown in Table 2, if the frequency domain offset is 2, the value of M is 2 or 1.
  • the second indication information may include multiple bits, and the first subcarrier carrying the reference signal is determined by taking the value of the multiple bits, as shown in Table 3.
  • the plurality of bits can be 2 bits.
  • the second indication information and the first indication information may be sent in sequence, or may be sent in the same message at the same time, which is not limited in this application.
  • the second indication signal and the first indication information may be the same indication information.
  • the second indication information and the first indication information are indicated by the same bit, for example, as shown in Table 4.
  • the base station may simultaneously indicate the number of subcarrier numbers and the number of beam directions of the first subcarrier carrying the reference signal by using 3 bits.
  • the indication information given in Table 4 the case of indicating the number of three possible time segments is different for each time offset, and the indication information bits can be saved, that is, the signaling overhead is saved.
  • the interval N the scheme supports code division multiplexing of 4 time segment signals and segment signals of 2 time segments, wherein the user equipment time segment number can be notified by signaling.
  • the UE sends a time segment signal of the reference signal to the base station on each of the M time segments.
  • the signal transmitted through the different time segments is a partial time segment signal of the reference signal.
  • the UE can also receive the time segment signal of the reference signal sent by the base station on each of the M time segments.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the UE receives the first indication information that is sent by the base station and indicates the number M of the time segments included in the target OFDM symbol, where the value of the M is less than or equal to the target OFDM symbol used for the bearer reference. Between adjacent subcarriers in the first subcarrier set of the signal, the number of subcarrier spacings in the frequency domain is different, and M is determined according to the first indication information, and then the reference is sent to the base station on each of the M time segments.
  • FIG. 14 shows a schematic block diagram of a user equipment UE according to an embodiment of the present application.
  • the UE 1000 includes:
  • the receiving unit 1010 is configured to receive first indication information that is sent by the base station, where the first indication information is used to indicate the number M of time segments included in the target OFDM symbol, M ⁇ N, where the N is used for the bearer reference in the target OFDM symbol.
  • the number of adjacent subcarriers in the first subcarrier set of the signal is different in the frequency domain, and M and N are positive integers;
  • the processing unit 1020 is configured to determine the M according to the first indication information received by the receiving unit;
  • the sending unit 1030 is configured to send a time segment signal of the reference signal to the base station on each time segment of the M time segments or the UE receives the base station transmission on each time segment of the M time segments.
  • the time segment signal of the reference signal is configured to send a time segment signal of the reference signal to the base station on each time segment of the M time segments or the UE receives the base station transmission on each time segment of the M time segments.
  • the receiving unit 1010 is further configured to receive second indication information that is sent by the base station, where the second indication information is used to indicate a frequency domain offset of the first subcarrier set in a starting position of the frequency domain, The second indication information is used to indicate a frequency domain offset of the first subcarrier set at a start position of the frequency domain, where the frequency domain offset is a number of subcarrier spacings different from the reference position; the processing unit 1020, And determining, according to the frequency domain offset, the starting position of the first subcarrier set in the frequency domain; the processing unit 1020 is further configured to determine, according to the starting position of the first subcarrier set in the frequency domain, The time segment signal of the reference signal.
  • M is any one of the first time segment number set
  • M is any one of the second time slice number set
  • the first time slice number set and the second time The set of fragment numbers is different
  • the first frequency domain offset is different from the second frequency domain offset
  • the UE in the embodiment of the present application receives the first indication information that is sent by the base station and indicates the number M of the time segments included in the target OFDM symbol, where the value of the M is less than or equal to the first one of the target OFDM symbols used to carry the reference signal.
  • FIG. 15 shows a schematic block diagram of a base station 1100 in accordance with an embodiment of the present application.
  • the base station 1100 includes:
  • the processing unit 1110 is configured to determine the number M of time segments included in the target OFDM symbol, M ⁇ N, where the N is the adjacent subcarrier in the first subcarrier set for carrying the reference signal in the target OFDM symbol in the frequency domain.
  • the number of phase difference subcarrier spacings, M and N are positive integers;
  • the sending unit 1120 is configured to send first indication information to the user equipment UE, where the first indication information is used to indicate that the UE determines the M;
  • the receiving unit 1130 is configured to receive a time segment signal of the reference signal sent by the UE on the M time segments or a time segment signal of the reference signal sent on the M time segments.
  • the sending unit 1120 is further configured to send, to the UE, second indication information, where the second indication information is used to indicate a frequency domain offset of the first subcarrier set in a starting position of the frequency domain, where The frequency domain offset is the number of subcarrier spacings that differ from the reference position.
  • M is any one of the first time segment number set
  • M is any one of the second time slice number set
  • the first time slice number set and the second time The set of fragment numbers is different
  • the first frequency domain offset is different from the second frequency domain offset
  • the base station in the embodiment of the present application sends the first indication information indicating the number M of time segments included in the target OFDM symbol to the UE, where the value of the M is less than or equal to the first sub-carrier for carrying the reference signal in the target OFDM symbol.
  • the number of adjacent subcarriers in the carrier set is different in the frequency domain, so that the UE determines M according to the first indication information, and then sends the time segment of the reference signal to the base station on each time segment of the M time segments. Or receiving a time segment in which the base station sends the reference signal on each of the M time segments, so that the terminal device can multiplex the time-frequency resources with other user equipment according to the indication of the base station, thereby improving the utilization of the time-frequency resource. .
  • Figure 16 illustrates a system 1200 for signal processing in accordance with one embodiment of the present application, the system 1200 comprising:
  • FIG. 17 is a schematic structural diagram of a UE according to an embodiment of the present application.
  • the UE includes at least one processor 1302 (eg, a general purpose processor CPU with computation and processing capabilities, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA).
  • the processor 1302 is configured to manage and schedule modules and devices in the UE.
  • the processing unit 1020 in the embodiment shown in FIG. 14 can be implemented by the processor 1302.
  • the UE also includes at least one transceiver 1305 (receiver/transmitter 1305), a memory 1306, and at least one bus system 1303.
  • bus system 1303 which may include a data bus, a power bus, a control bus, a status signal bus, etc., but for clarity of description, various buses are labeled as buses in the figure.
  • the method disclosed in the above embodiments of the present application may be applied to the processor 1302 or used to execute an executable module, such as a computer program, stored in the memory 1306.
  • the memory 1306 may include a high speed random access memory (RAM), and may also include a non-volatile memory.
  • the memory may include a read only memory and a random access memory, and provide the processor with Required signaling or data, programs, etc.
  • a portion of the memory may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • a communication connection with at least one other network element is achieved by at least one transceiver 1305 (which may be wired or wireless).
  • the memory 1306 stores a program 13061
  • the processor 1302 executes the program 13061 for performing the following operations:
  • the first indication information sent by the base station is received by the transceiver 1305, where the first indication information is used to indicate the number M of time segments included in the target OFDM symbol, M ⁇ N, where the N is used to carry the reference signal in the target OFDM symbol.
  • the number of adjacent subcarriers in the first subcarrier set is different in the frequency domain, and M and N are positive integers;
  • the UE may be specifically the UE in the foregoing embodiments, and may be used to perform various steps and/or processes corresponding to the UE in the foregoing method embodiments.
  • the first indication information that is sent by the base station and indicates the number M of time segments included in the target OFDM symbol the value of the M is less than or equal to the target OFDM symbol for carrying
  • the adjacent subcarriers in the first subcarrier set of the reference signal are different in frequency domain from the number of subcarrier spacings, and determine M according to the first indication information, and then send to the base station on each time segment of the M time segments.
  • FIG. 18 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the base station includes at least one processor 1402 (eg, a general purpose processor CPU with computation and processing capabilities, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA).
  • the processor 1402 is configured to manage and schedule modules and devices in the base station.
  • the processing unit 1110 in the embodiment shown in FIG. 15 can be implemented by the processor 1302.
  • the base station also includes at least one transceiver 1405 (receiver/transmitter 1405), a memory 1406, And at least one bus system 1403.
  • bus system 1403 which may include a data bus, a power bus, a control bus, a status signal bus, etc., but for clarity of description, various buses are labeled as buses in the figure.
  • the method disclosed in the above embodiments of the present application may be applied to the processor 1402 or used to execute an executable module, such as a computer program, stored in the memory 1406.
  • the memory 1406 may include a high speed random access memory (RAM), and may also include a non-volatile memory.
  • the memory may include a read only memory and a random access memory, and provides the processor with Required signaling or data, programs, etc.
  • a portion of the memory may also include non-volatile line random access memory (NVRAM).
  • NVRAM non-volatile line random access memory
  • a communication connection with at least one other network element is achieved by at least one transceiver 1405 (which may be wired or wireless).
  • the memory 1406 stores a program 14061, and the processor 1402 executes the program 14061 for performing the following operations:
  • N is the number of phase difference subcarrier spacings in the frequency domain of adjacent subcarriers in the first subcarrier set for carrying the reference signal in the target OFDM symbol , M, N are positive integers;
  • the transceiver 1405 Transmitting, by the transceiver 1405, the first indication information to the user equipment UE, where the first indication information is used to indicate that the UE determines the M;
  • the time segment signal of the reference signal transmitted by the UE on the M time segments or the time segment signal of the reference signal transmitted on the M time segments is received by the transceiver 1405.
  • the base station may be specifically the base station in the foregoing embodiments, and may be used to perform various steps and/or processes corresponding to the base station in the foregoing method embodiments.
  • the first indication information indicating the number M of time segments included in the target OFDM symbol is sent to the UE, where the value of the M is less than or equal to the target OFDM symbol used for the bearer reference.
  • the number of adjacent subcarriers in the first subcarrier set of the signal is different in the frequency domain, so that the UE determines M according to the first indication information, and then sends the M to the base station on each time segment of the M time segments.
  • the embodiment of the present application further provides a computer storage medium, which can store program instructions for indicating any of the above methods.
  • the storage medium may be specifically a memory 1306 or a memory 1406.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种参考信号的处理方法、用户设备UE和基站。该方法包括:用户设备UE接收基站发送的第一指示信息,该第一指示信息用于指示目标OFDM符号包括的时间片段的数目M,M≤N,该N为该目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,M、N为正整数;该UE根据该第一指示信息,确定该M;该UE在该M个时间片段中的每个时间片段上向该基站发送该参考信号的时间片断信号或者该UE在该M个时间片段中的每个时间片段上接收基站发送的该参考信号的时间片断信号。本申请实施例的参考信号的处理方法、用户设备UE和基站,能够提高波束训练的时频资源利用率。

Description

参考信号的处理方法、用户设备和基站
本申请要求于2016年9月29日提交中国专利局、申请号为201610873154.0、申请名称为“参考信号的处理方法、用户设备和基站”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及参考信号的处理方法、用户设备和基站。
背景技术
由第三代合作伙伴项目(the 3rd Generation Partnership Project,3GPP)制定的长期演进(Long Term Evolution,LTE)系统标准被认为是第四代无线接入系统标准。在当前LTE中,规定下行传输波形采用正交频分多址接入(Orthogonal Frequency Division Multiple Access,OFDMA),上行传输波形采用单载波频分多址接入(Single-carrier Frequency Division Multiple Access,SC-FDMA)。根据上述传输方式,系统的时频资源可被划分为多个资源单元。资源单元为占时域一个正交频分多路复用技术(Orthogonal Frequency Division Multiplexing,OFDM)符号,占频域一个子载波,其中,子载波的宽度为15KHz。
LTE系统广泛部署在小于6GHz频段范围,然而,根据可划分频谱的分布,第5代无线接入系统的载波频率极有可能会高于第4代无线接入系统,待选的载频范围包括30GHz,60GHz等附近的载频。高载频信号在自由空间的衰落更大,因此需克服高路径损耗带来的覆盖空洞问题。由于高载频的波长在厘米和毫米量级,在相同尺寸下5G设备能够放置比3G和4G设备更多数量的天线阵元。因此通用的方法是在高载频采用包含大量天线阵元的天线阵列,利用天线阵列形成具有高指向性的波束获得信号增益,其信号增益可达20dB或更高,从而可对抗高载频路径损耗;但利用天线阵列形成高信号增益的定向波束时,波束宽度也随之下降,因此在数据传输前需要对发送和接收的波束方向进行训练,直至发送端和/或接收端找到信号增益最大的波束方向。
现有技术中,用户设备(User Equipment,UE)将参考信号映射到间隔相同的子载波上,会带来时域信号的波形重复,该重复的波形可用于不同波束的波束训练。具体地,当UE需要N个波束训练信号时(N大于1),UE将参考信号映射到子载波间隔为N的多个子载波上,也就确定了将对应的OFDM符号划分为N份用于N个波束的波束训练信号。因此,用户设备采用这样的映射方式时,虽然每N个载波中的一个载波承载了参考信号,但是其他载波的时频资源也无法为其他用户使用,从而造成了资源的浪费。
发明内容
本申请实施例提供一种参考信号的处理方法、用户设备和基站,能够提高波束训练的时频资源利用率。
第一方面,提供了一种考信号的处理方法。该处理方法包括:用户设备UE接收基站发送的第一指示信息,该第一指示信息用于指示目标OFDM符号包括的时间片段的数目M,M≤N,该N为该目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,M、N为正整数;该UE根据该第一指示信息,确定该M;该UE在该M个时间片段中的每个时间片段上向该基站发送该参考信号的时间片断信号或者该UE在该M个时间片段中的每个时间片段上接收基站发送的该参考信号的时间片断信号。
UE接收基站发送的指示目标OFDM符号包括的时间片段的数目M的第一指示信息,该M的取值小于等于目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,并根据该第一指示信息确定M,再在M个时间片段中的每个时间片段上向基站发送参考信号的时间片段或者在这M个时间片段中的每个时间片段上接收基站发送参考信号的时间片段,这样终端设备根据基站的指示能够与其他用户设备复用时频资源,从而提高了时频资源的利用率。
在一些可能的实现方式中,该处理方法还包括:该UE接收该基站发送的第二指示信息,该第二指示信息用于指示该第一子载波集合在频域的起始位置的频域偏移量,该第二指示信息用于指示该第一子载波集合在频域的起始位置的频域偏移量,该频域偏移量为与参考位置相差子载波间隔的数目;该UE根据该频域偏移量,确定该第一子载波集合在频域的起始位置;该UE根据该第一子载波集合在频域的起始位置,确定该参考信号的时间片断信号。
基站可以为UE选择该第一子载波集合在频域的起始位置,并通过向UE发送第二指示信息指示第一子载波集合在频域的起始位置的频域偏移量。这样UE根据该频域偏移量,确定第一子载波集合在频域的起始位置,并根据该第一子载波集合在频域的起始位置确定参考信号的时间片段信号。
在一些可能的实现方式中,当第一子载波集合在频域的起始位置的频域偏移量为第一频域偏移量时,M是第一时间片断数目集合中的任何一个元素,当第一子载波集合在频域的起始位置的频域偏移量为第二频域偏移量时,M是第二时间片断数目集合中的任何一个元素,第一时间片断数目集合和第二时间片断数目集合不同,第一频域偏移量和第二频域偏移量不同。
基站可以提前确定频域偏移量与时间片段数目集合的映射关系,这样基站可以根据该映射关系,确定不同频域偏移量对应的时间片段数目集合,从而能够根据该时间片段数目集合确定M,M可以是时间片段数目集合中的任意一个。
第二方面,提供了一种考信号的处理方法。该处理方法包括:基站确定目标OFDM符号包括的时间片段的数目M,M≤N,该N为该目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,M、N为正整数;该基站向用户设备UE发送第一指示信息,该第一指示信息用于指示该UE确定该M;该基站接收该UE在该M个时间片段上发送的该参考信号的时间片断信号或者发送在该M个时间片段上发送的该参考信号的时间片断信号。
基站通过向UE发送指示目标OFDM符号包括的时间片段的数目M的第一指示信息,该M的取值小于等于目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载 波在频域上相差子载波间隔的数目,使得UE根据该第一指示信息确定M,再在M个时间片段中的每个时间片段上向基站发送参考信号的时间片段或者在这M个时间片段中的每个时间片段上接收基站发送参考信号的时间片段,这样终端设备根据基站的指示能够与其他用户设备复用时频资源,从而提高了时频资源的利用率。
在一些可能的实现方式中,该处理方法还包括:该基站向该UE发送第二指示信息,该第二指示信息用于指示该第一子载波集合在频域的起始位置的频域偏移量,该频域偏移量为与参考位置相差子载波间隔的数目。
基站可以为UE选择该第一子载波集合在频域的起始位置,并通过向UE发送第二指示信息指示第一子载波集合在频域的起始位置的频域偏移量。这样UE根据该频域偏移量,确定第一子载波集合在频域的起始位置,并根据该第一子载波集合在频域的起始位置确定参考信号的时间片段信号。
在一些可能的实现方式中,当第一子载波集合在频域的起始位置的频域偏移量为第一频域偏移量时,M是第一时间片断数目集合中的任何一个元素,当第一子载波集合在频域的起始位置的频域偏移量为第二频域偏移量时,M是第二时间片断数目集合中的任何一个元素,第一时间片断数目集合和第二时间片断数目集合不同,第一频域偏移量和第二频域偏移量不同。
基站可以提前确定频域偏移量与时间片段数目集合的映射关系,这样基站可以根据该映射关系,确定不同频域偏移量对应的时间片段数目集合,从而能够根据该时间片段数目集合确定M,M可以是时间片段数目集合中的任意一个。
基于上述技术方案,UE接收基站发送的指示目标OFDM符号包括的时间片段的数目M的第一指示信息,该M的取值小于等于目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,并根据该第一指示信息确定M,再在M个时间片段中的每个时间片段上向基站发送参考信号的时间片段或者在这M个时间片段中的每个时间片段上接收基站发送参考信号的时间片段,这样终端设备根据基站的指示能够与其他用户设备复用时频资源,从而提高了时频资源的利用率。
附图说明
图1是基于LTE系统时频资源划分示意图;
图2是多波束训练的场景示意图;
图3是本申请实施例的参考信号的处理方法的示意性交互流程图;
图4是本申请一个实施例的子载波的结构示意图;
图5是本申请另一个实施例的子载波的结构示意图;
图6是本申请又一个实施例的子载波的结构示意图;
图7是本申请又一个实施例的子载波的结构示意图;
图8是本申请又一个实施例的子载波的结构示意图;
图9是本申请一个实施例的时域信号的波形图;
图10是本申请另一个实施例的时域信号的波形图;
图11是本申请又一个实施例的子载波的结构示意图;
图12是本申请又一个实施例的子载波的结构示意图;
图13是本申请另一个实施例的时域信号的波形图;
图14是本申请实施例的UE的示意性框图;
图15是本申请实施例的基站的示意性框图;
图16是本申请实施例的系统的示意性框图;
图17是本申请实施例的UE的结构示意图;
图18是本申请实施例的基站的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请实施例的无线通信系统可以应用各种无线通信方案进行通信,例如:全球移动通讯系统(Global System of Mobile communication,GSM),码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA)系统,通用分组无线业务(GPRS,General Packet Radio Service)系统,长期演进(Long Term Evolution,LTE)系统,无线局域网(Wireless Local Area Networks,WLAN)等。
还应理解,在本申请实施例中,发送端设备可称为接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G网络中的终端设备。接收端设备还可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(Node B),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB),以及未来5G网络中的基站设备等。
为了方便理解本申请实施例,在介绍本申请实施例之前首先引入以下几个要素。
图1示出了基于LTE系统时频资源划分示意图。如图1所示,一个无线帧(frame)为10毫秒(ms)的时延,一个无线帧划分为10个子帧,每个子帧占1ms的时延,每个子帧还可以继续划分为2个时隙(slot),每个时隙因为工作频点的不同可以包括不同数量的OFDM符号。LTE系统的时频资源可以划分为多个资源块,每个资源块又可以划分为多个资源单元,每个资源单元占时域一个OFDM符号,占频域一个子载波,在一个资源块上,一个OFDM符号可以对应多个子载波。
在NR(New Radio)系统中(或称为5G系统),一个无线帧在时域上长为10毫秒,一个子帧在时域上长为1毫秒。一个时隙包括的OFDM符号包括14个或12个OFDM符号,一个时隙在时域上的长度取决于所配置的子载波的宽度,例如,对于15kHz子载波宽度的系统,一个包括14个OFDM符号的时隙在时域上的长度为1ms。当子载波宽度增大,一个时隙在时域上的长度缩短,例如,对于30kHz子载波宽度的系统,一个包括14个OFDM符号的时隙在时域上的长度为0.5毫秒。所述发明方案不限于使用在LTE演进系统或是在5G的NR系统中。
图2示出了本申请实施例的多波束训练的场景示意图。发送端发送一个波束方向的参考信号,接收端可以接收多个波束方向的参考信号,这样可以确定接收端接收参考信号的最佳接收方向。或者发送端可以发送多个波束方向的参考信号,接收端接收一个波束方向 的参考信号,这样可以确定发送端发送参考信号的最佳波束方向。
波束训练可以是发送端向不同波束方向发送参考信号,接收端根据接收到的参考信号判断出信号增益最大的波束方向,接下来在该信号增益最大的波束方向上传输数据,从而保障数据传输的效率。本申请实施例以发送端为终端设备,接收端为基站为例进行说明,但本申请并不限于此。
应理解,波束赋形就是一种基于天线阵列的信号预处理技术,通过调整各天线阵元上发送信号的权值,产生具有指向性的波束。本申请实施例中将“终端设备向某个波束方向发送”表述为“采用某个波束”进行描述。
现有技术中,具体地,当UE需要N个波束训练信号时(N大于1),UE将参考信号映射到子载波间隔为N的多个子载波上,也就确定了将时域上对应的OFDM符号划分为N份用于N个波束的波束训练信号。因此,用户设备采用这样的映射方式时,虽然每N个子载波中的一个子载波承载了参考信号,但是其他子载波的时频资源也无法为其他用户使用,从而造成了资源的浪费。
需要说明的是,一个实施例中,“子载波间隔为N”具体可以是间隔为N个子载波。
由于UE所在服务小区位置不同训练波束的个数能力不同。例如,用户设备在小区边缘,发射功率受限很难满足多个波束的训练的发射能量要求,即使配置为每间隔四个子载波映射一个参考信号,也无法进行四个波束的训练。在这种情况下,本申请支持多个用户的参考信号进行频分复用。
一个实施例中,UE所在服务小区位置不同训练波束的个数能力不同,可以是由于信号的路径衰落大小不同,使得小区边缘的UE在单位时间内(例如一个OFDM符号内)无法训练较多的波束而造成的。
应理解,本申请实施例可以将OFDM符号的时域信号划分为N份后的每份称为“时间片段”,也可以是具有该功能的其他名称等,本申请对此不进行限定。
图3示出了根据本申请一个实施例的参考信号的处理方法的示意性交互流程图。
301,基站确定目标OFDM符号包括的时间片段的数目M,M≤N。
本申请实施例中,目标OFDM符号可以是系统中任意一个OFDM符号,也可以是基站根据某些需求确定的某个OFDM符号。在LTE系统中,一个OFDM符号对应多个子载波。目标OFDM符号对应的子载波,可以是系统带宽中目标OFDM符号对应的所有子载波,也可以是在任意一个资源块上目标OFDM符号对应的该资源块上的所有子载波。
可选地,该目标OFDM符号对应的子载波还可以是多个物理资源块上目标OFDM符号对应的资源块上的所有子载波。
所述N可以为通过信令通知的或预先定义的。
现有技术中,目标OFDM符号划分的时间片段的数目与目标OFDM符号对应的用于承载参考信号的相邻子载波在频域上相差子载波间隔相同。例如,以该OFDM符号对应的8个子载波为例进行说明,为描述方便对该8个子载波按0、1…7号进行编号。以参考信号(Reference Signal,RS)长度为占用两个子载波为例,则承载RS的子载波为0号子载波和4号子载波,且0号子载波与4号子载波相差的子载波间隔为4,如图4所示。承载RS的子载波为1号子载波和5号子载波,且1号子载波与5号子载波相差的子载波间隔为4,如图5所示。以及另一组承载参考信号的子载波的位置组合如图6所示。图4、 图5、图6和图7中的参考信号的映射方式生成的时域参考信号对应的波形图如图9所示。若参考信号的映射方式为图8中的任一种方式,则对应的时域参考信号波形图为图10。
若时频资源只服务于当前的UE(下述称为UE1)时,若参考信号的映射方式为图4时,则对应的时域信号的波形图为图9所示。若该时频资源只服务于另一个UE(下述称为UE2)时,该UE2采用的映射方式为图6时,对应的时域信号的波形图也为图9所示。但是,若该时频资源同时服务于该UE1和UE2时,每个UE都不需要获知另一个UE的存在,而基站可以获知该UE1和UE2同时占用同一个符号的资源(如图11或图12所示),RS1为对应于UE1的参考信号,RS2为对应于UE2的参考信号。基站接收到的时域信号对应的波形图如图10所示,只是其中的每个波形为RS1和RS2的信号叠加,基站仍然可以根据该时域信号确定不同UE的波束训练的结果。
因此,基站可以根据当前UE的时频资源的占用状况,对时频资源重新进行配置用于其他UE的使用。基站可以配置目标OFDM符号划分的时间片段的数目M,且M≤N,使得其他UE可以复用时频资源,从而提高时频资源的利用率。
需要说明的是,该参考信号可以是对应于UE的同一种类型的参考信号也可以是不同类型的参考信号,本申请对此不进行限定。
应理解,该参考信号可以是信道状态信息参考信号(Channel Status Information Reference Signal,CSI-RS)或公共参考信号(Common Reference Signal,CRS)等,本申请实施例对此不进行限定。
如图13所示,本申请实施例还可以应用于第一符号前插入循环前缀(Cyclic Prefix,CP)的场景。第一符号长度可记为Tseg,其中Tseg=(TCP+Ts)/L,其中L为时域OFDM符号内第一符号的个数;其中L个第一符号上的参考信号组成时域OFDM符号上的参考信号,第一符号上的循环前缀长度为,TCP_seg=Tseg-Ts/L。一般的,L个第一符号长度,存在长度集合{t1,t2,…,tL},其中t1+t2+…+tL=(TCP+Ts),且长度集合中每一个元素均大于Ts/N,其中N为映射了参考信号的相邻子载波在频域上相差的子载波间隔的数量;
应注意,这里的第一符号与本申请实施例中的“时间片段”表述的意思相同。
302,基站向UE发送第一指示信息,该第一指示信息用于指示UE确定该M。
基站确定目标OFDM符号划分的时间片段的数目M后,向UE发送第一指示信息,该第一指示信息可以指示UE确定目标OFDM符号可以分为几个时间段进行波束训练。
可选地,该第一指示信息可以是下行控制信息(Downlink Control Information,DCI),或者还可以是高层信令等,本申请对此不进行限定。
可选地,作为一个实施例,该第一指示信息包括多个比特位;其中,该UE根据该第一指示信息,确定该M包括:该UE根据该多个比特位的取值,确定该M。
具体而言,基站向UE发送第一指示信息,该第一指示信息用于指示将目标OFDM符号划分为时间片段的数目。该第一指示信息可以是直接指示,也可以是间接指示。例如,本申请实施例中基站可以通过多个比特位来指示,具体地根据比特位的取值来确定M。其中,比特位的位数可以根据在目标OFDM符号上划分的时间片段的个数的可能值确定。
例如,若第一指示信息为下行控制信息,目标OFDM符号上划分的时间片段的个数取值可以为1、2和4时,则采用两个比特位表示(如表1所示):00表示时间片段的个数为1,01表示时间片段的个数为2,10表示时间片段的个数为4,11表示可以用于扩展 为其他功能等(表示为保留)。
表1
比特 目标OFDM符号包括的时间片段的数目
00 1
01 2
10 4
11 保留
应理解,本申请实施例对该第一指示信息包括的比特位的个数不进行限定。
303,UE根据该第一指示信息,确定该M。
UE接收基站发送的第一指示信息,并根据该第一指示信息确定将目标OFDM符号划分的时间片段的数目。
可选地,该方法还包括:该UE接收该基站发送的第二指示信息,该第二指示信息用于指示该第一子载波集合在频域的起始位置的频域偏移量,该频域偏移量为与参考位置相差子载波间隔的数目;该UE根据该频域偏移量,确定该第一子载波集合在频域的起始位置;该UE根据该第一子载波集合在频域的起始位置,确定参考信号的时间片段信号。
具体而言,基站可以为UE选择该第一子载波集合在频域的起始位置,并通过向UE发送第二指示信息指示第一子载波集合在频域的起始位置的频域偏移量。这样UE根据该频域偏移量,确定第一子载波集合在频域的起始位置,并根据该第一子载波集合在频域的起始位置确定参考信号的时间片段信号。
可选地,当第一子载波集合频域起始位置的频域偏移量为第一频域偏移量时,M是第一时间片断数目集合中的任何一个元素,当第一子载波集合频域起始位置的偏移量为第二频域偏移量时,M是第二时间片断数目集合中的任何一个元素,第一时间片断数目集合和第二时间片断数目集合不同,第一频域偏移量和第二频域偏移量不同。
基站可以提前确定频域偏移量与时间片段数目集合的映射关系,这样基站可以根据该映射关系,确定不同频域偏移量对应的时间片段数目集合,从而能够根据该时间片段数目集合确定M,M可以是时间片段数目集合中的任意一个。
应理解,不同频域偏移量对应的时间片段数目集合中的时间片段的数目可以相同也可以不同,本申请对此不进行限定。
间隔N个子载波映射一个参考信号序列的一个元素,如参考信号在频率资源映射时的起始位置即参考位置表示为k0,对应的第一符号个数的取值集合如果记为:{1,2,4,8,…,N},其中N为2n,n为正整数。对于起始位置为k0+N/2k的参考信号,对应的第一符号个数的取值集合可为{1,2,4,8,…,N/2k},k为正整数,且k<n。
可选地,参考位置也可以通过参考子载波的编号表示。
可选地,若N/2k为非整数时,可以通过
Figure PCTCN2017104423-appb-000001
获得整数。
例如,以8个子载波为单位,由于为了避免对其他资源块的干扰,以及在实际应用中考虑到的相位旋转等因素,频域偏移量与时间片段数目集合的映射关系如表2所示。
表2
频域偏移量 时间片段数目集合
0 {4,2,1}
1 {1}
2 {2,1}
3 {1}
一般的,频域偏移量为相对于k0在频域的差值,该k0可以为基站通知或预先定义的值。例如表2中0,1,2,3表示k0,k0+1,k0+2,k0+3。
可选地,该基站根据该映射关系,确定该M包括:该基站根据该映射关系,确定该第一子载波集合在频域的起始位置的频域偏移量对应的目标时间片段数目集合;该基站根据该目标时间片段数目集合,确定该M,其中,M≤L,该L为该目标时间片段数目集合中多个取值中的最大值。
具体地,基站能够指示的M的取值可以是目标数目集合中小于等于目标时间片段数目集合中的最大值。如表2中若频域偏移量为2,则M的取值为2或者1。
可选地,第二指示信息可以包括多个比特位,通过多个比特位的取值来确定承载参考信号的第一个子载波,具体如表3所示。该多个比特位可以是2个比特位。
表3
比特 频率偏移量
00 0
01 1
10 2
11 3
应理解,本申请实施例对该第二指示信息包括的比特位的个数不进行限定。
还应理解,该第二指示信息和第一指示信息可以分别有先后顺序发送,也可以是承载在同一个消息中同时发送,本申请对此不进行限定。
可选地,该第二指示信号和该第一指示信息可以是同一个指示信息。第二指示信息和第一指示信息通过相同的比特位指示,例如,如表4所示。基站可以通过3个比特位同时指示承载参考信号的第一子载波的子载波序号和波束方向的个数可能值。
表4
Figure PCTCN2017104423-appb-000002
按表4中给出的指示信息,较对于每个时间偏移量都分别指示三种可能的时间片段个数的情况,能够节省指示信息比特,即节省信令开销。当间隔N为4时,该方案支持,4个时间片段信号和2个时间片段的片段信号的码分复用,其中,可通过信令通知用户设备时间片段数。
304,UE在该M个时间片段中的每个时间片段上向基站发送参考信号的时间片段信号。
参考信号映射到子载波后,通过不同的时间片段发送的信号为参考信号的部分时间片段信号。当然UE在该M个时间片段中的每个时间片段上也可以接收基站发送的参考信号的时间片段信号。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
因此,本申请实施例的参考信号的处理方法,UE接收基站发送的指示目标OFDM符号包括的时间片段的数目M的第一指示信息,该M的取值小于等于目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,并根据该第一指示信息确定M,再在M个时间片段中的每个时间片段上向基站发送参考信号的时间片段或者在这M个时间片段中的每个时间片段上接收基站发送参考信号的时间片段,这样终端设备根据基站的指示能够与其他用户设备复用时频资源,从而提高了时频资源的利用率。
图14示出了根据本申请实施例的用户设备UE的示意性框图。如图14所示,该UE1000包括:
接收单元1010,用于接收基站发送的第一指示信息,该第一指示信息用于指示目标OFDM符号包括的时间片段的数目M,M≤N,该N为该目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,M、N为正整数;
处理单元1020,用于根据该接收单元接收的该第一指示信息,确定该M;
发送单元1030,用于在该M个时间片段中的每个时间片段上向该基站发送该参考信号的时间片断信号或者该UE在该M个时间片段中的每个时间片段上接收基站发送的该参考信号的时间片断信号。
可选地,该接收单元1010,还用于接收该基站发送的第二指示信息,该第二指示信息用于指示该第一子载波集合在频域的起始位置的频域偏移量,该第二指示信息用于指示该第一子载波集合在频域的起始位置的频域偏移量,该频域偏移量为与参考位置相差子载波间隔的数目;该处理单元1020,还用于根据该频域偏移量,确定该第一子载波集合在频域的起始位置;该处理单元1020,还用于根据该第一子载波集合在频域的起始位置,确定该参考信号的时间片断信号。
可选地,当第一子载波集合在频域的起始位置的频域偏移量为第一频域偏移量时,M是第一时间片断数目集合中的任何一个元素,当第一子载波集合在频域的起始位置的频域偏移量为第二频域偏移量时,M是第二时间片断数目集合中的任何一个元素,第一时间片断数目集合和第二时间片断数目集合不同,第一频域偏移量和第二频域偏移量不同。
因此,本申请实施例的UE,通过接收基站发送的指示目标OFDM符号包括的时间片段的数目M的第一指示信息,该M的取值小于等于目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,并根据该第一指示信息确定M,再在M个时间片段中的每个时间片段上向基站发送参考信号的时间片段或者在这M个时间片段中的每个时间片段上接收基站发送参考信号的时间片段,这样终端设备根据基站的指示能够与其他用户设备复用时频资源,从而提高了时频资源的利用率。
图15示出了根据本申请实施例的基站1100的示意性框图。如图15所示,该基站1100包括:
处理单元1110,用于确定目标OFDM符号包括的时间片段的数目M,M≤N,该N为该目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,M、N为正整数;
发送单元1120,用于向用户设备UE发送第一指示信息,该第一指示信息用于指示该UE确定该M;
接收单元1130,用于接收该UE在该M个时间片段上发送的该参考信号的时间片断信号或者发送在该M个时间片段上发送的该参考信号的时间片断信号。
可选地,该发送单元1120,还用于向该UE发送第二指示信息,该第二指示信息用于指示该第一子载波集合在频域的起始位置的频域偏移量,该频域偏移量为与参考位置相差子载波间隔的数目。
可选地,当第一子载波集合在频域的起始位置的频域偏移量为第一频域偏移量时,M是第一时间片断数目集合中的任何一个元素,当第一子载波集合在频域的起始位置的频域偏移量为第二频域偏移量时,M是第二时间片断数目集合中的任何一个元素,第一时间片断数目集合和第二时间片断数目集合不同,第一频域偏移量和第二频域偏移量不同。
因此,本申请实施例的基站,通过向UE发送指示目标OFDM符号包括的时间片段的数目M的第一指示信息,该M的取值小于等于目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,使得UE根据该第一指示信息确定M,再在M个时间片段中的每个时间片段上向基站发送参考信号的时间片段或者在这M个时间片段中的每个时间片段上接收基站发送参考信号的时间片段,这样终端设备根据基站的指示能够与其他用户设备复用时频资源,从而提高了时频资源的利用率。
图16示出了本申请一个实施例的信号处理的系统1200,该系统1200包括:
如图14所示的实施例中的UE 1000,以及如图15所示基站1100。
图17示出了本申请实施例的UE的结构示意图。如图17所示,该UE包括至少一个处理器1302(例如具有计算和处理能力的通用处理器CPU、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)等),处理器1302用于对UE内各模块和器件进行管理和调度。图14所示的实施例中的处理单元1020可以通过处理器1302实现。该UE还包括至少一个收发器1305(接收器/发送器1305),存储器1306,和至少一个总线系统1303。图14所示的实施例中的接收单元101和发送单元1030可以通过收发器1305实现。网络设备的各个组件通过总线系统1303耦合在一起,其中总线系统1303可能包括数据总线、电源总线、控制总线和状态信号总线等,但是为了清楚说明起见,在图中将各种总线都标为总线系统1303。
上述本申请实施例揭示的方法可以应用于处理器1302,或者用于执行存储器1306中存储的可执行模块,例如计算机程序。存储器1306可能包含高速随机存取存储器(Random Access Memory,RAM),也可能还包括非不稳定的存储器(non-volatile memory),存储器可以包括只读存储器和随机存取存储器,并向处理器提供需要的信令或数据、程序等等。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。通过至少一个收发器1305(可以是有线或者无线)实现与至少一个其他网元之间的通信连接。
在一些实施方式中,存储器1306存储了程序13061,处理器1302执行程序13061,用于执行以下操作:
通过收发器1305接收基站发送的第一指示信息,该第一指示信息用于指示目标OFDM符号包括的时间片段的数目M,M≤N,该N为该目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,M、N为正整数;
根据该第一指示信息,确定该M;
通过收发器1305在该M个时间片段中的每个时间片段上向该基站发送该参考信号的时间片断信号或者该UE在该M个时间片段中的每个时间片段上接收基站发送的该参考信号的时间片断信号。
需要说明的是,该UE可以具体为上述各个实施例中的UE,并且可以用于执行上述方法实施例中与UE对应的各个步骤和/或流程。
从本申请实施例提供的以上技术方案可以看出,通过接收基站发送的指示目标OFDM符号包括的时间片段的数目M的第一指示信息,该M的取值小于等于目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,并根据该第一指示信息确定M,再在M个时间片段中的每个时间片段上向基站发送参考信号的时间片段或者在这M个时间片段中的每个时间片段上接收基站发送参考信号的时间片段,这样终端设备根据基站的指示能够与其他用户设备复用时频资源,从而提高了时频资源的利用率。
图18示出了本申请实施例的基站的结构示意图。如图18所示,该基站包括至少一个处理器1402(例如具有计算和处理能力的通用处理器CPU、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)等),处理器1402用于对基站内各模块和器件进行管理和调度。图15所示的实施例中的处理单元1110可以通过处理器1302实现。该基站还包括至少一个收发器1405(接收器/发送器1405),存储器1406, 和至少一个总线系统1403。图15所示的实施例中的发送单元1120和接收单元1130可以通过收发器1405实现。网络设备的各个组件通过总线系统1403耦合在一起,其中总线系统1403可能包括数据总线、电源总线、控制总线和状态信号总线等,但是为了清楚说明起见,在图中将各种总线都标为总线系统1403。
上述本申请实施例揭示的方法可以应用于处理器1402,或者用于执行存储器1406中存储的可执行模块,例如计算机程序。存储器1406可能包含高速随机存取存储器(Random Access Memory,RAM),也可能还包括非不稳定的存储器(non-volatile memory),存储器可以包括只读存储器和随机存取存储器,并向处理器提供需要的信令或数据、程序等等。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。通过至少一个收发器1405(可以是有线或者无线)实现与至少一个其他网元之间的通信连接。
在一些实施方式中,存储器1406存储了程序14061,处理器1402执行程序14061,用于执行以下操作:
确定目标OFDM符号包括的时间片段的数目M,M≤N,该N为该目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,M、N为正整数;
通过收发器1405向用户设备UE发送第一指示信息,该第一指示信息用于指示该UE确定该M;
通过收发器1405接收该UE在该M个时间片段上发送的该参考信号的时间片断信号或者发送在该M个时间片段上发送的该参考信号的时间片断信号。
需要说明的是,该基站可以具体为上述各个实施例中的基站,并且可以用于执行上述方法实施例中与基站对应的各个步骤和/或流程。
从本申请实施例提供的以上技术方案可以看出,通过向UE发送指示目标OFDM符号包括的时间片段的数目M的第一指示信息,该M的取值小于等于目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,使得UE根据该第一指示信息确定M,再在M个时间片段中的每个时间片段上向基站发送参考信号的时间片段或者在这M个时间片段中的每个时间片段上接收基站发送参考信号的时间片段,这样终端设备根据基站的指示能够与其他用户设备复用时频资源,从而提高了时频资源的利用率。
本申请实施例还提供一种计算机存储介质,该计算机存储介质可以存储用于指示上述任一种方法的程序指令。
可选地,该存储介质具体可以为存储器1306或存储器1406。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以 硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (12)

  1. 一种参考信号的处理方法,其特征在于,包括:
    用户设备UE接收基站发送的第一指示信息,所述第一指示信息用于指示目标正交频分多路复用技术OFDM符号包括的时间片段的数目M,M≤N,所述N为所述目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,M、N为正整数;
    所述UE根据所述第一指示信息,确定所述M;
    所述UE在所述M个时间片段中的每个时间片段上向所述基站发送所述参考信号的时间片断信号或者所述UE在所述M个时间片段中的每个时间片段上接收基站发送的所述参考信号的时间片断信号。
  2. 根据权利要求1所述的处理方法,其特征在于,所述处理方法还包括:
    所述UE接收所述基站发送的第二指示信息,所述第二指示信息用于指示所述第一子载波集合在频域的起始位置的频域偏移量,所述第二指示信息用于指示所述第一子载波集合在频域的起始位置的频域偏移量,所述频域偏移量为与参考位置相差子载波间隔的数目;
    所述UE根据所述频域偏移量,确定所述第一子载波集合在频域的起始位置;
    所述UE根据所述第一子载波集合在频域的起始位置,确定所述参考信号的时间片断信号。
  3. 根据权利要求1或2所述的处理方法,其特征在于,当第一子载波集合在频域的起始位置的频域偏移量为第一频域偏移量时,M是第一时间片断数目集合中的任何一个元素,当第一子载波集合在频域的起始位置的频域偏移量为第二频域偏移量时,M是第二时间片断数目集合中的任何一个元素,第一时间片断数目集合和第二时间片断数目集合不同,第一频域偏移量和第二频域偏移量不同。
  4. 一种参考信号的处理方法,其特征在于,包括:
    基站确定目标正交频分多路复用技术OFDM符号包括的时间片段的数目M,M≤N,所述N为所述目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,M、N为正整数;
    所述基站向用户设备UE发送第一指示信息,所述第一指示信息用于指示所述UE确定所述M;
    所述基站接收所述UE在所述M个时间片段上发送的所述参考信号的时间片断信号或者发送在所述M个时间片段上发送的所述参考信号的时间片断信号。
  5. 根据权利要求4所述的处理方法,其特征在于,所述处理方法还包括:
    所述基站向所述UE发送第二指示信息,所述第二指示信息用于指示所述第一子载波集合在频域的起始位置的频域偏移量,所述频域偏移量为与参考位置相差子载波间隔的数目。
  6. 根据权利要求4或5所述的处理方法,其特征在于,当第一子载波集合在频域的起始位置的频域偏移量为第一频域偏移量时,M是第一时间片断数目集合中的任何一个元 素,当第一子载波集合在频域的起始位置的频域偏移量为第二频域偏移量时,M是第二时间片断数目集合中的任何一个元素,第一时间片断数目集合和第二时间片断数目集合不同,第一频域偏移量和第二频域偏移量不同。
  7. 一种用户设备UE,其特征在于,包括:
    接收单元,用于接收基站发送的第一指示信息,所述第一指示信息用于指示目标正交频分多路复用技术OFDM符号包括的时间片段的数目M,M≤N,所述N为所述目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,M、N为正整数;
    处理单元,用于根据所述接收单元接收的所述第一指示信息,确定所述M;
    发送单元,用于在所述M个时间片段中的每个时间片段上向所述基站发送所述参考信号的时间片断信号或者所述UE在所述M个时间片段中的每个时间片段上接收基站发送的所述参考信号的时间片断信号。
  8. 根据权利要求7所述的UE,其特征在于,所述接收单元,还用于接收所述基站发送的第二指示信息,所述第二指示信息用于指示所述第一子载波集合在频域的起始位置的频域偏移量,所述第二指示信息用于指示所述第一子载波集合在频域的起始位置的频域偏移量,所述频域偏移量为与参考位置相差子载波间隔的数目;
    所述处理单元,还用于根据所述频域偏移量,确定所述第一子载波集合在频域的起始位置;
    所述处理单元,还用于根据所述第一子载波集合在频域的起始位置,确定所述参考信号的时间片断信号。
  9. 根据权利要求7或8所述的UE,其特征在于,当第一子载波集合在频域的起始位置的频域偏移量为第一频域偏移量时,M是第一时间片断数目集合中的任何一个元素,当第一子载波集合在频域的起始位置的频域偏移量为第二频域偏移量时,M是第二时间片断数目集合中的任何一个元素,第一时间片断数目集合和第二时间片断数目集合不同,第一频域偏移量和第二频域偏移量不同。
  10. 一种基站,其特征在于,包括:
    处理单元,用于确定目标正交频分多路复用技术OFDM符号包括的时间片段的数目M,M≤N,所述N为所述目标OFDM符号中用于承载参考信号的第一子载波集合中相邻子载波在频域上相差子载波间隔的数目,M、N为正整数;
    发送单元,用于向用户设备UE发送第一指示信息,所述第一指示信息用于指示所述UE确定所述M;
    接收单元,用于接收所述UE在所述M个时间片段上发送的所述参考信号的时间片断信号或者发送在所述M个时间片段上发送的所述参考信号的时间片断信号。
  11. 根据权利要求10所述的基站,其特征在于,所述发送单元,还用于向所述UE发送第二指示信息,所述第二指示信息用于指示所述第一子载波集合在频域的起始位置的频域偏移量,所述频域偏移量为与参考位置相差子载波间隔的数目。
  12. 根据权利要求10或11所述的基站,其特征在于,当第一子载波集合在频域的起始位置的频域偏移量为第一频域偏移量时,M是第一时间片断数目集合中的任何一个元素,当第一子载波集合在频域的起始位置的频域偏移量为第二频域偏移量时,M是第二时 间片断数目集合中的任何一个元素,第一时间片断数目集合和第二时间片断数目集合不同,第一频域偏移量和第二频域偏移量不同。
PCT/CN2017/104423 2016-09-29 2017-09-29 参考信号的处理方法、用户设备和基站 WO2018059550A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17855000.0A EP3512144A4 (en) 2016-09-29 2017-09-29 REFERENCE SIGNAL PROCESSING METHOD, USER EQUIPMENT, AND BASE STATION
US16/369,024 US20190229971A1 (en) 2016-09-29 2019-03-29 Reference signal processing method, user equipment, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610873154.0 2016-09-29
CN201610873154.0A CN107888352B (zh) 2016-09-29 2016-09-29 参考信号的处理方法、用户设备和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/369,024 Continuation US20190229971A1 (en) 2016-09-29 2019-03-29 Reference signal processing method, user equipment, and base station

Publications (1)

Publication Number Publication Date
WO2018059550A1 true WO2018059550A1 (zh) 2018-04-05

Family

ID=61763300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104423 WO2018059550A1 (zh) 2016-09-29 2017-09-29 参考信号的处理方法、用户设备和基站

Country Status (4)

Country Link
US (1) US20190229971A1 (zh)
EP (1) EP3512144A4 (zh)
CN (1) CN107888352B (zh)
WO (1) WO2018059550A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474860B (zh) * 2018-05-11 2021-06-04 维沃移动通信有限公司 一种ofdm基带信号生成方法及装置
CN110830209B (zh) * 2018-08-10 2021-04-09 华为技术有限公司 训练天线面板的方法与装置
CN112583569B (zh) * 2019-01-10 2022-02-25 华为技术有限公司 信号处理的方法和装置
CN111769920B (zh) * 2019-04-02 2022-11-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
EP4054259A4 (en) * 2019-11-01 2023-02-22 Panasonic Intellectual Property Corporation of America WIRELESS COMMUNICATION CONTROL DEVICE AND WIRELESS COMMUNICATION CONTROL METHOD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102845011A (zh) * 2010-02-23 2012-12-26 高通股份有限公司 信道状态信息参考信号
CN103347298A (zh) * 2012-12-31 2013-10-09 上海华为技术有限公司 参考信号配置方法和参考信号发送方法及相关设备
CN104010363A (zh) * 2013-02-26 2014-08-27 华为技术有限公司 一种定位参考信号子帧的发送、接收方法及装置
CN105723639A (zh) * 2013-11-27 2016-06-29 瑞典爱立信有限公司 用于分别发送和检测同步信号和相关联的信息的网络节点、无线设备及其中的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2378703A1 (en) * 2010-04-13 2011-10-19 Panasonic Corporation Mapping of control information to control channel elements
CN103312650B (zh) * 2012-03-16 2016-12-14 华为技术有限公司 数据传输方法、基站和用户设备
EP3119121B1 (en) * 2014-04-04 2020-06-03 Huawei Technologies Co., Ltd. Reference signal detection method, receiving method, user equipment and base station
US20170303171A1 (en) * 2014-10-21 2017-10-19 Telefonaktiebolaget Lm Ericsson (Publ) Handling handover of an ue in case cell specific reference signals interfer with a physical downlink control channel
WO2017150813A1 (ko) * 2016-03-02 2017-09-08 엘지전자 주식회사 무선 통신 시스템에서 제어 채널을 송수신하는 방법 및 이를 지원하는 장치
KR20220141916A (ko) * 2016-05-11 2022-10-20 콘비다 와이어리스, 엘엘씨 새로운 라디오 다운링크 제어 채널

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102845011A (zh) * 2010-02-23 2012-12-26 高通股份有限公司 信道状态信息参考信号
CN103347298A (zh) * 2012-12-31 2013-10-09 上海华为技术有限公司 参考信号配置方法和参考信号发送方法及相关设备
CN104010363A (zh) * 2013-02-26 2014-08-27 华为技术有限公司 一种定位参考信号子帧的发送、接收方法及装置
CN105723639A (zh) * 2013-11-27 2016-06-29 瑞典爱立信有限公司 用于分别发送和检测同步信号和相关联的信息的网络节点、无线设备及其中的方法

Also Published As

Publication number Publication date
EP3512144A4 (en) 2019-09-11
US20190229971A1 (en) 2019-07-25
CN107888352A (zh) 2018-04-06
EP3512144A1 (en) 2019-07-17
CN107888352B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
EP3618536B1 (en) Base station device, terminal apparatus, communication method, and integrated circuit
EP3618490B1 (en) Base station device, terminal device, communication method, and integrated circuit
EP3579515B1 (en) Base station device, terminal device and communication methods
US11323917B2 (en) Base station apparatus, terminal apparatus, communication method, and integrated circuit
EP3618524A1 (en) Base station device, terminal device, communication method, and integrated circuit
JP6886919B2 (ja) 端末及び無線通信方法
WO2018126926A1 (zh) 信号传输方法和装置
EP3565204B1 (en) Terminal device, base station device and corresponding communication methods
WO2018059550A1 (zh) 参考信号的处理方法、用户设备和基站
EP3562081A1 (en) Method and apparatus for configuring reference signal
US9277453B2 (en) Method and a system for transmitting pilot
WO2018000929A1 (zh) 一种子帧配置方法及相关设备
KR20190042721A (ko) 물리 하향링크 제어 채널을 송신 또는 수신하는 방법 및 디바이스
US11153781B2 (en) Variable cyclic prefix (CP) within a transmission slot in millimeter wave band
US10681623B2 (en) Methods and apparatus for cell access via anchor carrier
JP2020504484A (ja) 基準信号の伝送方法及び通信装置
KR20190038329A (ko) 통신 시스템에서 프리엠션의 지시 방법
CN108811074B (zh) 信息传输方法及装置
TW202008829A (zh) 資源配置的方法和終端設備
TW202008828A (zh) 資源配置的方法和終端設備
WO2018081973A1 (zh) 传输信号的方法、终端设备和网络设备
US9780931B2 (en) Flexible transmission of messages in a wireless communication system
US11777640B2 (en) Method and apparatus for dummy sequence insertion in data modulation
WO2018126968A1 (zh) 一种信号发送、接收方法及装置
CN108023667B (zh) 传输控制方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017855000

Country of ref document: EP

Effective date: 20190411